WorldWideScience

Sample records for shocked external medium

  1. COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS

    Shen Rongfeng; Matzner, Christopher D., E-mail: rfshen@astro.utoronto.ca, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Ontario M5S 3H4 (Canada)

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a {rho}{proportional_to}r{sup -2}, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, {Gamma}{sub 0} {<=} 46({epsilon}{sub e}/0.1){sup -0.24}({epsilon}{sub B}/0.01){sup 0.17}; the isotropic equivalent total ejecta energy is E{sub iso} {approx} 10{sup 53}({epsilon}{sub e}/0.1){sup -1.3}({epsilon}{sub B}/0.01){sup -0.09}(t{sub b} /10{sup 4} s) erg, where {epsilon}{sub e} and {epsilon}{sub B} are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and t{sub b} is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-{Gamma}{sub 0} ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  2. Shock propagation in a heterogeneous medium

    Elbaz, D.

    2011-01-01

    In the frame of the inertial confinement fusion in direct drive, the use of foams as ablator allows the reduction of hydrodynamic instabilities created on the target by the direct laser irradiation. The foam is made up of carbon (CH) fibers impregnated of cryogenic deuterium-tritium (DT). In the past, studies have been carried out considering this foam to be a homogeneous medium. Yet, the foam presents heterogeneous features. We study the effects of this heterogeneity on the shock velocity when the laser irradiates the target. Thanks to experimental and numerical studies, we show that the shock propagates faster in the heterogeneous medium than in the homogeneous one with the same averaged density. This velocity gap depends on the presence rate of the CH fibers in the foam, the density ratio, the adiabatic coefficient and the foam geometry. We model the foam by different ways, more and more complex. The shock velocity modification is due to the baroclinicity which, during the interaction between the shock front and the interface, creates a vorticity deposition, responsible for the shock acceleration. Accordingly, an interface, which is plane and perpendicular to the front shock, maximizes the vorticity deposition and increases the velocity gaps between heterogeneous and homogeneous media. We found a correlation between the kinetic energy behind the shock front and the velocities relative difference. We compared our results with two analytical models. However, the system is not closed, so we can't for the moment develop a predictive model. (author) [fr

  3. AN EXTERNAL SHOCK ORIGIN OF GRB 141028A

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); Racusin, J. L.; Cucchiara, A., E-mail: jamesb@kth.se, E-mail: damienb@kth.se [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-05-10

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ -ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF{sub ν} peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF{sub ν} peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blast wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF{sub ν} peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.

  4. "Driverless" Shocks in the Interplanetary Medium

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  5. Collective effects in shock propagation through a clumpy medium

    Norman, M.L.; Dickel, J.R.; Livio, M.; Chu, Y.H.

    1988-01-01

    A numerical simulation of shock propagation in a clumpy medium with a weak magnetic field is presented which illustrates a number of dynamical processes of potential importance for explaining spectral line width and radio polarization measurements in supernova remnants

  6. failure analysis and shock protection of external hard disk drive

    user

    model its structural responses to free fall drop-impact shock and vibration. Secondly, the hard ... Keywords: Free fall, impact force, Shock, Vibration, Stress, Reliability, Modeling, Simulation External Hard disk drive. 1. ..... on the disk, it could initiate process which could .... [19] Katta, P.: MATLAB Guide to Finite Elements - An.

  7. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. II. BALMER EMISSION

    Morlino, G.; Bandiera, R.; Blasi, P.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-01

    Strong shocks propagating into a partially ionized medium are often associated with optical Balmer lines. This emission is due to impact excitation of neutral hydrogen by hot protons and electrons in the shocked gas. The structure of such Balmer-dominated shocks has been computed in a previous paper, where the distribution function of neutral particles was derived from the appropriate Boltzmann equation including coupling with ions and electrons through charge exchange and ionization. This calculation showed how the presence of neutrals can significantly modify the shock structure through the formation of a neutral-induced precursor ahead of the shock. Here we follow up on our previous work and investigate the properties of the resulting Balmer emission, with the aim of using the observed radiation as a diagnostic tool for shock parameters. Our main focus is on supernova remnant shocks, and we find that, for typical parameters, the H{alpha} emission typically has a three-component spectral profile, where (1) a narrow component originates from upstream cold hydrogen atoms, (2) a broad component comes from hydrogen atoms that have undergone charge exchange with shocked protons downstream of the shock, and (3) an intermediate component is due to hydrogen atoms that have undergone charge exchange with warm protons in the neutral-induced precursor. The relative importance of these three components depends on the shock velocity, on the original degree of ionization, and on the electron-ion temperature equilibration level. The intermediate component, which is the main signature of the presence of a neutral-induced precursor, becomes negligible for shock velocities {approx}< 1500 km s{sup -1}. The width of the intermediate line reflects the temperature in the precursor, while the width of the narrow one is left unaltered by the precursor. In addition, we show that the profiles of both the intermediate and broad components generally depart from a thermal distribution, as a

  8. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  9. Dispersive shock mediated resonant radiations in defocused nonlinear medium

    Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar

    2018-04-01

    We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.

  10. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  11. Natural convection in a porous medium: External flows

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  12. External Shocks and Banking Crises in Developing Countries: Does the Exchange Rate Regime Matter?

    Chandima Mendis

    2002-01-01

    This paper examines some determinants of banking crises in developing economies. Specifically, the effects of terms of trade shocks and capital flows are analyzed. The choice of the nominal exchange rate regime is found to be a crucial factor in the way various shocks are transmitted through the monetary sector. A logit model is used on panel data and preliminary results indicate that countries with flexible regimes were able to lessen the impact of external shocks on the domestic economy. Th...

  13. Characteristics of shock waves in neutrino-thick medium of collapsing stars

    Imshennik, V.S.; Murzina, M.V.

    1989-01-01

    Hugoniot relations for shock waves in neutrino-thick medium of colapsing stars are formulated. The equations obtained are solved numerically for rather wide range of shock wave velocities (D=(1,3,5)x10 9 cm/s) as well as for values of medium physical parameters against the shock wave front ( temperature T=(3,5,10)x1 -9 K; medium degree Θ 0 =n n /n p =10;100; at ρ 0 =10 11 g/cm 3 density).Presence of neutrino radiation is shown to result in matter essential deneutronization (up to Θ=10-30) at shock wave passage though contribution of leptonic component into the matter main characteristics (pressure, internal energy, temperature etc.) is rather small. 17 refs.; 3 figs.; 3 tabs

  14. STOCK PRICES OF DOMESTIC BANKING SECTOR AND EXTERNAL SHOCKS IN EAST ASIA

    Masahiro Inoguchi

    2011-01-01

    This paper examines the impact of price fluctuations in foreign stock markets on the stock prices of domestic banks’ stocks to explore if and how external shocks have affected the banking system in Korea, Malaysia, Singapore, and Thailand during the 2000s. Some researchers insist that domestic banks in East Asia were less affected by the 2007–2009 global financial crisis. However, few previous articles have investigated how the banking sector in East Asia has been affected by external shocks....

  15. A preventive maintenance model for leased equipment subject to internal degradation and external shock damage

    Zhou, Xiaojun; Wu, Changjie; Li, Yanting; Xi, Lifeng

    2016-01-01

    A periodic preventive maintenance modeling method is proposed for leased equipment with continuous internal degradation and stochastic external shock damage considered simultaneously, which can facilitate the equipment lessor to optimize the maintenance schedule for the same kind of equipment rented by different lessees. A novel interactive mechanism between the continuous internal degradation and the stochastic external shock damage is established on the hazard rate of the equipment with integrating the imperfect effect of maintenance. Two improvement factors are defined for the modeling of imperfect maintenance. The number of failures resulting from internal degradation and from external shocks are both mathematically deduced based on this interactive mechanism. The optimal preventive maintenance scheme is obtained by minimizing the cumulative maintenance cost throughout the lease period. Numerical example shows that the proposed preventive maintenance model not only can reflect the reliability status of the equipment but also can clearly distinguish between the impact from internal degradation and that from external shocks. - Highlights: • We propose an imperfect periodic preventive maintenance model for leased equipment. • It can distinguish between the impact from internal degradation and that from external shocks. • An internal–external interactive mechanism is proposed. • Two improvement factors are introduced into the modeling of imperfect maintenance. • The model is helpful for the PM scheduling of the same equipment rented by different lessees.

  16. Failure analysis and shock protection of external hard disk drive ...

    Technology for processing and storage of data in portable external storage hard disks has increasingly improved over the years. Currently, terabytes of data can be stored in one portable external storage hard disk drive. Storing such amount of data on a single disk on itself is a risk. Several instances of data lost by big ...

  17. Numerical analysis of three-dimensional MHD shock interactions in an inhomogeneous medium

    Prndergast, M.; Wu, S.T.

    1987-01-01

    Study of the formation and propagation of solar-originated shock waves in heliospheric space has attracted significant attention in the past decade. This attention is important because the propagation of shocks in heliospheric space has been thought of as one of the major physical processes for solar wind and cosmic ray modulations and their subsequent influence on the earth's environment. A version of the two step Lax-Wendroff difference method is used to seek solutions of the unsteady magnetohydrodynamic (MHD) equations for the study of a solar flare generated shock wave propagating through an inhomogeneous medium. 8 references

  18. Macroeconomic Risk Management in Nigeria : Dealing with External Shocks

    Montenegro, Santiago; Claessens, Constantjin; Gooptu, Sudarshan; Imran, Mudassar; Powell, Andrew

    1995-01-01

    The Nigerian economy is highly dependent on a number of external variables beyond the control of policymakers and domestic agents. Most important among those variables is the price of oil, which is highly uncertain and determined in fluctuating international markets. With oil accounting for more than 90 percent of Nigeria's exports, 25 percent of its GDP, and 80 percent of its public reven...

  19. Monetary Regimes and External Shocks Reaction: Empirical Investigations on Eastern European Economies

    Muhammad Khan

    2017-12-01

    Full Text Available In the late 90's, after severe financial crisis, accompanied by inflation and exchange rate instability, Eastern Europe emerged into two radically contrasting monetary regimes (Currency Boards and Inflation targeting. The task of our study is to compare econometrically the performance of these two regimes in terms of their resilience to the external real and nominal shocks, coming from Euro area. In other words, we test the non-neutrality of exchange rate regimes with respect to these connections. Our PVAR model results reveal that the choice of monetary regimes indeed determines the ability of a country to absorb the external shocks.

  20. Mercure IV code application to the external dose computation from low and medium level wastes

    Tomassini, T.

    1985-01-01

    In the present work the external dose from low and medium level wastes is calculated using MERCURE IV code. The code utilizes MONTECARLO method for integrating multigroup line of sight attenuation Kernels

  1. Impacts Of External Price Shocks On Malaysian Macro Economy-An Applied General Equilibrium Analysis

    Abul Quasem Al-Amin

    2008-10-01

    Full Text Available This paper examines the impacts of external price shocks in the Malaysian economy. There are three simulations are carried out with different degrees of external shocks using Malaysian Social Accounting Matrix (SAM and Computable General Equilibrium (CGE analysis. The model results indicate that the import price shocks, better known as external price shocks by 15% decreases the domestic production of building and construction sector by 25.87%, hotels, restaurants and entertainment sector by 12.04%, industry sector by 12.02%, agriculture sector by 11.01%, and electricity and gas sector by 9.55% from the baseline. On the import side, our simulation results illustrate that as a result of the import price shocks by 15%, imports decreases significantly in all sectors from base level. Among the scenarios, the largest negative impacts goes on industry sectors by 29.67% followed by building and construction sector by 22.42%, hotels, restaurants and entertainment sector by 19.45%, electricity and gas sector by 13.%, agriculture sector by 12.63% and other service sectors by 11.17%. However significant negative impact goes to the investment and fixed capital investment. It also causes the household income, household consumption and household savings down and increases the cost of livings in the economy results in downward social welfare.

  2. Estimating the Costs and Benefits of EMU : The Impact of External Shocks on Labour Markets

    Belke, A.; Gros, D.

    1997-01-01

    Discussions of the economic costs and benefits of EMU usually take as their basis the optimum currency area (OCA) approach. This approach starts from the premise that when an external shock hits the economy, it is easier to adjust the exchange rate than domestic prices or wages. Most economists

  3. A randomized trial comparing monophasic and biphasic waveform shocks for external cardioversion of atrial fibrillation

    Koster, Rudolph W.; Dorian, Paul; Chapman, Fred W.; Schmitt, Paul W.; O'Grady, Sharon G.; Walker, Robert G.

    2004-01-01

    Background We compared efficacy of and pain felt after biphasic truncated exponential (BTE) and monophasic damped sine (MDS) shocks in patients undergoing external cardioversion of atrial fibrillation (AF). Methods Patients with AF were randomized to BTE or MDS waveform cardioversion. Successive

  4. External Determinants of the Development of Small and Medium-Sized Enterprises – Empirical Analysis

    Renata Lisowska

    2015-01-01

    Full Text Available The paper aims to identify external determinants of the development of small and medium-sized enterprises and assess their impact on the functioning of these entities in Poland. Meeting this objective required: identifying determinants of the development of SMEs, determining the current development situation of the surveyed enterprises and examining the impact of external determinants on the development of SMEs. The implementation of the above-presented goals was based on the following assumptions: (i the current situation of the surveyed enterprises is determined with the use of quantitative indicators (turnover volume, number of employees, market share, profit levels (ii the analysis of external determinants encompasses three components of the environment: the macro-environment, the meso-environment and the micro-environment, (iii in each analysed area there are separate analyses conducted for micro, small and medium-sized enterprises, enabling greater precision in the identification of external determinants of development for each category of businesses.

  5. A preventive maintenance policy based on dependent two-stage deterioration and external shocks

    Yang, Li; Ma, Xiaobing; Peng, Rui; Zhai, Qingqing; Zhao, Yu

    2017-01-01

    This paper proposes a preventive maintenance policy for a single-unit system whose failure has two competing and dependent causes, i.e., internal deterioration and sudden shocks. The internal failure process is divided into two stages, i.e. normal and defective. Shocks arrive according to a non-homogeneous Poisson process (NHPP), leading to the failure of the system immediately. The occurrence rate of a shock is affected by the state of the system. Both an age-based replacement and finite number of periodic inspections are schemed simultaneously to deal with the competing failures. The objective of this study is to determine the optimal preventive replacement interval, inspection interval and number of inspections such that the expected cost per unit time is minimized. A case study on oil pipeline maintenance is presented to illustrate the maintenance policy. - Highlights: • A maintenance model based on two-stage deterioration and sudden shocks is developed. • The impact of internal system state on external shock process is studied. • A new preventive maintenance strategy combining age-based replacements and periodic inspections is proposed. • Postponed replacement of a defective system is provided by restricting the number of inspections.

  6. Cosmic ray acceleration by shock waves in a diffusion medium. Research of high energies

    Lagage, P.O.

    1982-06-01

    The problem of galactic cosmic-ray acceleration is presented with the study of a new acceleration mechanism by supernova shock waves in a diffusive medium. The question is: do supernova shocks have enough time to accelerate cosmic rays beyond 10 4 -10 5 GeV. A firm upper limit to the energy that can be acquired by particles is established and it is considered that the mean free path of the particle has its lowest possible value and the most favorable model of supernova evolution. The diffusion coefficients which are relevant for the determination of the high energy cut off are investigated. The effect of the spatial dependence of the diffusion coefficient on the rate of acceleration of particles is examined. A more realistic cut off energy is calculated. We find E max = 2 10 4 GeV [fr

  7. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  8. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  9. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  10. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  11. Dynamics of shock wave propagation and interphase process in liquid-vapor medium

    Pokusaev, B.G. [Moscow State Academy of Chemical Mechanical Engineering (Russian Federation); Pribaturin, N.A. [Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    1995-09-01

    This paper considers the experimental results and physical effects on the pressure wave dynamics of a vapour-liquid two-phase medium of bubble and slug structure. The role of destruction and collapse of bubbles and slugs, phase transition (condensation and evaporation) on pressure wave dynamics is also studied. The general mechanisms of the wave formation, behavior and instability of a vapour-liquid structure under pressure waves, basic peculiarities of the interface heat transfer are obtained. In the experiments it has been shown that for the bubble medium the shock wave can be transformed into the powerful pressure pulse with an amplitude greater then the amplitude of the initial pressure wave. For the slug medium a characteristic structure of the amplificated wave is {open_quotes}comb{close_quotes} - like wave. It has been shown that the wave amplification caused by generation of secondary waves in a medium caused by destruction and collapse of bubbles and slugs. The obtained results can be useful at transient and emergency operational regimes of nuclear reactors, fuel tank, pipelines with two-phase flows and for development of safety models for chemical industry.

  12. Heisenberg representation for secondary-quantized fields in nonstationary external fields and dielectric nonlinear medium

    Lobashev, A.A.; Mostepanenko, V.M.

    1993-01-01

    Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up

  13. Collaboration patterns, external shocks and uncertainty: Swiss nuclear energy politics before and after Fukushima

    Fischer, Manuel

    2015-01-01

    Energy shocks like the Fukushima accident can have important political consequences. This article examines their impact on collaboration patterns between collective actors in policy processes. It argues that external shocks create both behavioral uncertainty, meaning that actors do not know about other actors’ preferences, and policy uncertainty on the choice and consequences of policy instruments. The context of uncertainty interacts with classical drivers of actor collaboration in policy processes. The analysis is based on a dataset comprising interview and survey data on political actors in two subsequent policy processes in Switzerland and Exponential Random Graph Models for network data. Results first show that under uncertainty, collaboration of actors in policy processes is less based on similar preferences than in stable contexts, but trust and knowledge of other actors are more important. Second, under uncertainty, scientific actors are not preferred collaboration partners. - Highlights: • Energy shocks create uncertainty in policy processes. • Behavioral and policy uncertainty have influence actors’ collaboration patterns. • Under uncertainty, collaboration is based on trust rather than on similar preferences. • Under uncertainty, scientific actors are not preferred collaboration partners, but are active themselves.

  14. The Common Agricultural Policy Role in Addressing External Shocks - The Case of Russian Import Ban

    ANDREEA DRĂGOI

    2015-05-01

    Full Text Available The Common Agricultural Policy (CAP is one of the oldest and most controversial common policies and it is financed directly from the European Union budget. Some critics of CAP argue that especially in the context of the challenges brought by the international crisis, this policy represents a “burden” for the European budget. Our research aims to responds those critics by showing that CAP may represent an important tool for addressing the external shocks impact on agricultural sector of EU. In this view, we will highlight the role of CAP in sustaining the European farmer during the crisis generated by the Russian import ban, adopted as a response to the sanctions imposed by EU to the Russian Federation in the context of Ukrainian crisis. Using a quantitative and qualitative analysis we will assess how the CAP has supported the European agricultural sector and also the future measures that could be adopted to create a more flexible response in the case of other external shocks.

