Improvements to SOIL: An Eulerian hydrodynamics code
Davis, C.G.
1988-04-01
Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code
Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe
2017-09-01
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Shadowfax: Moving mesh hydrodynamical integration code
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests
Tóth, G.; Keppens, R.; Bochev, Mikhail A.
1998-01-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing
An implicit Smooth Particle Hydrodynamic code
Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)
2000-05-01
An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.
The RAGE radiation-hydrodynamic code
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com
2008-10-01
We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.
The RAGE radiation-hydrodynamic code
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale; Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Stefan, Ryan
2008-01-01
We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm
Code Differentiation for Hydrodynamic Model Optimization
Henninger, R.J.; Maudlin, P.J.
1999-06-27
Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.
Shock capturing techniques for hphp-adaptive finite elements
Hierro, A.; Kůs, Pavel; Badia, S.
2016-01-01
Roč. 309, 1 September (2016), s. 532-553 ISSN 0045-7825 Institutional support: RVO:67985840 Keywords : hphp-adaptivity * discontinuous Galerkin * shock capturing Subject RIV: BA - General Mathematics Impact factor: 3.949, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045782516305862
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
Schneider, Evan E.; Robertson, Brant E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2015-04-15
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
Schneider, Evan E.; Robertson, Brant E.
2015-01-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256 3 ) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density
TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH
Duffell, Paul C.; MacFadyen, Andrew I.
2011-01-01
We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.
Nonoscillatory shock capturing scheme using flux limited dissipation
Jameson, A.
1985-01-01
A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references
The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE
Vandenbroucke, B.; Wood, K.
2018-04-01
We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.
Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state
Thompson, S.L.; Lauson, H.S.
1974-03-01
A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic code is described. The information generated is thermodynamically complete and self-consistent. The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all types of phase mixtures are treated. Energy transport properties are calculated. The set of subroutines form a package which can easily be included in other hydrodynamic codes. (20 figures) (U.S.)
Detonation of high explosives in Lagrangian hydrodynamic codes using the programmed burn technique
Berger, M.E.
1975-09-01
Two initiation methods were developed for improving the programmed burn technique for detonation of high explosives in smeared-shock Lagrangian hydrodynamic codes. The methods are verified by comparing the improved programmed burn with existing solutions in one-dimensional plane, converging, and diverging geometries. Deficiencies in the standard programmed burn are described. One of the initiation methods has been determined to be better for inclusion in production hydrodynamic codes
Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-01-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors
PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code
Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.
1976-12-01
Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.
A combined N-body and hydrodynamic code for modeling disk galaxies
Schroeder, M.C.
1989-01-01
A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution
Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo
2012-02-01
CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.
GAIA: A 2-D Curvilinear moving grid hydrodynamic code
Jourdren, H.
1987-02-01
The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension
Vanaverbeke, S.; Keppens, R.; Poedts, S.; Boffin, H.
2009-01-01
We describe the algorithms implemented in the first version of GRADSPH, a parallel, tree-based, smoothed particle hydrodynamics code for simulating self-gravitating astrophysical systems written in FORTRAN 90. The paper presents details on the implementation of the Smoothed Particle Hydro (SPH)
Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics
Takabe, Hideaki
2016-10-01
This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.
Shinn, J.L.; Yee, H.C.; Uenishi, K.; NASA, Ames Research Center, Moffett Field, CA; Vigyan Research Associates, Inc., Hampton, VA)
1987-01-01
A semiimplicit high-resolution shock-capturing method for multidimensional systems of hyperbolic conservation laws with stiff source terms has been developed by Yee and Shinn (1987). The goal of this work is to extend this method to solve the three-dimensional fully coupled Navier-Stokes equations for a hypersonic chemically reacting flow in generalized coordinates. In this formulation, the global continuity equation was replaced by all the species continuity equations. The shock-capturing technique is a second-order-accurate, symmetric total-variation-diminishing method which accounts fully and directly for the coupling among the fluid and all the species. To verify the current approach, it was implemented into an existing computer code which contained the MacCormack method. Test results for a five-species reacting flow are shown to be oscillation-free around the shock, and the time spent per iteration only doubles when compared to the result using classical way of supplying numerical dissipation. The extra computation is more than justified by the elimination of spurious oscillation and nonlinear instability associated with the classical shock-capturing schemes in computing hypersonic reacting flows. 27 references
Non-standard model for electron heat transport for multidimensional hydrodynamic codes
Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)
2000-07-01
In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)
Non-standard model for electron heat transport for multidimensional hydrodynamic codes
Nicolai, Ph.; Busquet, M.; Schurtz, G.
2000-01-01
In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)
Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes
Slattery, W.L.; Spangenberg, W.H.
1982-01-01
A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described
REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA
Murao, Yoshio; Okubo, Tsutomu; Sugimoto, Jun; Iguchi, Tadashi; Sudoh, Takashi.
1985-02-01
This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)
Dissipation terms in one-dimensional hydrodynamic code for ICF target
Tamba, Moritake; Niu, Keishiro.
1985-01-01
The one-dimensional hydrodynamic code so far used for the simulation of the target improsion in ICF, the artificial viscosity has been employed as the dissipation terms. This artificial viscosity depends on the mesh width of the space using in the simulation and is much large in comparison with the real viscosity. In this paper, it is shown that this artificial viscosity leads to the unreasonable fusion parameters depending on the used mesh width of the space. Several methods to modify the dissipation term are given in this paper. (author)
Towards unification of the Vorticity Confinement and Shock Capturing (TVD and ENO/WENO) methods
Sidilkover, David
2018-04-01
New multidimensional extensions of the TVD and finite difference ENO/WENO methods for the compressible flow equations are proposed. The novelty of the approach is in the discretization schemes that acquire by means of a single mechanism both shock-capturing and vorticity confinement capabilities. Thus, the new method can be interpreted as a unification of the two methodologies, intended initially for different purposes.
Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance
Baldwin, C.; Brown, P.N.; Falgout, R.; Graziani, F.; Jones, J.
1999-01-01
Computer codes containing both hydrodynamics and radiation play a central role in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect of these codes is that they require an implicit solution of the radiation diffusion equations. The authors present in this paper the results of a comparison of five different linear solvers on a range of complex radiation and radiation-hydrodynamics problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems involve shock propagation, opacities varying over 5--6 orders of magnitude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. They perform a problem size scalability study by comparing linear solver performance over a wide range of problem sizes from 1,000 to 100,000 zones. The fundamental question they address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In addition, what is the answer to this question as a function of problem size and is the answer problem dependent? They find that the diagonally scaled conjugate gradient method performs poorly with the growth of problem size, increasing in both iteration count and overall CPU time with the size of the problem and also increasing for larger time steps. For all problems considered, the multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately independent of problem size and problem time step). For pure radiation flow problems (i.e., no hydrodynamics), they see speedups in CPU time of factors of ∼15--30 for the largest problems, when comparing the multigrid solvers relative to diagonal scaled conjugate gradient
Jo, Young Beom; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)
2014-10-15
It becomes more complicated when considering the shape and phase of the ground below the seawater. Therefore, some different attempts are required to precisely analyze the behavior of tsunami. This paper introduces an on-going activities on code development in SNU based on an unconventional mesh-free fluid analysis method called Smoothed Particle Hydrodynamics (SPH) and its verification work with some practice simulations. This paper summarizes the on-going development and verification activities on Lagrangian mesh-free SPH code in SNU. The newly developed code can cover equation of motions and heat conduction equation so far, and verification of each models is completed. In addition, parallel computation using GPU is now possible, and GUI is also prepared. If users change input geometry or input values, they can simulate for various conditions geometries. A SPH method has large advantages and potential in modeling of free surface, highly deformable geometry and multi-phase problems that traditional grid-based code has difficulties in analysis. Therefore, by incorporating more complex physical models such as turbulent flow, phase change, two-phase flow, and even solid mechanics, application of the current SPH code is expected to be much more extended including molten fuel behaviors in the sever accident.
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
Schneider, V.; Rentzsch, T.; Maruhn, J.
1988-04-01
In this report we describe a two-dimensional hydrodynamic code applicable to the problems stated. In section II we describe the algorithm solving the hydrodynamic equations. In section III we present test calculations involving the propagation of shocks and contact discontinuities as well as the growth of a Rayleigh-Taylor Instability (RTI). Section IV includes all the modifications and supplements required to use the code to investigate the interaction of intense HI beams with matter. Numcerical simulations of experiments using the RFQ facility and the planned SIS-ESR at GSI are finally discussed in section V. (orig./HSI)
VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)
Chrenko, O.; Broz, M.; Lambrechts, M.
2017-07-01
This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second
Experiences and results multitasking a hydrodynamics code on global and local memory machines
Mandell, D.
1987-01-01
A one-dimensional, time-dependent Lagrangian hydrodynamics code using a Godunov solution method has been multimasked for the Cray X-MP/48, the Intel iPSC hypercube, the Alliant FX series and the IBM RP3 computers. Actual multitasking results have been obtained for the Cray, Intel and Alliant computers and simulated results were obtained for the Cray and RP3 machines. The differences in the methods required to multitask on each of the machines is discussed. Results are presented for a sample problem involving a shock wave moving down a channel. Comparisons are made between theoretical speedups, predicted by Amdahl's law, and the actual speedups obtained. The problems of debugging on the different machines are also described
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.
2017-09-01
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets
Gaburov, Evghenii; Lombardi, James C., Jr.; Portegies Zwart, Simon; Rasio, F. A.
2018-05-01
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.
A 3D spectral anelastic hydrodynamic code for shearing, stratified flows
Barranco, Joseph A.; Marcus, Philip S.
2006-11-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Jung, Chul Min [Advanced Naval Technology CenterNSRDI, ADD, Changwon (Korea, Republic of)
2016-09-15
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme.
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu; Jung, Chul Min
2016-01-01
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme
Udaykumar, H S; Belk, D M; Vanden, K J
2003-01-01
A technique is presented for the numerical simulation of high-speed multimaterial impact. Of particular interest is the interaction of solid impactors with targets. The computations are performed on a fixed Cartesian mesh by casting the equations governing material deformation in Eulerian conservation law form. The advantage of the Eulerian setting is the disconnection of the mesh from the boundary deformation allowing for large distortions of the interfaces. Eigenvalue analysis reveals that the system of equations is hyperbolic for the range of materials and impact velocities of interest. High-order accurate ENO shock-capturing schemes are used along with interface tracking techniques to evolve sharp immersed boundaries. The numerical technique is designed to tackle the following physical phenomena encountered during impact: (1) high velocities of impact leading to large deformations of the impactor as well as targets; (2) nonlinear wave-propagation and the development of shocks in the materials; (3) modelin...
User's manual of the REFLA-1D/MODE4 reflood thermo-hydrodynamic analysis code
Hojo, Tsuneyuki; Iguchi, Tadashi; Okubo, Tsutomu; Murao, Yoshio; Sugimoto, Jun.
1986-01-01
REFLA-1D/MODE4 code has been developed by incorporating local power effect model and fuel temperature profile effect model into REFLA-1D/MODE3 code. This code can calculate the temperature transient of local rod by considering radial power profile effect in core and simulate the thermal characteristics of the nuclear fuel rod. This manual describes the outline of incorporated models, modification of the code with incorporating models and provides application information required to utilize the code. (author)
CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics
Owen, John Michael; Raskin, Cody; Frontiere, Nicholas
2018-01-01
The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied
Hydrodynamics in full general relativity with conservative adaptive mesh refinement
East, William E.; Pretorius, Frans; Stephens, Branson C.
2012-06-01
There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently been used to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively using high-resolution shock-capturing methods, while the field equations are solved in the generalized-harmonic formulation with finite differences. In order to resolve the various scales that may arise, we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates. A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger and Colella to ensure that the conservative nature of fluid advection is respected across AMR boundaries. We present various tests to compare the performance of different limiters and flux calculation methods, as well as to demonstrate the utility of AMR flux corrections.
Schroeder, M.C.; Comins, N.F.
1986-01-01
During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity
Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code
Trent, D.S.
1973-06-01
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
CAFE: A NEW RELATIVISTIC MHD CODE
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi
2018-06-01
Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.
Yee, H.C.; Shinn, J.L.
1986-12-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated
Yee, H.C.; Shinn, J.L.
1987-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated. 46 references
Shestakov, A I; Offner, S R
2006-09-21
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory
Shestakov, A I; Offner, S R
2007-03-02
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory
Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)
2017-06-15
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions. (orig.)
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.
R5FORCE: a program to compute fluid induced forces using hydrodynamic output from the RELAP5 code
Watkins, J.C.
1983-01-01
This paper describes the computer code R5FORCE, a postprocessor to the RELAP5/MOD1 thermal-hydraulics code. R5FORCE computes piping hydraulic force/time histories that can be input into various structural analysis computer codes. R5FORCE solves the momentum conservation equation using the pressure and wall shear force terms rather than the pressure and fluid acceleration terms; eliminating potential instabilities associated with computing the time derivative in the fluid acceleration term. The updates to REALP5 required to generate the input data to R5FORCE are also discussed
An introduction to relativistic hydrodynamics
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Hallquist, J.O.
1982-02-01
This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit
Mösta, Philipp; Haas, Roland; Ott, Christian D; Reisswig, Christian; Mundim, Bruno C; Faber, Joshua A; Noble, Scott C; Bode, Tanja; Löffler, Frank; Schnetter, Erik
2014-01-01
We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the toolkit builds upon previous releases and implements the evolution of relativistic magnetized fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both constrained transport and hyperbolic divergence cleaning schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfvén waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code’s performance in curved spacetimes with spherical accretion onto a black hole on a fixed background spacetime and in fully dynamical spacetimes by evolutions of a magnetized polytropic neutron star and of the collapse of a magnetized stellar core. Our results agree well with exact solutions where these are available and we demonstrate convergence. All code and input files used to generate the results are available on http://einsteintoolkit.org. This makes our work fully reproducible and provides new users with an introduction to applications of the code. (paper)
Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2012-09-01
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.
2007-05-01
SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs
Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2014-06-10
Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:
Milne-Thomson, L M
2011-01-01
This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.
Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.
1980-01-15
A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.
Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code
Hall, M.L.; Rider, W.J.; Cappiello, M.W.
1992-01-01
The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper
Relativistic hydrodynamics in the presence of puncture black holes
Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.
2007-01-01
Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data
Colgate, S.A.
1981-01-01
The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references
Renilson, Martin
2015-01-01
This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...