  15. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. I. NEUTRAL RETURN FLUX AND ITS EFFECTS ON ACCELERATION OF TEST PARTICLES

    Blasi, P.; Morlino, G.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States)

    2012-08-20

    A collisionless shock may be strongly modified by the presence of neutral atoms through the processes of charge exchange between ions and neutrals and ionization of the latter. These two processes lead to exchange of energy and momentum between charged and neutral particles both upstream and downstream of the shock. In particular, neutrals that suffer a charge exchange downstream with shock-heated ions generate high-velocity neutrals that have a finite probability of returning upstream. These neutrals might then deposit heat in the upstream plasma through ionization and charge exchange, thereby reducing the fluid Mach number. A consequence of this phenomenon, which we refer to as the neutral return flux, is a reduction of the shock compression factor and the formation of a shock precursor upstream. The scale length of the precursor is determined by the ionization and charge-exchange interaction lengths of fast neutrals moving toward upstream infinity. In the case of a shock propagating in the interstellar medium, the effects of ion-neutral interactions are especially important for shock velocities <3000 km s{sup -1}. Such propagation velocities are common among shocks associated with supernova remnants, the primary candidate sources for the acceleration of Galactic cosmic rays. We then investigate the effects of the return flux of neutrals on the spectrum of test particles accelerated at the shock. We find that, for shocks slower than {approx}3000 km s{sup -1}, the particle energy spectrum steepens appreciably with respect to the naive expectation for a strong shock, namely, {proportional_to}E{sup -2}.

  16. Effect of shocks on film cooling of a full scale turbojet exhaust nozzle having an external expansion surface

    Straight, D. M.

    1979-01-01

    Cooling is one of the critical technologies for efficient design of exhaust nozzles, especially for the developing technology of nonaxisymmetric (2D) nozzles for future aircraft applications. Several promising 2D nozzle designs have external expansion surfaces which need to be cooled. Engine data are scarce, however, on nozzle cooling effectiveness in the supersonic flow environment (with shocks) that exists along external expansion surfaces. This paper will present experimental film cooling data obtained during exploratory testing with an axisymmetric plug nozzle having external expansion and installed on an afterburning turbojet engine in an altitude test facility. The data obtained shows that the shocks and local hot gas stream conditions have a marked effect on film cooling effectiveness. An existing film cooling correlation is adequate at some operating conditions but inadequate at other conditions such as in separated flow regions resulting from shock-boundary-layer interactions.

  17. Investigation of external and internal shock in the stability of Indonesia’s financial system

    Maulina Vinus

    2017-07-01

    Full Text Available The objective of this research is to develop a financial system stability index and analyze the internal and external factors that we expect to affect the stability of the Indonesian financial system. We measured the single model of financial system stability index (FSSI from year 2004M03 to2014M09 in Indonesia, and compiled a single quantitative measure based on aggregate internal factors and external factors to capture and predict the shocks of the financial system stability. Stability parameters were composed of composite indicators on different bases. In addition, we developed a comprehensive index component associated with the relevant market conditions, including banking soundness index, financial vulnerability index, and regional economic climate index. Results stated that US economic growth and economic growth of ASEAN countries positively affected financial stability. In addition, current account, exchange rate, inflation, interest rate were shown to negatively affect financial stability. The results of this study imply that internal factors have a strong influence on the financial stability. Therefore, the central bank should give a fast and correct response to the changes of external and internal financial environment, especially for internal factors through monetary policy.

  18. The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    The roots of rice seedlings, growing in artificial pond water, exhibit robust gravitropic curvature when placed perpendicular to the vector of gravity. To determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best accounts for gravity sensing in rice roots, we changed the physical properties of the external medium with impermeant solutes and examined the effect on gravitropism. As the density of the external medium is increased, the rate of gravitropic curvature decreases. The decrease in the rate of gravicurvature cannot be attributed to an inhibition of growth, since rice roots grown in 100 Osm/m3 (0.248 MPa) solutions of different densities all support the same root growth rate but inhibit gravicurvature increasingly with increasing density. By contrast, the sedimentation rate of amyloplasts in the columella cells is unaffected by the external density. These results are consistent with the gravitational pressure theory of gravity sensing, but cannot be explained by the statolith theory.

  19. AN EMPIRICAL ANALYSIS OF RUSSIAN BANKING AND NON-FINANCIAL SECTORS' VULNERABILITY TO POSSIBLE EXTERNAL FINANCIAL SHOCK

    Егор Николаевич Поляков

    2013-08-01

    Full Text Available The article explains to what extent currency mismatch in banking and non-financial sectors determine vulnerability of Russian economy with respect to possible external shock. The authors explain how Central Bank of Russia exchange rate policy depends on currency mismatches and to what extent currency mismatches determined the slowdown of Russian economy during the financial crisis. The article shows the dynamics of currency mismatch from 2004 to 2012 year. The authors offer the model of the relationship between capital flight and external debt of private sector. The authors present the results of stress test of Russian economy. The stress test implies external shock similar to external shock of the end of 2008. According to stress test as of end of 2012 both banking and private sectors are less vulnerable to possible external shock. Meanwhile authors made a conclusion that vulnerability of a private sector remains unacceptably high. The authors recommend 2 ways how to decelerate the currency mismatch of a private sector. DOI: http://dx.doi.org/10.12731/2218-7405-2013-6-8

  20. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses

    Silve, Aude; Leray, Isabelle; Poignard, Clair; Mir, Lluis M.

    2016-01-01

    The impact of external medium conductivity on the efficiency of the reversible permeabilisation caused by pulsed electric fields was investigated. Pulses of 12 ns, 102 ns or 100 μs were investigated. Whenever permeabilisation could be detected after the delivery of one single pulse, media of lower conductivity induced more efficient reversible permeabilisation and thus independently of the medium composition. Effect of medium conductivity can however be hidden by some saturation effects, for example when pulses are cumulated (use of trains of 8 pulses) or when the detection method is not sensitive enough. This explains the contradicting results that can be found in the literature. The new data are complementary to those of one of our previous study in which an opposite effect of the conductivity was highlighted. It stresses that the conductivity of the medium influences the reversible permeabilization by several ways. Moreover, these results clearly indicate that electropermeabilisation does not linearly depend on the energy delivered to the cells. PMID:26829153

  1. The effect of the external medium on the gravity-induced polarity of cytoplasmic streaming in Chara corallina (Characeae)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    Gravity induces a polarity of cytoplasmic streaming in vertical internodal cells of Chara such that the downwardly directed stream moves faster than the upwardly directed stream. In order to determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best explain the gravity response in Chara internodal cells, we controlled the physical properties of the external medium, including density and osmolarity, with impermeant solutes and examined the effect on the polarity of cytoplasmic streaming. As the density of the external medium is increased, the polarity of cytoplasmic streaming decreases and finally disappears when the density of the external medium is equal to that of the cell (1015 kg/m3). A further increase in the density of the external medium causes a reversal of the gravity response. These results are consistent with the gravitational pressure theory of gravity sensing since the buoyancy of the protoplast is dependent on the difference between the density of the protoplast and the external medium, and are inconsistent with the statolith theory since the buoyancy of intracellular particles are unaffected by changes in the external medium.

  2. Cracking of a layered medium on an elastic foundation under thermal shock

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  3. EXTERNAL FORCES DRIVING CHANGE IN THE ROMANIAN SMALL AND MEDIUM SIZED ENTERPRISES

    Roiban Roxana Nadina

    2012-07-01

    Full Text Available Change is a constant in everyday life confronting organizations to continuously adapt their strategy, structure, processes, and culture in order to survive and stay competitive on the market. Implementing organizational change is one of the most important skills required for managers and in the meantime the most difficult one. The forces driving change within an organization, that can be either external or internal, are those that propel a company forward towards change and in order to identify the need for change and make the proper changes, managers have to develop a tool that allows them to analyze how does the environment influence their business activities. A vision for change will clarify the directions in which the organization needs to move, starting from its current state and taking in consideration the existing opportunities and threats from the environment that allow to move to a future desired state. The purpose of this paper is to identify the concern for change in the Romanian small and medium sized enterprises by presenting and explaining the past and present influences of the main external forces that have determined the need for change in the last 3-5 years and to make recommendations about future possible changes that have to be performed by managers for a better harmonization with the environment. The research method used for this study is the interview on a sample that contains some of the most relevant SME’s from the western side of Romania, from different industries. We analyzed the main external forces that had an impact on the small and medium sized enterprises and how were they generating the need for organizational change, in order to see which present and future changes are required.

  4. EU emissions trading. The need for cap adjustment in response to external shocks and unexpected developments?

    Diekmann, Jochen [DIW, Berlin (Germany)

    2012-11-15

    In this paper the advantages and disadvantages of the various adaptation options will be discussed from an economic perspective. Firstly, the criteria for identifying a need for potentially legitimate adaptation should be investigated. Furthermore, the issue of appropriate timely intervention points prior to or within the trading period will be discussed. In what periods and scenarios are adjustments to the cap worthwhile from an economic perspective? To what extent could minimum prices or price ranges make sense? What role could a strategic reserve play? By addressing these issues, it will be fundamentally discussed as to how the emissions trading scheme could be further developed and strengthened by greater flexibility. After a brief characterisation of emissions trading in theory and practice in Chapter 2, Chapter 3 will identify potential external shocks and unexpected developments which may impair the functioning of an emissions trading scheme. The current problems of cap setting for the third trading period of the EU ETS will be described in Chapter 4. Against this background, cap adjustments will be discussed in Chapter 5, minimum and maximum prices in Chapter 6 and strategic reserves in emissions trading in Chapter 7. The conclusions are summarised in Chapter 8.

  5. Shock-jump conditions in a general medium: weak-solution approach

    Forbes, L. K.; Krzysik, O. A.

    2017-05-01

    General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.

  6. State equations and stability of shock wave fronts in homogeneous and heterogeneous metallic medium

    Romain, Jean-Pierre

    1977-01-01

    This research thesis in physical sciences reports a theoretical and experimental study of some mechanical and thermodynamic aspects related to a shock wave propagation in homogeneous and heterogeneous metallic media: state equations, stability and instability of shock wave fronts. In the first part, the author reports the study of the Grueneisen coefficient for some metallic elements with known static and dynamic compression properties. The second part reports the experimental investigation of dynamic compressibility of some materials (lamellar Al-Cu compounds). The front shock wave propagation has been visualised, and experimental Hugoniot curves are compared with those deduced from a developed numeric model and other models. The bismuth Hugoniot curve is also determined, and the author compares the existence and nature of phase transitions obtained by static and dynamic compression

  7. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION

    Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-05-10

    In this paper, we present the first formulation of the theory of nonlinear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification, and the magnetic dynamical effects on the shock are also included. The main new aspect of this study, however, consists of accounting for charge exchange and the ionization of a neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated with the so-called neutral return flux, namely the return of hot neutrals from the downstream region to upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer cosmic ray acceleration efficiency in supernova remnants showing Balmer emission: the broad Balmer line, which is due to charge exchange of hydrogen atoms with hot ions downstream of the shock, is shown to become narrower as a result of the energy drainage into cosmic rays, while the narrow Balmer line, due to charge exchange in the cosmic-ray-induced precursor, is shown to become broader. In addition to these two well-known components, the neutral return flux leads to the formation of a third component with an intermediate width: this too contains information on ongoing processes at the shock.

  8. Compromise solution in the problem of change state control for the material body exposed to the external medium

    Malafeyev, O. A.; Redinskikh, N. D.

    2018-05-01

    The problem of finding optimal temperature control of the material body state under the unknown in advance parameters of the external medium is formalized and studied in this paper. The problems of this type arise frequently in the real life. An optimal thermal regime is necessary to apply at the soil thawing or freezing, drying the building materials, heating the concrete to obtain the required strength, and so on. Problems of such type one can analyze making use the apparatus and methods of game theory. For describing the influence of external medium on the characteristics of different materials we make use the many-step two person zero-sum game in this paper. The compromise solution is taken as the optimality principle. The numerical example is given.

  9. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  10. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-01-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  11. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium

    Bauer, S. H.; Borchardt, D. B.

    1990-01-01

    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  12. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  13. EFFECT OF LOW ENERGY VERSUS MEDIUM ENERGY RADIAL SHOCK WAVE THERAPY IN THE TREATMENT OF CHRONIC PLANTER FASCIITIS

    Khaled Z. Fouda

    2016-02-01

    Full Text Available Background: Plantar fasciitis (PF is the most common cause of heel pain and it can often be a challenge for clinicians to treat successfully. Radial shock wave therapy (RSWT has been introduced recently for treatment of musculoskeletal disorders. Different energy levels of shock wave therapy have been used in the literatures for treatment of PF with no clear settled parameters. Therefore, the purpose of this study was intended to investigate and compare the efficacy of two different energy levels of RSWT on PF patients. Methods: Forty patients having unilateral chronic PF were recruited for the study from orthopedic outpatient clinics of Cairo University hospitals and National Institute of Neuromotor System Cairo Egypt, with a mean age of (47.15±4.57 years. Patients were randomly assigned into two equal groups. Group (A treated with low intensity level of 1.6 bars (0.16 mJ/mm2 RSWT and group (B treated with medium intensity level of 4 bars (0.38 mJ/mm2 RSWT. Functional assessment of the foot based on Foot Function Index (FFI and Present pain intensity was measured during rest by Visual Analogue Scale (VAS. Results: There was as significant decreased in the total FFI scores from (118.42 ±6.51 to (81.37 ±3.46 for group (A and from (118.93 ±6.85 to (58.50 ±3.22 for group (B. Also regarding VAS Scores there was as significant decreased in the pain intensity from (5.11 ±0.41 to (2.85 ±0.31 for group (A and from (4.95 ±0.39 to (2.05 ±0.22 for group (B. Conclusion: Radial shock wave therapy is an effective modality that should be considered in the treatment of chronic PF, while the medium energy level RSWT is better than the low energy level RSWT in regarding to the measured treatment outcomes.

  14. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  15. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  16. Transmural recording of shock potential gradient fields, early postshock activations, and refibrillation episodes associated with external defibrillation of long-duration ventricular fibrillation in swine.

    Allred, James D; Killingsworth, Cheryl R; Allison, J Scott; Dosdall, Derek J; Melnick, Sharon B; Smith, William M; Ideker, Raymond E; Walcott, Gregory P

    2008-11-01

    Knowledge of the shock potential gradient (nablaV) and postshock activation is limited to internal defibrillation of short-duration ventricular fibrillation (SDVF). The purpose of this study was to determine these variables after external defibrillation of long-duration VF (LDVF). In six pigs, 115-20 plunge needles with three to six electrodes each were inserted to record throughout both ventricles. After the chest was closed, the biphasic defibrillation threshold (DFT) was determined after 20 seconds of SDVF with external defibrillation pads. After 7 minutes of LDVF, defibrillation shocks that were less than or equal to the SDVF DFT strength were given. For DFT shocks (1632 +/- 429 V), the maximum minus minimum ventricular voltage (160 +/- 100 V) was 9.8% of the shock voltage. Maximum cardiac nablaV (28.7 +/- 17 V/cm) was 4.7 +/- 2.0 times the minimum nablaV (6.2 +/- 3.5 V/cm). Although LDVF did not increase the DFT in five of the six pigs, it significantly lengthened the time to earliest postshock activation following defibrillation (1.6 +/- 2.2 seconds for SDVF and 4.9 +/- 4.3 seconds for LDVF). After LDVF, 1.3 +/- 0.8 episodes of spontaneous refibrillation occurred per animal, but there was no refibrillation after SDVF. Compared with previous studies of internal defibrillation, during external defibrillation much less of the shock voltage appears across the heart and the shock field is much more even; however, the minimum nablaV is similar. Compared with external defibrillation of SDVF, the biphasic external DFT for LDVF is not increased; however, time to earliest postshock activation triples. Refibrillation is common after LDVF but not after SDVF in these normal hearts, indicating that LDVF by itself can cause refibrillation without requiring preexisting heart disease.

  17. Simple wealth distribution model causing inequality-induced crisis without external shocks

    Benisty, Henri

    2017-05-01

    We address the issue of the dynamics of wealth accumulation and economic crisis triggered by extreme inequality, attempting to stick to most possibly intrinsic assumptions. Our general framework is that of pure or modified multiplicative processes, basically geometric Brownian motions. In contrast with the usual approach of injecting into such stochastic agent models either specific, idiosyncratic internal nonlinear interaction patterns or macroscopic disruptive features, we propose a dynamic inequality model where the attainment of a sizable fraction of the total wealth by very few agents induces a crisis regime with strong intermittency, the explicit coupling between the richest and the rest being a mere normalization mechanism, hence with minimal extrinsic assumptions. The model thus harnesses the recognized lack of ergodicity of geometric Brownian motions. It also provides a statistical intuition to the consequences of Thomas Piketty's recent "r >g " (return rate > growth rate) paradigmatic analysis of very-long-term wealth trends. We suggest that the "water-divide" of wealth flow may define effective classes, making an objective entry point to calibrate the model. Consistently, we check that a tax mechanism associated to a few percent relative bias on elementary daily transactions is able to slow or stop the build-up of large wealth. When extreme fluctuations are tamed down to a stationary regime with sizable but steadier inequalities, it should still offer opportunities to study the dynamics of crisis and the inner effective classes induced through external or internal factors.

  18. Peyton's 4-Steps-Approach in comparison: Medium-term effects on learning external chest compression – a pilot study

    Münster, Tobias

    2016-08-01

    Full Text Available Introduction: The external chest compression is a very important skill required to maintain a minimum of circulation during cardiac arrest until further medical procedures can be taken. Peyton’s 4-Steps-Approach is one method of skill training, the four steps being:Based on CPR skill training, this method is widely, allegedly predominantly used, although there are insufficient studies on Peyton’s 4-Steps-Approach for skill training in CPR in comparison with other methods of skill training. In our study, we compared the medium- term effects on learning external chest compression with a CPR training device in three different groups: PEY (Peyton’s 4-Steps-Approach, PMOD (Peyton’s 4-Steps-Approach without Step 3 and STDM, the standard model, according to the widely spread method “see one, do one” (this is equal to Peyton’s step 1 and 3.Material and Methods: This prospective and randomised pilot study took place during the summer semester of 2009 at the SkillsLab and Simulation Centre of the University of Cologne (Kölner interprofessionelles Skills Lab und Simulationszentrum - KISS. The subjects were medical students (2 and 3 semester. They volunteered for the study and were randomised in three parallel groups, each receiving one of the teaching methods mentioned above. One week and 5/6 months after the intervention, an objective, structured single assessment was taken. Compression rate, compression depth, correct compressions, and the sum of correct checklist items were recorded. Additionally, we compared cumulative percentages between the groups based on the correct implementation of the resuscitation guidelines during that time.Results: The examined sample consisted of 134 subjects (68% female; age 22±4; PEY: n=62; PMOD: n=31; STDM: n=41. There was no difference between the groups concerning age, gender, pre-existing experience in CPR or time of last CPR course. The only significant difference between the groups was the mean

  19. Peyton's 4-Steps-Approach in comparison: Medium-term effects on learning external chest compression - a pilot study.

    Münster, Tobias; Stosch, Christoph; Hindrichs, Nina; Franklin, Jeremy; Matthes, Jan

    2016-01-01

    The external chest compression is a very important skill required to maintain a minimum of circulation during cardiac arrest until further medical procedures can be taken. Peyton's 4-Steps-Approach is one method of skill training, the four steps being: Demonstration, Deconstruction, Comprehension and Execution. Based on CPR skill training, this method is widely, allegedly predominantly used, although there are insufficient studies on Peyton's 4-Steps-Approach for skill training in CPR in comparison with other methods of skill training. In our study, we compared the medium- term effects on learning external chest compression with a CPR training device in three different groups: PEY (Peyton's 4-Steps-Approach), PMOD (Peyton's 4-Steps-Approach without Step 3) and STDM, the standard model, according to the widely spread method "see one, do one" (this is equal to Peyton's step 1 and 3). This prospective and randomised pilot study took place during the summer semester of 2009 at the SkillsLab and Simulation Centre of the University of Cologne (Kölner interprofessionelles Skills Lab und Simulationszentrum - KISS). The subjects were medical students (2(nd) and 3(rd) semester). They volunteered for the study and were randomised in three parallel groups, each receiving one of the teaching methods mentioned above. One week and 5/6 months after the intervention, an objective, structured single assessment was taken. Compression rate, compression depth, correct compressions, and the sum of correct checklist items were recorded. Additionally, we compared cumulative percentages between the groups based on the correct implementation of the resuscitation guidelines during that time. The examined sample consisted of 134 subjects (68% female; age 22±4; PEY: n=62; PMOD: n=31; STDM: n=41). There was no difference between the groups concerning age, gender, pre-existing experience in CPR or time of last CPR course. The only significant difference between the groups was the mean

  20. AN ASSESSMENT OF THE EFFECTS OF THE CURRENCY REGIME CHANGE SHOCK ON THE EXTERNAL EQUILIBRIUM OF SOME NEW EUROPEAN UNION MEMBER STATES

    CAMELIA MILEA

    2014-02-01

    Full Text Available In the context of globalization and regionalization, we consider to be important an analysis of the asymmetries from the balances of payments of the member states of the European Union (EU. The propagation of a shock determines different effects in the member states of the European Union, due to the existence of some heterogeneous elements in the structure of these economies. Such a situation implies the risk of occurrence of divergences between the member states regarding the joint decisions with impact on the economic development and the external equilibrium. The article aims at providing a theoretical analysis of the way a shock considered by the authors as being representative affects the current account balance of some countries with different economic characteristics, at least in terms of the foreign exchange regime. The theoretical analysis is followed by an empirical analysis of two European Union countries that have undergone the shock of the exchange rate regime shift generated by the entry into ERM II (Exchange Rate Mechanism II. Our research aims at showing the way in which this shock has been reflected upon the balance of the current account, and if the change of the exchange rate regime has been beneficial or not for the economies analysed. The article is based on wider research studies concerning the matters of external equilibrium, asymmetric shocks and European integration, and which have been developed by the authors during the last three years.

  1. Relations Between Positive Impacts Of CSR, External Support, CSR Knowledge And The Degree Of CSR Practices In Thai Small And Medium Enterprises

    Pornpimon Eua-anant; Dusadee Ayuwat; Buapun Promphakping

    2011-01-01

    This article investigates the relations between positive impacts from Corporate Social Responsibility (CSR), external support, knowledge about CSR and the degree of CSR practices according to international standards in the viewpoint of small and medium enterprises in Thailand. The survey among 262 small and medium enterprises in five sections in the northeastern region of Thailand reveals that positive impacts of CSR on internal issues have shown to be positively related to the degree of CSR ...

  2. Effects of preincubation of eggs and activation medium on the percentage of eyed embryos in ide (Leuciscus idus), an externally fertilizing fish.

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Król, Jarosław; Butts, Ian Anthony Ernest

    2016-03-15

    Standardization of fertilization protocols is crucial for improving reproductive techniques for externally fertilizing fish in captive breeding. Therefore, the objectives of this study were to determine the effects of preincubation of eggs and activation medium on the percentage of eyed embryos for ide (Leuciscus idus). Pooled eggs from five females were preincubated in three different activating media for 0, 30, 60, 90, and 120 seconds and then fertilized by pooled sperm from five males. At the eyed-egg stage, the percentage of viable embryos was later calculated. Results showed that preincubation time was significant for the freshwater activation medium (P reproduction for this species. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-01-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρ ext ∝r –k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ 0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ –1 0 . For larger k values, however, the lateral expansion is faster at early times (when Γ > θ –1 0 ) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θ obs ≤ θ 0 ) than by the slope of the external density profile (for 0 ≤ k ≤ 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet

  4. Simulations of Gamma-Ray Burst Jets in a Stratified External Medium: Dynamics, Afterglow Light Curves, Jet Breaks, and Radio Calorimetry

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-05-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρextvpropr -k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ-1 0. For larger k values, however, the lateral expansion is faster at early times (when Γ > θ-1 0) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θobs <= θ0) than by the slope of the external density profile (for 0 <= k <= 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet decelerates more

  5. SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY

    De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-05-20

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with {rho}{sub ext}{proportional_to}r{sup -k} for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle {theta}{sub 0} = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor {Gamma} drops below {theta}{sup -1}{sub 0}. For larger k values, however, the lateral expansion is faster at early times (when {Gamma} > {theta}{sup -1}{sub 0}) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for {theta}{sub obs} {<=} {theta}{sub 0}) than by the slope of the external density profile (for 0 {<=} k {<=} 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results

  6. Experimental investigations on the influence of the contrast medium Iopamiro 300 mixed with vegetal mucus on the nasolacrimal system and external eye tissues

    Rubaj, B.; Koper, S.; Wolski, T.; Toczowski, J.; Wolski, J.; Langwinska-Wosko, E.

    1994-01-01

    Using low osmolality, nonionized contrast medium Iopamiro-300, Bracco mixed with the mucus prepared from the seed flax (''Linum usitatissimum, L.''), a dacryocistorhinography was performed experimentally on 8 healthy mongrel dogs. Assessing the occurrence of local and general complications was the aim of the investigation. On the basis of a radiographic examination it has been shown that the mixture of the contrast medium and seed flax mucus appeared to be a very useful compound for dacryocistorhinography, especially for the evaluation of nasolacrimal duct system course and its patency. Clinical observations and a histological examination proved that this compound of the contrast medium was well tolerated by the mucous membrane of the nasolacrimal system and the external eye tissues. (author). 21 refs, 4 figs

  7. Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel

    Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Gurevich, Evgeny L., E-mail: gurevich@lat.rub.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany); Kumari, Renu, E-mail: renumetalbit@gmail.com [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Ostendorf, Andreas, E-mail: andreas.ostendorf@ruhr-uni-bochum.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany)

    2016-02-28

    Graphical abstract: - Highlights: • Peening effect of 0.4% C steel by femtosecond laser irradiation. • Microstructural investigation of the irradiated surface. • Residual stress decreased from 152 MPa to 140 MPa to −330 MPa by laser processing. • Decreased wear depth to a maximum of four times as compared to as-received substrate. • Mechanism of wear for both as-received and laser processed surface were established. - Abstract: In the present study, the effect of femtosecond laser irradiation on the peening behavior of 0.4% C steel has been evaluated. Laser irradiation has been conducted with a 100 μJ and 300 fs laser with multiple pulses under varied energy. Followed by laser irradiation, a detailed characterization of the processed zone was undertaken by scanning electron microscopy, and X-ray diffraction technique. Finally, the residual stress distribution, microhardness and wear resistance properties of the processed zone were also evaluated. Laser processing leads to shock peening associated with plasma formation and its expansion, formation of martensite and ferrito–pearlitic phase in the microstructure. Due to laser processing, there is introduction of residual stress on the surface which varies from high tensile (140 MPa) to compressive (−335 MPa) as compared to 152 MPa of the substrate. There is a significant increase in microhardness to 350–500 VHN as compared to 250 VHN of substrate. The fretting wear behavior against hardened steel ball shows a significant reduction in wear depth due to laser processing. Finally, a conclusion of the mechanism of wear has been established.

  8. Could Externalized St. Jude Medical Riata® Lead Be a Culture Medium of a Polymicrobial Endocarditis? A Clinical Case

    Zefferino Palamà

    2017-01-01

    Full Text Available We report the case of a man affected by polymicrobial endocarditis developed on a St. Jude Medical Riata lead with a malfunction because of the outsourcing of conductors. The patient was treated with antibiotic targeted therapy and showed different bacteria at the blood cultures and then underwent transvenous leads extraction. Vegetations were highlighted on the caval, atrial, and ventricular tracts of the Riata lead, but the cultures were all negative. The externalization of Riata lead may cause the malfunction but it could also promote bacterial colonies and vegetations. In conclusion, looking for early signs of infection is mandatory during Riata leads follow-up checks.

  9. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  10. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  11. External Pelvic and Vaginal Irradiation Versus Vaginal Irradiation Alone as Postoperative Therapy in Medium-Risk Endometrial Carcinoma—A Prospective Randomized Study

    Sorbe, Bengt; Horvath, György; Andersson, Håkan; Boman, Karin; Lundgren, Caroline; Pettersson, Birgitta

    2012-01-01

    Purpose: To evaluate the value of adjuvant external beam pelvic radiotherapy as adjunct to vaginal brachytherapy (VBT) in medium-risk endometrial carcinoma, with regard to locoregional tumor control, recurrences, survival, and toxicity. Methods and Materials: Consecutive series of 527 evaluable patients were included in this randomized trial. Median follow-up for patients alive was 62 months. The primary study endpoints were locoregional recurrences and overall survival. Secondary endpoints were recurrence-free survival, recurrence-free interval, cancer-specific survival, and toxicity. Results: Five-year locoregional relapse rates were 1.5% after external beam radiotherapy (EBRT) plus VBT and 5% after vaginal irradiation alone (p = 0.013), and 5-year overall survival rates were 89% and 90%, respectively (p = 0.548). Endometrial cancer-related death rates were 3.8% after EBRT plus VBT and 6.8% after VBT (p = 0.118). Pelvic recurrences (exclusively vaginal recurrence) were reduced by 93% by the addition of EBRT to VBT. Deep myometrial infiltration was a significant prognostic factor in this medium-risk group of endometrioid carcinomas but not International Federation of Gynecology and Obstetrics grade or DNA ploidy. Combined radiotherapy was well tolerated, with serious (Grade 3) late side effects of less than 2%. However, there was a significant difference in favor of VBT alone. Conclusions: Despite a significant locoregional control benefit with combined radiotherapy, no survival improvement was recorded, but increased late toxicity was noted in the intestine, bladder, and vagina. Combined RT should probably be reserved for high-risk cases with two or more high-risk factors. VBT alone should be the adjuvant treatment option for purely medium-risk cases.

  12. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-01-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  13. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, Bunkyo-ku 113-8656 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-08-14

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  14. Our Favorite Film Shocks

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  15. General relativistic study of astrophysical jets with internal shocks

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2017-08-01

    We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.

  16. On the stability of bow shocks generated by red supergiants: the case of IRC -10414

    Meyer, D. M.-A.; Gvaramadze, V. V.; Langer, N.; Mackey, J.; Boumis, P.; Mohamed, S.

    2014-03-01

    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC -10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of 2, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best-fitting model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC -10414 are ≈50 km s-1 and ≈10-6 M⊙ yr-1, respectively, and that the number density of the local interstellar medium is ≈3 cm-3. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC -10414 must be photoionized.

  17. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  18. Is an excretory urogram mandatory in patients with small to medium-sized renal and ureteric stones treated by extra corporeal shock wave lithotripsy?

    Akhtar Sobia

    2004-04-01

    Full Text Available Abstract Background An intravenous urogram (IVU has traditionally been considered mandatory before treating renal and ureteric stones by extracorporeal shock wave lithotripsy (ESWL. This study was designed to see whether there is a difference in complications and the need for ancillary procedures in patients managed by ESWL for renal and ureteric calculi, according to preoperative imaging technique. Methods This retrospective study compared 133 patients undergoing ESWL from January 2001 to July 2002. Patients were divided into three groups according to the preoperative imaging technique used: i IVU; ii non-contrast enhanced helical computed tomography (UHCT; and iii ultrasound (US + X-ray kidney, ureter and bladder (KUB. The groups were matched in terms of age and gender, as well as location, side and size of stones. Results There was no statistically significantly difference for number of ESWL sessions, number of shock waves and use of ancillary procedures between the three groups. The stone-free rate was 98% for the IVU and UHCT groups, and 97% for the US + X-ray KUB group. Conclusions The complication rate and need for ancillary procedures was comparable across the three groups. Patients imaged by UHCT or US + X-ray KUB prior to ESWL for uncomplicated renal and ureteric stones do not require IVU.

  19. Grain destruction in interstellar shocks

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  20. Gravitational shock waves and extreme magnetomaterial shock waves

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  1. EARLY AFTERGLOWS OF GAMMA-RAY BURSTS IN A STRATIFIED MEDIUM WITH A POWER-LAW DENSITY DISTRIBUTION

    Yi, Shuang-Xi; Dai, Zi-Gao; Wu, Xue-Feng

    2013-01-01

    A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of n∝R –k (where R is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs and find that their k values are in the range of 0.4-1.4, with a typical value of k ∼ 1, implying that this environment is neither a homogenous ISM with k = 0 nor a typical stellar wind with k = 2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution

  2. Collisionless shock waves

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  3. Shock dynamics in layered periodic media

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  4. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Camargo E.F.M.

    2002-01-01

    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  5. The Heliospheric Termination Shock

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  6. Regional Externalities

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  7. Shock absorber

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  8. demystifying the shock of shocking

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  9. Shock dynamics in layered periodic media

    Ketcheson, David I.; Leveque, Randall J.

    2012-01-01

    of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation

  10. Hypovolemic shock

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  11. Shock absorber

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  12. Interstellar turbulence and shock waves

    Bykov, A.M.

    1982-01-01

    Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed

  13. Closed Reduction of Bilateral Posterior Shoulder Dislocation with Medium Impression Defect of the Humeral Head: A Case Report and Review of Its Treatment

    Soorena Rezazadeh

    2011-01-01

    Full Text Available Bilateral dislocation of the shoulder is a rare injury. The main causes are electrical shock, extreme trauma, and epilepsy. A 25-year-old athletic-body man had sustained bilateral shoulder pain and restricted external rotation following electrical shock for five days. Although articular surface damage was about 50% in the right side and 30% in the left, it could be managed successfully by close reduction without pinning. During one-year follow-up, no recurrent dislocation or limitation of motion was seen. Closed management of medium size defect of the humeral head after posterior dislocation can be performed in cooperative and especially muscular patients.

  14. Internal and external axial corner flows

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  15. Toxic shock syndrome

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  16. Diaphragmless shock wave generators for industrial applications of shock waves

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  17. Shock Waves

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  18. Experimental investigations on the influence of the contrast medium Iopamiro 300 mixed with vegetal mucus on the nasolacrimal system and external eye tissues; Badania doswiadczalne nad wplywem srodka cieniujacego Iopamiro 300 ze sluzem roslinnym na drogi lzowe i przedni odcinek oka

    Rubaj, B.; Koper, S. [Akademia Rolnicza, Lublin (Poland); Wolski, T.; Toczowski, J.; Wolski, J.; Langwinska-Wosko, E. [Akademia Medyczna, Lublin (Poland)

    1994-12-31

    Using low osmolality, nonionized contrast medium Iopamiro-300, Bracco mixed with the mucus prepared from the seed flax (``Linum usitatissimum, L.``), a dacryocistorhinography was performed experimentally on 8 healthy mongrel dogs. Assessing the occurrence of local and general complications was the aim of the investigation. On the basis of a radiographic examination it has been shown that the mixture of the contrast medium and seed flax mucus appeared to be a very useful compound for dacryocistorhinography, especially for the evaluation of nasolacrimal duct system course and its patency. Clinical observations and a histological examination proved that this compound of the contrast medium was well tolerated by the mucous membrane of the nasolacrimal system and the external eye tissues. (author). 21 refs, 4 figs.

  19. Transient shocks beyond the heliopause

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  20. Shock Prevention

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  1. Experimental investigation of shock wave - bubble interaction

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  2. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model

    Zhenghui Li

    2017-04-01

    Full Text Available The effects of financial factors on real business cycle is rising to one of the most popular discussions in the field of macro business cycle theory. The objective of this paper is to discuss the features of business cycle under financial shocks by quantitative technology. More precisely, we introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics of the model. The shocks include external shock and internal shock, both of which are expressed as noises. The dynamics of the model can help us understand the effects of financial shocks on business cycle and improve our knowledge about financial business cycle. In the case of external shock, if the intensity of shock is less than some threshold value, the economic system behaves randomly periodically. If the intensity of shock is beyond the threshold value, the economic system will converge to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value, the economic system behaves periodically as the case without shock. If the intensity of shock exceeds the threshold value, the economic system either behaves periodically or converges to a normalcy. It is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the intensities of shocks under which the economic system behaves randomly periodically or disorderly, or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are presented.

  3. Enstrophy generation in a shock-dominated turbulence

    Miura, Hideaki.

    1995-09-01

    A mechanism of enstrophy generation is investigated numerically in a shock-dominated turbulence driven by a random external force which has only the compressible component. Enstrophy is generated, especially on collision of shock, as a pair of vortex tube of opposite sense of rotation behind curved shocks. The roles of various terms in enstrophy equation are clarified in enstrophy generation process. Generation of enstrophy is enhanced by strong alignment of each term of the enstrophy equation with the vorticity vector. (author)

  4. Collisionless electrostatic shocks

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  5. Grain Destruction in a Supernova Remnant Shock Wave

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  6. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  7. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  8. Structure of Energetic Particle Mediated Shocks Revisited

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  9. Structure of Energetic Particle Mediated Shocks Revisited

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  10. Plasma cluster acceleration by means of external magnetic fields

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  11. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  12. On a Stochastic Failure Model under Random Shocks

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  13. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  14. On the interplay between cosmological shock waves and their environment

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  15. Miniature shock tube for laser driven shocks.