Guyon, Etienne; Petit, Luc; Mitescu, Catalin D
2015-01-01
This new edition is an enriched version of the textbook of fluid dynamics published more than 10 years ago. It retains the same physically oriented pedagogical perspective. This book emphasizes, as in the first edition, experimental inductive approaches and relies on the study of the mechanisms at play and on dimensional analysis rather than more formal approaches found in many classical textbooks in the field. The need for a completely new version also originated from the increase, over the last few decades, of the cross-overs between the mechanical and physical approaches, as is visible in international meetings and joint projects. Hydrodynamics is more widely linked today to other fields of experimental sciences: materials, environment, life sciences and earth sciences, as well as engineering sciences.
Wilkins, M.L.
1979-01-01
Various aspects of hydrodynamics and elastic--plastic flow are introduced for the purpose of defining hydrodynamic terms and explaining what some of the important hydrodynamic concepts are. The first part covers hydrodynamic theory; and discussed fundamental hydrodynamic equations, discontinuities, and shock, detonation, and elastic--plastic waves. The second part deals with applications of hydrodynamic theory to material equations of state, spall, Taylor instabilities, and detonation pressure measurements
Thermo-hydrodynamic lubrication in hydrodynamic bearings
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.
Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-09-01
This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)
Pryce, M.H.L.
1985-01-01
A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix
Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas
2013-01-01
We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.
Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra
2014-01-01
Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919
Cen, Renyue; Ostriker, Jeremiah P.
1994-01-01
A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I. [Los Alamos National Laboratory
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Elasto-hydrodynamic lubrication
Dowson, D; Hopkins, D W
1977-01-01
Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Modeling of laser-driven hydrodynamics experiments
di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul
2017-10-01
Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.
Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics
Guercilena, Federico; Radice, David; Rezzolla, Luciano
2017-07-01
We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.
CHASM Challenge Problem: Lagrangian Hydrodynamics
Hornung, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2010-09-10
Computer simulations of many science and engineering problems require modeling the equations of hydrodynamics which describe the motion of materials relative to each other induced by various forces. Many important DoD simulation problems involve complex multi-material systems that undergo large deformations. Examples include the analysis of armor defense, penetration mechanics, blast effects, structural integrity, and conventional munitions such as shaped charges and explosively formed projectiles. Indeed, the original motivation for developing codes that solve the equations of hydrodynamics, herein referred to as “hydrocodes”, was to solve problems with defense applications. The FY2010 Requirements Analysis Report issued by the DoD High Performance Computing Modernization Program (HPCMP) Office shows that a major portion of DoD HPC activities involves hydrocodes [HPCMP2010]. The report surveyed 496 projects across the Services and various Agencies, representing 4,050 HPCMP users at more than 125 locations, including government, contractors, and academia, and grouped each project into one of ten categories.
Smoothed Particle Hydrodynamics Coupled with Radiation Transfer
Susa, Hajime
2006-04-01
We have constructed a brand-new radiation hydrodynamics solver based upon Smoothed Particle Hydrodynamics, which works on a parallel computer system. The code is designed to investigate the formation and evolution of first-generation objects at z ≳ 10, where the radiative feedback from various sources plays important roles. The code can compute the fraction of chemical species e, H+, H, H-, H2, and H+2 by by fully implicit time integration. It also can deal with multiple sources of ionizing radiation, as well as radiation at Lyman-Werner band. We compare the results for a few test calculations with the results of one-dimensional simulations, in which we find good agreements with each other. We also evaluate the speedup by parallelization, which is found to be almost ideal, as long as the number of sources is comparable to the number of processors.
Hydrodynamic optical soliton tunneling
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Bożek, Piotr, E-mail: piotr.bozek@fis.agh.edu.pl
2016-12-15
The scenario assuming a collective expansion stage in collisions of small systems, p-A, d-Au, and {sup 3}He-Au is discussed. A review of the observables predicted in relativistic hydrodynamic models in comparison with experimental data is presented, with arguments indicating the presence of collective expansion. The limits of applicability of the hydrodynamic model are addressed. We briefly indicate possible applications of the collective flow in small systems to study the space-time dynamics at very small scales in relativistic collisions.
Hydrodynamical description of collective flow
Huovinen, Pasi
2003-01-01
I review how hydrodynamical flow is related to the observed flow in ultrarelativistic heavy ion collisions and how initial conditions, equation of state and freeze-out temperature affect flow in hydrodynamical models.
Dissipative relativistic hydrodynamics
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
Hydrodynamics of Turning Flocks
Yang, Xingbo; Marchetti, M. Cristina
2014-01-01
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation o...
Hydrodynamics of insect spermatozoa
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.
2014-01-26
Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.
Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations
Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul
2015-01-01
The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Titan's hydrodynamically escaping atmosphere
Strobel, Darrell F.
2008-02-01
The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].
How to fake hydrodynamic signals
Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States)
2016-12-15
Flow signatures in experimental data from relativistic ion collisions, are usually interpreted as a fingerprint of the presence of a hydrodynamic phase during the evolution of these systems. I review some theoretical ideas to ‘fake’ this hydrodynamic behavior in p+A and A+A collisions. I find that transverse flow and femtoscopic measurements can easily be forged through non-hydrodynamic evolution, while large elliptic flow requires some non-vanishing interactions in the hot phase.
Modeling hydrodynamic cavitation
Kumar, P.S.; Pandit, A.B. [Mumbai Univ. (India). Chemical Engineering Div.
1999-12-01
Cavitation as a source and method of energy input for chemical processing is increasingly studied due to its ability to generate localized high temperatures and pressures under nearly ambient conditions. Compared to cavitation generated by ultrasound, hydrodynamic cavitation has been proved to be a very energy-efficient alternative. A simple and unified model has been developed to study the cavitation phenomena in hydraulic systems with emphasis on the venturi tube and high-speed homogenizer. The model has been found to be satisfactory in explaining the effect of operating variables and equipment geometry on two different modes of cavitation generation qualitatively and in some cases quantitatively. (orig.)
Hydrodynamics of Ship Propellers
Breslin, John P.; Andersen, Poul
This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation...... of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...
Foundations of radiation hydrodynamics
Mihalas, Dimitri
1999-01-01
Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,
Hydrodynamics in full general relativity with conservative AMR
East, William E.; Pretorius, Frans; Stephens, Branson C.
2011-01-01
There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently be...
Nanoscale hydrodynamics near solids
Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid
2018-02-01
Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Load responsive hydrodynamic bearing
Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.
2002-01-01
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.
Hydrodynamic Forces on Composite Structures
2014-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited HYDRODYNAMIC ...Thesis 4. TITLE AND SUBTITLE HYDRODYNAMIC FORCES ON COMPOSITE STRUCTURES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott C. Millhouse 7. PERFORMING...angles yields different free surface effects including vortices and the onset of cavitation . 14. SUBJECT TERMS Fluid structure interaction, FSI, finite
Black brane entropy and hydrodynamics
Booth, I.; Heller, M.P.; Spaliński, M.
2010-01-01
A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics
Black brane entropy and hydrodynamics
Booth, I.; Heller, M.P.; Spaliński, M.
2011-01-01
A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics
A hydrodynamic formalism for Brownian systems
Pina, E.; Rosales, M.A.
1981-01-01
A formal hydrodynamic approach to Brownian motion is presented and the corresponding equations are derived. Hydrodynamic quantities are expressed in terms of the physical variables characterizing the Brownian systems. Contact is made with the hydrodynamic model of Quantum Mechanics. (author)
Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine
Roald, L.; Jonkman, J.; Robertson, A.
2014-05-01
The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.
Foundations of radiation hydrodynamics
Mihalas, D.; Mihalas, B. W.
This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.
Koehler, H.S.
1983-01-01
The Time-Dependent Hartree-Fock theory provides a microscopic approach to the scattering of heavy ions. Fundamental in this theory is a mean-(one-body) field. The calculation of this field from a two-body effective interaction makes the theory microscopic. Many-body effects are included by the Brueckner definition of this interaction; the reaction-matrix. In excited media it is in general complex allowing for decays. The imaginary part relates directly to the collision-term in a transport equation. We treat this term by the time-relaxation-method. This implies an extension of the TDHF-equation to include two-body collisions. Hydrodynamic equations are derived from this new equation. The solution of the two equations agree quantitatively for short-relaxation-times. Relaxation-times are calculated as a function of temperature. (orig.)
Hydrodynamics of Peristaltic Propulsion
Athanassiadis, Athanasios; Hart, Douglas
2014-11-01
A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.
Hydrodynamic effects on coalescence.
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Hydrodynamic modeling and explosive compaction of ceramics
Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.
1977-01-01
High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al 2 O 3 , AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al 2 O 3 were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table
Fully implicit 1D radiation hydrodynamics: Validation and verification
Ghosh, Karabi; Menon, S.V.G.
2010-01-01
A fully implicit finite difference scheme has been developed to solve the hydrodynamic equations coupled with radiation transport. Solution of the time-dependent radiation transport equation is obtained using the discrete ordinates method and the energy flow into the Lagrangian meshes as a result of radiation interaction is fully accounted for. A tridiagonal matrix system is solved at each time step to determine the hydrodynamic variables implicitly. The results obtained from this fully implicit radiation hydrodynamics code in the planar geometry agrees well with the scaling law for radiation driven strong shock propagation in aluminium. For the point explosion problem the self similar solutions are compared with results for pure hydrodynamic case in spherical geometry. Results obtained when radiation interaction is also accounted agree with those of point explosion with heat conduction for lower input energies. Having, thus, benchmarked the code, self convergence of the method w.r.t. time step is studied in detail for both the planar and spherical problems. Spatial as well as temporal convergence rates are ≅1 as expected from the difference forms of mass, momentum and energy conservation equations. This shows that the asymptotic convergence rate of the code is realized properly.
Hydrodynamic cavitation for sonochemical effects.
Moholkar, V S; Kumar, P S; Pandit, A B
1999-03-01
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.
Recent development of hydrodynamic modeling
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Similarity flows in relativistic hydrodynamics
Blaizot, J.P.; Ollitrault, J.Y.
1986-01-01
In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations
Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating
Ho, D
2000-01-01
Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.
Lotic Water Hydrodynamic Model
Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-23
Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.
Hydrodynamics of rotating superfluids
Chandler, E.A.
1981-01-01
In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane
Advanced in Macrostatistical Hydrodynamics
Graham, A.L.; Tetlow, N.; Abbott, J.R.; Mondy, L.S.; Brenner, H.
1993-01-01
An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions
Engineering Hydrodynamic AUV Hulls
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
Hydrodynamics of electrons in graphene
Lucas, Andrew; Chung Fong, Kin
2018-02-01
Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.
Analytic approaches to relativistic hydrodynamics
Hatta, Yoshitaka
2016-12-15
I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.
Hydrodynamic aspects of flotation separation
Peleka Efrosyni N.
2016-01-01
Full Text Available Flotation separation is mainly used for removing particulates from aqueous dispersions. It is widely used for ore beneficiation and recovering valuable materials. This paper reviews the hydrodynamics of flotation separations and comments on selected recent publications. Units are distinguished as cells of ideal and non-ideal flow. A brief introduction to hydrodynamics is included to explain an original study of the hybrid flotation-microfiltration cell, effective for heavy metal ion removal.
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Hydrodynamic evolution of neutron star merger remnants
Liu, Men-Quan; Zhang, Jie
2017-11-01
Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ∼10-23 g cm-3 and the temperature ∼3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin 'dense' shell with density ∼10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.
Simulation of seismic signals from asymmetric LANL hydrodynamic calculations
Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.
1993-01-01
Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation
Sezar Gülbaz
2015-01-01
Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.
Hydrodynamic escape from planetary atmospheres
Tian, Feng
Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems
Mathews, G.J.; Evans, C.R.; Wilson, J.R.
1986-09-01
We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs
CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics
Vandenbroucke, Bert; Wood, Kenneth
2018-02-01
CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.
Relativistic hydrodynamic evolutions with black hole excision
Duez, Matthew D.; Shapiro, Stuart L.; Yo, H.-J.
2004-01-01
We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M 2 on the final outcome of gravitational collapse of rapidly rotating n=1 polytropes. We find that a black hole forms only if J/M 2 2 >1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable 'splash' gravitational radiation
Motoyama, Kazutaka; Morata, Oscar; Hasegawa, Tatsuhiko; Shang, Hsien; Krasnopolsky, Ruben
2015-01-01
A two-dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in a cylindrical coordinate system and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly solves nonequilibrium chemistry and change of energy due to thermal processes with transfer of external ultraviolet radiation. Self-shielding effects on photodissociation of CO and H 2 are included. In this introductory paper, the adopted numerical method is presented, along with code verifications using the hydrodynamics module and a benchmark on the chemistry module with reactions specific to a photon-dominated region (PDR). Finally, as an example of the expected capability, the hydrochemical evolution of a PDR is presented based on the PDR benchmark
Soliton Gases and Generalized Hydrodynamics
Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien
2018-01-01
We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
Anomalous hydrodynamics of Weyl materials
Monteiro, Gustavo; Abanov, Alexander
Kinetic theory is a useful tool to study transport in Weyl materials when the band-touching points are hidden inside a Fermi surface. It accounts, for example, for the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations (SdH effect) in the magnetoresistance together within the same framework. As an alternative approach to kinetic theory we also consider the regime of strong interactions where hydrodynamics can be applicable. A variational principle of these hydrodynamic equations can be found in and provide a natural framework to study hydrodynamic surface modes which correspond to the strongly-interacting physics signature of Fermi arcs. G.M. acknowledges the financial support from FAPESP.
Brownian dynamics with hydrodynamic interactions
Ermak, D.L.; McCammon, J.A.
1978-01-01
A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution
Numerical simulations of glass impacts using smooth particle hydrodynamics
Mandell, D.A.; Wingate, C.A.
1995-01-01
As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
Anisotropic hydrodynamics: Motivation and methodology
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Hydrodynamics of oceans and atmospheres
Eckart, Carl
1960-01-01
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear
Hydrodynamic constants from cosmic censorship
Nakamura, Shin
2008-01-01
We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)
Hydrodynamic simulation of elliptic flow
Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W
1999-01-01
We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.
Anomalous hydrodynamics in two dimensions
Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, ...
Topics in fluctuating nonlinear hydrodynamics
Milner, S.T.
1986-01-01
Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers
Radiation hydrodynamics in the laboratory
1985-12-01
This report contains a collection of five preprints devoted to the subject of laser induced phenomena of radiation hydrodynamics. These preprints cover approximately the contents of the presentations made by the MPQ experimental laser-plasma group at the 17th European Conference on Laser Interaction with Matter (ECLIM), Rome, November 18-22, 1985. (orig.)