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  16. Are Credit Shocks Supply or Demand Shocks?

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  17. Shock absorbing structure

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  18. Melting under shock compression

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  19. Biomass shock pretreatment

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  20. Relativistic Shock Acceleration

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  1. Testing the Asymmetry of Shocks with Euro Area

    Marius-Corneliu MARINAŞ

    2012-01-01

    Full Text Available The objective of this study is to identify the demand and supply shocks affecting 13 EU member states and to estimate their degree of correlation with the Euro area shocks. This research ensures identifying the asymmetry of shocks degree with the monetary union, depending on which it’s judging the desirability of adopting a single currency. The analysis is also useful for the economies outside the Euro area, because they are strongly commercial and financial integrated especially with the core economies from union. Applying the Blanchard and Quah methodology to estimate the shocks in the period from 1998:1- 2010:3, I have found a weak and negative correlation between demand shocks and a medium to high correlation of the supply shocks. The results obtained suggest the presence of a structural convergence process with the Euro area, in the context of domestic macroeconomic policies rather different, both inside and outside the monetary union.

  2. Pressurized Thermal Shock, Pts

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  3. Free Piston Double Diaphragm Shock Tube

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  4. Alfven shock trains

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  5. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  6. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli.

    Teuta Pilizota

    Full Text Available All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15-20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.

  7. Management and sustainability of external debt: A focus on the emerging economies of Africa

    Stella Muhanji

    2011-07-01

    Full Text Available African countries have had the notoriety of being characterized by unsustainable external debt. Despite several announced intents by world development agencies to reverse this trend, there appears to be only minimal progress. This paper points to failure to determine appropriate levels of sustainable external debt, inadequate effective governance infrastructure, and ineffective management of external shocks, as important reasons why Africa's external debt problems have persisted. We derive African-relevant thresholds for sustainable external debt, and highlight quantifiable improvements African countries can experience if they were to adopt better governance infrastructures and effective management of external shocks.

  8. System Shock: The Archetype of Operational Shock

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  9. Shock Transmission and Fatigue in Human Running.

    Verbitsky, Oleg; Mizrahi, Joseph; Voloshin, Arkady; Treiger, July; Isakov, Eli

    1998-08-01

    The goal of this research was to analyze the effects of fatigue on the shock waves generated by foot strike. Twenty-two subjects were instrumented with an externally attached, lightweight accelerometer placed over the tibial tuberosity. The subjects ran on a treadmill for 30 min at a speed near their anaerobic threshold. Fatigue was established when the end-tidal CO 2 pressure decreased. The results indicated that approximately half of the subjects reached the fatigue state toward the end of the test. Whenever fatigue occurred, the peak acceleration was found to increase. It was thus concluded that there is a clear association between fatigue and increased heel strike-induced shock waves. These results have a significant implication for the etiology of running injuries, since shock wave attenuation has been previously reported to play an important role in preventing such injuries.

  10. Cosmic ray diffusion in a violent interstellar medium

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  11. Preferential acceleration in collisionless supernova shocks

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  12. Experimental demonstration of illusion optics with ``external cloaking'' effects

    Li, Chao; Liu, Xiao; Liu, Guochang; Li, Fang; Fang, Guangyou

    2011-08-01

    A metamaterial "illusion optics" with "complementary medium" and "restoring medium" is designed by using inductor-capacitor (L-C) network medium. The unprecedented effects of "external cloaking" and "transforming one object to appear as another" are demonstrated experimentally. We also demonstrate that the non-resonant nature of the L-C network decreases the sensitivity of the "external cloaking" effect to the variation of the frequency and results in an acceptable bandwidth of the whole device.

  13. Vulnerability to shocks in the global seafood trade network

    Gephart, Jessica A.; Rovenskaya, Elena; Dieckmann, Ulf; Pace, Michael L.; Brännström, Åke

    2016-03-01

    Trade can allow countries to overcome local or regional losses (shocks) to their food supply, but reliance on international food trade also exposes countries to risks from external perturbations. Countries that are nutritionally or economically dependent on international trade of a commodity may be adversely affected by such shocks. While exposure to shocks has been studied in financial markets, communication networks, and some infrastructure systems, it has received less attention in food-trade networks. Here, we develop a forward shock-propagation model to quantify how trade flows are redistributed under a range of shock scenarios and assess the food-security outcomes by comparing changes in national fish supplies to indices of each country’s nutritional fish dependency. Shock propagation and distribution among regions are modeled on a network of historical bilateral seafood trade data from UN Comtrade using 205 reporting territories grouped into 18 regions. In our model exposure to shocks increases with total imports and the number of import partners. We find that Central and West Africa are the most vulnerable to shocks, with their vulnerability increasing when a willingness-to-pay proxy is included. These findings suggest that countries can reduce their overall vulnerability to shocks by reducing reliance on imports and diversifying food sources. As international seafood trade grows, identifying these types of potential risks and vulnerabilities is important to build a more resilient food system.

  14. Time development of a blast wave with shock heated electrons

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  15. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  16. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  17. Properties of Merger Shocks in Merging Galaxy Clusters

    Ha, Ji-Hoon; Ryu, Dongsu; Kang, Hyesung

    2018-04-01

    X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of subclumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we focus on the simulated clusters that undergo almost head-on collisions with mass ratio ∼2. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, , increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, F ϕ , peaks at ∼1 Gyr after their initial launching, or at ∼1–2 Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic-ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with }CR}∼ 3{--}4, compared to the kinetic-energy-weighted Mach number, }φ ∼ 2{--}3. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located on the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.

  18. Air box shock absorber for a nuclear reactor

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  19. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  20. Hydraulic shock absorbers

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  1. Climate shocks and conflict

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  2. Observation of shock transverse waves in elastic media.

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  3. External Shocks and Macroeconomic Policy: Simulations with EUROMON

    M. Demertzis; L. de Haan

    2001-01-01

    We carry out a number of policy simulations with DNB's multicountry model, EUROMON. With these simulations we aim to analyse the effectiveness of monetary and fiscal expansion in light of the current global downturn in the US and the Euro area. We thus run two types of simulations in which we examine first, the real and nominal effects of the interest rate reductions implemented over the past year (2002) in both the US and the EU and second compare, the effects of similar macro policies appli...

  4. Shock-acceleration of a pair of gas inhomogeneities

    Navarro Nunez, Jose Alonso; Reese, Daniel; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2014-11-01

    A shock wave moving through the interstellar medium distorts density inhomogeneities through the deposition of baroclinic vorticity. This process is modeled experimentally in a shock tube for a two-bubble interaction. A planar shock wave in nitrogen traverses two soap-film bubbles filled with argon. The two bubbles share an axis that is orthogonal to the shock wave and are separated from one another by a distance of approximately one bubble diameter. Atomization of the soap-film by the shock wave results in dispersal of droplets that are imaged using Mie scattering with a laser sheet through the bubble axis. Initial condition images of the bubbles in free-fall (no holder) are taken using a high-speed camera and then two post-shock images are obtained with two laser pulses and two cameras. The first post-shock image is of the early time compression stage when the sphere has become ellipsoidal, and the second image shows the emergence of vortex rings which have evolved due to vorticity depostion by the shock wave. Bubble morphology is characterized with length scale measurements.

  5. Two-stream instability in collisionless shocks and foreshock

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  6. Two-stream instability in collisionless shocks and foreshock

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  7. Pediatric Toxic Shock Syndrome

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  8. Shock Protection of Portable Electronic Products: Shock Response Spectrum, Damage Boundary Approach, and Beyond

    Suresh Goyal

    1997-01-01

    Full Text Available The pervasive shock response spectrum (SRS and damage boundary methods for evaluating product fragility and designing external cushioning for shock protection are described in detail with references to the best available literature. Underlying assumptions are carefully reviewed and the central message of the SRS is highlighted, particularly as it relates to standardized drop testing. Shortcomings of these methods are discussed, and the results are extended to apply to more general systems. Finally some general packaging and shock-mounting strategies are discussed in the context of protecting a fragile disk drive in a notebook computer, although the conclusions apply to other products as well. For example, exterior only cushioning (with low restitution to reduce subsequent impacts will provide a slenderer form factor than the next best strategy: interior cushioning with a “dead” hard outer shell.

  9. Shocks near Jamming

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  10. Mechanical shock absorber

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  11. Shock formation of HCO+

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  12. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Meyer, D.M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V.V.; Mignone, A.; Izzard, R.G.; Kaper, L.

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional

  13. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  14. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  15. Counseling For Future Shock

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  16. Life shocks and homelessness.

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  17. Unlimited Relativistic Shock Surfing Acceleration

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  18. Effect of diatrizoate (Angiografin) on the aortic endothelium in rats during the course of endotoxin shock

    Gospos, C; Freudenberg, N; Hauenstein, K H; Kauffmann, G W; Koch, H K

    1982-08-01

    Investigations have been carried out on the endothelial changes produced by diatrizoate (Angiografin) during the course of endotoxin shock. A single injection was given directly into the aorta of 1 ml of the contrast medium, with an iodine content of 300 mg/ml. The increased proliferation of the aortic endothelium could be shown to be due to the endotoxin shock, but was not further increased by administration of the contrast medium.

  19. Technology shocks matter

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  20. True versus apparent shapes of bow shocks

    Tarango-Yong, Jorge A.; Henney, William J.

    2018-06-01

    Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude, and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.

  1. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  2. The Effect of Shock Stress and Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5

    CHHABILDAS, LALIT C.; FURNISH, MICHAEL D.; MONTGOMERY, STEPHEN T.; SETCHELL, ROBERT E.

    1999-01-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics

  3. An integral view of fast shocks around supernova 1006

    Nikolic, S.; Heng, K.; Kupko, D.; Husemann, B.; Raymond, J.C.; Hughes, J.P.; Falcon-Barroso, J.; Ven, G. van de

    2013-01-01

    Supernova remnants are among the most spectacular examples of astrophysical pistons in our cosmic neighborhood. The gas expelled by the supernova explosion is launched with velocities ~1000 kilometers per second into the ambient, tenuous interstellar medium, producing shocks that excite hydrogen

  4. The structure of steady shock waves in porous metals

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  5. Introduction to Plasma Dynamo, Reconnection and Shocks

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  6. Strain measurements during pressurized thermal shock experiment

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  7. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  8. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  9. Particle injection and cosmic ray acceleration at collisionless parallel shocks

    Quest, K.B.

    1987-01-01

    The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs

  10. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.

    Jørgensen, U; Bojsen-Møller, F

    1989-06-01

    The heel pad acts as a shock absorber in walking and in heel-strike running. In some patients, a reduction of its shock-absorbing capacity has been connected to the development of overuse injuries. In this article, the shock absorption of the heel pad as well as external shock absorbers are studied. Individual variation and the effect of trauma and confinement on the heel pad were specifically investigated. Drop tests, imitating heel impacts, were performed on a force plate. The test specimens were cadaver heel pads (n = 10); the shoe sole component consisted of ethyl vinyl acetate (EVA) foam and Sorbothane inserts. The shock absorption was significantly greater in the heel pad than in the external shock absorbers. The mean heel pad shock absorption was 1.1 times for EVA foam and 2.1 times for Sorbothane. The shock absorption varied by as much as 100% between heel pads. Trauma caused a decrease in the heel pad shock absorbency (24%), whereas heel pad confinement increased the shock absorbency (49% in traumatized heel pads and 29.5% in nontraumatized heel pads). These findings provide a biomechanical rationale for the clinical observations of a correlation between heel pad shock absorbency loss and heel strike-dependent overuse injuries. To increase shock absorbency, confinement of the heel pad should be attempted in vivo.

  11. Shocks in fragile matter

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  12. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  13. Agricultural Commodity Price Shocks and their Effect on Growth in Sub-Saharan Africa

    Addison, Tony; Ghoshray, Atanu

    2014-01-01

    Commodity price shocks are an important type of external shock and are often cited as a problem for economic growth in sub-Saharan Africa. This paper quantifies the impact of agricultural commodity price shocks using a near vector autoregressive model. The novel aspect of this model is that we define an auxiliary variable that can potentially capture the definition of a price shock that allows us to determine whether the response of per capita Gross domestic product (GDP) growth in sub-Sahara...

  14. Regulating multiple externalities

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  15. Physics of Collisionless Shocks Space Plasma Shock Waves

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  16. Life Shocks and Homelessness

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  17. Health Shocks and Retirement:

    Datta Gupta, Nabanita; Larsen, Mona

    We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  18. Internal structure and stability of an interstellar cloud heated by an external flux of soft X-rays

    Sabano, Yutaka; Tosa, Makoto

    1975-01-01

    We study the properties of an interstellar gas cloud which is heated by an external flux of soft X-rays and has a uniform pressure distribution. The heating flux is significantly attenuated inside the cloud even for a rather small cloud, and the central region of the cloud is much cooler and denser than that heated uniformly, hence the cloud can be compressed easier. The stability of such a gas cloud and its implications for the process of star formation are discussed on the basis of the two-phase model of the interstellar medium. The large scale galactic shock seems important as a triggering mechanism for the formation of a dense cloud and for the gravitational collapse leading to star formation. (author)

  19. Adiabatic supernova expansion into the circumstellar medium

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  20. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  1. ExternE National Implementation Finland

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  2. ExternE National Implementation Finland

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  3. ExternE National Implementation Finland

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  4. Interface of data transmission for a transcutaneous communication system using the human body as transmission medium.

    Okamoto, Eiji; Kato, Yoshikuni; Seino, Kazuyuki; Mitamura, Yoshinori

    2012-03-01

    We have been developing a new transcutaneous communication system (TCS) that uses the human body as an electrical conductive medium. We studied an interface circuit of the TCS in order to optimize the leading data current into the human body effectively. Two types of LC circuits were examined for the interface circuit, one was an LC series-parallel circuit, and the other was a parallel-connected LC circuit. The LC series-parallel circuit connected to the body could be tuned to a resonant frequency, and the frequency was determined by the values of an external inductor and an external capacitor. Permittivity of the body did not influence the electrical resonance. Connection of the LC series-parallel circuit to the body degraded the quality factor Q because of the conductivity of the body. However, the LC parallel-connected circuit when connected to the body did not indicate electrical resonance. The LC series-parallel circuit restricts a direct current and a low-frequency current to flow into the body; thus, it can prevent a patient from getting a shock. According to the above results, an LC series-parallel circuit is an optimum interface circuit between the TCS and the body for leading data current into the body effectively and safely.

  5. The Shock Routine

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  6. External Otitis (Swimmer's Ear)

    ... otitis. Fungal external otitis (otomycosis), typically caused by Aspergillus niger or Candida albicans, is less common. Boils are ... in the ear. Fungal external otitis caused by Aspergillus niger usually causes grayish black or yellow dots (called ...

  7. ExternE: Externalities of energy Vol. 2. Methodology

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  8. Shock absorber in Ignalina NPP

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  9. Shock Response of Boron Carbide

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  10. Fascinating World of Shock Waves

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  11. ASH External Web Portal (External Portal) -

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  12. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  13. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  14. Physics of the interstellar and intergalactic medium

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resourc...

  15. Shock tube Multiphase Experiments

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  16. Teleconnected food supply shocks

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  17. STEREO interplanetary shocks and foreshocks

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  18. STEREO interplanetary shocks and foreshocks

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  19. Medium properties and total energy coupling in underground explosions

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  20. Numerical simulation of the interaction of charged particles with oblique magnetohydrodynamic shocks

    Chen, G.L.

    1975-01-01

    The motion of high energy charged particles in ideal oblique MHD shocks, characteristic of the interplanetary medium, has been studied extensively. The shock is treated as a plane surface across which the tangential component of magnetic field changes discontinuously. The orbits of charged particles can be solved exactly from Lorentz force equation and initial conditions of particles in each region, pre- and post-shock, separately. The essential procedure is to determine the crossings and that has been achieved by solving numerically for the times when the particle meets the shock. The position and velocity vectors are continuous across the shock. An ensemble of 1972 monoenergetic particles distributed isotropically in the shock frame are chosen to obtain collective results

  1. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  2. Bubble Dynamics and Shock Waves

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  3. What determines the sensitivity of the real exchange rate in Colombia to a terms of trade shock?

    Parra-Alvarez, Juan Carlos; Mahadeva, Lavan

    2012-01-01

    We show that the sensitivity of the real exchange rate to terms of trade shocks is greater the lower the elasticity of final and derived demand between domestic and imported items. We develop a novel Kalman filter-based method to estimate these key parameters for Colombia, taking account of prefe...... the sensitivity of the Colombian economy to external shocks....

  4. Hadrons in hot and dense medium

    Mallik, S.

    2004-01-01

    We review chiral perturbation theory in some detail and construct interaction terms involving the Goldstone and the different non-Goldstone fields, in presence of external (classical) fields coupled to currents. The ensemble average of the two-point functions of the currents can now be expanded in terms of Feynman diagrams. We evaluate the one-loop diagrams in the neighbourhood of the respective poles to find the effective couplings and masses of the particles in medium. We also describe the virial formula for the self-energy of a particle in medium, giving its pole position. It proves useful if the scattering amplitude of the particle with particles in medium is known experimentally. (author)

  5. ExternE: Externalities of energy Vol. 1. Summary

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  6. Externalities of fuel cycles 'ExternE' project. Summary report

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  7. Adjustable Shock Absorbers

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  8. Radiative relativistic shock adiabate

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  9. POSTURAL SHOCK IN PREGNANCY

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  10. Bow shock data analysis

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  11. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  12. X-ray study of bow shocks in runaway stars

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  13. Shock resistance testing

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  14. On Modeling Risk Shocks

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  15. The Shock Doctrine

    Dionysios K. Solomos; Dimitrios N. Koumparoulis

    2011-01-01

    Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...

  16. Concept medium programme

    Bjerrum, Peter

    2005-01-01

    The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program......The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program...

  17. External radiation surveillance

    Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site

  18. External radiation surveillance

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  19. Characterization of shocked beryllium

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  20. Selfsimilar time dependent shock structures

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  1. Selfsimilar time dependent shock structures

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  2. The dynamics analysis of a ferrofluid shock absorber

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-01-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  3. The dynamics analysis of a ferrofluid shock absorber

    Yao, Jie; Chang, Jianjun [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Decai, E-mail: dcli@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Yang, Xiaolong [School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006 (China)

    2016-03-15

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  4. ExternE: Externalities of energy Vol. 5. Nuclear

    Dreicer, M.; Tort, V.; Manen, P.