Numerical Hydrodynamics in General Relativity
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Hydrodynamics of a quark droplet
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Hydrodynamic instabilities in inertial fusion
Hoffman, N.M.
1994-01-01
This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability
Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics
Cang Yu; Lu Xin; Wu Huichun; Zhang Jie
2005-01-01
Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)
Evaluation of incompressible hydrodynamic mass methods in reactor applications
Takeuchi, K.
1981-01-01
The hydrodynamic (or virtual) mass approach is evaluated by comparison of structural responses computed by the hydrodynamic mass method with those computed by MULTIFLEX code for a fluid/structure interaction problem with fluid compression effects taken into account. A sample problem used in that evaluation is a simplified 1-D PWR model which is first subjected to a LOCA type transient. The time history of structural displacement computed with the hydrodynamic mass approach is compared with MULTIFLEX results. The frequencies of structural oscillation of these two computations agree. The amplitudes disagree by more than 50%, which is attributed to the effect of fluid compressibility. For the seismic study, sinusoidal forces are applied to the floor at the vessel support. The system responses are expressed by the response functions or the maximum values of the barrel/vessel relative displacements as the applied frequency is varied. The response functions are computed by the hydrodynamic mass method and by MULTIFLEX for evaluation of the virtual mass method. For the pump pulsation study, sinusoidal pressure oscillations are applied at the pump outlet and the response functions are computed as above. 12 refs
R Paul Drake
2004-01-01
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics
Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.
2017-01-01
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
Analytic solutions of hydrodynamics equations
Coggeshall, S.V.
1991-01-01
Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions
Laser driven hydrodynamic instability experiments
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1993-01-01
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes
Rapidity correlations test stochastic hydrodynamics
Zin, C; Gavin, S; Moschelli, G
2017-01-01
We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τ π that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν = η/sT . We formulate methods for computing these correlations using second order dissipative hydrodynamics with noise. Current data are consistent with τ π /ν ∼ 10 but targeted measurements can improve this precision. (paper)
Hydrodynamic simulations of expanding shells
Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa
2004-01-01
Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004
Hydrodynamic Limit of Multiple SLE
Hotta, Ikkei; Katori, Makoto
2018-04-01
Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm-Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line R in a simultaneous way and go to infinity within the upper half plane H, an ordinary differential equation describing time evolution of the conformal map g_t(z) was derived in the N → ∞ limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on R studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner's semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner's semicircle law determines the time evolution of the SLE hull, K_t \\subset H\\cup R, in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from a>0 and another half of slits start from -a exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull K_t in the hydrodynamic limit.
Hydrodynamical model with massless constituents
Chiu, C.B.; Wang, K.H.
1974-01-01
Within the constituent hydrodynamical model, it is shown that the total number of constituents is conserved, if these constituents are massless and satisfy the Fermi-Dirac distribution. A simple scheme for the transition from the constituent-phase to the hadron-phase is suggested, and the hadron inclusive momentum spectra are presented for this case. This phase transition scheme predicts the average transverse momentum of meson resonances which is compatible with the data. (U.S.)
Black Hole Scrambling from Hydrodynamics.
Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo
2018-06-08
We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-N_{c} holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.
Solitonic Dispersive Hydrodynamics: Theory and Observation
Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.
2018-04-01
Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)
Woodward, Paul R [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Dai, W [Los Alamos National Laboratory; Kares, R. J. [Los Alamos National Laboratory
2011-01-05
The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.
Hydrodynamic interactions in active colloidal crystal microrheology
Weeber, R; Harting, JDR Jens
2012-01-01
In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...
Laser driven hydrodynamic instability experiments
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1992-01-01
We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented
Hydrodynamics of post CHF region
Ishii, M.; De Jarlais, G.
1984-04-01
Among various two-phase flow regimes, the inverted flow in the post-dryout region is relatively less well understood due to its special heat transfer conditions. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formations, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail both analytically and experimentally. Criteria for initial flow regimes in the post-dryout region are given. Preliminary models for subsequent flow regime transition criteria are derived together with correlations for a mean droplet diameter based on the adiabatic simulation data
Problems in astrophysical radiation hydrodynamics
Castor, J.I.
1983-01-01
The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion
Hydrodynamic behavior of a bare rod bundle
Bartzis, J.G.; Todreas, N.E.
1977-06-01
The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers
Development of a computer code for Dalat research reactor transient analysis
Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong
2003-01-01
DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)
Rippled shock front solutions for testing hydrodynamic stability simulations
Munro, D.H.
1989-01-01
The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength
Lagrangian approach to the problem of the hydrodynamic instabilities of a spheical implosion
Brun, L.; Sitt, B.
For the study of hydrodynamic instabilities of a spherical implosion, a very simple Lagrangian-type formulation is proposed, based on the introduction of a potential of transverse displacements, and on the decomposition of disturbances into spherical harmonics. The different modes are decoupled, and can be studied independently. The development of a numerical code utilizing this formulation can then be considered
EFFECT OF GEOMETRIC CONFIGURATIONS ON HYDRODYNAMIC PERFORMANCE ASSESSMENT OF A MARINE PROPELLER
Samir. E. Belhenniche
2016-12-01
Full Text Available The present paper deals with the effect of the geometric characteristics on the propeller hydrodynamic performances. Several propeller configurations are created by changing number of blades, expanded area and pitch ratios. The Reynolds-Averaged Navier-Stokes (RANS equations are solved using the commercial code FLUENT 6.3.26. The standard
Hydrodynamics and stellar winds an introduction
Maciel, Walter J
2014-01-01
Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.
Hydrodynamic interactions in active colloidal crystal microrheology.
Weeber, R; Harting, J
2012-11-01
In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.
Plasma hydrodynamics of the intense laser-cluster interaction*
Milchberg, Howard
2002-11-01
We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
Ferapontov, E.V.
2002-01-01
Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants. (author)
Inducer Hydrodynamic Load Measurement Devices
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Fluctuating hydrodynamics for ionic liquids
Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)
2017-04-25
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.
Shibata, Masaru
2003-01-01
We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented
Hydrodynamic Overview at Hot Quarks 2016
Noronha-Hostler, Jacquelyn
2017-01-01
Event-by-event relativistic hydrodynamics has been extremely successful in describing flow observables in heavy-ion collisions. However, the initial state and viscosity simultaneously affect comparisons to data so a discussion of experimental observables that help to distinguish the two follows. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are also addressed. (paper)
Two-fluid hydrodynamic model for semiconductors
Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn
2018-01-01
The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...
Numerical methods for Lagrangian hydrodynamics applied to inertial fusion
Maire, P.H.; Breil, J.; Galera, S.; Schurtz, G.
2009-01-01
CHIC is a code of Lagrangian hydrodynamics and implosion that has been developed since 2003 for the simulation of plasma experiments concerning inertial fusion. The transport of electron energy is assured with the Spitzer-Harm diffusion model with flux limiter. The propagation of the laser beams inside the plasma is computed by an algorithm of 3-dimensional beam launching that takes into account refraction as well as collisional absorption. The self-generated transverse magnetic fields are assessed by a magnetohydrodynamics model that stems from a generalized Ohm's law. The coupling with electron energy transport is assured with Braginskii conduction model. The validation of this code has been performed with various plasma experiments. (A.C.)
Hemolytic potential of hydrodynamic cavitation.
Chambers, S D; Bartlett, R H; Ceccio, S L
2000-08-01
The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.
Deterministic hydrodynamics: Taking blood apart
Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.
2006-10-01
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. cells | plasma | separation | microfabrication
The hydrodynamic theory of detonation
Langweiler, Heinz
1939-01-01
This report derives equations containing only directly measurable constants for the quantities involved in the hydrodynamic theory of detonation. The stable detonation speed, D, is revealed as having the lowest possible value in the case of positive material velocity, by finding the minimum of the Du curve (u denotes the speed of the gases of combustion). A study of the conditions of energy and impulse in freely suspended detonating systems leads to the disclosure of a rarefaction front traveling at a lower speed behind the detonation front; its velocity is computed. The latent energy of the explosive passes into the steadily growing detonation zone - the region between the detonation front and the rarefaction front. The conclusions lead to a new definition of the concept of shattering power. The calculations are based on the behavior of trinitrotoluene.
Fluctuating nonlinear hydrodynamics of flocking
Yadav, Sunil Kumar; Das, Shankar P.
2018-03-01
Starting from a microscopic model, the continuum field theoretic description of the dynamics of a system of active ingredients or "particles" is presented. The equations of motion for the respective collective densities of mass and momentum follow exactly from that of a single element in the flock. The single-particle dynamics has noise and anomalous momentum dependence in its frictional terms. The equations for the collective densities are averaged over a local equilibrium distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydrodynamics (FNH). The latter are the equations used frequently for describing active systems on the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH equations are determined in terms of the parameters of the microscopic dynamics.
Hydrodynamics and phases of flocks
Toner, John; Tu Yuhai; Ramaswamy, Sriram
2005-01-01
We review the past decade's theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled 'particles' (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct 'phases' which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same 'hydrodynamic'-that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent 'organisms'. This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a 'ferromagnetic' flock; we also use the terms 'vector-ordered' and 'polar-ordered' for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The 'nematic' phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which
Anomalous hydrodynamics kicks neutron stars
Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)
2016-09-10
Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.
Hydrodynamic dispersion within porous biofilms
Davit, Y.
2013-01-23
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.
Hydrodynamic Simulations of Kepler's Supernova Remnant
Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.
Yerkess, A.
1984-01-01
SEURBNUK-2 has been designed to model the hydrodynamic development in time of a hypothetical core disrupture accident in a fast breeder reactor. SEURBNUK-2 is a two-dimensional, axisymmetric, eulerian, finite difference containment code. The numerical procedure adopted in SEURBNUK to solve the hydrodynamic equations is based on the semi-implicit ICE method. SEURBNUK has a full thin shell treatment for tanks of arbitrary shape and includes the effects of the compressibility of the fluid. Fluid flow through porous media and porous structures can also be accommodated. An important feature of SEURBNUK is that the thin shell equations are solved quite separately from those of the fluid, and the time step for the fluid flow calculation can be an integer multiple of that for calculating the shell motion. The interaction of the shell with the fluid is then considered as a modification to the coefficients in the implicit pressure equations, the modifications naturally depending on the behaviour of the thin shell section within the fluid cell. The code is limited to dealing with a single fluid, the coolant, whereas the bubble and the cover gas are treated as cavities of uniform pressure calculated via appropriate pressure-volume-energy relationships. This manual describes the input data specifications needed for the execution of SEURBNUK-2 calculations and nine sample problems of varying degrees of complexity highlight the code capabilities. After explaining the output facilities information is included to aid those unfamiliar with SEURBNUK-2 to avoid the common pit-falls experienced by novices
Relativistic conformal magneto-hydrodynamics from holography
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.
Dileptons from transport and hydrodynamical models
Huovinen, P.; Koch, V.
2000-01-01
Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball
Tuning bacterial hydrodynamics with magnetic fields
Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.
2017-06-01
Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.
PLASMOR: A laser-plasma simulation code. Pt. 2
Salzman, D.; Krumbein, A.D.; Szichman, H.
1987-06-01
This report supplements a previous one which describes the PLASMOR hydrodynamics code. The present report documents the recent changes and additions made in the code. In particular described are two new subroutines for radiative preheat, a system of preprocessors which prepare the code before run, a list of postprocessors which simulate experimental setups, and the basic data sets required to run PLASMOR. In the Appendix a new computer-based manual which lists the main features of PLASMOR is reproduced
Cox, Geoff
Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-04-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
Zingale, M.; Howell, L.H.
2010-01-01
The motivation for this work is to gain experience in the methodology of verification and validation (V and V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V and V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V and V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.
Conformal invariance in hydrodynamic turbulence
Falkovich, Gregory
2007-01-01
This short survey is written by a physicist. It contains neither theorems nor precise definitions. Its main content is a description of the results of numerical solution of the equations of fluid mechanics in the regime of developed turbulence. Due to limitations of computers, the results are not very precise. Despite being neither exact nor rigorous, the findings may nevertheless be of interest for mathematicians. The main result is that the isolines of some scalar fields (vorticity, temperature) in two-dimensional turbulence belong to the class of conformally invariant curves called SLE (Scramm-Loewner evolution) curves. First, this enables one to predict and find a plethora of quantitative relations going far beyond what was known previously about turbulence. Second, it suggests relations between phenomena that seemed unrelated, like the Euler equation and critical percolation. Third, it shows that one is able to get exact analytic results in statistical hydrodynamics. In short, physicists have found something unexpected and hope that mathematicians can help to explain it.
The hydrodynamics of swimming microorganisms
Lauga, Eric; Powers, Thomas R
2009-01-01
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.
Framing Camera Improvements and hydrodynamic Experiments
Drake, R. P
2007-01-01
.... We also propose to participate in hydrodynamic experiments at NRL whenever they occur, to prepare for an experiment for NIKE to study the onset of turbulence via the Kelvin Helmholtz instability...
Hydrodynamic limit of interacting particle systems
Landim, C.
2004-01-01
We present in these notes two methods to derive the hydrodynamic equation of conservative interacting particle systems. The intention is to present the main ideas in the simplest possible context and refer for details and references. (author)
Hydrodynamic approach to electronic transport in graphene
Narozhny, Boris N. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Gornyi, Igor V. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Ioffe Physical Technical Institute, St. Petersburg (Russian Federation); Mirlin, Alexander D. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Schmalian, Joerg [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute for Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany)
2017-11-15
The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. In this paper we briefly review the recent advances, both theoretical and experimental, in the hydrodynamic approach to electronic transport in graphene, focusing on viscous phenomena, Coulomb drag, non-local transport measurements, and possibilities for observing nonlinear effects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism
Response of hexagonal fuel assembly coupled with internal hydrodynamics
Marchertas, A.H.; Julke, R.T.