    1995-01-01

    Since the early 1970s, there has been increased interest in the environmental impacts that are caused by the generation of electricity. The comparative risk assessment studies at that time used mainly deaths and injuries as impact indicators. By the end of the 1980s studies changed to the assessment of the costs imposed on society and the environment that were not included in the market price of the energy produced, the so-called external costs. The preliminary studies that were published set the conceptual basis, grounded in neo-classical economics, for the valuation of the health and environmental impacts that could be assessed. As a consequence of the many questions raised by the methodologies employed by these early studies, Directorate General XII (DG XII) of the Commission of the European Communities established a collaborative research programme with the United States Department of Energy to identify an appropriate methodology for this type of work. Following the completion of this collaboration, the DG XII programme has continued as the ExternE project. The main objective of the work carried out at CEPN was to develop an impact pathway methodology for the nuclear fuel cycle that would be consistent with the methodologies developed for other fuel cycles, without loosing the nuclear-specific techniques required for a proper evaluation. In this way, comparisons between the different fuel cycles would be possible. This report presents the methodology and demonstration of the results in the context of the French nuclear fuel cycle. The United States team at Oak Ridge National Laboratory has previously issued a draft report on the results of their assessment. The French fuel cycle was broken down into 8 separate stages. Reference sites and 1990s technology were chosen to represent the total nuclear fuel cycle, as it exists today. In addition, the transportation of material between the sites was considered. The facilities are assessed for routine operation, except

  5. Risk shocks and housing markets

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  6. Health shocks and risk aversion.

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Shock in the emergency department

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  8. Shock compression of diamond crystal

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  9. The Interstellar Medium

    Lequeux, James

    2005-01-01

    Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, "The Interstellar Medium" is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.

  10. The Shock and Vibration Digest. Volume 14, Number 11

    1982-11-01

    Fonrulation to Study the Frequency De- peandat Properties of Absorbing Materialls Key Words: Active vibration contro, Oscilltors V.K. Varadan and V.V...Key Words: Bearings, Rolling contact bearings, Simulation, manipulative labor significantly, when compared to the Computr programs application of the...refs Shock in a Hyperelastic Medium S. Pluchino Key Words: Cavities, Fluid-filled containers, Seismic excita- Seminario Matematico , Universita di

  11. A Shocking Solar Nebula?

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  12. Myths of "shock therapy".

    Fink, M

    1977-09-01

    The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.

  13. Optical recording medium

    Andriech, A.; Bivol, V.; Tridukh, G.; Tsiuleanu, D.

    2002-01-01

    The invention relates of the micro- and optoelectronics, computer engineering ,in particular, to tjhe optical information media and may be used in hilography. Summary of the invention consists in that the optical image recording medium, containing a dielectric substrates, onto one surface of which there are placed in series a transparent electricity conducting layer, a photo sensitive recording layer of chalcogenic glass and a thin film electrode of aluminium, is provided with an optically transparent protective layer, applied into the thin film electrode. The result of the invention consists in excluding the dependence of chemical processes course into the medium upon environmental conditions

  14. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  15. [External cephalic version].

    Navarro-Santana, B; Duarez-Coronado, M; Plaza-Arranz, J

    2016-08-01

    To analyze the rate of successful external cephalic versions in our center and caesarean sections that would be avoided with the use of external cephalic versions. From January 2012 to March 2016 external cephalic versions carried out at our center, which were a total of 52. We collected data about female age, gestational age at the time of the external cephalic version, maternal body mass index (BMI), fetal variety and situation, fetal weight, parity, location of the placenta, amniotic fluid index (ILA), tocolysis, analgesia, and newborn weight at birth, minor adverse effects (dizziness, hypotension and maternal pain) and major adverse effects (tachycardia, bradycardia, decelerations and emergency cesarean section). 45% of the versions were unsuccessful and 55% were successful. The percentage of successful vaginal delivery in versions was 84% (4% were instrumental) and 15% of caesarean sections. With respect to the variables studied, only significant differences in birth weight were found; suggesting that birth weight it is related to the outcome of external cephalic version. Probably we did not find significant differences due to the number of patients studied. For women with breech presentation, we recommend external cephalic version before the expectant management or performing a cesarean section. The external cephalic version increases the proportion of fetuses in cephalic presentation and also decreases the rate of caesarean sections.

  16. Piezosurgery in External Dacryocystorhinostomy.

    Czyz, Craig N; Fowler, Amy M; Dutton, Jonathan J; Cahill, Kenneth V; Foster, Jill A; Hill, Robert H; Everman, Kelly R; Nabavi, Cameron B

    Dacryocystorhinostomy (DCR) can be performed via an external or endoscopic approach. The use of ultrasonic or piezosurgery has been well described for endoscopic DCRs but is lacking for external DCRs. This study presents a case series of external DCRs performed using piezosurgery evaluating results and complications. Prospective, consecutive case series of patients undergoing primary external DCR for lacrimal drainage insufficiency. A standard external DCR technique was used using 1 of 2 piezosurgery systems for all bone incision. All patients received silicone intubation to the lacrimal system. Surgical outcome was measured in terms of patient-reported epiphora as follows: 1) complete resolution, 2) improvement >50%, 3) improvement 50% improvement. There were 4 patients (7%) who had <50% improvement. There was 1 (2%) intraoperative complication and 2 (4%) postoperative complications recorded. Piezourgery is a viable modality for performing external DCRs. The lack of surgical complications shows a potential for decreased soft tissues damage. The surgical success rate based on patient-reported epiphora is similar to those published for mechanical external DCRs. This modality may benefit the novice surgeon in the reduction of soft and mucosal tissue damage.

  17. Shock Producers and Shock Absorbers in the Crisis

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  18. Simulations of Converging Shock Collisions for Shock Ignition

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  19. On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism

    Huseyin Cavus

    2013-01-01

    Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.

  20. Shock wave collisions and thermalization in AdS5

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  1. ORGANIZATIONAL CHANGE MODELS IN SMALL AND MEDIUM SIZED ENTERPRISES (SMES)

    Oliviana Bold, Ph. D Student

    2011-01-01

    Bringing forward the concepts of change and change management is no longer surprising nowadays. Small and Medium Enterprises (SMEs) face unique and difficult challenges in the business environment. Challenges to the growth and viability of Small and Medium Enterprises (SMEs) are arising from several external factors, like globalization, increased customer expectations or competition, technological advances, all of the factors being determined by the change. SMEs need to successfully deal with...

  2. Endogenous versus exogenous shocks in systems with memory

    Sornette, D.; Helmstetter, A.

    2003-02-01

    Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogenous shock is in general slower at early times and can be at long times either slower or faster than after an exogenous perturbation. This offers the tantalizing possibility of distinguishing between an endogenous versus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in investigating the exogenous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette et al., Volatility fingerprints of large stocks: endogenous versus exogenous, cond-mat/0204626 has already shown how this concept can be applied concretely to differentiate the effects on financial markets of the 11 September 2001 attack or of the coup against Gorbachev on 19 August 1991 (exogenous) from financial crashes such as October 1987 (endogenous).

  3. PROCESS OF GLOBAL SHOCKS TRANSMISSION TO DOMESTIC FOOD PRICE LEVEL: CASE OF BANGLADESH

    Fakir Azmal Huda

    2014-04-01

    Full Text Available The world experienced in dramatic price surge of food commodities since mid of 2007 to 2008. It was claimed that the crisis were being mainly for backdrop of global shocks in food and energy price. But how the shocks come to domestic market from external sources is a researchable phenomenon. Surprisingly few attempts have been made to systematically analysis of shock transmission from international to domestic market. The study analyzed the effect of global commodity market factors and domestic exchange rate development on domestic food price in Bangladesh. A bi-variants co-integration approach was applied for the analysis of shock transmission. Finally an error correction model was developed. The overall magnitudes of the pass through suggest that only 46 per cent of the total world shock pass-through in domestic economy.

  4. Interaction of a conical shock wave with a turbulent boundary layer

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  5. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  6. Roentgen contrast medium

    Tamborski, C.

    1989-01-01

    The patent deals with a roentgen contrast medium containing a perfluorinebrominealkylether of the formula C m F 2m+1 OC n F 2n Br dispersed in water, preferentially in the presence of a non-ionic dispersing agent such as a fluorinated amidoaminoxide. 2 tabs

  7. Radon in geological medium

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  8. Radon in geological medium

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  9. 30th International Symposium on Shock Waves

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  10. Automated External Defibrillator

    ... leads to a 10 percent reduction in survival. Training To Use an Automated External Defibrillator Learning how to use an AED and taking a CPR (cardiopulmonary resuscitation) course are helpful. However, if trained ...

  11. Energy policy and externalities

    Bertel, E.; Fraser, P.

    2002-01-01

    External costs of energy have been assessed in a number of authoritative and reliable studies based upon widely accepted methodologies such as life cycle analysis (LCA). However, although those costs are recognised by most stakeholders and decision makers, results from analytical work on externalities and LCA studies are seldom used in policy making. The International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) convened a joint workshop in November 2001 to offer experts and policy makers an opportunity to present state-of-the-art results from analytical work on externalities and debate issues related to the relevance of external costs and LCA for policy-making purposes. The findings from the workshop highlight the need for further work in the field and the potential rote of international organisations like the IEA and the NEA in this context. (authors)

  12. Externally Verifiable Oblivious RAM

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  13. Proposal for a method to estimate nutrient shock effects in bacteria

    Azevedo Nuno F

    2012-08-01

    Full Text Available Abstract Background Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp. and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525 were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A and rich nutrient medium (TSA. The average improvement (A.I. of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. Conclusions This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration.

  14. Molecular diagnostics of interstellar shocks

    Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds

  15. Molecular diagnostics of interstellar shocks

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  16. How Culture Shock Affects Communication.

    Barna, LaRay M.

    The paper defines the term "culture shock" and discusses the changes that this state can make in a person's behavior. Culture shock refers to the emotional and physiological reaction of high activation that is brought about by sudden immersion in a new culture. Because one's own culture shields one from the unknown and reduces the need to make…

  17. Molecular diagnostics of interstellar shocks

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  18. Shock wave treatment in medicine

    Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...

  19. Shock wave treatment in medicine

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  20. Numerical modeling of slow shocks

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  1. Dynamic shock wave: hammer blow

    Lackme, Claude

    1978-01-01

    The general properties of shocks, their generation and the conditions of reflexion to an interface are dealt with in turn. By then applying these concepts to a liquid column and its environment (wall, free area, closing devices) the hammer blow is presented as being a relatively weak shock [fr

  2. Slow shocks and their transition to fast shocks in the inner solar wind

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  3. Shocking matter to extreme conditions

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  4. Electron transport and shock ignition

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  5. Oscillating nonlinear acoustic shock waves

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  6. Shock waves & explosions

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  7. Analysis of shock implosion

    Mishkin, E.A.; Alejaldre, C. (Polytechnic Inst. of New York, Brooklyn (USA))

    1984-06-01

    An imploding shock wave, coming from infinity, moves through an ideal gas with the adiabatic constant ..gamma... To define a single-valued self-similar coefficient over the whole classical interval 1<..gamma..

  8. Concept medium program

    Bjerrum, Peter

    2003-01-01

    The present essays is an attempt to dertermine the architecural project of the 21st century in realation to a modern conception of space as the medium of architecture, and of society as its program. This attempt adopts the internal point of view of an architect in describing a modern architectural...... project within the framework: concept - program, these notions being concieved as spatial representations primarily and immediately "given" to architecture....

  9. The cosmic-ray shock structure problem for relativistic shocks

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  10. Cosmic-ray shock acceleration in oblique MHD shocks

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  11. External Pressures for Adoption of ICT Services Among SMEs

    A. ORDANINI; ARBORE A

    2008-01-01

    This study intends to emphasize the importance that external sources of pressure may have on the level of ICT involvement among small and medium enterprises (SMEs) in Italy. While past research tends to prioritize the role of endogenous conditions for the adoption of information and communication technologies, the high dependence of SMEs on their environment requires paying especial attention to external pressures as well. Both competitive and institutional pressures are proposed and...

  12. Small and medium business in the contractual relationship system

    Obalyaeva Julia, I.

    2015-01-01

    Full Text Available The paper reveals the role of small and medium business in the national economy. The comparative analysis of the indicators characterizing the development of small business in Russia, South Korea and France is given are compared. Two laws that support small and medium businesses in public purchasing. The author’s vision of the problems of development of small and medium-sized businesses in the Russian Federation and specification of the path of the national economy development is presented. Two schemes, revealing the organization of interaction of large corporate sector and the sector of small and medium-sized enterprises in the system of contractual relations and analysis of internal and external factors in the development of small and medium-sized enterprises are presented. The experience of conducting digital auctions with participation of small businesses on an digital platform CJSC "Sberbank AST" is considered.

  13. Markets, Herding and Response to External Information.

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2015-01-01

    We focus on the influence of external sources of information upon financial markets. In particular, we develop a stochastic agent-based market model characterized by a certain herding behavior as well as allowing traders to be influenced by an external dynamic signal of information. This signal can be interpreted as a time-varying advertising, public perception or rumor, in favor or against one of two possible trading behaviors, thus breaking the symmetry of the system and acting as a continuously varying exogenous shock. As an illustration, we use a well-known German Indicator of Economic Sentiment as information input and compare our results with Germany's leading stock market index, the DAX, in order to calibrate some of the model parameters. We study the conditions for the ensemble of agents to more accurately follow the information input signal. The response of the system to the external information is maximal for an intermediate range of values of a market parameter, suggesting the existence of three different market regimes: amplification, precise assimilation and undervaluation of incoming information.

  14. Markets, Herding and Response to External Information.

    Adrián Carro

    Full Text Available We focus on the influence of external sources of information upon financial markets. In particular, we develop a stochastic agent-based market model characterized by a certain herding behavior as well as allowing traders to be influenced by an external dynamic signal of information. This signal can be interpreted as a time-varying advertising, public perception or rumor, in favor or against one of two possible trading behaviors, thus breaking the symmetry of the system and acting as a continuously varying exogenous shock. As an illustration, we use a well-known German Indicator of Economic Sentiment as information input and compare our results with Germany's leading stock market index, the DAX, in order to calibrate some of the model parameters. We study the conditions for the ensemble of agents to more accurately follow the information input signal. The response of the system to the external information is maximal for an intermediate range of values of a market parameter, suggesting the existence of three different market regimes: amplification, precise assimilation and undervaluation of incoming information.

  15. Chondrule destruction in nebular shocks

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  16. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  17. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    Horton, J.W.

    1987-01-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

  18. THE EVOLUTION OF MOLECULAR LINE PROFILES INDUCED BY THE PROPAGATION OF C-SHOCK WAVES

    Jimenez-Serra, I.; Caselli, P.; Martin-Pintado, J.; RodrIguez-Franco, A.; Viti, S.

    2009-01-01

    We present the first results of the expected variations of the molecular line emission arising from material recently affected by C-shocks (shock precursors). Our parametric model of the structure of C-shocks has been coupled with a radiative transfer code to calculate the molecular excitation and line profiles of shock tracers such as SiO, and of ion and neutral molecules such as H 13 CO + and HN 13 C, as the shock propagates through the unperturbed medium. Our results show that the SiO emission arising from the early stage of the magnetic precursor typically has very narrow line profiles slightly shifted in velocity with respect to the ambient cloud. This narrow emission is generated in the region where the bulk of the ion fluid has already slipped to larger velocities in the precursor as observed toward the young L1448-mm outflow. This strongly suggests that the detection of narrow SiO emission, and of an ion enhancement in young shocks, is produced by the magnetic precursor of C-shocks. In addition, our model shows that the different velocity components observed toward this outflow can be explained by the coexistence of different shocks at different evolutionary stages, within the same beam of the single-dish observations.

  19. Malignant external otitis

    Dupuch, K.M.; Iryboz, T.; Firat, M.; Levy, C.; Tubiana, J.M.

    1991-01-01

    This paper illustrates the value of CT and MR in early diagnosis and spread of malignant external otitis. The authors retrospectively analyzed 15 patients with proved malignant external otitis examined with postcontrast high-resolution CT (15/15) and MR (6/15) (T1- and T2-weighting). Gallium studies were done in 6/15 patients. Early diagnosis was made when CT demonstrated a soft-tissue mass of the external auditory canal associated with scattered zones of cortical bone erosions (13/15). Spread of the disease was better delineated by MR than CT, especially skull base extension (6/15). Temporomandibular joint involvement with extension into parotid or/and masticator spaces 6/15 was as well detected with CT as with MR. If CT remains the first and best procedure for diagnosis, MR - despite its cost - appears a good procedure to depict exact anatomic spread, allowing therapeutic management

  20. Productivity Change and Externalities

    Kravtsova, Victoria

    2014-01-01

    This paper contributes to the analysis of the impact of externalities on the host country's total factor productivity by taking into account different dimensions of spillover effects. Namely, engagement in exporting and foreign ownership is generally perceived as being beneficial to individual...... firms and the economy as a whole. The approach used in the current research accounts for different internal as well as external factors that individual firms face and evaluates the effect on changes in productivity, technology as well as the efficiency of domestic firms. The empirical analysis focuses...... on Hungary. While the country leads the group of post-socialist countries in the amount of attracted foreign direct investments (FDI) the effect of this policy on the economy remains unclear. The research finds that different externalities play a different role in productivity, technological and efficiency...

  1. Externality or sustainability economics?

    Bergh, Jeroen C.J.M. van den

    2010-01-01

    In an effort to develop 'sustainability economics' Baumgaertner and Quaas (2010) neglect the central concept of environmental economics-'environmental externality'. This note proposes a possible connection between the concepts of environmental externality and sustainability. In addition, attention is asked for other aspects of 'sustainability economics', namely the distinction weak/strong sustainability, spatial sustainability and sustainable trade, distinctive sustainability policy, and the ideas of early 'sustainability economists'. I argue that both sustainability and externalities reflect a systems perspective and propose that effective sustainability solutions require that more attention is given to system feedbacks, notably other-regarding preferences and social interactions, and energy and environmental rebound. The case of climate change and policy is used to illustrate particular statements. As a conclusion, a list of 20 insights and suggestions for research is offered. (author)

  2. Metasurface external cavity laser

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  3. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  4. Simulation of mechanical shock environments

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  5. Particle acceleration in modified shocks

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  6. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  7. Particle acceleration in modified shocks

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  8. Shocks in the Early Universe.