1975-01-01
For safety considerations of sodium cooled fast breeder reactors the mechanistic accident-initiating conditions must be studied. In previous investigations of such initiating accidents the models assumed axisymmetric configurations and in general neglected the coupling effects with the subassembly boundary. This paper presents a more precise treatment of the subassembly boundary and also provides feedback of the boundary response to the pressure source. This is accomplished by marking use of two computer codes: REXCO-HT and SADCAT. The internal hydrodynamics of the fuel subassembly is simulated by the REXCO-HT code which possesses certain models of fuel-coolant interactions (MFCI) to be used as a pressure source. The hexagonal boundary of the fuel subassembly is modeled by the SADCAT code. Since both codes involve explicit time integration, coupling between the two is effected at each time step. The pressure at the outside boundary of the REXCO-HT model provides the loading on the SADCAT model. Given the load, the SADCAT model yields the three-dimensional deformation of the hexagonal boundary. With the deformation known, the outside REXCO-HT model boundary is adjusted and the computation cycle of the coupling is completed. In effect, the coupling of the two codes substitutes a cylindrical vessel of the REXCO-HT code by a hexagonal duct. It is shown by the use of this procedure that the assumption of a cylindrical vessel of the same thickness as that of the hexcan is quite erroneous. The maximum deformation of the flat of the hexcan in the illustrative examples is larger by as much as one order of magnitude. The maximum strains at the inside CORNER of the hexcan are also underestimated by a similar amount
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump
Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.
1993-01-01
The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this
Chaotic hydrodynamics of fluidized beds
Van der Stappen, M.L.M. [Unit Process and Systems Engineering, Advanced Manufacturing Technology Group, Unilever Research Laboratorium, Vlaardingen (Netherlands)
1996-12-31
The major goals of this thesis are: (1) to develop and evaluate an analysis method based on techniques from non-linear chaos theory to characterize the nonlinear hydrodynamics of gas-solids fluidized beds quantitatively; and (2) to determine the dependence of the chaotic invariants on the operating conditions and investigate how the chaos analysis method can be profitably applied to improve scale-up and design of gas-solids fluidized bed reactors. Chaos theory is introduced in chapter 2 with emphasis on analysis techniques for (experimental) time series, known from literature at the start of this work (1990-1991). In chapter 3, the testing of existing and newly developed techniques on both model and fluidized bed data is described. This leads to the development of the chaos analysis method to analyze measured pressure fluctuations time series of a fluidized bed. Following, in chapter 4, this method is tested and all choices for the parameters are evaluated. The influence of the experimental parameters and external disturbances on the measurements and analysis results is discussed and quantified. The result is a chaos measurement and analysis protocol, which is further used in this work. In chapter 5, the applications to fluidized beds are discussed. It is shown that the entropy is a good measure for the characterization of the dynamical behavior of gas-solids bubbling/slugging fluidized beds. Entropy is applied to characterize the influence of the operating conditions, to assess regime transitions and to analyze dimensionless similar beds of different scale. Quantitative design correlations that relate entropy to the operating parameters (including the bed diameter) are described. Finally, it is discussed how the results of this work might be used in scaling up the chaotic dynamics of fluidized beds. The overall conclusions and outlook from this work are presented in chapter 6. 182 refs.
Hydrodynamics of soft active matter
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi
2013-07-01
This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.
Anthony McCosker
2014-03-01
Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.
WEC3: Wave Energy Converter Code Comparison Project: Preprint
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen
2017-01-01
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.
High-fidelity plasma codes for burn physics
Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)
2016-10-19
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.
An L-stable method for solving stiff hydrodynamics
Li, Shengtai
2017-07-01
We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.
Three-dimensional hydrodynamic simulations of OMEGA implosions
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.
2017-05-01
The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.
Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers
Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane
2018-02-01
High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.
Stubbe, E.J.; VanHoenacker, L.; Otero, R.
1994-02-01
This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in the calculation of transient hydrodynamic loads on safety and relief discharge pipes. Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by EPRI. The hydrodynamic loads are very important for the discharge piping design because of the fast opening of the valves and the presence of liquid in the upstream loop seals. The code results are compared to experimental load measurements performed at the Combustion Engineering Laboratory in Windsor (US). Those measurements were part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident. This particular kind of transients challenges the applicability of the following code models: two-phase choked discharge; interphase drag in conditions with large density gradients; heat transfer to metallic structures in fast changing conditions; two-phase flow at abrupt expansions. The code applicability to this kind of transients is investigated. Some sensitivity analyses to different code and model options are performed. Finally, the suitability of the code and some modeling guidelines are discussed
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Simulating sympathetic detonation using the hydrodynamic models and constitutive equations
Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)
2016-12-15
A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.
Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities
Olazabal-Loumé M.
2013-11-01
Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.
Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions
Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter
2017-11-01
Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.
2011-01-01
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.
Optimal codes as Tanner codes with cyclic component codes
Høholdt, Tom; Pinero, Fernando; Zeng, Peng
2014-01-01
In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...
Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter
López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede
2017-01-01
Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....
Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.
1983-01-01
We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10 5 L. A shock wave caused a precursor in the light curve which lasted 10 -5 sec
Anisotropic hydrodynamics for conformal Gubser flow
Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)
2016-12-15
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Hydrodynamic Modeling and Its Application in AUC.
Rocco, Mattia; Byron, Olwyn
2015-01-01
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling. © 2015 Elsevier Inc. All rights reserved.
Anisotropic hydrodynamics for conformal Gubser flow
Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw
2016-01-01
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Beam induced hydrodynamic tunneling in the future circular collider components
N. A. Tahir
2016-08-01
Full Text Available A future circular collider (FCC has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80–100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t at a typical speed of 850 km/h. Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka and a 2D hydrodynamic code (big2 iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the “hydrodynamic tunneling.” These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.
Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-08-01
A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.
Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.
2017-09-01
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
Soon, Winnie; Cox, Geoff
2018-01-01
a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...
Rattan, D.S.
1993-11-01
NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases
A theoretical study of hydrodynamic cavitation.
Arrojo, S; Benito, Y
2008-03-01
The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.
Shear viscosity, cavitation and hydrodynamics at LHC
Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.
2011-01-01
We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.
Delbecq, J.M
1999-07-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
Ejsing-Duun, Stine; Hansbøl, Mikala
Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
Lindemuth, I.R.
1979-01-01
This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...
Cramer, S.N.
1984-01-01
The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.
Impact of hydrodynamic stresses on bacterial flagella
Das, Debasish; Riley, Emily; Lauga, Eric
2017-11-01
The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.
Hydrodynamics of quark-gluon plasmas
Blaizot, J.P.
1986-06-01
This paper reviews some aspects of the hydrodynamics of quark-gluon plasmas. Various stages of ultra-relativistic heavy ion collisions are described. Several estimates of the maximum energy density expected to be achieved in these collisions are compared. Discontinuities which may be induced in the hydrodynamic flow by a phase transition are described and a convenient numerical method designed to deal with such discontinuous flows is briefly presented. Finally, the correlations between particle transverse momenta and multiplicities are analyzed and one discusses to which extent these correlations could signal the occurrence of a phase transition in heavy ion collisions
FDTD for Hydrodynamic Electron Fluid Maxwell Equations
Yingxue Zhao
2015-05-01
Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.
Fish stocking density impacts tank hydrodynamics
Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper
2006-01-01
The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...... hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3...
Introduction to physics mechanics, hydrodynamics thermodynamics
Frauenfelder, P
2013-01-01
Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o
Xu Jianjun; Chen Bingde; Wang Xiaojun
2008-01-01
Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)
Altomare, S.; Minton, G.
1975-02-01
PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)
Gara, P.; Martin, E.
1983-01-01
The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr
Impact of Hydrodynamics on Oral Biofilm Strength
Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.
2009-01-01
Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of
Hydrodynamic states of phonons in insulators
S.A. Sokolovsky
2012-12-01
Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.
Magneto-hydrodynamical model for plasma
Liu, Ruikuan; Yang, Jiayan
2017-10-01
Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.
Statistical analysis of hydrodynamic cavitation events
Gimenez, G.; Sommer, R.
1980-10-01
The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.
Filter-Feeding Zoobenthos and Hydrodynamics
Riisgård, Hans Ulrik; Larsen, Poul Scheel
2017-01-01
interplay between benthic filter feeders and hydrodynamics. Starting from the general concept of grazing potential and typical data on benthic population densities its realization is considered, first at the level of the individual organism through the processes of pumping and trapping of food particles...
does earthworms density really modify soil's hydrodynamic ...
N. Ababsa,, M. Kribaa, D. Addad, L. Tamrabet and M. Baha
1 mai 2016 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. DOES EARTHWORMS DENSITY REALLY MODIFY SOIL'S HYDRODYNAMIC.
Microflow Cytometers with Integrated Hydrodynamic Focusing
Martin Schmidt
2013-04-01
Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.
Numerical methods for hydrodynamic stability problems
Fujimura, Kaoru
1985-11-01
Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)
Hydrodynamic relaxations in dissipative particle dynamics
Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.
2018-01-01
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.
Hydrodynamic dispersion of microswimmers in suspension
Martin, Matthieu; Rafaï, Salima; Peyla, Philippe
2014-11-01
In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.
Hydrodynamic modelling of hydrostatic magnesium extrusion
Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.
2006-01-01
Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown
Dilepton production in schematic causal viscous hydrodynamics
Song, Taesoo; Han, Kyong Chol; Ko, Che Ming
2011-01-01
Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.
Hydrodynamic forces on inundated bridge decks
2009-05-01
The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...
The quantum hydrodynamics of the Sutherland model
Stone, Michael; Gutman, Dmitry
2008-01-01
We show that the form of the chiral condition found by Abanov et al in the quantum hydrodynamics of the Sutherland model arises because there are two distinct inner products with respect to which the chiral Hamiltonian is Hermitian, but only one with respect to which the full, non-chiral, Hamiltonian is Hermitian
Hydrodynamic impact response, a flexible view
Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.
2001-01-01
The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship
Universal hydrodynamics of non-conformal branes
Kanitscheider, Ingmar; Skenderis, Kostas
2009-01-01
We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.
Detailed simulation of morphodynamics : 1. Hydrodynamic model
Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.
2012-01-01
We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)
2016-12-15
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)
Coupling of smooth particle hydrodynamics with the finite element method
Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.
1994-01-01
A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))
Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato
2017-11-01
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.
SSS: A code for computing one dimensional shock and detonation wave propagation
Sun Chengwei
1986-01-01
The one-dimensional hydrodynamic code SSS for shock and detonation wave propagation in inert and reactive media is described. The elastic-plastic-hydrodynamic model and four burn techniques (the Arrhenius law, C-J volume, sharp shock and Forest Fire) are used. There are HOM and JWL options for the state equation of detonation products. Comparing with the SIN code published by LANL, the SSS code has several new options: laser effects, blast waves, diverging and instantaneous detonation waves with arbitrary initiation positions. Two examples are given to compare the SSS and SIN calculations with the experimental data
From concatenated codes to graph codes
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
Pool scrubbing and hydrodynamic experiments on jet injection regime
Peyres, V.; Espigares, M.M.; Polo, J.; Escudero, M.J.; Herranz, L.E.; Lopez-Jimenez, J.
1995-01-01
Plant analyses have shown that pool scrubbing can play an important role in source term during PWR risk dominant sequences. An examination ofboundary conditions governing fission products and aerosols transport through aqueous beds revealed that most of radioactivity is discharged into the pool under jet injection regime. This fact and the lack of experimental data under such conditions pointed the need of setting out an experimental programme which provided reliable experimental data to validate code models. In this report the major results of a pool scrubbing experimental programme carried out in PECA facility are presented. One of the major findings was that a remarkable fraction of particle absorption was not a function of the residence time of bubbles rising through the pool. Such a contribution was assumed to be associated to aerosol removal mechanisms acting at the pool entrance. As a consequence, a hydrodynamic experimental plan was launched to examine the gas behaviour during the initial stages in the pool. Size and shape of gas nuclei the pool were measured and fitted to a long normal distribution. Particularly, size was found to be quite sensitive to inletgas flow and at minor extent to gas composition and pool temperature. SPARC90 and BUSCA-AUG92 were used to simulate the retention tests. Whereas SPARC90 showed a pretty good agreement with experimental data, BUSCA-AUG92 results were far away from measurements in all the cases. SPARC90consistency apparently pointed out the important role of fission products and aerosols retention at the injection zone; nonetheless, a peer examination of pool scrubbing phenomenology at the pool entrance should be carried out to test both hydrodynamic and removal models. Hence, one of the major highlights drawn from this work was the need of further research under representative severe accident conditions (i.e., saturated pools, jet injection regimes, etc.), as well as separate effect tests to validate, improve and
Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP
Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F
2013-01-01
We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...
Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids
Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V
2014-01-01
Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.
Modelling hydrodynamic parameters to predict flow assisted corrosion
Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.
1992-01-01
During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model
Hydrodynamic and thermal modeling of solid particles in a multi-phase, multi-component flow
Tentner, A.M.; Wider, H.U.
1984-01-01
This paper presents the new thermal hydraulic models describing the hydrodynamics of the solid fuel/steel chunks during an LMFBR hypothetical core disruptive accident. These models, which account for two-way coupling between the solid and fluid phases, describe the mass, momentum and energy exchanges which occur when the chunks are present at any axial location. They have been incorporated in LEVITATE, a code for the analysis of fuel and cladding dynamics under Loss-of-Flow (LOF) conditions. Their influence on fuel motion is presented in the context of the L6 TREAT experiment analysis. It is shown that the overall hydrodynamic behavior of the molten fuel and solid fuel chunks is dependent on both the size of the chunks and the power level. At low and intermediate power levels the fuel motion is more dispersive when small chunks, rather than large ones, are present. At high power levels the situation is reversed
Hydrodynamic and thermal modelling of gas-particle flow in fluidized beds
Abdelkawi, O.S; Abdalla, A.M.; Atwan, E.F; Abdelmonem, S.A.; Elshazly, K.M.
2009-01-01
In this study a mathematical model has been developed to simulate two dimensional fluidized bed with uniform fluidization. The model consists of two sub models for hydrodynamic and thermal behavior of fluidized bed on which a FORTRAN program entitled (NEWFLUIDIZED) is devolved. The program is used to predict the volume fraction of gas and particle phases, the velocity of the two phases, the gas pressure and the temperature distribution for two phases. Also the program calculates the heat transfer coefficient. Besides the program predicts the fluidized bed stability and determines the optimum input gas velocity for fluidized bed to achieve the best thermal behavior. The hydrodynamic model is verified by comparing its results with the computational fluid dynamic code MFIX . While the thermal model was tested and compared by the available previous experimental correlations.The model results show good agreement with MFIX results and the thermal model of the present work confirms Zenz and Gunn equations
Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite
Shirish H. Sonawane
2010-01-01
Full Text Available A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.
Application of hydrodynamics to heavy ion collisions
Felsberger, Lukas
2014-12-02
The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...
Application of hydrodynamics to heavy ion collisions
Felsberger, Lukas
2014-01-01
The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.
Hydrodynamic interaction between bacteria and passive sphere
Zhang, Bokai; Ding, Yang; Xu, Xinliang
2017-11-01
Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.
Granular Gases: Probing the Boundaries of Hydrodynamics
Goldhirsch, I.
1999-01-01
The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond
The role of Weyl symmetry in hydrodynamics
Diles, Saulo
2018-04-01
This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.
Heat capacity of liquids: A hydrodynamic approach
T. Bryk
2015-03-01
Full Text Available We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k and Cp(k, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of Cv and Cp for the studied thermodynamic points of supercritical Ar.
Hydrodynamics of ultra-relativistic bubble walls
Leonardo Leitao
2016-04-01
Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Hydrodynamics of ultra-relativistic bubble walls
Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar
2016-04-15
In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Transversal expansion study in the Landau hydrodynamic
Pottag, F.W.
1984-01-01
The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt
Integrated Fuel-Coolant Interaction (IFCI 6.0) code
Davis, F.J.; Young, M.F.
1994-04-01
The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
On an incompressible model in radiation hydrodynamics
Ducomet, B.; Nečasová, Šárka
2015-01-01
Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract
Degradation of chlorocarbons driven by hydrodynamic cavitation
Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)
2007-05-15
To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Relativistic charged fluids: hydrodynamic and kinetic approaches
Debbasch, F.; Bonnaud, G.
1991-10-01
This report gives a rigorous and consistent hydrodynamic and kinetic description of a charged fluid and the basis equations, in a relativistic context. This study should lead to a reliable model, as much analytical as numerical, of relativistic plasmas which will appear in the interaction of a strong laser field with a plasma. For simplicity, we limited our study to a perfect fluid or, in other words, we disregarded the energy dissipation processes inside the fluid [fr
Resolution of hydrodynamical equations for transverse expansions
Hama, Y.; Pottag, F.W.
1984-01-01
The three-dimensional hydrodynamical expansion is treated with a method similar to that of Milekhin, but more explicit. Although in the final stage one have to appeal to numerical calculation, the partial differential equations governing the transverse expansions are treated without transforming them into ordinary equations with an introduction of averaged quantities. It is only concerned with the formalism and the numerical results will be given in the next paper. (Author) [pt
Viscosity effect in Landau's hydrodynamical model
Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore
1979-01-01
The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)
On the convexity of relativistic hydrodynamics
Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)
Determining the hydrodynamic indices of contractions
Blagov, Eh.E.
2002-01-01
The new dependences, making it possible only by measuring the flow rate and pressure drop on the contraction device (CD) with the known geometry, including the regulatory organ, in the non-crisis mode of the turbulent flow to calculate all the hydrodynamic indices of this device, including the pressure reduction in the jet contraction, are obtained. This simplifies and accelerates the CD hydraulic tests of all types. The new methodology for determining the cavitation factual start on the CD is proposed [ru
Towards granular hydrodynamics in two dimensions
Grossman, E.L.; Zhou, T.; Ben-Naim, E.; Ben-Naim, E.
1997-01-01
We study steady-state properties of inelastic gases in two dimensions in the presence of an energy source. We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady state with asymmetric velocity distributions, and we discuss the conditions under which such situations occur. copyright 1997 The American Physical Society
Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes
Koumakis, N.; Di Leonardo, R.
2013-01-01
Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating ...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...
Hydrodynamic attraction of swimming microorganisms by surfaces
Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric
2008-01-01
Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...
Resolution of hydrodynamical equations for transverse expansions
Hama, Y.; Pottag, F.W.
1985-01-01
The three-dimensional hydrodynamical expansion is treated with a method similar to that of Milekhin, but more explicit. Although in the final stage we have to appeal to numerical calculation, the partial differential equations governing the transverse expansions are treated without transforming them into ordinary equations with an introduction of averaged quantities. The present paper is concerned with the formalism and the numerical results will be reported in another paper. (Author) [pt
Hydrodynamic Modeling of Santa Marta's Big Marsh
Saldarriaga, Juan
1991-01-01
The ecological degradation of Santa Marta's Big Marsh and their next areas it has motivated the realization of diagnosis studies and design by several state and private entities. One of the recommended efforts for international advisory it was to develop an ecological model that allowed the handling of the water body and the economic test of alternative of solution to those ecological problems. The first part of a model of this type is in turn a model that simulates the movement of the water inside the marsh, that is to say, a hydrodynamic model. The realization of this was taken charge to the civil engineering department, on the part of Colciencias. This article contains a general explanation of the hydrodynamic pattern that this being developed by a professors group. The ecological causes are described and antecedent, the parts that conform the complex of the Santa Marta big Marsh The marsh modeling is made and it is explained in qualitative form the model type Hydrodynamic used
Hydrodynamic model research in Waseda group
Muroya, Shin
2010-01-01
Constructing 'High Energy Material Science' had been proposed by Namiki as the guiding principle for the scientists of the high energy physics group lead by himself in Waseda University when the author started to study multiple particle production in 1980s toward the semi-phenomenological model for the quark gluon plasma (QGP). Their strategy was based on three stages to build an intermediate one between the fundamental theory of QCD and the phenomenological model. The quantum theoretical Langevin equation was taken up as the semi-phenomenological model at the intermediate stage and the Landau hydrodynamic model was chosen as the phenomenological model to focus on the 'phase transition' of QGP. A review is given here over the quantum theoretical Langevin equation formalism developed there and followed by the further progress with the 1+1 dimensional viscous fluid model as well as the hydrodynamic model with cylindrical symmetry. The developments of the baryon fluid model and Hanbury-Brown Twiss effect are also reviewed. After 1995 younger generation physicists came to the group to develop those models further. Activities by Hirano, Nonaka and Morita beyond the past generation's hydrodynamic model are picked up briefly. (S. Funahashi)
Towards the concept of hydrodynamic cavitation control
Chatterjee, Dhiman; Arakeri, Vijay H.
1997-02-01
A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.
The hydrodynamic size of polymer stabilized nanocrystals
Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)
2007-11-28
For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.
Hydrodynamic slip length as a surface property
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-02-01
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
Hydrodynamic instabilities in astrophysics and ICF
Paul Drake, R.
2005-01-01
Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)
The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine
Bayati, I; Jonkman, J; Robertson, A; Platt, A
2014-01-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second
An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)
Ferenbaugh, Charles R [Los Alamos National Laboratory
2010-12-14
Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.
An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine
Ferenbaugh, Charles R [Los Alamos National Laboratory
2010-01-01
Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.
Automatic coding method of the ACR Code
Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi
1993-01-01
The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Recent development of three-dimensional piping code SHAPS
Wang, C.Y.; Zeuch, W.R.
1985-01-01
This paper describes the recent development of the three-dimensional, structural, and hydrodynamic analysis piping code SHAPS. Several new features have been incorporated into the program, including (1) an elbow hydrodynamic model for analyzing the effect of global motion on the pressure-wave propagation, (2) a component hydrodynamic model for treating fluid motion in the vicinity of rigid obstacles and baffle plates, (3) the addition of the implicit time integration scheme in the structural-dynamic analysis, (4) the option of an implicit-implicit fluid-structural linking scheme, and (5) provisions for two constitutive equations for materials under various loading conditions. Sample problems are given to illustrate these features. Their results are discussed in detail. 7 refs., 8 figs
Gagie, Travis
2005-01-01
We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
Atamewoue Surdive
2017-12-01
Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.
MARS code manual volume I: code structure, system models, and solution methods
Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Reisch, F; Vayssier, G
1969-05-15
This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.
Assessment for hydrodynamic masses of HANARO flow tubes
Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho
2000-06-01
The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.
Assessment for hydrodynamic masses of HANARO flow tubes
Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho
2000-06-01
The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes
An overview of hydrodynamic studies of mineralization
Guoxiang Chi
2011-07-01
Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.
Computer simulation of the fire-tube boiler hydrodynamics
Khaustov Sergei A.
2015-01-01
Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS
Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.
2013-01-01
We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.
1994-03-01
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity
Hydrodynamic analysis of the LMFBR prompt burst excursion (PBE) experiment
Young, M.F.
1977-01-01
A series of in-pile experiments has been conducted at Sandia Laboratories to provide information on pressure levels and conversion of thermal energy into mechanical work in LMFBR cores during hypothetical, superprompt-critical excursions. Pressures generated in these experiments are recorded by a pressure transducer located at the top and bottom of a sodium channel surrounding a single, fresh UO 2 fuel pin. Work energy conversion is measured by a linear motion transducer connected to a piston at the top of the sodium column. Since the pressure transducers are located fairly far from the location of pin failure, it becomes necessary to determine the effect of channel geometry and piston motion on the observed pressure data. A two-dimensional, hydrodynamic analysis of pressure pulse propagation in the fuel pin-coolant channel geometry was therefore performed using the CSQII computer code. The initial series of PBE experiments consists of single, fresh UO 2 pins surrounded by a sodium-filled or dry-coolant channel contained in a closed test capsule. The capsule is subjected to a maximum pulse in the Annular Core Pulse Reactor (ACPR) resulting in an energy deposition of from 2350 to 2900 J/g (14 and 20 percent enriched pins). The pulse width at half maximum (PWHM) is about 5 ms
Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model
Camila Braga Vieira
2018-03-01
Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.
Hydrodynamic simulation of X-UV laser-produced plasmas
Fajardo, M.; Zeitoun, P.; Gauthier, J.C.
2004-01-01
With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)
Recent progress of an integrated implosion code and modeling of element physics
Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.
2001-01-01
Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)
Measurement of beam driven hydrodynamic turbulence
Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.
2003-01-01
Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers
The frontal method in hydrodynamics simulations
Walters, R.A.
1980-01-01
The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.
Hydrodynamic instabilities in inertial confinement fusion
Hoffman, N.M.
1995-01-01
The focus of these (two) lectures is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. (author)
Hydrodynamic Study Of Column Bioleaching Processes
Sadowski Zygmunt
2015-06-01
Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.
Hydrodynamic instabilities in an ablation front
Piriz, A R; Portugues, R F
2004-01-01
The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved
Hydrodynamic instabilities in an ablation front
Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2004-06-01
The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.
Self-acting and hydrodynamic shaft seals
Ludwig, L. P.
1973-01-01
Self-acting and hydrodynamic seals are described. The analytical procedures are outlined for obtaining a seal force balance and the operating film thickness. Particular attention is given to primary ring response (seal vibration) to rotating seat face runout. This response analysis revealed three different vibration modes. Proposed applications of self-acting seals in gas turbine engines and in rocket vehicle turbopumps are described. Also experimental data on self-acting face seals operating under simulated gas turbine conditions are given; these data show the feasibility of operating the seal at conditions of 345 newtons per square centimeter (500 psi) and 152 meters per second (500 ft/sec) sliding speed.
Hydrodynamics and Elasticity of Charged Black Branes
Gath, Jakob
We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...
Control of hydrodynamic cavitation using ultrasonic
Chatterjee, Dhiman; Arakeri, Vijay H.
2003-11-01
Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.
Hydrodynamics in a swarm of rising bubbles
Riboux, G.
2007-04-01
In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)
Hydrodynamic bearing lubricated with magnetic fluids
Urreta, H; Leicht, Z; Sanchez, A; Agirre, A; Kuzhir, P; Magnac, G
2009-01-01
This paper summarizes the work carried out in the development of hydrodynamic lubricated journal bearings with magnetic fluids. Two different fluids have been analyzed, one ferrofluid from FERROTEC APG s10n and one magnetorheological fluid from LORD Corp., MRF122-2ED. Theoretical analysis has been carried out with numerical solutions of Reynolds equation, based on apparent viscosity modulation for ferrofluid and Bingham model for MR fluid. To validate this model, one test bench has been designed, manufactured and set up, where preliminary results shown in this paper demonstrate that magnetic fluids can be used to develop active journal bearings.
Experimental hydrodynamics of swimming in fishes
Tytell, Eric Daniel
2005-11-01
The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous
Preparing for an explosion: Hydrodynamic instabilities and turbulence in presupernovae
Smith, Nathan; Arnett, W. David, E-mail: nathans@as.arizona.edu, E-mail: darnett@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)
2014-04-20
Both observations and numerical simulations are discordant with predictions of conventional stellar evolution codes for the latest stages of a massive star's life before core collapse. The most dramatic example of this disconnect is in the eruptive mass loss occurring in the decade preceding Type IIn supernovae. We outline the key empirical evidence that indicates severe pre-supernova instability in massive stars, and we suggest that the chief reason that these outbursts are absent in stellar evolution models may lie in the treatment of turbulent convection in these codes. The mixing length theory that is used ignores (1) finite amplitude fluctuations in velocity and temperature and (2) their nonlinear interaction with nuclear burning. Including these fluctuations is likely to give rise to hydrodynamic instabilities in the latest burning sequences, which prompts us to discuss a number of far-reaching implications for the fates of massive stars. In particular, we explore connections to enhanced pre-supernova mass loss, unsteady nuclear burning and consequent eruptions, swelling of the stellar radius that may trigger violent interactions with a companion star, and potential modifications to the core structure that could dramatically alter calculations of the core-collapse explosion mechanism itself. These modifications may also impact detailed nucleosynthesis and measured isotopic anomalies in meteorites, as well as the interpretation of young core-collapse supernova remnants. Understanding these critical instabilities in the final stages of evolution may make possible the development of an early warning system for impending core collapse, if we can identify their asteroseismological or eruptive signatures.
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge
Hydrodynamic behavior of a bare rod bundle. [LMFBR
Bartzis, J.G.; Todreas, N.E.
1977-06-01
The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers.
Star formation, using 3-D explicit Eulerian hydrodynamics
Williams, H.A.
1988-01-01
Evolutions of rapidly rotating, self-gravitating objects initially in axisymmetric equilibrium have been studied using a 3-D Newtonian hydrodynamic computer code with an eye toward understanding angular momentum transport in dynamically evolving protostars. First, a number of evolutions have been modeled using an existing explicit, Eulerian, finite difference code that is accurate to first-order in its spatial differences. The bar-mode dynamic instability has been explored by considering several models with different degrees of compressibility. This instability occurs in models with different degrees of comprresibility. This instability occurs in models having β > β d ≡ 0.27, where β is the ratio of the rotational to the gravitational potential energy. A two-armed spiral, with a well-defined pattern speed and growth rate that match the pattern speed and growth rate predicted by linear theory, develops from each of the axisymmetric equilibria. The models with greater compressibility exhibit spirals which are more tightly wound. As the nonaxisymmetric distortion become large in an extended evolution, the object does not undergo binary fission as had been thought earlier. Instead, the spiral elongates and then wraps up on itself, forming a central pulsating triaxial object surrounded by a more diffuse ring-like disk. Angular momentum and mass are dynamically redistributed by gravitational torques during the evolution, and β is reduced below β d . Since this gravitational-rotational dynamic instability is a general feature of gaseous systems, this study may have application to theta galaxies and to rapidly rotating neutron stars, as well as to protostars
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Hydrodynamization and transient modes of expanding plasma in kinetic theory
Heller, Michal P.; Spalinski, Michal
2016-01-01
We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.
Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas
Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen
2004-01-01
In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.
Murao, Yoshio; Sugimoto, Jun; Okubo, Tsutomu
1981-01-01
This manual describes the REFLA-1D/MODE 1 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET phase A. This manual describes the REFLA-1D/MODE 1 models and provides application information required to utilize REFLA-1D/MODE 1. (author)
Hydrodynamic Test Facilities at ARL/PSU.
1982-02-12
Dynamometers, 5-Hole Pitot Probes, Lasers, Pressure Sensors, Hydrophones, Planar Motion Mechanism, Force Balances TYPE AND LOCATION OF TORQUE & THRUST...David W. Taylor Naval Ship R&D Center Atmn: J. Henry David W. Taylor Naval Ship R&D Center Code 2741 Attn: W. K. Blake (Copy No. 28) Code 1905 (Copy No
Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.
2017-10-01
Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps
Vector Network Coding Algorithms
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...
Improved Swimming Performance in Hydrodynamically- coupled Airfoils
Heydari, Sina; Shelley, Michael J.; Kanso, Eva
2017-11-01
Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.
Hydrodynamic optical-field-ionized plasma channels
Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.
2018-05-01
We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
Mix and hydrodynamic instabilities on NIF
Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.
2017-06-01
Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.
A web portal for hydrodynamical, cosmological simulations
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
Hydrodynamic instability experiments on the Nova laser
Remington, B.A.; Glendinning, S.G.; Kalantar, D.H.
1996-08-01
Hydrodynamic instabilities in compressible plasmas play a critical role in the fields of inertial confinement fusion (ICF), astrophysics, and high energy-density physics. We are, investigating hydrodynamic instabilities such as the Rayleigh-Taylor (RT) instability, at high compression at the Nova laser in a series of experiments, both in planar and in spherical geometry. In the indirect drive approach, a thermal x-ray drive is generated by focusing the Nova laser beams into a Au cylindrical radiation cavity (hohlraum). Issues in the instability evolution that we are examining are shock propagation and foil compression, RT growth of 2D versus 3D single-mode perturbations, drive pulse shape, perturbation location at the ablation front versus at an embedded interface, and multimode perturbation growth and nonlinear saturation. The effects of convergence on RT growth are being investigated both with hemispherical implosions of packages mounted on the hohlraum wall and with spherical implosions of capsules at the center of the hohlraum. Single-mode perturbations are pre-imposed at the ablation front of these capsules as a seed for the RT growth. In our direct drive experiments, we are investigating the effect of laser imprinting and subsequent RT growth on planar foils, both at λ Laser = 1/3 μm and 1/2 μm. An overview is given describing recent progress in each of these areas
Mesoscale simulations of hydrodynamic squirmer interactions.
Götze, Ingo O; Gompper, Gerhard
2010-10-01
The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.
The Coupling of Radiation and Hydrodynamics
Lowrie, R.B.; Morel, J.E.; Hittinger, J.A.
1999-01-01
The coupling of radiation transport and hydrodynamics is discussed for the Eulerian frame. The discussion is aimed at developing a suitable set of equations for nonrelativistic radiation hydrodynamics (RHD) that can be numerically integrated using high-resolution methods for conservation laws. We outline how numerical methods based on a wave decomposition may be developed, along with the importance of conservation, particularly in the equilibrium regime. The properties of the RHD equations are examined through asymptotic and dispersion analyses. The conditions required to obtain the classical equilibrium limit are rigorously studied. The results show that a simple coupling term developed recently by Morel, which retains a minimum of relativistic corrections, may be sufficient for nonrelativistic flows. We also give two constraints on the relativistic corrections that result in retaining terms on the order of the truncation. In addition, the dispersion results for the P 1 approximation are studied in detail and are compared with both the exact-transport results and a full relativistic treatment. We also examine some nonintuitive behavior in the dispersion results. copyright copyright 1999. The American Astronomical Society
Hydrodynamic Forces from Steep Waves in Rivers
Loevoll, A.
1996-12-31
The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter {alpha} is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield`s relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs.
Hydrodynamic Forces from Steep Waves in Rivers
Loevoll, A.
1996-01-01
The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter α is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield's relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs
Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
Calculation of fluid-structure interaction for reactor safety with the Cassiopee code
Graveleau, J.L.; Louvet, P.D.
1979-01-01
The cassiopee code is an eulerian-lagrangian coupled code for computations where the hydrodynamic is coupled with structural domains. It is completely explicit. The fluid zones may be computed either in lagrangian or in eulerian coordinates; thin shells can be computed wih their flexural behaviour; elastic plastic zones must be calculated in a lagrangian way. This code is under development in Cadarache. Its purpose is to compute the hypothetical core disruptive accident of a LMFBR when lagrangian codes are not sufficient. This paper contains a description of the code and two examples of computations, one of which has been compared with experimental results
Pool scrubbing and hydrodynamic experiment on jet injection regime
Peyres, V.; Espigares, M.M.; Polo, J.; Escudero, M.J.; Herranz, L.E.; Lopez, J.
1995-07-01
Plant analyses nave shown that pool scrubbing can play an important role in source term during PWR risk dominant sequences. An examination of boundary conditions governing fission products and aerosols transport through aqueous beds revealed that most of radioactivity is discharged into the pool under jet injection regime. This fact and the lack of experimental data under such conditions pointed the need of setting out an experimental programme which provided reliable experimental data to validate code models. In this report the major results of a pool scrubbing experimental programme carried out in PECA facility are presented. One of the major findings was that a remarkable fraction of particle absorption was not a function of the residence time of bubbles rising through the pool. Such a contribution was assumed to be associated to aerosol removal mechanism acting at the pool entrance. As a consequence. a hydrodynamic experimental plan was launched to examine the gas behaviour during the initial stages in the pool. Size and shape of gas nuclei in the pool were measured and fitted to a lognormal distribution. Particularly, size was found to be quite sensitive to inlet gas flow and at minor extent to gas composition and pool temperature. SPARC90 and BUSCA-AUG92 were used to simulate the retention tests. Whereas SPARC90 showed a pretty good agreement with experimental data, BUSCA-AUG92 results were far away from measurements in all the cases. SPARC90 consistency apparently pointed out the important role of fission products and aerosols retention at the injection zone; nonetheless, a peer examination of pool scrubbing phenomenology at the pool entrance should be carried out to test both hydrodynamic and removal models. Hence, one of the major high lights drawn from this work was the need of further research under representative severe accident conditions (i.e., saturated pools, jet injection regimes, etc.), as well as separate effect tests to validate, improve and
Pool scrubbing and hydrodynamic experiment on jet injection regime
Peyres, V.; Espigares, M.M.; Polo, J.; Escudero, M.J.; Herranz, L.E.; Lopez, J.
1995-01-01
Plant analyses nave shown that pool scrubbing can play an important role in source term during PWR risk dominant sequences. An examination of boundary conditions governing fission products and aerosols transport through aqueous beds revealed that most of radioactivity is discharged into the pool under jet injection regime. This fact and the lack of experimental data under such conditions pointed the need of setting out an experimental programme which provided reliable experimental data to validate code models. In this report the major results of a pool scrubbing experimental programme carried out in PECA facility are presented. One of the major findings was that a remarkable fraction of particle absorption was not a function of the residence time of bubbles rising through the pool. Such a contribution was assumed to be associated to aerosol removal mechanism acting at the pool entrance. As a consequence. a hydrodynamic experimental plan was launched to examine the gas behaviour during the initial stages in the pool. Size and shape of gas nuclei in the pool were measured and fitted to a lognormal distribution. Particularly, size was found to be quite sensitive to inlet gas flow and at minor extent to gas composition and pool temperature. SPARC90 and BUSCA-AUG92 were used to simulate the retention tests. Whereas SPARC90 showed a pretty good agreement with experimental data, BUSCA-AUG92 results were far away from measurements in all the cases. SPARC90 consistency apparently pointed out the important role of fission products and aerosols retention at the injection zone; nonetheless, a peer examination of pool scrubbing phenomenology at the pool entrance should be carried out to test both hydrodynamic and removal models. Hence, one of the major high lights drawn from this work was the need of further research under representative severe accident conditions (i.e., saturated pools, jet injection regimes, etc.), as well as separate effect tests to validate, improve and
Smooth particle hydrodynamic modeling and validation for impact bird substitution
Babu, Arun; Prasad, Ganesh
2018-04-01
Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady
GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
Hubber, D. A.; Rosotti, G. P.; Booth, R. A.
2018-01-01
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.
Diagnostic Coding for Epilepsy.
Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R
2016-02-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Coding of Neuroinfectious Diseases.
Barkley, Gregory L
2015-12-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Hydrodynamic cavitation: a bottom-up approach to liquid aeration
Raut, J.S.; Stoyanov, S.D.; Duggal, C.; Pelan, E.G.; Arnaudov, L.N.; Naik, V.M.
2012-01-01
We report the use of hydrodynamic cavitation as a novel, bottom-up method for continuous creation of foams comprising of air microbubbles in aqueous systems containing surface active ingredients, like proteins or particles. The hydrodynamic cavitation was created using a converging-diverging nozzle.
Hydrodynamics of ponderomotive interactions in a collisionless plasma
Kono, M.; Skoric, M.M.; ter Haar, D.
1987-01-01
A hydrodynamic treatment of ponderomotive interactions in a collisionless plasma is presented and it is shown that consistent hydrodynamics leads to the correct expression for the solenoidal ponderomotive electron current density, a result previously thought to be derivable only in the framework of the warm-plasma kinetic theory
Three aspects of critical phenomenons: fundamental, hydrodynamic, conceptual
Beysens, D.
1993-01-01
After a recall of the leading results relative to the universality class of fluids, examples of how well known universal prevision are held in check by fluids specificities, especially hydrodynamics. Applications of critical phenomenons tool to damping, hydrodynamic instabilities, turbulence are described. (A.B.). 11 refs., 7 figs., 1 tab
Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions
Said, M. M.; Manyele, S. V.; Raphael, M. L.
2012-01-01
The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…
Behavior of passive admixture in a vortical hydrodynamic field
Bobrov, R.O.; Kyrylyuk, A.V; Zatovsky, A.V.
2006-01-01
The motion of passive admixture of spherical particles in the stationary hydrodynamic field of a swirling flow is studied. A spherical particle of a given mass in the hydrodynamic field of a swirling flow is located on a certain circular orbit, where the centrifugal force is compensated by the
Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle
Shaorong XIE
2014-02-01
Full Text Available Hydrodynamic coefficients are the foundation of unmanned underwater vehicles modeling and controller design. In order to reduce identification complexity and acquire necessary hydrodynamic coefficients for controllers design, the motion of the unmanned underwater vehicle was separated into vertical motion and horizontal motion models. Hydrodynamic coefficients were regarded as mapping parameters from input forces and moments to output velocities and acceleration of the unmanned underwater vehicle. The motion models of the unmanned underwater vehicle were nonlinear and Genetic Algorithm was adopted to identify those hydrodynamic coefficients. To verify the identification quality, velocities and acceleration of the unmanned underwater vehicle was measured using inertial sensor under the same conditions as Genetic Algorithm identification. Curves similarity between measured velocities and acceleration and those identified by Genetic Algorithm were used as optimizing standard. It is found that the curves similarity were high and identified hydrodynamic coefficients of the unmanned underwater vehicle satisfied the measured motion states well.
Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs
Benz, W.; Thielemann, F.K.; Hills, J.G.
1989-01-01
Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...
Sze, Vivienne; Marpe, Detlev
2014-01-01
Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...
Generalized concatenated quantum codes
Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei
2009-01-01
We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
Study of the thermo-hydrodynamic phenomena in the nuclear core during reflood phase
Murao, Yoshio
1983-03-01
This paper describes the development of the core thermo-hydrodynamic model on the reflood phenomena during a loss-of-coolant accident in a light water reactor. This model was developed based on the physical understanding in order to obtain the flexibility of application to safety analysis. For this purpose, the flow pattern was modeled and the fundamental equations were derived. The equations were used to know the suitable variables for assembling the thermo-hydrodynamic model of each flow regime in a reflood analysis code. Then the hydrodynamic models and the heat transfer models of all flow regimes and the quench model were derived. Some of them were newly developed. It was found that water accumulation above the quench front occurred in some cases, however the criteria was not clarified. One-dimensional forced-feed reflood tests were performed and the models were assessed and partly improved by using the data of the tests. The verified models were built in a one-dimensional reflood analysis code and totally assessed with the data of the test mentioned above. Except for the location just below a grid spacer and cases of high flooding rate, the calculational results indicated good comparison with the experimental results when the water accumulation was assumed above the quench front. Additionally the test data from the other test facility were used for the verification of the model. The results also showed good comparison with the experimental results. It was found that better comparisons were obtained when the water accumulation was not assumed above quench front. From these assessment of the model, it was found that the model derived here describes the over-all reflood phenomena, while it has to be partly improved and the water accumulation phenomena should be further investigated. (author)
Microscopic hydrodynamics study with nuclear track membrane
Shilun Guo; Yuhua Zhao; Yulan Wang; Hiuhong Hao; Brandt, R.; Vater, P.
1988-01-01
Microscopic hydrodynamics has been studied using different liquids and nuclear track membranes with pores perpendicularly piercing through them. The flow rate of water and alcohol has been studied with polycarbonate track membranes with pore diameters 1.48 micrometres and 1.08 micrometres. It has been shown that the flow rate both for water and alcohol on a microscopic scale can be determined by the Poiseuille law which characterizes macroscopic laminar flow. The Reynolds number used in macroscopic fluid flow has been calculated from the flow rate and parameters of the liquids and the geometry of the pores. It has been shown that this Reynolds number can also be used to characterize microscopic flow. Based on the above results, the filtration capacity (or limit) of polycarbonate track microfilters for water had been calculated. Some possible limits on the application of the calculation are pointed out and discussed. (author)
Generalized hydrodynamic correlations and fractional memory functions
Rodríguez, Rosalio F.; Fujioka, Jorge
2015-12-01
A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.