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  9. The External Mind

    , Extended Mind and Distributed Cognition by Claudio Paolucci pp. 69-96 The Social Horizon of Embodied Language and Material Symbols by Riccardo Fusaroli pp. 97-123 Semiotics and Theories of Situated/Distributed Action and Cognition: a Dialogue and Many Intersections by Tommaso Granelli pp. 125-167 Building......The External Mind: an Introduction by Riccardo Fusaroli, Claudio Paolucci pp. 3-31 The sign of the Hand: Symbolic Practices and the Extended Mind by Massimiliano Cappuccio, Michael Wheeler pp. 33-55 The Overextended Mind by Shaun Gallagher pp. 57-68 The "External Mind": Semiotics, Pragmatism...

  10. Shock parameter calculations at weak interplanetary shock waves

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  11. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  12. Shock wave dynamics derivatives and related topics

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  13. Externalities - an analysis using the EU ExternE-results

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case

  14. Short, medium and long term consequences of inadequate defect fuel management

    Roberts, J.G.; McQueen, M.; Nashiem, R.; Ma, G.

    2011-01-01

    Defect fuel pencils result in short, medium and long term consequences to the environment within and external to the nuclear power station. The paper will describe these consequences and specify the Defect Fuel Management Practices required to avoid these consequences.

  15. Short, medium and long term consequences of inadequate defect fuel management

    Roberts, J.G. [CANTECH Associates Ltd., Burlington, ON (Canada); McQueen, M.; Nashiem, R.; Ma, G. [Bruce Power, Tiverton, ON (Canada)

    2011-07-01

    Defect fuel pencils result in short, medium and long term consequences to the environment within and external to the nuclear power station. The paper will describe these consequences and specify the Defect Fuel Management Practices required to avoid these consequences.

  16. The marginal value of cash, cash flow sensitivities, and bank-finance shocks in nonlisted firms

    Ostergaard, Charlotte; Sasson, Amir; Sørensen, Bent E

    2011-01-01

    We study how nonlisted firms trade off financial, real, and distributive uses of cash. We show that firms' marginal value of cash (MVC) affects the mix of external and internal finance used to absorb fluctuations in cash flows; in particular, high-MVC firms employ substantially more external finance on the margin. Linking firms to their main bank, we find that shocks to bank finance affect firms' trade-offs and have real effects in high-MVC firms, making investment more sensitiv...

  17. Nonlinearity, Conservation Law and Shocks

    Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.

  18. Shock Thermodynamic Applied Research Facility

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  19. Target design for shock ignition

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  20. Undercuts by Laser Shock Forming

    Wielage, Hanna; Vollertsen, Frank

    2011-01-01

    In laser shock forming TEA-CO 2 -laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 μm were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.

  1. Electric Shock Injuries in Children

    ... Issues Listen Español Text Size Email Print Share Electric Shock Injuries in Children Page Content ​When the ... comes into direct contact with a source of electricity, the current passes through it, producing what's called ...

  2. Relativistic shocks and particle acceleration

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  3. Shock wave interaction with turbulence: Pseudospectral simulations

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  4. External costs of electricity

    Rabl, A.; Spadaro, J.V.

    2005-01-01

    This article presents a synthesis of the ExternE project (External costs of Energy) of the European community about the external costs of power generation. Pollution impacts are calculated using an 'impact pathways' analysis, i.e. an analysis of the emission - dispersion - dose-response function - cost evaluation chain. Results are presented for different fuel cycles (with several technological variants) with their confidence intervals. The environmental impact costs are particularly high for coal: for instance, in France, for coal-fired power plants it is of the same order as the electricity retail price. For natural gas, this cost is about a third of the one for coal. On the contrary, the environmental impact costs for nuclear and renewable energies are low, typically of few per cent of the electricity price. The main part of these costs corresponds to the sanitary impacts, in particular the untimely mortality. In order to avoid any controversy about the cost evaluation of mortality, the reduction of the expectation of life due to the different fuel cycles is also indicated and the risks linked with nuclear energy are presented using several comparisons. (J.S.)

  5. On parabolic external maps

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  6. Stochastic Control - External Models

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  7. DENSE MEDIUM CYCLONE OPTIMIZATON

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  8. The Efficacy of Cognitive Shock

    2015-05-21

    way, causing dissonance or cognitive conflict, so that the mental model has to be ‘accommodated’ to the new data. Categories and knowledge have to...The Efficacy of Cognitive Shock A Monograph by MAJ Anthony L. Marston United States Army School of Advanced Military Studies...DATES COVERED (From - To) JUN 2014 – MAY 2015 4. TITLE AND SUBTITLE The Efficacy of Cognitive Shock 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  9. Sepsis and septic shock

    Hotchkiss, Richard S.; Moldawer, Lyle L.; Opal, Steven M.; Reinhart, Konrad; Turnbull, Isaiah R.; Vincent, Jean-Louis

    2017-01-01

    For more than two decades, sepsis was defined as a microbial infection that produces fever (or hypothermia), tachycardia, tachypnoea and blood leukocyte changes. Sepsis is now increasingly being considered a dysregulated systemic inflammatory and immune response to microbial invasion that produces organ injury for which mortality rates are declining to 15–25%. Septic shock remains defined as sepsis with hyperlactataemia and concurrent hypotension requiring vasopressor therapy, with in-hospital mortality rates approaching 30–50%. With earlier recognition and more compliance to best practices, sepsis has become less of an immediate life-threatening disorder and more of a long-term chronic critical illness, often associated with prolonged inflammation, immune suppression, organ injury and lean tissue wasting. Furthermore, patients who survive sepsis have continuing risk of mortality after discharge, as well as long-term cognitive and functional deficits. Earlier recognition and improved implementation of best practices have reduced in-hospital mortality, but results from the use of immunomodulatory agents to date have been disappointing. Similarly, no biomarker can definitely diagnose sepsis or predict its clinical outcome. Because of its complexity, improvements in sepsis outcomes are likely to continue to be slow and incremental. PMID:28117397

  10. Focusing of Shear Shock Waves

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  11. Shock compression of synthetic opal

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  12. Computations of slowly moving shocks

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  13. Shock compression of synthetic opal

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  14. Shock compression of synthetic opal

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Electromagnetically driven radiative shocks and their measurements

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  16. Runaways and weathervanes: The shape of stellar bow shocks

    Henney, W. J.; Tarango-Yong, J. A.

    2017-11-01

    Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.

  17. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  18. Propagation and dispersion of shock waves in magnetoelastic materials

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  19. DebtRank: A Microscopic Foundation for Shock Propagation

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical “microscopic” theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008–2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks. PMID:26091013

  20. DebtRank: A Microscopic Foundation for Shock Propagation.

    Marco Bardoscia

    Full Text Available The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008-2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods and six (during the crisis when we stress the system with a 0.5% shock on external (i.e. non-interbank assets for all banks.

  1. DebtRank: A Microscopic Foundation for Shock Propagation.

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008-2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.

  2. Electroweak processes in external active media

    Kuznetsov, Alexander

    2013-01-01

    Expanding on the concept of the authors’ previous book “Electroweak Processes in External Electromagnetic Fields,” this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a “cherry stone shooting” mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book...

  3. Thermomechanical damage of nucleosome by the shock wave initiated by ion passing through liquid water

    Yakubovich, Alexander V.; Surdutovich, Eugene; Solov’yov, Andrey V.

    2012-01-01

    We report on the results of full-atom molecular dynamics simulations of the heat spike in the water medium caused by the propagation of the heavy ion in the vicinity of its Bragg peak. High rate of energy transfer from an ion to the molecules of surrounding water environment leads to the rapid increase of the temperature of the molecules in the vicinity of ions trajectory. As a result of an abrupt increase of the temperature we observe the formation of the nanoscale shock wave propagating through the medium. We investigate the thermomechanical damage caused by the shock wave to the nucleosome located in the vicinity of heavy ion trajectory. We observe the substantial deformation of the DNA secondary structure. We show that the produced shock wave can lead to the thermomechanical breakage of the DNA backbone covalent bonds and present estimates for the number of such strand brakes per one cell nucleus.

  4. Computation as Medium

    Jochum, Elizabeth Ann; Putnam, Lance

    2017-01-01

    Artists increasingly utilize computational tools to generate art works. Computational approaches to art making open up new ways of thinking about agency in interactive art because they invite participation and allow for unpredictable outcomes. Computational art is closely linked...... to the participatory turn in visual art, wherein spectators physically participate in visual art works. Unlike purely physical methods of interaction, computer assisted interactivity affords artists and spectators more nuanced control of artistic outcomes. Interactive art brings together human bodies, computer code......, and nonliving objects to create emergent art works. Computation is more than just a tool for artists, it is a medium for investigating new aesthetic possibilities for choreography and composition. We illustrate this potential through two artistic projects: an improvisational dance performance between a human...

  5. Spiegel. Medium. Kunst

    Kacunko, Slavko

    of this kind as the marks of a meta-complex of method out of which new models of the image continually arise. The waxing intangibility of proliferating images be they of the mind, in dreams, through gestures, and the equally rampant growth of microstructuring in allocations of knowledge lay a challenge before...... to research. As a void in the apprehension of the world, the mirror obtained a scholarly perspective and the more so in areas beyond its own qualities as a medium, i.e. in images and metaphor, the paradigms of all research looking to image and text. This investigation sets out to comprehend paradoxes......, and space (albeit no expanse) is there to consider the methodological pros and cons of such a selective approach. Even in this synopsis, it has to be and can be stated that what makes for the affinities between psychological, literary and image-research approaches in research on the mirror is the shared...

  6. The diffuse interstellar medium

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  7. Study on the Shock-transmission Mechanism of Stock Price among China, Russia and India

    Menggen Chen

    2014-08-01

    Full Text Available Researchers pay more and more attention on the price comovement-effect among international stock markets. This paper deals with the transmission mechanism of price shocks among three stock markets of China, Russia and India, with a sample of weekly returns. The results showed that the price fluctuation of each market has an influence on other markets, although the price behavior is significantly independent. The impact of external price innovations will last 5 or 6 weeks usually and disappear after about 8 weeks. The pattern of transmission-mechanism for the price shocks is very different from each other. Besides, a further study revealed that the influence of external shocks on the domestic stock price increased significantly among the three markets after the 2008 international financial crisis.

  8. On the radio source scintillations caused by plasma inhomogeneities behind a shock wave

    Pimenov, S.F.

    1984-01-01

    The turbulence in the interplanetary and interstellar medium is shown to become anisotropic and statistically inhomogeneous after a shock wave passing. Scintillation intensity spectra of radio sources are estimated. The possibilities to derive the inhomogeneity spectra and source brightness distribution from scintillation changes are discussed

  9. Pressurized thermal shock (PTS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  10. Defibrillation probability and impedance change between shocks during resuscitation from out-of-hospital cardiac arrest

    Walker, Robert G.; Koster, Rudolph W.; Sun, Charles; Moffat, George; Barger, Joseph; Dodson, Pamela P.; Chapman, Fred W.

    2009-01-01

    Objective: Technical data now gathered by automated external defibrillators (AEDs) allows closer evaluation of the behavior of defibrillation shocks administered during out-of-hospital cardiac arrest. We analyzed technical data from a large case series to evaluate the change in transthoracic

  11. ExternE transport methodology for external cost evaluation of air pollution

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  12. EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS

    Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.

    2011-01-01

    We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1 , and the turbulent velocity dispersion in this region is larger than 100 km s -1 . We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3 , which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the

  13. Checklists for external validity

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke

    2014-01-01

    to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...... of 38 checklist items. Empirical support was considered the most valid methodology for item inclusion. Assessment of methodological justification showed that none of the items were supported empirically. Other kinds of literature justified the inclusion of 22 of the items, and 17 items were included...

  14. Rogue and shock waves in nonlinear dispersive media

    Resitori, Stefania; Baronio, Fabio

    2016-01-01

    This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...

  15. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  16. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB{sub 2} samples

    Ohashi, Wataru [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Takenaka, Kenta [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Kondo, Tadashi [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Tamaki, Hideyuki [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Matsuzawa, Hidenori [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan)]. E-mail: matuzawa@mx3.nns.ne.jp; Kai, Shoichiro [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Kakimoto, Etsuji [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Takano, Yoshihiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Minehara, Eisuke [FEL Laboratory, Tokai Site, Japan Atomic Energy Research Institute, Shirakata-shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2006-09-15

    Three different cylindrical MgB{sub 2} bulk samples were prepared by the underwater shock consolidation method in which shock waves of several GPa, generated by detonation of explosives, were applied to a metallic cylinder containing commercially available MgB{sub 2} powders with no additives. Resistivity anisotropy of the samples increased with shock pressure. The highest- and medium-pressure applied samples had finite resistivities in the radial direction for the whole temperature range down to 12 K, whereas their axial and azimuthal resistivities dropped to zero at 32-35 K. By contrast, the lowest-pressure applied sample was approximately isotropic with a normal-state resistivity of {approx}40 {mu}{omega} cm, an onset temperature of {approx}38.5 K, and a transition width of {approx}4.5 K. These extremely anisotropic properties would have resulted from the distortion of grain boundaries and grain cores, caused by the shock pressures and their repeated bouncing.

  17. Radiation- and pair-loaded shocks

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  18. Sperm motility of externally fertilizing fish and amphibians.

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P amphibian sperm in general and anurans reversion from internal to external fertilization. Our findings provide a greater understanding of the reproductive biology of externally fertilizing fish and amphibians, and a biological foundation for the further development of reproduction technologies for their sustainable management.

  19. Surface flaw in a thermally shocked hollow cylinder

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  20. Prediction of massive bleeding. Shock index and modified shock index.

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  1. Shock diffraction in alumina powder

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  2. An integrated marketing approach for a medium-sized South African airline in a deregulated market

    2012-01-01

    M.Comm. The overall goal of this study is to provide a medium-sized South African airline with the theoretical framework and necessary research and analyses, in developing an integrated marketing approach in a deregulated environment. The objectives of the study are : to analyse the macro and market variables that could impact on the marketing efforts of a medium-sized South African airline. to assess a medium-sized South African airline's marketing efforts (in response to external variabl...

  3. Energetic ion acceleration at collisionless shocks

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  4. Energetic ion acceleration at collisionless shocks

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  5. Why the Nature of Oil Shocks Matters

    Archanskaia, Elizaveta; Hubert, Paul; Creel, Jerome

    2009-03-01

    This article studies the impact of oil shocks on the macro-economy in two ways insofar unexploited in the literature. The analysis is conducted at the global level, and it explicitly accounts for the potentially changing nature of oil shocks. Based on an original world GDP series and a grouping of oil shocks according to their nature, we find that oil supply shocks negatively impact world growth, contrary to oil demand shocks, pro-cyclical in their nature. This result is robust at the national level for the US. Furthermore, endogenous monetary policy is shown to have no counter-cyclical effects in the context of an oil demand shock. (authors)

  6. MHD intermediate shock discontinuities: Pt. 1

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  7. Shock waves in weakly compressed granular media.

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  8. Step-by-step external fixation of unstable pelvis with separate anterior and posterior modules

    Ivan Viktorovich Borozda

    2016-02-01

    Conclusions: The modular approach applied is the advantage of the transosseous osteosynthesis allowing for a separate anterior (anti-shock fixation and final posterior reposition of the pelvic ring preceded by the stabilization of vital functions. The above mentioned method gives an opportunity to increase the amount of techniques applied for the pelvic external fixation in polytrauma cases.

  9. Shock, diaschisis and von Monakow

    Eliasz Engelhardt

    2013-07-01

    Full Text Available The concept of shock apparently emerged in the middle of the 18th century (Whyett as an occurrence observed experimentally after spinal cord transection, and identified as "shock" phenomenon one century later (Hall. The concept was extended (Brown-Séquard and it was suggested that brain lesions caused functional rupture in regions distant from the injured one ("action à distance". The term "diaschisis" (von Monakow, proposed as a new modality of shock, had its concept broadened, underpinned by observations of patients, aiming at distinguishing between symptoms of focal brain lesions and transitory effects they produced, attributable to depression of distant parts of the brain connected to the injured area. Presently, diaschisis is related mainly to cerebrovascular lesions and classified according to the connection fibers involved, as proposed by von Monakow. Depression of metabolism and blood flow in regions anatomically separated, but related by connections with the lesion, allows observing diaschisis with neuroimaging.

  10. Shock compression of geological materials

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  11. Shock compression of simulated adobe

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  12. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  13. Shock Initiation of Damaged Explosives

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  14. Chloride transport in human fibroblasts is activated by hypotonic shock

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  15. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  16. Environmental external effects from wind power based on the EU ExternE methodology

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment......The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  17. Shock compaction of molybdenum powder

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  18. Cation disorder in shocked orthopyroxene.

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  19. Sepsis and Septic Shock Strategies.

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Shock/shock interactions between bodies and wings

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  1. External corners as heat bridges

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  2. [External pancreatic fistulas management].

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  3. Analytical solutions of hypersonic type IV shock - shock interactions

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  4. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  5. Shock and Vibration. Volume 1, Issue 1

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  6. Initial ISEE magnetometer results: shock observation

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  7. 29th International Symposium on Shock Waves

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  8. Inferior vena cava obstruction and shock

    Megri Mohammed

    2018-01-01

    Full Text Available Shock is one of the most challenging life-threatening conditions with high mortality and morbidity; the outcomes are highly dependent on the early detection and management of the condition. Septic shock is the most common type of shock in the Intensive Care Unit. While not as common as other subsets of shock, obstructive shock is a significant subtype due to well defined mechanical and pathological causes, including tension pneumothorax, massive pulmonary embolism, and cardiac tamponade. We are presenting a patient with obstructive shock due to inferior vena cava obstruction secondary to extensive deep venous thrombosis. Chance of survival from obstructive shock in our patient was small; however, there was complete and immediate recovery after treatment of the obstruction on recognizing the affected vessels. This case alerts the practicing intensivist and the emergency medicine physician to consider occlusion of the great vessels other than the pulmonary artery or aorta as causes of obstructive shock.

  9. Polarized bow shocks reveal features of the winds and environments of massive stars

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  10. The acceleration rate of cosmic rays at cosmic ray modified shocks

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  11. Converging cylindrical shocks in ideal magnetohydrodynamics

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  12. Converging cylindrical shocks in ideal magnetohydrodynamics

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  13. Converging cylindrical shocks in ideal magnetohydrodynamics

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  14. Converging cylindrical shocks in ideal magnetohydrodynamics

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  15. Entropy jump across an inviscid shock wave

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  16. Collisionless Electrostatic Shock Modeling and Simulation

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  17. Shock waves in gas and plasma

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  18. Electric shock and electrical fire specialty

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  19. Innovation types at smes and external influencing factors

    Monika Walicka

    2014-12-01

    Full Text Available Stimulating innovation is one of the pressing policy challenges facing many countries in the world today. The paper analyses the external factors that Polish entrepreneurs find most detrimental to their innovative activity. A sample of 199 small and medium size enterprises (SMEs in Poland were subjected to a survey. The data collected revealed the innovation types of SMEs in Poland and external financial factors influencing innovation the most. The results show external factors such as legal regulations, access to external financing, bureaucracy of institutions, financial government support, the tax system, time necessary to comply with regulations, and crisis and instability are very important for SMEs. According to the results, process and marketing innovations are applied more frequently than product and organisational innovations. Finally, the results indicate that entrepreneurs indicate that lack of government support and weakness of tax incentives is an important barrier to the innovation process.

  20. Endo- vs. exogenous shocks and relaxation rates in book and music “sales”

    Lambiotte, R.; Ausloos, M.

    2006-04-01

    In this paper, we analyse the response of music and book sales to an external field and a buyer herding. We distinguish endogenous and exogenous shocks. We focus on some case studies, whose data have been collected from ranking on amazon.com. We show that an ensemble of equivalent systems quantitatively respond in a same way to a similar “external shock”, indicating roads to universality features. In contrast to Sornette et al. [Phys. Rev. Lett. 93 (2004) 228701] who seemed to find power-law behaviours, in particular at long times, a law interpreted in terms of an epidemic activity, we observe that the relaxation process can be as well seen as an exponential one that saturates toward an asymptotic state, itself different from the pre-shock state. By studying an ensemble of 111 shocks, on books or records, we show that exogenous and endogenous shocks are discriminated by their short-time behaviour: the relaxation time seems to be twice shorter in endogenous shocks than in exogenous ones. We interpret the finding through a simple thermodynamic model with a dissipative force.

  1. Prenatal temperature shocks reduce cooperation

    Duchoslav, Jan

    2017-01-01

    Climate change has not only led to a sustained rise in mean global temperature over the past decades, but also increased the frequency of extreme weather events. This paper explores the effect of temperature shocks in utero on later-life taste for cooperation. Using historical climate data combined

  2. Shock Incarceration: Rehabilitation or Retribution?

    MacKenzie, Doris Layton; And Others

    1989-01-01

    Reviews Louisiana's shock incarceration program used as alternative to standard prison incarceration. Program involves short period of imprisonment in a "boot camp" type atmosphere followed by three phases of intensive parole supervision. Examines the program in regard to its rehabilitative potential and compares program elements to…

  3. Shock Mounting for Heavy Machines

    Thompson, A. R.

    1984-01-01

    Elastomeric bearings eliminate extraneous forces. Rocket thrust transmitted from motor to load cells via support that absorbs extraneous forces so they do not affect accuracy of thrust measurements. Adapter spoked cone fits over forward end of rocket motor. Shock mounting developed for rocket engines under test used as support for heavy machines, bridges, or towers.

  4. 2-Shock layered tuning campaign

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. Nonlinearity, Conservation Law and Shocks

    However, genuine nonlinearity is always present in an ideal gas. The conservation form of the equation (25) brings in shocks which cut off the growing part of the amplitUde as shown in. Figure 15. Acknowledgements. The author sincerely thanks the two referees whose valuable comments led to an improvement of the ...

  6. Model for Shock Wave Chaos

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  7. EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AS ...

    Objective To evaluate extracorporeal shock wave lithotripsy (ESWL) as a monotherapy for urolithiasis in patients with solitary kidney and to determine the factors that may affect its results. Patients and Methods Using the Dornier MFL 5000 lithotriptor, 106 patients with solitary kidney (80 men and 26 women) were treated for ...

  8. Shock formation within sonoluminescence bubbles

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  9. Model for Shock Wave Chaos

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  10. Studying shocks in model astrophysical flows

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  11. Shock waves in relativistic nuclear matter, I

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  12. The microphysics of collisionless shock waves

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active ga...

  13. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  14. Mesons in the nuclear Medium

    Kotulla, M

    2006-01-01

    We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $\\omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $\\omega$ meson mass together with a significant increase of its width in the nuclear medium.

  15. External Measures of Cognition

    Osvaldo eCairo

    2011-10-01

    Full Text Available The human brain is undoubtedly the most impressive, complex and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind.

  16. Hanford External Dosimetry Program

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  17. Bevalac external beamline optics

    Kalnins, J.G.; Krebs, G.F.; Tekawa, M.M.; Alonso, J.R.

    1987-04-01

    This handbook is intended as an aid for tuning the external particle beam (EPB) lines at the Lawrence Berkeley Laboratory's Bevalac. The information contained within will be useful to the Bevalac's Main Control Room and experimenters alike. First, some general information is given concerning the EPB lines and beam optics. Next, each beam line is described in detail: schematics of the beam line components are shown, all the variables required to run a beam transport program are presented, beam envelopes are given with wire chamber pictures and magnet currents, focal points and magnifications. Some preliminary scaling factors are then presented which should aid in choosing a given EPB magnet's current for a given central Bevalac field. Finally, some tuning hints are suggested.

  18. Bevalac external beamline optics

    Kalnins, J.G.; Krebs, G.F.; Tekawa, M.M.; Alonso, J.R.

    1987-04-01

    This handbook is intended as an aid for tuning the external particle beam (EPB) lines at the Lawrence Berkeley Laboratory's Bevalac. The information contained within will be useful to the Bevalac's Main Control Room and experimenters alike. First, some general information is given concerning the EPB lines and beam optics. Next, each beam line is described in detail: schematics of the beam line components are shown, all the variables required to run a beam transport program are presented, beam envelopes are given with wire chamber pictures and magnet currents, focal points and magnifications. Some preliminary scaling factors are then presented which should aid in choosing a given EPB magnet's current for a given central Bevalac field. Finally, some tuning hints are suggested

  19. Permeability enhancement by shock cooling

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  20. UV observations of local interstellar medium.

    Kurt, V.; Mironova, E.; Fadeev, E.

    2008-12-01

    The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.

  1. Study on the properties of porous magnetorheological elastomers under shock effect

    Ju, B X; Yu, M; Fu, J; Zheng, X; Yang, Q

    2013-01-01

    As a safe protector, buffer has been widely applied to engineering applications. The properties of cushion materials play a key role in the performance of the buffer under shock loading. Magnetorheological elastomers (MRE) are a kind of novel smart materials and show to have a controllable, field-dependent modulus, which have attracted increasing attentions and broad application prospects. This paper aims to fabricate a new kind of MRE, named as porous MRE, and study on the properties of porous MRE under shock effect in the presence of an external magnetic field. Three kinds of MRE samples based on polyurethane matrix were prepared without external magnetic field, and ammonium bicarbonate was used as foaming agent with content of 0 wt.%, 0.26 wt.%, 0.67 wt.%, respectively. The microstructures of the sample were observed by using a digital microscope, and image processing and analysis was applied to calculate the parameters of porous MRE. A sleeve structure and mass block were used to test the shock performance of porous MRE under shear mode, and an electromagnetic vibration and shock table was used to provide shock signal with half-sine shock signal. The results show that the content of foaming agent has an obvious influence on the microstructures of porous MRE. The porosity of the porous MRE samples increases with increasing of foaming agent content. Moreover, experimental results show that shock energy dissipation capacity is better than that of traditional MRE. This study is expected to provide guidance in the application of MRE in practical devices, such as in buffer devices.

  2. Three-component model of solar wind--interstellar medium interaction: some numerical results

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  3. Macroscale particle simulation of externally driven magnetic reconnection

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  4. Macroeconomic Adjustment in Armenia: The Role of External Factors

    Bas van AARLE

    2010-05-01

    Full Text Available This paper develops a small macroeconomic model of the Armenian economy. After setting up the model and its estimation, a number of macroeconomic scenarios is analyzed in the form of out-of-sample simulations. We analyze the transmissions in the model of a number of macroeconomic shocks and policy scenarios to obtain a better understanding of their possible effects on the internal and external balance of the Armenian economy. A special focus is put on the role of exchange rate and monetary management and the inflow of remittances in the Armenian economy

  5. Macroeconomic Adjustment in Armenia: The Role of External Factors

    Van Aarle, Bas

    2011-01-01

    This paper develops a small macroeconomic model of the Armenian economy. After setting up the model and its estimation, a number of macroeconomic scenarios is analyzed in the form of out-of-sample simulations. We analyze the transmissions in the model of a number of macroeconomic shocks and policy scenarios to obtain a better understanding of their possible effects on the internal and external balance of the Armenian economy. A special focus is put on the role of exchange rate and monetary ma...

  6. Extracorporeal shock-wave lithotripsy as an adjunct to biliary interventional procedures

    Zeman, R.K.; Garra, B.S.; Matsumoto, A.H.; Teitelbaum, G.P.; Barth, K.H.; Cattau, E.L.; Davros, W.J.; McClennan, B.L.; Picus, D.; Paushter, D.M.

    1989-01-01

    This paper reviews the records of nine patients undergoing extracorporeal shock wave lithotripsy (ESWL) of bile duct stones as an adjunct to other biliary intervention. Lithotripsy was successful in producing fragmentation in seven of nine patients. Keeping the duct mildly distended with contrast medium, distributing the shock waves over the stone(s) by taking advantage of respiratory excursion, and pinning stone fragments with balloon catheters facilitated fragmentation. Six patients underwent duct manipulation (stricture dilation, fragment extraction) within 24 hours of ESWL, suggesting that immediate instrumentation is safe in conjunction with lithotripsy

  7. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  8. Laser shock wave consolidation of nanodiamond powders on aluminum 319

    Molian, Pal [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu; Molian, Raathai; Nair, Rajeev [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)

    2009-01-01

    A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm{sup -1} and 1600 cm{sup -1} respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 {mu}m and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kg{sub f}/mm{sup 2} (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (R{sub a}) in the range of 1.5-4 {mu}m depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.

  9. Inappropriate shocks in the subcutaneous ICD

    Olde Nordkamp, Louise R A; Brouwer, Tom F; Barr, Craig

    2015-01-01

    shocks have been reported. METHODS: We analyzed the incidence, predictors and management of inappropriate shocks in the EFFORTLESS S-ICD Registry, which collects S-ICD implantation information and follow-up data from clinical centers in Europe and New Zealand. RESULTS: During a follow-up of 21 ± 13...... xyphoid to V6) reduced the risk. Reprogramming or optimization of SVT treatment after the first clinical event of inappropriate shock was successful in preventing further inappropriate shocks for cardiac oversensing and SVT events. CONCLUSIONS: Inappropriate shocks, mainly due to cardiac oversensing...

  10. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    Xin, Li-Ping; Wei, Jian-Yan; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We report the optical observations of GRB 121011A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of ∼130 s and ∼5000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase. (paper)

  11. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  12. Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Erfani, Rasool; Zare-Behtash, Hossein; Kontis, Konstantinos

    2012-01-01

    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma. (paper)

  13. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  14. Perpendicular relativistic shocks in magnetized pair plasma

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  15. Initial conditions of radiative shock experiments

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  16. Exploratory laser-driven shock wave studies

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  17. Shock-induced chemistry in organic materials

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  18. Experimental methods of shock wave research

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  19. Motion of shocks through interplanetary streams

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  20. Do oil shocks predict economic policy uncertainty?

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  1. Shock Wave Dynamics in Weakly Ionized Plasmas

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  2. Pions in the nuclear medium

    Chanfray, G.

    1996-07-01

    We discuss various aspects of pion physics in the nuclear medium. We first study s-wave pion-nucleus interaction in connection with chiral symmetry restoration and quark condensate in the nuclear medium. We then address the question of p-wave pion-nucleus interaction and collective pionic modes in nuclei and draw the consequences for in medium ππ correlations especially in the scalar-isoscalar channel. We finally discuss the modification of the rho meson mass spectrum at finite density and/or temperature in connection with relativistic heavy ion collisions

  3. Life-cycle analysis and external costs in transportation

    Delucchi, M.A.

    2002-01-01

    The assessment of greenhouse gas impacts in the US shows that against a baseline gasoline vehicle, the impact of including the full fuel cycle generally reduces the relative advantages of alternative transportation fuels. While a switch to diesel is estimated to save 30% as compared to gasoline, the savings from natural gas/LPG are (around 20%), for ethanol from corn (8%) and for battery electricity vehicles using power from coal (6%) are much smaller. This is largely due to the use of LCA rather than end-use comparisons. However, the results also show that there would be large savings from the use of ethanol from fuel cells using methanol (39%) or natural gas (50%), while ethanol from wood in a conventional engine appears to have the greatest savings (63%). In external costs of motor vehicle use, analysis results were presented for both air pollution and energy security impacts (including SPR, military expenditures, macro-economic costs and pecuniary costs) as well as water pollution, noise and congestion impacts. The results suggest that externalities amount to 1.2 US cents per mile travelled in gasoline powered vehicle. The most significant externality is related to air pollution. Costs associated with US defence, the SPR, and climate change are quite insignificant. The only other variable of significance is the impact on the economy, through the transfer of wealth outside the US (referred to as 'pecuniary externality') and the oil price shock impacts on the economy. A comparison of external costs and subsidies for different transportation modes in the US (gas or electric cars, transit bus, light rail, heavy rail) showed that subsidies available to public transit system greatly outweigh the benefit in reduced externalities avoided. In the comparison of social costs of transportation alternatives, differences in external cost, while not trivial, are outweighed by the differences in direct costs or in subsidies. (author)

  4. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  5. Insight into magnetorheological shock absorbers

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  6. Magnetohydrodynamic shocks in molecular clouds

    Chernoff, D.F.

    1985-01-01

    Part one develops the mathematical and physical theory of one-dimensional, time-independent subalfvenic flow in partially ionized gas with magnetic fields, for application to shocks in molecular clouds. Unlike normal gas-dynamic shocks, the neutral flow may be continuous and cool if the gas radiates efficiently and does not self-ionize. Analytic solutions are given in the limit that the neutral gas is either adiabatic or isothermal (cold). Numerical techniques are developed and applied to find the neutral flow under general circumstances. Part two extends the theory and results of part one in three ways: (1) to faster, superalfvenic flow, (2) to complex gases containing heavy charged particles (grains) in addition to ions, containing heavy charged particles (grains) in addition to ions, electrons and neutrals, and (3) to the entire range in (Omega tau), the ratio of charged particle damping time to gyroperiod, expected in gas flows in molecular clouds

  7. Injection and acceleration of H+ and He2+ at Earth's bow shock

    K.-H. Trattner

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  8. Injection and acceleration of H+ and He2+ at Earth's bow shock

    M. Scholer

    1999-05-01

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  9. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    Japelj, J.; Kopač, D.; Gomboc, A.; Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.

    2014-01-01

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and γ-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R B = ε B,r /ε B,f ∼ 2-10 4 . Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  10. EVIDENCE FOR CO SHOCK EXCITATION IN NGC 6240 FROM HERSCHEL SPIRE SPECTROSCOPY

    Meijerink, R.; Spaans, M. [Kapteyn Astronomical Institute, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Kristensen, L. E.; Van der Werf, P. P.; Loenen, A. F.; Israel, F. P. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Weiss, A.; Papadopoulos, P. P.; Guesten, R. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 16, Bonn, D-53121 (Germany); Walter, F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, Heidelberg, D-69117 (Germany); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, Washington, DC 20375 (United States); Isaak, K. [ESA Astrophysics Missions Division, ESTEC, P.O. Box 299, NL-2200 AG Noordwijk (Netherlands); Aalto, S. [Department of Radio and Space Science, Onsala Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Armus, L.; Diaz-Santos, T. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Charmandaris, V. [University of Crete, Department of Physics, GR-71003 Heraklion (Greece); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014, Paris (France); Evans, A. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Gonzalez-Alfonso, E. [Universidad de Alcala Henares, Departamente de Fisica, Campus Universitario, E-28871 Alcala de Henares, Madrid (Spain); and others

    2013-01-10

    We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J = 4 - 3 through J = 13 - 12, 6 H{sub 2}O rotational lines, and [C I] and [N II] fine-structure lines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shock models to the H{sub 2} v = 1-0 S(1) and v = 2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v{sub s} = 10 km s{sup -1} and a pre-shock density n{sub H} = 5 Multiplication-Sign 10{sup 4} cm{sup -3}. We find that the solution best fitting the H{sub 2} lines is degenerate. The shock velocities and number densities range between v{sub s} = 17-47 km s{sup -1} and n{sub H} = 10{sup 7}-5 Multiplication-Sign 10{sup 4} cm{sup -3}, respectively. The H{sub 2} lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s{sup -1}) shocks while only a small fraction ({approx}< 1%) of the interstellar medium is exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.

  11. MHD shocks in the ISM

    Chernoff, D. F.; Hollenbach, David J.; Mckee, Christopher F.

    1990-01-01

    Researchers survey shock solutions of a partially ionized gas with a magnetic field. The gas is modeled by interacting neutral, ion, electron and charged grain components. They employ a small neutral-ion chemical network to follow the dissociation and ionization of the major species. Cooling by molecular hydrogen (rotational, vibrational and dissociation), grains and dipole molecules is included. There are three basic types of solutions (C, C asterisk, and J) and some more complicated flows involving combinations of the basic types. The initial preshock conditions cover hydrogen nuclei densities of 1 less than n less than 10(exp 10) cm(-3) and shock velocities of 5 less than v(sub s) less than 60 km/s. The magnetic field is varied over 5 decades and the sensitivity of the results to grain parameters, UV and cosmic ray fluxes is ascertained. The parameter space is quite complicated, but there exist some simple divisions. When the initial ionization fraction is small (chi sub i less than 10(-5)), there is a sharp transition between fully C solutions at low velocity and strong J solutions at high velocity. When the initial ionization fraction is larger, C asterisk and/or very weak J shocks are present at low velocities in addition to the C solutions. The flow again changes to strong J shocks at high velocities. When the ionization fraction is large and the flow is only slightly greater than the bulk Alfven velocity, there is a complicated mixture of C, C asterisk and J solutions.

  12. Measuring resilience to energy shocks

    Molyneaux, Lynette; Brown, Colin; Foster, John; Wagner, Liam

    2015-01-01

    Measuring energy security or resilience in energy is, in the main, confined to indicators which are used for comparative purposes or to show trends rather than provide empirical evidence of resilience to unpredicted crises. In this paper, the electricity systems of the individual states within the United States of America are analysed for their response to the 1973-1982 and the 2003-2012 oil price shocks. Empirical evidence is sought for elements which are present in systems that experience r...

  13. The ExternE project: methodology, objectives and limitations

    Rabl, A.; Spadaro, J.V.