Hydrodynamic advantages of swimming by salp chains.
Sutherland, Kelly R; Weihs, Daniel
2017-08-01
Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).
Tears of Venom: Hydrodynamics of Reptilian Envenomation
Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo
2011-05-01
In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.
Modeling the hydrodynamics of Phloem sieve plates
Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele
2012-01-01
Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play...... understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly...
An analytical model of flagellate hydrodynamics
Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter
2017-01-01
solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming......Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical...
Flow stabilization with active hydrodynamic cloaks.
Urzhumov, Yaroslav A; Smith, David R
2012-11-01
We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder.
Hydrodynamic Interactions in Active and Passive Matter
Krafnick, Ryan C.
Active matter is present at all biological length scales, from molecular apparatuses interior to cells, to swimming microscopic organisms, to birds, fish, and people. Its properties are varied and its applications diverse, but our understanding of the fundamental driving forces of systems with these constituents remains incomplete. This thesis examines active matter suspensions, exploring the role of hydrodynamic interactions on the unique and emergent properties therein. Both qualitative and quantitative impacts are considered, and care is taken in determining the physical origin of the results in question. It is found that fluid dynamical interactions are fundamentally, qualitatively important, and much of the properties of a system can be explained with an effective energy density defined via the fluid fields arising from the embedded self-propelling entities themselves.
Using river locks to teach hydrodynamic concepts
Carvalho-Santos, Vagson L.; Mendes, Thales C.; Silva, Enisvaldo C.; Rios, Márcio L.; Silva, Anderson A. P.
2013-11-01
In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students.
Hydrodynamics of compressible superfluids in confined geometries
Malmi-Kakkada, Abdul N; Valls, Oriol T; Dasgupta, Chandan
2014-01-01
We present a study of the hydrodynamics of compressible superfluids in confined geometries. We use a perturbative procedure in terms of the dimensionless expansion parameter (v/v s ) 2 where v is the typical speed of the flow and v s is the speed of sound. A zero value of this parameter corresponds to the incompressible limit. We apply the procedure to two specific problems: the case of a trapped superfluid with a Gaussian profile of the local density, and that of a superfluid confined in a rotating obstructed cylinder. We find that the corrections due to finite compressibility which are, as expected, negligible for liquid He, are important but amenable to the perturbative treatment for typical ultracold atomic systems. (paper)
Using river locks to teach hydrodynamic concepts
Carvalho-Santos, Vagson L; Mendes, Thales C; Silva, Enisvaldo C; Rios, Márcio L; Silva, Anderson A P
2013-01-01
In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students. (paper)
Hydrodynamical winds from a geometrically thin disk
Fukue, Jun
1989-01-01
Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)
Hydrodynamics, fields and constants in gravitational theory
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Hydrodynamic models for slurry bubble column reactors
Gidaspow, D. [IIT Center, Chicago, IL (United States)
1995-12-31
The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.
Formulating viscous hydrodynamics for large velocity gradients
Pratt, Scott
2008-01-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time
Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings
C. Bhagat
2014-12-01
Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.
Hydrodynamical fluctuations in smooth shear flows
Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.
1999-11-01
Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic
On the Hydrodynamics of Anomalocaris Tail Fins.
Sheppard, K A; Rival, D E; Caron, J-B
2018-04-25
Anomalocaris canadensis, a soft-bodied stem-group arthropod from the Burgess Shale, is considered the largest predator of the Cambrian period. Thanks to a series of lateral flexible lobes along its dorso-ventrally compressed body, it is generally regarded as an efficient swimmer, well-adapted to its predatory lifestyle. Previous theoretical hydrodynamic simulations have suggested a possible optimum in swimming performance when the lateral lobes performed as a single undulatory lateral fin, comparable to the pectoral fins in skates and rays. However, the role of the unusual fan-like tail of Anomalocaris has not been previously explored. Swimming efficiency and maneuverability deduced from direct hydrodynamic analysis are here studied in a towing tank facility using a three-vane physical model designed as an abstraction of the tail fin. Through direct force measurements, it was found that the model exhibited a region of steady-state lift and drag enhancement at angles of attack greater than 25° when compared to a triangular-shaped reference model. This would suggest that the resultant normal force on the tail fin of Anomalocaris made it well-suited for turning maneuvers, giving it the ability to turn quickly and through small radii of curvature. These results are consistent with an active predatory lifestyle, although detailed kinematic studies integrating the full organism, including the lateral lobes, would be required to test the effect of the tail fin on overall swimming performance. This study also highlights a possible example of evolutionary convergence between the tails of Anomalocaris and birds, which, in both cases, are well-adapted to efficient turning maneuvers.
Hydrodynamics of circulating and bubbling fluidized beds
Gidaspow, D.P.; Tsuo, Y.P.; Ding, J.
1991-01-01
This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments
Variational description of multifluid hydrodynamics: Uncharged fluids
Prix, Reinhard
2004-02-01
We present a formalism for Newtonian multifluid hydrodynamics derived from an unconstrained variational principle. This approach provides a natural way of obtaining the general equations of motion for a wide range of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to spatial variations we use “time shifts” in the variational principle, which allows us to describe dissipative processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative forces. The resulting framework incorporates the generalization of the entrainment effect originally discussed in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of Ertel’s theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conducting fluids are found to be more general than the standard description, as the effect of entrainment usually seems to be overlooked in this context. In the case of superfluid 4He we recover the Landau-Khalatnikov equations of the two-fluid model via a translation to the “orthodox” framework of superfluidity, which is based on a rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipation via mutual friction and also “transfusion” via β reactions between the neutron fluid and the proton-electron fluid.
Gao, Wen
2015-01-01
This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV
Abraham, Nikhil
2015-01-01
Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Discussion on LDPC Codes and Uplink Coding
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.
1993-12-01
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
Locally orderless registration code
2012-01-01
This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....
Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.
Manually operated coded switch
Barnette, J.H.
1978-01-01
The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made
On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows
2018-01-01
We study the evolution of hydrodynamic and non-hydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e. of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from non-hydrodynamic modes coupling into the entropy evolution which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipati...
Jones, Lyell K; Ney, John P
2016-12-01
Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.
Dimmelmeier, H.; Font, J.A.; Mueller, E.
2001-01-01
The numerical simulation of hydrodynamic processes in general relativity is a highly complex problem. In order to reduce the complexity of the gravitational field equations, Wilson and coworkers have proposed an approximation scheme, where the 3-metric γ ij is chosen to be conformally flat. In this approximation the Einstein equations reduce to a set of 5 coupled elliptic equations. In this paper we present an axisymmetric general relativistic hydrodynamic code which utilizes this approach together with high-resolution shock-capturing schemes to solve the hydrodynamic equations. We report on tests and preliminary applications of the code to rotating neutron stars and supernova core collapse in axisymmetry. The code promises good applicability to handle a variety of relativistic astrophysical situations, and is prepared to provide information about gravitational radiation from rotating gravitational collapse. (author)
Model of Collective Fish Behavior with Hydrodynamic Interactions
Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe
2018-05-01
Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.
Hydrodynamic suppression of phase separation in active suspensions.
Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M
2014-09-01
We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.
Boltzmann equation and hydrodynamics beyond Navier-Stokes.
Bobylev, A V
2018-04-28
We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Connection between hydrodynamic, water bag and Vlasov models
Gros, M.; Bertrand, P.; Feix, M.R.
1978-01-01
The connection between hydrodynamic, water bag and Vlasov models is still under consideration with numerical experiments. For long wavelength, slightly non linear excitations and initial preparations such as the usual adiabatic invariant Pn -3 is space independent, the hydrodynamic model is equivalent to the water bag, and for long wavelengths a nice agreement is found with the full numerical solution of the Vlasov equation. For other initial conditions when the water bag cannot be defined, the hydrodynamic approach does not represent the correct behaviour. (author)
Dynamic structurization in solutions of hydrodynamically active polymers
Pogrebnyak, V.G.; Tverdokhleb, S.V.; Naumchuk, N.V.
1993-01-01
The processes of ordering and self-regulation in nonlinear systems have attracted great attention because understanding the principles of self-regulation and its thermodynamics can become a clue to many physical phenomena. In this work, it is experimentally established that, under the condition of elongational flows, dynamic structurization and periodic processes may originate in the solutions of flexible, hydrodynamically-active polymers due to self-regulation in these systems. The hydrodynamic elongational field was created using the flow of a Newtonian liquid (water, acetone, dioxane) converging to a small opening. The hydrodynamically-active polymers were polyethylene oxide or hydrolyzed polyacrylamide
Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark
2012-01-01
A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…
HELOKA facility: thermo-hydrodynamic model and control
Ghidersa, B.E.; Ihli, T.; Marchese, V.; Ionescu-Bujor, M.
2007-01-01
This paper presents the thermo-hydrodynamic model used to simulate the behaviour of the HELOKA (Helium Loop Karlsruhe) facility and describes the mechanism used to control various loop parameters. This test facility, which is under construction at the Forschungszentrum Karlsruhe (FZK), is designed for testing of various components for nuclear fusion such as the Helium-Cooled Pebble Bed blanket (HCPB) and the heliumcooled- divertor for the DEMO power reactor. Besides the individual testing of the blanket and divertor modules, the understanding of the behaviour of their cooling systems in conditions relevant for ITER operation is mandatory. An important aspect in the operation of these cooling loops is the accurate control, via feedback, of the flow parameters at the inlet of the test module. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HELOKA is essential to ensure the adequacy of safety features. Systems analysis codes, such as RELAP5-3D, are suited to this task. However, the application of these models to HELOKA design must be later validated by experimental measurements, while the basic physical models have been proven for light water reactors. The control of the test section inlet parameters is one of the most important issues. In particular, the start-up phase, when the test section temperature is increased from ambient temperature up to 300 C, requires special attention. As a first step, the HELOKA open loop thermal transient was computed using the RELAP model. The data obtained have been used for the identification of the power-temperature transfer function needed to compute the parameters of the feedback controller (PID) using MATLAB and SIMULINK. An accurate control of the temperature during the start-up and flat top phases is achieved solely by controlling the heater power. The adopted solution reduces the harmonic distortions when operating at reduced power while keeping the investment cost low. This
Onsager and the theory of hydrodynamic turbulence
Eyink, Gregory L.; Sreenivasan, Katepalli R.
2006-12-01
Lars Onsager, a giant of twentieth-century science and the 1968 Nobel Laureate in Chemistry, made deep contributions to several areas of physics and chemistry. Perhaps less well known is his ground-breaking work and lifelong interest in the subject of hydrodynamic turbulence. He wrote two papers on the subject in the 1940s, one of them just a short abstract. Unbeknownst to Onsager, one of his major results was derived a few years earlier by A. N. Kolmogorov, but Onsager's work contains many gems and shows characteristic originality and deep understanding. His only full-length article on the subject in 1949 introduced two novel ideas - negative-temperature equilibria for two-dimensional ideal fluids and an energy-dissipation anomaly for singular Euler solutions - that stimulated much later work. However, a study of Onsager's letters to his peers around that time, as well as his private papers of that period and the early 1970s, shows that he had much more to say about the problem than he published. Remarkably, his private notes of the 1940s contain the essential elements of at least four major results that appeared decades later in the literature: (1) a mean-field Poisson-Boltzmann equation and other thermodynamic relations for point vortices; (2) a relation similar to Kolmogorov's 4/5 law connecting singularities and dissipation; (3) the modern physical picture of spatial intermittency of velocity increments, explaining anomalous scaling of the spectrum; and (4) a spectral turbulence closure quite similar to the modern eddy-damped quasinormal Markovian equations. This paper is a summary of Onsager's published and unpublished contributions to hydrodynamic turbulence and an account of their place in the field as the subject has evolved through the years. A discussion is also given of the historical context of the work, especially of Onsager's interactions with his contemporaries who were acknowledged experts in the subject at the time. Finally, a brief speculation is
Parallelization of simulation code for liquid-gas model of lattice-gas fluid
Kawai, Wataru; Ebihara, Kenichi; Kume, Etsuo; Watanabe, Tadashi
2000-03-01
A simulation code for hydrodynamical phenomena which is based on the liquid-gas model of lattice-gas fluid is parallelized by using MPI (Message Passing Interface) library. The parallelized code can be applied to the larger size of the simulations than the non-parallelized code. The calculation times of the parallelized code on VPP500 (Vector-Parallel super computer with dispersed memory units), AP3000 (Scalar-parallel server with dispersed memory units), and a workstation cluster decreased in inverse proportion to the number of processors. (author)
Three-dimensional free Lagrangian hydrodynamics
Trease, H.E.
1985-01-01
The purpose of the discussion is to describe the development of a 3-D free Lagrangian hyrodynamics algorithm. The 3-D algorithm is an outgrowth of an earlier 2-D free Lagrange model. Only the more pertinent issues of the free Lagrange algorithm are presented. A complete production code is being developed to support the free Lagrange algorithm described. 4 refs
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.; Schaeffer, N.; Hollerbach, R.; Cebron, D.; Nore, C.; Luddens, F.; Guermond, J.- L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.- Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A.
2014-01-01
of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions
Smooth Particle Hydrodynamics for Surf Zone Waves
2009-01-01
2010.) The GPU-SPHysics code, initiated by Dr. Alexis Hérault at the Istituto Nazionale di Geofisica e Vulcanologia in Sicily, has been applied to... Geofisica e Vulcanologia, sezione di Catania, for the development of GPU-SPHysics. Drs. Hérault and Bilotta were in residence at JHU during January of
Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)
2016-07-10
A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.
A hydrodynamic model for cooperating solidary countries
De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele
2017-07-01
The goal of international trade theories is to explain the exchange of goods and services between different countries, aiming to benefit from it. Albeit the idea is very simple and known since ancient history, smart policy and business strategies need to be implemented by each subject, resulting in a complex as well as not obvious interplay. In order to understand such a complexity, different theories have been developed since the sixteenth century and today new ideas still continue to enter the game. Among them, the so called classical theories are country-based and range from Absolute and Comparative Advantage theories by A. Smith and D. Ricardo to Factor Proportions theory by E. Heckscher and B. Ohlin. In this work we build a simple hydrodynamic model, able to reproduce the main conclusions of Comparative Advantage theory in its simplest setup, i.e. a two-country world with country A and country B exchanging two goods within a genuine exchange-based economy and a trade flow ruled only by market forces. The model is further generalized by introducing money in order to discuss its role in shaping trade patterns. Advantages and drawbacks of the model are also discussed together with perspectives for its improvement.
Interface tracking for 2D hydrodynamics
Bezard, Fabienne
1997-01-01
The aim of this work is to explore new methods to numerically simulate the evolution of interfaces between immiscible fluids in the context of the dynamics of compressible and non-viscous fluids. The methods currently available, to our knowledge, to deal with this type of problem are based on the Lagrange coordinates (that is to say, that follow the material in its displacements) or on the Euler coordinates (fixed during the time). In the case of Eulerian coordinates, the simplest methods involve so-called 'mixing' meshes (that is, containing several fluids). The study that is presented is based on an Eulerian method with Lagrangian interface tracking. This avoids the introduction of any model of mesh of mixture. This method combines some advantages of the previously mentioned methods, notably the precision of the Lagrangian follow-up and the robustness of the Eulerian schemes. This report describes only the algorithms of displacement and regularization of the interface, by clearly presenting the geometry around the interface. These algorithms will then be coupled with the resolution of two-dimensional hydrodynamic equations to solve multi-fluid problems. Some numerical results are proposed to illustrate the good behavior of the interface tracking algorithm [fr
Hydrodynamic excitations in hot QCD plasma
Abbasi, Navid; Allahbakhshi, Davood; Davody, Ali; Taghavi, Seyed Farid
2017-12-01
We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge currents coupled to energy and momentum fluctuations and compute the S O (3 ) covariant dispersion relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction of the magnetic field and vorticity.
An analytical model of flagellate hydrodynamics
Dölger, Julia; Bohr, Tomas; Andersen, Anders
2017-01-01
Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface. (paper)
Modeling the hydrodynamics of phloem sieve plates
Kaare Hartvig Jensen
2012-07-01
Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.
Modeling hydrodynamic effects on choanoflagellate feeding
Oakes, Christian; Hguyen, Hoa; Koehl, Mimi; Fauci, Lisa
2017-11-01
Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. As the closest living relative to animals, they are important for both ecological and evolutionary studies. Choanoflagellates have three unicellular types: slow swimmers, fast swimmers, and thecate (attached to a surface by a stalk). Each has different morphology and feeding rate. We use the method of regularized Stokeslets to simulate cell-fluid interactions of each type and show the hydrodynamic effects on the amount and directions of fluid flow toward the collar. After validating the swimming speeds of our models with experimental data, we calculate the rate of flow across a capture zone around the collar (flux). This sheds light on how each morphological aspect of the cell aids in bacteria capture during feeding. Among the three types, the thecate cells have the largest average flux values, implying that they take advantage of the nearby surface by creating eddies that draw bacteria into their collar for ingestion. Funding Source: FASTER Grant SURF `` National Science Foundation DUE S-STEM Award 1153796, Mach Fellowship.
A geometric viewpoint on generalized hydrodynamics
Benjamin Doyon
2018-01-01
Full Text Available Generalized hydrodynamics (GHD is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective (“dressed” velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles; in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.
The hydrodynamics of Type II supernove
Chevalier, R.A.
1976-01-01
Observations of Type II supernovae indicate the presence of a moderately cool expanding photosphere. This situation can result from an explosion in a star with an extended envelope. The evolutionary phases of an explosion are described. Information on the propagation of the shock wave through the star can be obtained from γ=4/3 blast wave solutions. If the photon mean free path becomes large compared to the length scales of the flow, a thermal wave moves out from the shock wave and a dense shell is formed behind the shock. The arrival of the shock wave at the photosphere is accompanied by ultraviolet and X-ray burst. As the star expands, a rarefaction wave converts internal energy into kinetic energy. Detailed hydrodynamic models have been calculated, assuming an initial radius compatible with stellar evolution and an energy compatible with the observed velocities. The observed values of photospheric radius and temperature near maximum light are reproduced. Features of the models which are consistent with observation are: the ejection of a detached shell; the cooling of the photosphere from 10,000 K to 6000 K in tens of days after maximum visual light; the shape of the light curve around maximum; the decrease in the velocity of the gas at the photosphere in tens of days after maximum; and a photospheric radius of about 10/sup 14/ cm after several hundred days
Toroidal plasmoid generation via extreme hydrodynamic shear.
Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud; Alves Pereira, Francisco J
2017-11-28
Saint Elmo's fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. Copyright © 2017 the Author(s). Published by PNAS.
Anisotropic hydrodynamics with a scalar collisional kernel
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Hydrodynamics of vertical jumping in Archer fish
Techet, Alexandra H.; Mendelson, Leah
2017-11-01
Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.
Hydrodynamic clustering of droplets in turbulence
Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman
2017-11-01
Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.
Hydrodynamic characteristics of sailfish and swordfish
Sagong, Woong; Jeon, Woo-Pyung; Choi, Haecheon
2009-11-01
The sailfish and swordfish are known as fastest sea animals, reaching their maximum speeds of more than 100km/h. Recently, Sagong et al. (2008, Phys. Fluids) investigated the role of V- shaped protrusions existing on the sailfish skin in the skin-friction reduction but those protrusions did not make a direct role in reducing drag. On the other hand, the long bill has been regarded as a device of reducing drag by separation delay through turbulence generation. In the present study, we investigate the hydrodynamic characteristics of sailfish and swordfish by installing the stuffed ones in a wind tunnel and measuring the drag on their bodies and boundary-layer velocities above the body surfaces. The drag coefficients of sailfish and swordfish are 0.0075 and 0.009 based on the free-stream velocity and wetted area, respectively. They are comparable to or smaller than those of other kinds of fish such as the dogfish, tuna and trout. Next, the role of bill on the drag is studied. The drag without bill or with an artificial short bill is lower than that with the original long bill, indicating that the bill does not reduce the drag at all. From the velocity measurement near the body surfaces, we found that flow separation does not occur even without bill, and thus the conjecture that the flow separation is delayed through turbulence generation by the bill is not valid.
Walker, Judy L
2000-01-01
When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...
Application of Hydrodynamic Cavitation for Food and Bioprocessing
Gogate, Parag R.
Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.
Hydrodynamic potentials for the micropolar Navier-Stokes problem
Martynenko, M.D.; Dimian, M.
1995-01-01
An integral representation of linear and angular velocities and pressure for the description of linear stationary flows of micropolar viscous liquid media is obtained, and on its basis hydrodynamic potentials for the micropolar Navier-Stokes problem are introduced
The effect of hydrodynamics on nitrogen accumulation and ...
STORAGESEVER
2008-07-18
Jul 18, 2008 ... Natural water hydrodynamic conditions play an important role in the nutrients transport among water, ... stress inhibition, while Chl a and b appeared to be a little synthesized in the S flume. ..... accounting for 48.1% increase.
New theories of relativistic hydrodynamics in the LHC era
Florkowski, Wojciech; Heller, Michal P.; Spaliński, Michał
2018-04-01
The success of relativistic hydrodynamics as an essential part of the phenomenological description of heavy-ion collisions at RHIC and the LHC has motivated a significant body of theoretical work concerning its fundamental aspects. Our review presents these developments from the perspective of the underlying microscopic physics, using the language of quantum field theory, relativistic kinetic theory, and holography. We discuss the gradient expansion, the phenomenon of hydrodynamization, as well as several models of hydrodynamic evolution equations, highlighting the interplay between collective long-lived and transient modes in relativistic matter. Our aim to provide a unified presentation of this vast subject—which is naturally expressed in diverse mathematical languages—has also led us to include several new results on the large-order behaviour of the hydrodynamic gradient expansion.
Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop
Larsson, Lars; Stern, Frederick (Professor of engineering); Visonneau, Michel
2014-01-01
"This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop...
Flow hydrodynamics near inlet key of Piano Key Weir (PKW)
Department of Water Resources Development and Management, Indian Institute ... on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). ... nature of flows is clearly understood with the help of advanced instrumentation.
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE
Vitalii Korobov
2017-07-01
Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.
Local anisotropy effects in the hydrodynamical theory of multiparticle production
Gorenstein, M.I.; Sinyukov, Yu.M.
1984-01-01
The stage of secondary particle formation in the hydrodynamic theory of multiparticle production is analysed. We find out that the secondary particle spectrum of the fluid element decay is anisotropic in the rest frame system of this element. (orig.)
Hydrodynamic control of microphytoplankton bloom in a coastal sea
Hydrodynamic control of microphytoplankton bloom in a coastal sea ... many times more than what could be accounted for by solar insolation and nutrient levels. ... and stable water column and weak winds left undisturbed, the transient bloom.
Local anisotropy effects in the hydrodynamical theory of multiparticle production
Gorenshtejn, M.I.; Sinyukov, Yu.M.
1983-01-01
The stage of final particle formation in the hydrodynamic theory of multiparticle production is analysed. It is shown, that secondary particle spectrum of the fluid element decay to be anisotropic in the rest frame system of this element
Hydrodynamical model based on a bag-like Lagrangian
Chiu, C.B.; Lam, C.S.; Wang, K.H.
1976-06-01
Equations of motion of hydrodynamical model are derived from a bag-like Lagrangian by using the technique of information theory. Comments on the break-up of the system and on the properties of decay products are included
Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons
Pajić Predrag R.; Čalenić Aleksandar I.; Polomčić Dušan M.; Bajić Dragoljub I.
2017-01-01
In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric bor...
Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines
Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.
2012-11-01
The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.
Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines
Balint, D; Câmpian, V; Nedelcu, D; Megheles, O
2012-01-01
The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.
Kubo Formulas for Second-Order Hydrodynamic Coefficients
Moore, Guy D.; Sohrabi, Kiyoumars A.
2011-01-01
At second order in gradients, conformal relativistic hydrodynamics depends on the viscosity η and on five additional ''second-order'' hydrodynamical coefficients τ Π , κ, λ 1 , λ 2 , and λ 3 . We derive Kubo relations for these coefficients, relating them to equilibrium, fully retarded three-point correlation functions of the stress tensor. We show that the coefficient λ 3 can be evaluated directly by Euclidean means and does not in general vanish.
Use of hydrodynamic cavitation in (waste)water treatment.
Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris
2016-03-01
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.
Frequency-dependent hydrodynamic interaction between two solid spheres
Jung, Gerhard; Schmid, Friederike
2017-12-01
Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.
R. Paul Drake
2007-01-01
We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists
Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications
R. Paul Drake
2007-04-05
We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Hydrodynamics in high-energy nuclear collisions. Quarterly report 3. quarter 1987
Kataja, Markku.
1989-05-01
This thesis is a review of six publications in which we make use of relativistic hydrodynamics to solve the evolution of matter produced in extremely energetic nucleus-nucleus collisions. In the first one of these papers we study the thermodynamics, the hydrodynamics and the decoupling conditions of such matter. We discuss the initial conditions for the flow, the hydrodynamic equations for the transverse expansion of matter assuming cylindrical symmetry and longitudinal boost invariance and finally present a numeric algorithm, which we use to integrate these equations. In the subsequent three papers this framework is utilized to calculate the transverse momentum spectra of hadrons, the dilepon production and the abundance of strange particles in the final state. The bag model equation of state is used to simulate the first-order phase transition between baryonless hadronic matter and quark-gluon plasma. In the fifth paper we include the particle production from decaying color electric field according to the flux tube model for heavy ion collisions. The hadronization is incorporated by introducing an equilibrium 'mixed state' of hadrons gas, plasma and the color field in analogy to the mixed phase described by the ordinary bag model equation of state. In the last paper I apply a 1+2 dimensional numeric code to analyze a 1+3 dimensional cylindrically symmetric flow of matter assumed to be formed in a central O+Pb collision at 200 GeV/nucleon. The flow data is used to calculte the pseudorapidity distribution of transverse energy for the produced pions
WHITE DWARF MERGERS ON ADAPTIVE MESHES. I. METHODOLOGY AND CODE VERIFICATION
Katz, Max P.; Zingale, Michael; Calder, Alan C.; Swesty, F. Douglas [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800 (United States); Almgren, Ann S.; Zhang, Weiqun [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-10
The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.
Bacterial Swarming: social behaviour or hydrodynamics?
Vermant, Jan
2010-03-01
Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)
Tserkovnikov, Yu.A.
2001-01-01
The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru
Soon, Winnie
2014-01-01
This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...
Djordjevic, Ivan; Vasic, Bane
2010-01-01
This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.
Sacramento, A.M. do.
1989-01-01
This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples
Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing
2018-01-01
With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...
Zhang, Linfan; Zheng, Shuang
2015-01-01
Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...
Taggart, K.A.; Liles, D.R.
1977-08-01
The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC
Steensig, Jakob; Heinemann, Trine
2015-01-01
doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...
A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok
2001-01-01
textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from
Software Certification - Coding, Code, and Coders
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
Applications of pulsed energy sources and hydrodynamic response to materials science
Perry, F.; Nelson, W.
1993-01-01
The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic
A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk
Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia
2018-01-01
We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.
An analytical study of thermo-hydrodynamic behaviour of the reflood-phase during a LOCA
Murao, Y.
1977-12-01
The objectives of this study are - the check of the quench model proposed by the author and T. Sudoh, - the establishment of the thermo-hydrodynamics downstream from the quench front, and - the stabilization of the numerical calculations. In order to study these therms, the new version of the reflood analysis code 'REFLA-1D' was developed. The quench modes were classified into the following three types: 1) Liquid column type (rewetting by subcooled water), 2) Dryout type (annular flow type, rewetting by saturated water), and 3) Rewetting type (entire surface temperature higher than rewetting temperature). For the thermo-hydrodynamic model downstream from the quench front, the flow pattern was divided into the five regimes: 1) Subcooled film boiling regime, 2) Transition flow regime, 3) Dispersed flow regime, 4) Superheated steam flow regime, and 5) Rewetted regime. To stabilze the numerical calculation and shorten the computing time, the Lagrangian form of the energy equation of gase phase and dispersed flow region was used instead of the Eulerian form. Considerably close agreement between three PWR-FLECHT tests and the calculated results for the critical Weber number Wec=1.0 was obtained for fuel clad surface temperature and quench time except in earlier stage before turnaround, but poor agreement for the heat transfer characteristics in the transition flow region defined between the quench front and the dispersed flow region. The calculation was relatively stable and the computing time is about the same as a real time for a IBM 370-158 computer. (orig.) [de
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics
Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J
2005-01-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs
Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.
2006-01-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)
Foucart, Francois
2018-04-01
General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.