    2002-01-01

    This paper presents a summary of recent studies on external costs of energy systems, in particular the ExternE (External Costs of Energy) Project of the European Commission. To evaluate the impact and damage cost of a pollutant, one needs to carry out an impact pathway analysis; this involves the calculation of increased pollutant concentrations in all affected regions due to an incremental emission (e.g. μg/m 3 of particles, using models of atmospheric dispersion and chemistry), followed by the calculation of physical impacts (e.g. number of cases of asthma due to these particles, using a dose-response function). The entire so-called fuel chain (or fuel cycle) is evaluated and compared on the basis of delivered end use energy. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, NO x and SO x ) from the combustion of fossil fuels impose a heavy toll, in addition to the cost of global warming. The external costs are especially large for coal; even for 'good current technology' they may be comparable to the price of electricity. For natural gas the external costs are about a third to a half of coal. The external costs of nuclear are small compared to the price of electricity (at most a few %), and so are the external costs of most renewable energy systems. (authors)

  14. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  15. Medium modifications of vector mesons

    Pant, L.M.

    2004-01-01

    The omega photoproduction in nuclear medium with the ELSA facility at Bonn and the present status of the HADES collaboration to investigate the in-medium hadron properties in proton, heavy ions and hadron induced reactions at GSI, Darmstadt are presented. Efforts are under way to utilise the electron beam at Indore for experimental hadron physics in order to step into the intermediate energy nuclear physics regime. The skeletal outline of the high energy electron beam now available at CAT, Indore is discussed

  16. Medium effects in direct reactions

    Karakoc, M; Bertulani, C

    2013-01-01

    We discuss medium corrections of the nucleon-nucleon (NN) cross sections and their influence on direct reactions at intermediate energies ≳50 MeV/nucleon. The results obtained with free NN cross sections are compared with those obtained with a geometrical treatment of Pauli-blocking and Dirac-Bruecker methods. We show that medium corrections may lead to sizable modifications for collisions at intermediate energies and that they are more pronounced in reactions involving weakly bound nuclei.

  17. The effects of ionizing radiation on the performance of signaled and unsignalled bar-press shock postponement in the rat

    Burghardt, W.F. Jr.

    1988-01-01

    Forty-eight rats in four conditions were used to determine the efficacy of preshock warning tones in maintaining bar-press shock postponement performance after irradiation. The SIDMAN group performed without external cues. The SIGNAL group received a 5 sec warning tone preceding shock. The COSAV group had preshock warning tones available for 60 sec following a response on another lever, and was used to assess the ability to maintain performance on two levers simultaneously. In VISIG, warning tones always preceded shocks, but followed shock postponement responses unpredictably. Sham-irradiated control groups were used to compare baseline performance on each task, and for comparison with irradiated subjects. Irradiated subjects could perform the movements necessary to successfully avoid shock. They were able to detect and respond appropriately to preshock warning tones when present, although COSAV subjects did not continue to respond to produce them. Irradiated subjects experienced a significant and lasting increase in the number of shocks received, except when no external cues were available

  18. Particle Acceleration in Two Converging Shocks

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  19. Simulation of turbulent flows containing strong shocks

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  20. Electron velocity distributions near collisionless shocks

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  1. Oil price shocks and economy: an open question

    Di Marzio, G.

    2006-01-01

    During the 1970s and 1980s advanced oil importing economies faced the adverse effects of oil supply disruptions with abrupt energy price rise, followed by sensible business cycle inversions and stagflation. The negative effects of the sharp energy price increase were amplified by factors such the induced costly resources reallocation between labour and capital, and between sectors of activity; rising uncertainty discouraging investments, and income redistribution consequences on aggregate demands After a shock the economic system generally adjusts in favour of less energy intensive industries; this leads pauses in production as part of the existing capital stock become obsolete, and causes resources under utilization. Since the 1970s a number of economists have been sceptical about why even large price shocks in a resource that accounts for less than 3-4 pct. of global GDP could cause losses of magnitude as those experienced in most advanced economies. They believe that monetary policy has played a role in generating the observed negative correlation between oil prices and economic activity, and question whether the post-oil-shock recessions were attributable to the oil price shocks themselves or to the monetary policy responding to these shocks. Empirical research largely shows a primary responsibility of large price shocks and major oil-supply disruptions on recessionary movements of GDP. Energy prices have risen sharply since 2003, driven by strengthening global demand; market fundamentals suggest that a considerable fraction of recent hikes will be permanent and current price levels remain credible. With limited spare capacity, the medium term oil supply-demand balance is expected to remain tight, and the price probably near current levels. Today' s high oil prices reflect the effects of sustained energy demand trends and, jointly, oil industry under investment during and after the low price era of the 1990s. The apparent moderate macro economic effects of the

  2. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  3. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  4. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  5. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  6. Numerical Simulation Of Shock Response To Wall Changes In High Speed Intakes

    Fincham, J.; Taylor, N. V.

    2011-05-01

    Hypersonic flight presents a number of challenges to the designer, one of which is the intake behaviour. Minimising drag requires careful positioning of the intake shock structure, while accurate understanding of the dynamic behaviour is required to allow minimisation of margins. In this paper, a two shock external compression intake derived from the Reaction Engines Limited SABRE engine is examined using inviscid axisymmetric CFD analysis to determine the response of the normal shockwave to axial motion of the intake centrebody. An approximately linear relationship between centrebody position and both the normal shock position and additive drag in steady flow is demonstrated. Initial results from an unsteady analysis are also given, which show complex behaviours may be triggered by rapid motion of the centrebody in response to control input.

  7. External coating of colonic anastomoses

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  8. Retrofitting Systems for External Walls

    Rose, Jørgen

    1997-01-01

    In this report, 9 different external and internal retrofitting systems are analyzed using numerical calculations. The analysis focuses on the thermal bridge effects in the different systems, and on this basis it is discussed whether internal or external retrofitting has the most advantages...

  9. Performance Targets and External Benchmarking

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...

  10. Malignant external otitis: CT evaluation

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-01-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull

  11. Positive natural resource shocks and domestic adjustments in a semi-industrialized economy: Argentina in the 2004-2007 period

    L.A. Serino (Leandro)

    2009-01-01

    textabstractThis paper evaluates the domestic adjustment to recent positive external shocks in Argentina's natural resource sectors. Although there is no single, exclusive determinant of Argentina's fast economic growth in the period 2003-2007, the paper illustrates the favourable contribution of

  12. Influence of external magnetic field on parameters of surface two-focus spin-wave ferromagnetic lens

    Reshetnyak, S.A.; Berezhinskij, A.S.

    2012-01-01

    The influence of external magnetic field on refraction of surface spin wave propagating through inhomogeneity created in the form of a lens, that is a biaxial ferromagnet placed into uniaxial ferromagnetic medium, is studied.

  13. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The evolution course of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies. 26 refs

  14. Computer simulations of collisionless shock waves

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  15. Molecular dynamics simulation of laser shock phenomena

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  16. Entropy Generation Across Earth's Bow Shock

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  17. Remote shock sensing and notification system

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  18. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  19. Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term

    Yin, Jiuli; Zhao, Liuwei

    2014-01-01

    In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams

  20. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  1. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Ahmed A. EL‐Nawawy

    2018-01-01

    Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  2. The earth's foreshock, bow shock, and magnetosheath

    Onsager, T. G.; Thomsen, M. F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions.

  3. The earth's foreshock, bow shock, and magnetosheath

    Onsager, T.G.; Thomsen, M.F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions. 184 refs

  4. Nonequilibrium chemistry in shocked molecular clouds

    Iglesias, E.R.; Silk, J.

    1978-01-01

    The gas phase chemistry is studied behind a 10 km s -1 shock propagating into a dense molecular cloud. Our principal conclusions are that the concentrations of certain molecules (CO, NH 3 , HCN, N 2 ) are unperturbed by the shock; other molecules (H 2 CO, CN, HCO + ) are greatly decreased in abundance; and substantial amounts of H 2 O, HCO, and CH 4 are produced. Approximately 10 6 yr (independent of the density) must elapse after shock passage before chemical equilibrium is attained

  5. Reaction effects in diffusive shock acceleration

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references

  6. PIV tracer behavior on propagating shock fronts

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  7. Proteome of Salmonella enterica serotype Tyhimurium Grown in Low Mg2+/pH Medium

    Shi, Liang; Ansong, Charles; Smallwood, Heather S.; Rommereim, Leah M.; McDermott, Jason E.; Brewer, Heather M.; Norbeck, Angela D.; Taylor, Ronald C.; Gustin, Jean K.; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-09-04

    To determine the impact of a low Mg2+/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, we cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach. Proteomic results showed that MgM Shock and MgM Dilution differentially affected the S. Typhimurium proteome. MgM Shock induced a group of proteins whose induction usually occurred at low O2 level, while MgM Dilution induced those related to the type III secretion system (T3SS) of Salmonella Pathogenicity Island 2 (SPI2) and those involved in thiamine or biotin biosynthesis. The metabolic state of the S. Typhimurium cells grown under MgM Shock condition also differed significantly from that under MgM Dilution condition. Western blot analysis not only confirmed the proteomic results, but also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after S. Typhimurium infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the bacterial ability to replicate inside the macrophages, suggesting a biotin-limited environment encountered by S. Typhimurium within RAW 264.7 macrophages.

  8. TWO-FLUID MAGNETOHYDRODYNAMICS SIMULATIONS OF CONVERGING H I FLOWS IN THE INTERSTELLAR MEDIUM. II. ARE MOLECULAR CLOUDS GENERATED DIRECTLY FROM A WARM NEUTRAL MEDIUM?

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2009-01-01

    Formation of interstellar clouds as a consequence of thermal instability is studied using two-dimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We find, as speculated in Paper I, that in the shocked slab magnetic pressure dominates thermal pressure and the thermal instability grows in the isochorically cooling, thermally unstable slab that leads to the formation of H I clouds whose number density is typically n ∼ -3 , even if the angle between magnetic field and converging flows is small. We also find that even if there is a large dispersion of magnetic field, evolution of the shocked slab is essentially determined by the angle between the mean magnetic field and converging flows. Thus, the direct formation of molecular clouds by piling up warm neutral medium does not seem to be a typical molecular cloud formation process, unless the direction of supersonic converging flows is biased to the orientation of mean magnetic field by some mechanism. However, when the angle is small, the H I shell generated as a result of converging flows is massive and possibly evolves into molecular clouds, provided gas in the massive H I shell is piled up again along the magnetic field line. We expect that another subsequent shock wave can again pile up the gas of the massive shell and produce a larger cloud. We thus emphasize the importance of multiple episodes of converging flows, as a typical formation process of molecular clouds.

  9. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  10. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Use of Financial Management Practices by Small, Medium and Micro Enterprises: A Perspective from South Africa

    Brijlal, Pradeep; Enow, Samuel; Isaacs, Eslyn B. H.

    2014-01-01

    This paper reports on an investigation of financial management practices used by small, medium-sized and micro-enterprises (SMMEs) in South Africa. It was found that more than half the SMMEs examined use external accounting staff to prepare accounting reports and more than 60% rely on external accounting staff to interpret and use accounting…

  12. Condensed matter at high shock pressures

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  13. Radio emission from coronal and interplanetary shocks

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  14. Advanced and Exploratory Shock Sensing Mechanisms.

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  15. Irreversible thermodynamics of overdriven shocks in solids

    Wallace, D.C.

    1981-01-01

    An isotropic solid capable of transporting heat and of undergoing dissipative plastic flow, is treated. The shock is assumed to be a steady wave, and any phase changes or macroscopic inhomogeneities which might be induced by the shock are neglected. Under these conditions it is established that for an overdriven shock, no solution is possible without heat transport, and when the heat transport is governed by the steady conduction equation, no solution is possible without plastic dissipation as well. Upper and lower bounds are established for the thermodynamic variables, namely the shear stress, temperature, entropy, plastic strain, and heat flux, as functions of compression through the shock

  16. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  17. External costs related to power production technologies. ExternE national implementation for Denmark

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs

  18. External costs related to power production technologies. ExternE national implementation for Denmark

    Schleisner, L; Sieverts Nielsen, P

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs.

  19. Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Armaroli, Andrea

    2009-11-03

    We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop (multisoliton regime). Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation. © 2009 The American Physical Society.

  20. Mechanism of Interaction between Entrepreneurial Spirit and Growth of Small and Medium Sized Private Enterprises

    Peng XIE

    2016-01-01

    In the context of government appeal of " mass entrepreneurship and innovation",all areas launched the movement of " mass entrepreneurship" and " grassroots entrepreneurship". As parts of vitality of China’s market economy,small and medium sized private enterprises become grassroots of market competition in talents,funds,and technologies. This paper combined three levels of entrepreneurial spirit and small and medium sized private enterprises,studied acting mechanism of entrepreneurial spirit,discussed competitive power of small and medium sized private enterprises,and recommended that small and medium sized private enterprises should cultivate core competitive power,adapt to external environment,and create external environment support,to realize sound development.

  1. Model for shock wave chaos.

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  2. Adaptive inertial shock-absorber

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  3. Properties of the nuclear medium

    Baldo, M; Burgio, G F

    2012-01-01

    We review our knowledge on the properties of the nuclear medium that have been studied, over many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. Throughout the presentation particular emphasis is placed on the possible relationship and links between the nuclear medium and the structure of nuclei, including the limitations of such an approach. First we consider the realm of phenomenological laboratory data and astrophysical observations and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its equation of state. The interplay between laboratory experiments and astrophysical observations is particularly stressed, and it is shown how their complementarity enormously enriches our insights into the structure of the nuclear medium. We then introduce the nucleon–nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau–Fermi liquid theory is introduced and briefly discussed, and it is shown how fruitful it can be in discussing the macroscopic and low-energy properties of the nuclear medium. As an illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. The general bulk properties of the nuclear medium are reviewed to indicate at which stage of our knowledge we stand, taking into account the most recent developments both in theory and experiments. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the energy density functional method. The possibility of

  4. Lung protein leakage in feline septic shock.

    Schützer, K M; Larsson, A; Risberg, B; Falk, A

    1993-06-01

    The aim of the present study was to explore lung microvascular leakage of protein and water in a feline model of septic shock, using a double isotope technique with external gamma camera detection and gravimetric lung water measurements. The experiments were performed on artificially ventilated cats. One group of cats (n = 8) was given an infusion of live Escherichia coli bacteria, and another group (n = 5) served as a control group receiving saline. Plasma transferrin was radiolabeled in vivo with indium-113m-chloride, and erythrocytes were labeled with technetium-99m. The distribution of these isotopes in the lungs was continuously measured with a gamma camera. A normalized slope index (NSI) was calculated, indicative of the transferrin accumulation corrected for changes in local blood volume that reflect protein leakage. In the septic group there was a protein leakage after bacterial infusion, with a NSI of 39 x 10(-4) +/- 5 x 10(-4) min-1 (mean +/- SEM), and the PaO2 diminished from 21 +/- 1 to 9.5 +/- 1 kPa. In control cats a slight protein leakage with a NSI of 9 +/- 10(-4) +/- 2 x 10(-4) min-1 was detected, probably caused by the operative procedure, but PaO2 did not change. Wet-to-dry-weight ratios of postmortem lungs were not significantly different between the groups. It was concluded that an intravenous infusion of live E. coli bacteria induces a lung capillary protein leakage without increased lung water and a concomitantly disturbed gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. External effects in Swiss hydropower

    Hauenstein, W.; Bonvin, J.; Vouillamoz, J.

    1999-01-01

    The article discusses the external costs and benefits of hydropower that are not internalised in normal book-keeping. Several negative and positive effects are discussed. The results of a study that addressed the difficult task of quantifying these external effects are presented. An assessment of the results gained shows that difficulties are to be met regarding system limits, methods of expressing the effects in monetary terms and ethical factors. The report also examines the consideration of external effects as a correction factor for falsified market prices for electricity

  6. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    Yoon, D.; Morsony, B.; Heinz, S.; Wiersema, K.; Fender, R. P.; Russell, D. M.; Sunyaev, R.

    2011-01-01

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H α emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.

  7. The formation of small grains in shocks in the ISM

    Jones, Anthony P.; Tielens, Alexander G. G. M.

    1994-01-01

    Carbonaceous and silicate grains swept up, and betatron accelerated, by supernova-generated shock waves in the interstellar medium are exposed to grain destructive processing. The degree of grain destruction is determined by the differential gas-grain and grain-grain velocities, which lead to sputtering of the grain surface and grain core disruption (deformation, vaporization and shattering), respectively. The threshold pressure for grain shattering in grain-grain collisions (100 k bar) is considerably lower than that for vaporization (approximately 5 M bar). Therefore, collisions between grains shatter large grains into smaller fragments (i.e., small grains and PAH's). Using a new algorithms for the destructive processes, it was possible to model the formation fo small grain fragments in grain-grain collisions in the warm phase of the interstellar medium. It was found that in one cycle through the warm medium (approximately 3 x 10(sup 6) years) of order 1-2% of the total grain mass is shattered into particles with radii of less than 50 A.

  8. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    Ye, Y.X.; Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q.

    2014-01-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  9. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have Mdiverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  10. Numerical study of shock waves in non-ideal magnetogasdynamics (MHD

    Addepalli Ramu

    2016-01-01

    Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.

  11. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  12. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  13. Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs

    Lehmann, Andrew; Wardle, Mark

    2018-05-01

    The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.

  14. Matrix stochastic analysis of the maintainability of a machine under shocks

    Montoro-Cazorla, Delia; Pérez-Ocón, Rafael

    2014-01-01

    We study the maintenance of a machine operating under environmental conditions producing shocks affecting the lifetime of the machine. The shocks cause different types of damage depending on their strength and eventually the total failure. The maintenance of the machine is performed by repairs and replacement. The interarrival times of shocks are dependent. We introduce a multidimensional stochastic model for simulating the evolution of the lifetime of the machine. This model implies the application of the matrix-analytic methods, that are being used in stochastic modelling with interesting results. Under this methodology, the availability, the reliability, and the rates of occurrence of the different types of failures and of the replacements are calculated, obtaining mathematically tractable expressions. The results are applied to a numerical example. - Highlights: • A machine under random environmental conditions producing shocks and wear is studied under matrix-analytic methods. • There is dependence in the interarrival times of shocks. • Different types of failure producing damage in the internal and external structure of the machine are considered. • Maintenance is performed by repair and replacement. • Explicit expressions for the main reliability performance measures are given

  15. Converging shocks in elastic-plastic solids.

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  16. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  17. Control of external radiation exposure

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following subjects are discussed - Control of external radiation exposure: working time, working distance, shielding: Total Linear Attenuation Coefficient, Half-Value Layer (HVL), Tenth-Value Layer (TVL); Build-up Factor

  18. Shock compression profiles in ceramics

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  19. Shock-resistant scintillation detector

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  20. External costs related to power production technologies. ExternE national implementation for Denmark

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs