WorldWideScience

Sample records for shock wave phenomena

  1. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  2. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  3. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  4. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  5. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  6. Introduction to Shock Waves and Shock Wave Research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  7. Molecular dynamics simulation of shock wave and spallation phenomena in metal foils irradiated by femtosecond laser pulse

    Science.gov (United States)

    Zhakhovsky, Vasily; Demaske, Brian; Inogamov, Nail; Oleynik, Ivan

    2010-03-01

    Femtosecond laser irradiation of metals is an effective technique to create a high-pressure frontal layer of 100-200 nm thickness. The associated ablation and spallation phenomena can be studied in the laser pump-probe experiments. We present results of a large-scale MD simulation of ablation and spallation dynamics developing in 1,2,3μm thick Al and Au foils irradiated by a femtosecond laser pulse. Atomic-scale mechanisms of laser energy deposition, transition from pressure wave to shock, reflection of the shock from the rear-side of the foil, and the nucleation of cracks in the reflected tensile wave, having a very high strain rate, were all studied. To achieve a realistic description of the complex phenomena induced by strong compression and rarefaction waves, we developed new embedded atom potentials for Al and Au based on cold pressure curves. MD simulations revealed the complex interplay between spallation and ablation processes: dynamics of spallation depends on the pressure profile formed in the ablated zone at the early stage of laser energy absorption. It is shown that the essential information such as material properties at high strain rate and spall strength can be extracted from the simulated rear-side surface velocity as a function of time.

  8. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  9. 28th International Symposium on Shock Waves

    CERN Document Server

    2012-01-01

    The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

  10. Transient shock waves in heliosphere and Sun-Earth relations

    International Nuclear Information System (INIS)

    Voeroes, Z.

    1990-01-01

    The problem of shock waves, caused by solar activity in the Earth's magnetosphere and its magnetic field, is discussed. All types of shock waves have their origin either in solar corona effects or in solar eruptions. Ionospheric and magnetospheric effects, such as X and gamma radiation, particle production, geomagnetic storms and shock waves, caused by solar activity, are dealt with and attempts are made to explain their interdependence. The origin and propagation of coronal shock waves, interplanetary shock waves and geomagnetic field disorders are described and their relations discussed. The understanding of the solar corona and wind phenomena seems to allow prediction of geomagnetic storms. The measurement and analysis of solar activity and its effects could yield useful information about shock waves physics, geomagnetosphere structure and relations between the Earth and the Sun. (J.J.). 7 figs., 1 tab., 37 refs

  11. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  12. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  13. Shock Wave Science and Technology Reference Library

    CERN Document Server

    2007-01-01

    Shock waves in multiphase flows refers to a rich variety of phenomena of interest to physicists, chemists, and fluid dynamicists, as well as mechanical, biomedical and aeronautical engineers. This volume treats shock and expansion waves in (bullet) complex, bubbly liquids (L van Wijngaarden, Y Tomita, V Kedrinskii) and (bullet) cryogenic liquids (M Murakami) and examines the relationship of shock waves with (bullet) phase transitions (A Guha, CF Delale, G Schnerr, MEH van Dongen) (bullet) induced phase transitions (GEA Meier) as well as their interaction with (bullet) solid foams, textiles, porous and granular media (B Skews, DMJ Smeulders, MEH van Dongen, V Golub, O Mirova) All chapters are self-contained, so they can be read independently, although they are of course thematically interrelated. Taken together, they offer a timely reference on shock waves in multiphase flows, including new viewpoints and burgeoning developments. The book will appeal to beginners as well as professional scientists and engineer...

  14. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  15. Maximum intensity of rarefaction shock waves for dense gases

    NARCIS (Netherlands)

    Guardone, A.; Zamfirescu, C.; Colonna, P.

    2009-01-01

    Modern thermodynamic models indicate that fluids consisting of complex molecules may display non-classical gasdynamic phenomena such as rarefaction shock waves (RSWs) in the vapour phase. Since the thermodynamic region in which non-classical phenomena are physically admissible is finite in terms of

  16. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  17. Experimental research on crossing shock wave boundary layer interactions

    Science.gov (United States)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  18. Unusual behaviour of usual materials in shock waves

    International Nuclear Information System (INIS)

    Kanel, G I

    2014-01-01

    Exotic results of investigations of inelastic deformation and fracture under shock wave loading are presented and briefly discussed. Temperature effects on the flow stress at high strain rate may differ even in sign from those we observe at low and moderate strain rates. Investigations of the temperature-rate dependence of the yield stress at shock compression demonstrate intense multiplication of dislocations. At the highest strain rates, so-called ideal (ultimate) shear and tensile strength is reached in experiments with picosecond durations of shock loading. Although grain boundaries, in general, reduce resistance to fracture as compared to single crystals, the spall strength of ultra-fine-grained metals usually slightly exceeds that of coarse-grain samples. Failure wave phenomena have been observed in shock-compressed glasses.

  19. Report of 22nd International Symposium on Shock Waves; Dai 22 kai kokusai shogekiha symposium shusseki hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    1999-11-05

    Outlined herein are the topics at the 22nd. International Symposium on Shock Waves, held in July 1999 in London. Prof. Takayama of Tohoku University gave an invited lecture on application of shock waves to medical area, stressing significance of shock waves on a human body. A total of 81 papers were presented from Japan. Number of Japanese papers and number of Japanese attendees both accounted for approximately 25%. The themes of these papers are centered by behavior of shock waves (e.g., propagation, reflection, and diffraction), extreme supersonic flows, interference between shock wave and boundary layer, aerodynamics (e.g., interference between vortex and shock wave), numerical simulation of shock wave phenomena, development of a new shock wave tube and measurement method, researches on elementary steps in chemical reactions, shock wave phenomena in condensed media and multi-phase media, shock wave noise produced while a high-speed train is running in a tunnel, and application of shock waves to industrial and medical areas. Japan contributes much to the application to medical area, and a method dispensing with injection is reported. Japan's aerospace-related researches include interference between shock wave and boundary layer, in which the real gas effect is taken into consideration, designs for protection from heat during the re-entry into the atmosphere, and construction of the world largest free-piston type wind tunnel. (NEDO)

  20. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  1. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  2. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book is the second of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. Of the four extensive chapters in this volume, the first two describe the reactive behavior of condensed phase explosives, - Condensed-Phase Explosives: Shock Initiation and Detonation Phenomena (SA Sheffield and R Engelke) - First Principles Molecular Simulations of Energetic Materials at High-Pressures (F Zhang, S Alavi, and TK Woo), and the remaining two discuss the inert, mechanical response of solid materials. - Combined Compression and Shear Plane Waves (ZP Tang and JB Aidun), and - Dynamic Fragmentation of Solids (D Grady). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomen...

  3. Have shock waves been observed in nuclear collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    Experimental data on shock wave phenomena in nuclear reactions are analyzed within the kinetic theory rather than that of the hydrodynamic approach. Beginning with a presentation of the model, which is a generalization of the cascade--evaporation model to the case of the interaction of two nuclei, it is then ascertained to what degree the developed approach is valid. Next on the basis of this model the results of experiments performed are examined to find the effects of a shock wave. The results of this analysis and the related set-up of new experiments are discussed also. 34 references

  4. Pseudo-shock waves and their interactions in high-speed intakes

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  5. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  6. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  7. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  8. Rogue and shock waves in nonlinear dispersive media

    CERN Document Server

    Resitori, Stefania; Baronio, Fabio

    2016-01-01

    This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...

  9. PENETRATION OF A SHOCK WAVE IN A FLAME FRONT

    Directory of Open Access Journals (Sweden)

    Dan PANTAZOPOL

    2009-09-01

    Full Text Available The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and reflected shock waves.

  10. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  11. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  12. The importance of microjet vs shock wave formation in sonophoresis.

    Science.gov (United States)

    Wolloch, Lior; Kost, Joseph

    2010-12-01

    Low-frequency ultrasound application has been shown to greatly enhance transdermal drug delivery. Skin exposed to ultrasound is affected in a heterogeneous manner, thus mass transport through the stratum corneum occurs mainly through highly permeable localized transport regions (LTRs). Shock waves and microjets generated during inertial cavitations are responsible for the transdermal permeability enhancement. In this study, we evaluated the effect of these two phenomena using direct and indirect methods, and demonstrated that the contribution of microjets to skin permeability enhancement is significantly higher than shock waves. Copyright © 2010. Published by Elsevier B.V.

  13. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  14. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  15. Admissibility region for rarefaction shock waves in dense gases

    NARCIS (Netherlands)

    Zamfirescu, C.; Guardone, A.; Colonna, P.

    2008-01-01

    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic ? is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are

  16. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  17. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  18. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  19. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  20. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  1. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  2. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  3. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  4. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  5. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  6. Application of Underwater Shock Wave Focusing to the Development of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi

    1993-05-01

    This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.

  7. Interfacial instability induced by a shock wave in a gas-liquid horizontal stratified system

    International Nuclear Information System (INIS)

    Sutradhar, S.C.; Chang, J.S.; Yoshida, H.

    1987-01-01

    The experiments are performed in a rectangular lucite duct equipped with the facility of generating shock waves. Piezo-type pressure transducers are used to monitor the strength and propagation velocity of the shock wave. As the liquid phase has high sound velocity, a prepulse wave system of flow amplitude travels in this phase at a speed faster than the principal shock wave. The magnitude of the transmitted wave in the liquid phase is estimated using a transmission coefficient for gas-liquid system. From the initial pressure ratio of the shock wave, the amplitude of the prepulse as well as the induced interfacial fluid velocity are calculated. The wave length and height of the ripples during the passage of the shock wave are estimated for a specific strength of shock wave moving through the phases. From the high speed photographs, the wave length of the ripples can be assessed. The interfacial friction factor is calculated using colebrook's equation for high speed flow. At least five distinct phenomena are observed to exist during the propagation of a shock wave. These are - (1) the energy carried by the pre-pulse is utilized in perturbing the interface; (2) shock wave induces a mass velocity at the interface; (3) the wavelength of the ripples at the interface is the product of induced interfacial mass velocity and the time period of the prepulse; (4) a portion of the liquid mass of the perturbed interface is entrained in the gas phase may be due to the hydrodynamic lift in that phase; and finally (5) waves with long wavelength are established at the interface

  8. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    Science.gov (United States)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  11. Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves

    International Nuclear Information System (INIS)

    Liewer, P.C.; Decyk, V.K.; Dawson, J.M.; Lembege, B.

    1991-01-01

    Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for β e (∼10% or less). Use of the 64-processor Caltech/JPL Mark IIIfp hypercube concurrent computer has enables us to make long runs using realistic mass ratios (m i /m e = 1,600) in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically

  12. Cavitation phenomena in extracorporeal microexplosion lithotripsy

    Science.gov (United States)

    Tomita, Y.; Obara, T.; Takayama, K.; Kuwahara, M.

    1994-09-01

    An experimental investigation was made of cavitation phenomena induced by underwater shock wave focusing applied to the extracorporeal microexplosion lithotripsy (microexplosion ESWL). Firstly an underwater microexplosion generated by detonation of a 10 mg silver azide pellet was studied and secondly underwater shock focusing and its induced cavitation phenomena were investgated. Underwater shock wave was focused by using a semi-ellipsoidal reflector in which a shock wave generated at the first focal point of the reflector was reflected and focused at the second focal point. It is found that an explosion product gas bubble did not produce any distinct rebound shocks. Meantime cavitation appeared after shock focusing at the second focal point where expansion waves originated at the exit of the reflector were simultaneously collected. A shock/bubble interaction is found to contribute not only to urinary tract stone disintegration but also tissue damage. The cavitation effect associated with the microexplosion ESWL was weaker in comparison with a spark discharge ESWL. The microexplosion ESWL is an effective method which can minimize the number of shock exposures hence decreasing tissue damage by conducting precise positioning of urinary tract stones.

  13. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  14. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  15. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  16. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  17. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  18. Overview of shock waves in medicine

    Science.gov (United States)

    Cleveland, Robin O.

    2003-10-01

    A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.

  19. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  20. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  1. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  2. Admissibility region for rarefaction shock waves in dense gases

    OpenAIRE

    Zamfirescu, C.; Guardone, A.; Colonna, P.

    2008-01-01

    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic ? is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are physically admissible, namely they obey the second law of thermodynamics and fulfil the speed-orienting condition for mechanical stability. Previous studies have demonstrated that the thermodynami...

  3. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    Science.gov (United States)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  4. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  5. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  6. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  7. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  8. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  9. Observation of a flare-generated shock wave at 9.7 AU by Pioneer 10

    International Nuclear Information System (INIS)

    Dryer, M.; Shea, M.A.; Smart, D.F.; Collard, H.R.; Mihalov, J.D.; Wolfe, J.H.; Warwick, J.W.

    1978-01-01

    The period March 15 to May 15, 1976, was declared in advance to be the internationally recognized Study of Traveling Interplanetary Phenomena Interval II. A variety of ground- and space-based equipment was requested to make coordinated studies during this part of the minimum of solar cycle 20. Following an absence of solar activity for a long period, several type II radio bursts on March 20, 1976, produced by two solar flares behind the east limb heralded a series of solar interplanetary, and terrestrial events. These solar radio astronomical observations were followed by non-Io-associated radio emission from Jupiter and solar wind plasma detection at Pioneer 10 at 9.7 AU of an apparent shock wave on March 30 and April 9, 1976, respectively. In view of the fact that the solar flares on March 20 were essentially at central meridian with respect to Jupiter and Pioneer 10 and also that the sun was extremely inactive prior to that date we consider the circumstantial evidence that at least one solar-flare-generated shock wave propagated to the position of Pioneer 10. The average velocities of this shock wave, together with the inferred type II velocity, support previous observations and theory concerning the rapid deceleration and survival of interplanetary shock waves to distances at least as large as approx.10 AU. It is therefore believed that dissipation (other than that within shocks themselves) plays an insignificant role in shock wave dynamics within the solar wind

  10. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  11. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  12. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...

  13. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  14. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  15. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  16. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy

    Science.gov (United States)

    Loske, Achim M.; Prieto, Fernando E.; Fernández, Francisco; van Cauwelaert, Javier

    2002-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 µs is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 µs using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator.

  17. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kazumichi [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kodama, Tetsuya [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Takahira, Hiroyuki, E-mail: kobakazu@eng.hokudai.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2011-10-07

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  18. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-01-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  19. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Science.gov (United States)

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-10-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  20. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  1. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Science.gov (United States)

    2010-04-01

    ..., control console, imaging/localization system, and patient table. Prior to treatment, the urinary stone is targeted using either an integral or stand-alone localization/imaging system. Shock waves are typically... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that...

  2. Interplanetary shock phenomena beyond 1 AU

    International Nuclear Information System (INIS)

    Smith, E.J.

    1985-01-01

    Attention is given to spatial dependences exhibited by spacecraft measurements obtained between 1 and 30 AU, together with temporal variations occurring between solar activity cycle maxima and minima. At 1-3 AU radial distances, shocks develop in association with the corotating solar wind streams characterizing solar minimum and accelerate solar wind evolution with distance while heating the solar wind and generating waves and turbulence. At solar maximum, shocks are observed more frequently at 1 AU but still in association with transient solar events; acceleration leading to energetic storm particles is observed both within and beyond 1 AU. The superimposed effect of large numbers of intense shocks may be responsible for the solar cycle modulation of galactic cosmic rays. 77 references

  3. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  4. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  5. Electro-acoustic shock waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  6. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  7. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  8. Flow features that arise due to the interaction of a plane shock wave with concave profiles

    CSIR Research Space (South Africa)

    MacLucas, David A

    2012-10-01

    Full Text Available The focus of the author's thesis was the aerodynamic flow field that develops as a result of the interaction of a moving plane shock wave with concave profiles. In this presentation, he discusses some of the interesting flow phenomena that arise...

  9. Analysis of Z Pinch Shock Wave Experiments

    International Nuclear Information System (INIS)

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  10. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  11. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  12. State-in-the-art of applications of shock wave research and its future; Shogekiha no oyo gijutsu no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    1999-03-15

    A shock wave appears when the release of accumulated energy is instantaneous. For instance, it accompanies gunpowder explosion, electric discharge, laser beam convergence, collision of high-speed objects, release of high-pressure gas, and supersonic flight. The shock wave research center of Institute of Fluid Science, Tohoku University, is engaged in researches to elucidate the basics of various shock wave phenomena and to apply the fruit to engineering, science, and medicine. In this report, some examples of recent application studies at the center are described, and the trend of shock wave researches in the future is introduced. The ultimate state of the stagnation point of a nozzle flow simulating a reentry into the atmosphere is produced by shock wave compression in a free piston shock tube which is a ground-borne experimental apparatus. Los Alamos National Laboratory, U.S., succeeded in generating metallic hydrogen of a crystalline structure by subjecting liquid hydrogen to shock wave compression, in which effort a two-stage light gas gun augmented with an accelerator was operated. A high-performance two-stage light gas gun can simulate on the ground a collision of space debris in a high vacuum. Other researches involve the elucidation of the mechanism of sonic noise. (NEDO)

  13. Resonant ion acceleration by collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Ohsawa, Y.

    1985-01-01

    Resonant ion acceleration ( the ν/sub rho/xΒ acceleration ) in laminar magnetosonic shock waves is studied by theory and simulation. Theoretical analysis based on a two-fluid model shows that, in laminar shocks, the electric field strength in the direction of the wave normal is about (m/sub i/m/sub e/) 1 2 times large for quasi-perpendicular shocks than that for the quasi-parallel shocks, which is a reflection of the fact that the width of quasi-perpendicular shocks is much smaller than that of the quasi-parallel shocks. Trapped ions can be accelerated up to the speed about ν/sub A/(m/sub i/m/sub e/) 1 2(M/sub A/-1) 3 2 in quasi-perpendicular shocks. Time evolution of self-consistent magnetosonic shock waves is studied by using a 2-12 dimensional fully relativistic, fully electromagnetic particle simulation with full ion and electron dynamics. Even a low-Mach-number shock wave can significantly accelerate trapped ions by the ν/sub rho/xΒ acceleration. The resonant ion acceleration occurs more strongly in quasi-perpendicular shocks, because the magnitude of this acceleration is proportional to the electric field strength

  14. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  15. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  16. ShockWave science and technology reference library

    CERN Document Server

    2007-01-01

    This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetration. Of the eight chapters in this volume three chapters survey recent, exciting experimental advances in - ultra-short shock dynamics at the atomic and molecular scale (D.S. More, S.D. Mcgrane, and D.J. Funk), - Z accelerator for ICE and Shock compression (M.D. Knudson), and - failure waves in glass and ceramics (S.J. Bless and N.S. Brar). The subsequent four chapters are foundational, and cover the subjects of - equation of state (R. Menikoff), - elastic-plastic shock waves (R. Menikoff), - continuum plasticity (R. M. Brannon), and - numerical methods (D. J. Benson). The last chapter, but not the least, describes a tour de force illustration of today’s computing power in - modeling heterogeneous reactive solids at the grain scale (M.R. Baer). All chapters a...

  17. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  18. Microgravity Experiment: The Fate of Confined Shock Waves

    Science.gov (United States)

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  19. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  20. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  1. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  2. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  3. On the interplay between cosmological shock waves and their environment

    Science.gov (United States)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  4. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  5. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  6. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  7. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  8. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    Science.gov (United States)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  9. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  10. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  11. Interaction of rippled shock wave with flat fast-slow interface

    Science.gov (United States)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  12. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  13. Multi-layer protective armour for underwater shock wave mitigation

    OpenAIRE

    Ahmed Hawass; Hosam Mostafa; Ahmed Elbeih

    2015-01-01

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected p...

  14. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  15. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    Science.gov (United States)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  16. Shock wave convergence in water with parabolic wall boundaries

    International Nuclear Information System (INIS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  17. State of the art extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, L.B. (State Univ. of New York at Stony Brook, Stony Brook, NY (US)); Harrison, L.H.; McCullough, D.L. (Wake Forest Univ. Medical Center, Winston-Salem, NC (US))

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL.

  18. State of the art extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Kandel, L.B.; Harrison, L.H.; McCullough, D.L.

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL

  19. Propagation and dispersion of shock waves in magnetoelastic materials

    Science.gov (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  20. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  1. Waves and Instabilities in Collisionless Shocks

    Science.gov (United States)

    1984-04-01

    occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles

  2. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    Science.gov (United States)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  3. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  4. Shock wave equation of state of powder material

    OpenAIRE

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A model is proposed to predict the following quantities for powder materials compacted by shock waves: the pressure, the specific volume, the internal energy behind the shock wave, and the shock-wave velocity U-s. They are calculated as a function of flyerplate velocity u(p) and initial powder specific volume V-00. The model is tested on Cu, Al2024, and Fe. Calculated U-s vs u(p) curves agree well with experiments provided V-00 is smaller than about two times the solid specific volume. The mo...

  5. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  6. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  7. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  8. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  9. Incidence of cavitation in the fragmentation process of extracorporeal shock wave lithotriptors

    Science.gov (United States)

    Rink, K.; Delacrétaz, G.; Pittomvils, G.; Boving, R.; Lafaut, J. P.

    1994-05-01

    The fragmentation mechanism occurring in extracorporeal shock wave lithotripsy (ESWL) is investigated using a fiber optic stress sensing technique. With our technique, we demonstrate that cavitation is a major cause of fragmentation in ESWL procedures. When a target is placed in the operating area of the lithotriptor, two shock waves are detected. The first detected shock wave corresponds to the incoming shock wave generated by the lithotriptor. The second shock wave, detected some hundreds of microseconds later, is generated in situ. It results from the collapse of a cavitation bubble, formed by the reflection of the incoming shock wave at the target boundary. This cavitation induced shock wave generates the largest stress in the target area according to our stress sensing measurements.

  10. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  11. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    Directory of Open Access Journals (Sweden)

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  12. Evolution of Shock Waves in Silicon Carbide Rods

    International Nuclear Information System (INIS)

    Balagansky, I. A.; Balagansky, A. I.; Razorenov, S. V.; Utkin, A. V.

    2006-01-01

    Evolution of shock waves in self-bonded silicon carbide bars in the shape of 20 mm x 20 mm square prisms of varying lengths (20 mm, 40 mm, and 77.5 mm) is investigated. The density and porosity of the test specimens were 3.08 g/cm3 and 2%, respectively. Shock waves were generated by detonating a cylindrical shaped (d=40 mm and 1=40 mm) stabilized RDX high explosive charge of density 1.60 g/cm3. Embedded manganin gauges at various distances from the impact face were used to monitor the amplitude of shock pressure profiles. Propagation velocity of the stress pulse was observed to be equal to the elastic bar wave velocity of 11 km/s and was independent of the amplitude of the impact pulse. Strong fuzziness of the stress wave front is observed. This observation conforms to the theory on the instability of the shock formation in a finite size elastic body. This phenomenon of wave front fuzziness may be useful for desensitization of heterogeneous high explosives

  13. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a t...

  14. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  15. Fundamental structure of steady plastic shock waves in metals

    OpenAIRE

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic–plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large de...

  16. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  17. Experiments on ion-acoustic shock waves in a dusty plasma

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Dust ion-acoustic shock waves have been investigated experimentally in a homogeneous unmagnetized dusty double-plasma device. An initial compressional wave with a ramp shape steepens to form oscillations at the leading part due to dispersion. The oscillation develops to a train of solitons when the plasma contains no dust grain. The wave becomes an oscillatory shock wave when the dust is mixed in the plasma and the density of the dust grains is smaller than a critical value. When the dust density is larger than the critical value, only steepening is observed at the leading part of the wave and a monotonic shock structure is observed. The velocity and width of the shock waves are measured and compared with results of numerical integrations of the modified Korteweg-de Vries-Burgers equation

  18. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  19. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  20. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  1. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  2. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  3. Ion-acoustic shock waves with negative ions in presence of dust particulates

    International Nuclear Information System (INIS)

    Sarma, Arun; Nakamura, Y.

    2009-01-01

    Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration 'r c ' negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to 'r c ' both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.

  4. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  5. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  6. [Renal hematomas after extracorporeal shock-wave lithotripsy (ESWL)].

    Science.gov (United States)

    Pastor Navarro, Héctor; Carrión López, Pedro; Martínez Ruiz, Jesús; Pastor Guzmán, José Ma; Martínez Martín, Mariano; Virseda Rodríguez, Julio A

    2009-03-01

    The use of fragmentation due to shock- waves as a treatment of urinary stone was one of the most important therapeutics findings in the history of urology. It's the first election treatment for most of the calculus at renal and urethral location due to the fact that it is a low invasive treatment and it has a few number of complications, but this method also has a few negative side effects, it can caused a more or less important traumatic lesion at the organs which crosses the shock-waves, including the kidney where it can caused a small contusion or renal hematoma with different resolution and treatment. We reviewed 4815 extracorporeal shock-wave lithotripsy that we performed in our department in which we found six cases with subcapsular and perirenal hematoma which we followed up and treated. After the urological complications (pain, obstruction and infection) the renal and perirenal hematic collections are the most frequent adverse effects of shock-waves used in lithotripsy, these are related to the power of energy used and patient age. Between the years 1992-2007 we performed 4.815 extracorporeal shock-wave lithotripsy finding seven cases of severe hematoma, less then 1%. Treatment of these complications is usually not aggressive though sometimes it is necessary to perform surgical drainage and even nephrectomy.

  7. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  8. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  9. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  10. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  11. Various continuum approaches for studying shock wave structure in carbon dioxide

    Science.gov (United States)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  12. Two-zone elastic-plastic single shock waves in solids.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  13. Shock wave treatment in medicine; J. Biosci. 30 269–275

    Indian Academy of Sciences (India)

    Unknown

    269. Keywords. Acoustical energy; electromagnetic field; piezoelectric effect; shock wave ... life without being noticed. The sound of ... A typical pressure profile of a shock wave in the focus of an ... shock waves create low side effects on the way through muscles, fat- ... luation of the ESWT for orthopedic diseases many clini-.

  14. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  15. Direct measurement technique for shock wave velocity with irradiation drive

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  16. Plasma waves in the Earth's foreshock, bow shock, and magnetosheath

    International Nuclear Information System (INIS)

    Onsager, T.G.

    1988-01-01

    The research presented in this dissertation is a detailed analysis of electrostatic waves in the Earth's foreshock, bow shock, and magnetosheath. The wave modes measured in these regions, the possible generation mechanisms, and the process which drive the plasma to its unstable state are investigated. The measurements used in this study were obtained from the plasma wave receiver, the particle instrument, and the magnetometer on board the Active Magnetospheric Particle Tracer Explorer (AMPTE) Ion Release Module (IRM). Electron beam mode waves have been identified in the Earth's foreshock. A technique is developed which allows the rest frame frequency and wave number of the electron beam mode waves to be determined from the measurements. The experimentally determined values are compared with theoretical predictions, and approximate limits are put on the beam temperatures. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler shifted ion acoustic waves, yet below the Langmuir frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. This identification is based on the measured frequencies and electric field polarization directions. Data from 45 bow shock crossings are then used to investigate possible correlations between the electron beam mode waves and the near shock plasma parameters. The best correlations are found with Alfven Mach number and electron beta. Possible mechanism which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results

  17. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    International Nuclear Information System (INIS)

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  18. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  19. Fundamental structure of steady plastic shock waves in metals

    Science.gov (United States)

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  20. Fundamental structure of steady plastic shock waves in metals

    International Nuclear Information System (INIS)

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  1. Data collected by the Shock Wave Data Center

    International Nuclear Information System (INIS)

    Van Thiel, M.

    1976-01-01

    The Shock Wave Data Center of the Lawrence Livermore Lab collects and disseminates P.V.E. data obtained with shock waves. It has been in existence since 1964. An extensive number of papers reporting shock data had become available by that time. This was so in spite of the fact that the technology was developed only during the 2nd World War. Collection and partial evaluation of this data was therefore of value to facilitate its use by our laboratory and others who were involved with science and engineering in the high pressure field. The pressure range of the data collected is quite extensive and extends from 1 MPa to 1 TPa. One very important difference between shock wave compression data and those obtained with static presses must be emphasized, since it is often not fully appreciated. The pressure-volume locus of shock wave states (Hugoniot), which is obtained by passing increasingly stronger shocks into samples with the same initial state, rapidly increases in temperature as the shocks get stronger and the pressure and compression get higher. As a consequence, this Hugoniot locus must have a lower compressibility than isotherms obtained under static conditions. In fact, if porous or otherwise expanded samples are used, states at or near the critical region of metals can be obtained if the shock pressure is allowed to decrease in a controlled manner. Such pressure release measurements have so far only been utilized to a limited extent since the compression process has been of primary interest to workers in the field. As the use of this data in the energy field increases, however, such data will be needed more often. Applications are discussed that involve transient high pressure processes, practically all of which involve both compressed and expanded states

  2. Extracorporeal shock wave lithotripsy of biliary and pancreatic stones

    NARCIS (Netherlands)

    R. den Toom (Rene)

    1993-01-01

    textabstractThe aim of the study was to answer the following questions: Is extracorporeal shock wave lithotripsy for gallbladder stones a safe and effective therapy? (Chapter 2) Is simultaneous treatment with extracorporeal shock wave lithotripsy and the solvent methyl te.rt-butyl ether feasible,

  3. Temperature maxima in stable two-dimensional shock waves

    International Nuclear Information System (INIS)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-01-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society

  4. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  5. Phenomena of charged particles transport in variable magnetic fields

    International Nuclear Information System (INIS)

    Savane, Sy Y.; Faza Barry, M.; Vladmir, L.; Diaby, I.

    2002-11-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock. (author)

  6. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  7. Dust acoustic solitary and shock waves in strongly coupled dusty ...

    Indian Academy of Sciences (India)

    between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves. Also shock ... et al have studied the effect of nonadiabatic dust charge variation on the nonlinear dust acoustic wave with ..... Figure 5 presents the border between oscillatory- and monotonic-type shock waves as functions of ...

  8. Development of a Novel Shock Wave Catheter Ablation System

    Science.gov (United States)

    Yamamoto, H.; Hasebe, Yuhi; Kondo, Masateru; Fukuda, Koji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    Although radio-frequency catheter ablation (RFCA) is quite effective for the treatment tachyarrhythmias, it possesses two fundamental limitations, including limited efficacy for the treatment of ventricular tachyarrhythmias of epicardial origin and the risk of thromboembolism. Consequently, new method is required, which can eradicate arrhythmia source in deep part of cardiac muscle without heating. On the other hand, for a medical application of shock waves, extracorporeal shock wave lithotripter (ESWL) has been established [1]. It was demonstrated that the underwater shock focusing is one of most efficient method to generate a controlled high pressure in a small region [2]. In order to overcome limitations of existing methods, we aimed to develop a new catheter ablation system with underwater shock waves that can treat myocardium at arbitrary depth without causing heat.

  9. Arrhythmia during extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Zeng, Z R; Lindstedt, E; Roijer, A; Olsson, S B

    1993-01-01

    A prospective study of arrhythmia during extracorporeal shock wave lithotripsy (ESWL) was performed in 50 patients, using an EDAP LT01 piezoelectric lithotriptor. The 12-lead standard ECG was recorded continuously for 10 min before and during treatment. One or more atrial and/or ventricular ectopic beats occurred during ESWL in 15 cases (30%). The occurrence of arrhythmia was similar during right-sided and left-sided treatment. One patient developed multifocal ventricular premature beats and ventricular bigeminy; another had cardiac arrest for 13.5 s. It was found that various irregularities of the heart rhythm can be caused even by treatment with a lithotriptor using piezoelectric energy to create the shock wave. No evidence was found, however, that the shock wave itself rather than vagal activation and the action of sedo-analgesia was the cause of the arrhythmia. For patients with severe underlying heart disease and a history of complex arrhythmia, we suggest that the ECG be monitored during treatment. In other cases, we have found continuous monitoring of oxygen saturation and pulse rate with a pulse oximeter to be perfectly reliable for raising the alarm when depression of respiration and vaso-vagal reactions occur.

  10. Shock wave and flame front induced detonation in a rapid compression machine

    Science.gov (United States)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  11. Shock waves in collective field theories for many particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-10-01

    We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.

  12. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  13. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  14. Shock wave interactions with detonable clouds

    International Nuclear Information System (INIS)

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  15. Nonlinear reflection of shock shear waves in soft elastic media.

    Science.gov (United States)

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  16. Dispersive shock waves in nonlinear and atomic optics

    Directory of Open Access Journals (Sweden)

    Kamchatnov Anatoly

    2017-01-01

    Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.

  17. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  18. Particle acceleration and shock wave structure

    International Nuclear Information System (INIS)

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  19. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.

    Science.gov (United States)

    Furia, John P

    2008-03-01

    High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P wave therapy and control groups were 12 and 0 (P wave therapy group than in the control group (P wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.

  20. Dynamics of ionizing shock waves on adiabatic motions of gases

    International Nuclear Information System (INIS)

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  1. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  2. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  3. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  4. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    Science.gov (United States)

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  5. The Basic Research for Pulverization of Rice Using Underwater Shock Wave by Electric Discharge

    Directory of Open Access Journals (Sweden)

    M Ide

    2016-09-01

    Full Text Available In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level in major developed countries. This reason includes decreasing of diverting rice consumption in Japan and increasing abandonment of cultivation. Therefore, these problems are solved by using rice powder instead of expensive flour, and we manage to increase the food selfsupport rate. Previously, the rice powder is manufactured by two methods. One is dry type, and the other is wet type. The former is the method getting rice powder by running dried rice to rotating metal, and has a problem which that starch is damaged by heat when processing was performed. The latter is performed same method against wet rice, and has a problem which a large quantity of water is used. As a method to solve these problems, an underwater shock wave is used. Shock wave is the pressure wave which is over speed of sound by discharging high energy in short time. Propagating shock wave in water is underwater shock wave. The characters of underwater shock wave are long duration of shock wave because water density is uniform, water is low price and easy to get and not heat processing. Thinking of industrialization, the electric discharge is used as the generating source of underwater shock wave in the experiment. As the results, the efficiency of obtaining enough grain size, 100ìm, of rice powder was too bad only using the simple processing using underwater shock wave. Therefore, in Okinawa National College of Technology collaborating with us, obtaining rice powder with higher efficiency by using converged underwater shock wave is the goal of this research. In this research, the underwater shock wave with equal energy of the experimental device of underwater shock wave is measured by the optical observation. In addition, the appearance converging underwater shock wave is simulated by numerical analysis, and the pressure appreciation rate between the first wave and converged

  6. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  7. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    Science.gov (United States)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  8. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    Science.gov (United States)

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  9. Molecular dynamics simulation of shock-wave loading of copper and titanium

    Science.gov (United States)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  10. Well-defined EUV wave associated with a CME-driven shock

    Science.gov (United States)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1

  11. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  12. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  13. Improvement of an installation to generate shock waves

    Energy Technology Data Exchange (ETDEWEB)

    1974-04-29

    An installation to generate a shock wave in a fluid layer is described. A water projectile is moved at a high velocity. It leaves behind an underpressure in which the adjacent water implodes, therby generating the desired shock wave. The installation is characterized by a tube-shaped hull in which a piston can move freely. One side of the hull is connected to the pressure-generator chamber of the piston. (6 claims)

  14. Some recent advances of shock wave physics research at the Laboratory for Shock Wave and Detonation Physics Research

    CERN Document Server

    Jing Fu Qian

    2002-01-01

    Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...

  15. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  16. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  17. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-11-25

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.

  18. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    Science.gov (United States)

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  19. Experimental observation of azimuthal shock waves on nonlinear acoustical vortices

    International Nuclear Information System (INIS)

    Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois

    2009-01-01

    Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.

  20. Characteristics of shock waves in neutrino-thick medium of collapsing stars

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Murzina, M.V.

    1989-01-01

    Hugoniot relations for shock waves in neutrino-thick medium of colapsing stars are formulated. The equations obtained are solved numerically for rather wide range of shock wave velocities (D=(1,3,5)x10 9 cm/s) as well as for values of medium physical parameters against the shock wave front ( temperature T=(3,5,10)x1 -9 K; medium degree Θ 0 =n n /n p =10;100; at ρ 0 =10 11 g/cm 3 density).Presence of neutrino radiation is shown to result in matter essential deneutronization (up to Θ=10-30) at shock wave passage though contribution of leptonic component into the matter main characteristics (pressure, internal energy, temperature etc.) is rather small. 17 refs.; 3 figs.; 3 tabs

  1. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  2. Investigation of the Propagation Characteristics of Underwater Shock Waves in Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-01-01

    Full Text Available During the first-stage project of the main channel of Ningbo-Zhoushan Port’s Shipu Harbor, underwater shock waves were monitored. By analyzing a typical measured pressure time history curve, the characteristics of underwater shock waves in an engineering context were obtained. We obtained a traditional exponential attenuation formula for underwater shock waves based on the measured data, simplified the model of underwater drilling blasting based on engineering practice, deduced a revised formula for underwater shock wave peak overpressure on the basis of dimensional analysis, established a linear fitting model, and obtained the undetermined coefficients of the revised formula using a linear regression analysis. In addition, the accuracies of the two formulas used to predict underwater shock wave peak overpressure and the significance order of influence and influence mechanism of factors included in the revised formula on the underwater shock wave peak overpressure were discussed.

  3. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  4. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  5. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  6. Dust acoustic shock wave generation due to dust charge variation in ...

    Indian Academy of Sciences (India)

    to generation of shock wave in the dusty plasma described as collisionless shock wave. ... Trans- forming to the frame of the wave with velocity λ ζ = x λd -λωpdt =X -λT. (2) .... Jd =0, there exists steady state (apart from the initial state) defined.

  7. Phase Plane Analysis Method of Nonlinear Traffic Phenomena

    Directory of Open Access Journals (Sweden)

    Wenhuan Ai

    2015-01-01

    Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.

  8. Nonlinearity, Conservation Law and Shocks

    Indian Academy of Sciences (India)

    Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.

  9. Collisions on relativistic nuclei: shock waves

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1976-01-01

    Experiments are analysed which indicate the possible generation of shock waves in collisions of two nuclei. Another interpretation of these data is proposed and the concerned new experiments are discussed

  10. Nonlinear low frequency (LF) waves - Comets and foreshock phenomena

    Science.gov (United States)

    Tsurutani, Bruce T.

    1991-01-01

    A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.

  11. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  12. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  13. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  14. CALCULATION OF SHOCK-WAVE PULSE EFFECT ON OUTSTRETCHED SPINE

    Directory of Open Access Journals (Sweden)

    G. A. Esman

    2011-01-01

    Full Text Available Combined effects of a shock-wave pulse method and mechanotherapy on a spine is considered as an alternative to conservative and operative methods.Methodology for spinal disease treatment while applying a shock-wave therapy is characterized by the following specific features. Firstly, it is necessary to limit a penetration depth of shock pulses in a biological object in order to exclude damage to a spinal cord. Secondly, it is necessary to limit an energy flux density:Imax≤ 0,280 J∕m2and  pressure in focus:PFmax≤ 0,040 MPа,in order to exclude traumatizing of spinal tissue and only stimulate blood  circulation and metabolic processes in them.Where an acceptable value of the force acting on the inter-vertebral disc while a shock wave is passing is determined by the following formula: F max = PFmaxS = PFmax πr02 = 0,040 ∙106 ∙3,14 ∙(8∙10-32 = 9 N, where r0 – a focal spot radius, mm.Mechanotherapy is applied in combination with the shock-wave therapy and it presupposes the following: an outstretching force acts created in a longitudinal direction of the spine and it is directed across a vertebral column, whose value usually ranges from 50 to 500 N.   

  15. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  16. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  17. Spatiotemporal dynamics of underwater conical shock wave focusing

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Lukeš, Petr; Akiyama, H.; Hosseini, H.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 685-690 ISSN 0938-1287 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Underwater shock wave focusing * multichannel * electrohydraulic discharge * conical shock wave reflection * medical application Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.107, year: 2016 https://link.springer.com/article/10.1007/s00193-016-0703-7

  18. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  19. Shock waves: a new physical principle in medicine.

    Science.gov (United States)

    Brendel, W

    1986-01-01

    Shock wave therapy of kidney- and gallstones, i.e. extracorporeal shock wave lithotripsy (ESWL), is a new, noninvasive technique to destroy concrements in the kidney, the gallbladder and in the ductus choledochus. This method was developed by the Dornier Company, Friedrichshafen, FRG, and tested in animal experiments at the Institute for Surgical Research of the University of Munich. In the meantime, kidney lithotripsy has gained world-wide acceptance. More than 60,000 patients suffering from urolithiasis have been treated successfully, what made surgical removal of their kidney stones obsolete. Gallstone lithotripsy is, however, still at the very beginning of clinical trial. Lithotripsy of gallbladder stones will have to be applied in combination with urso- or chenodesoxycholic acid in order to obtain complete dissolution of the fragments. Potential hazards to living tissues are briefly mentioned. Since the lung is particularly susceptible, shock waves must enter the body at an angle which ensures that lung tissue is not affected.

  20. History of Shock Waves, Explosions and Impact A Chronological and Biographical Reference

    CERN Document Server

    Krehl, Peter O. K

    2009-01-01

    This unique and encyclopedic reference work charts the evolution of the physics of shock waves and detonations from the earliest investigations into percussion and impact phenomena right up to the most recent groundbreaking research in the field. The history of this long and complex process is first reviewed in a general survey that encompasses everything from the earliest observations and interpretations of puzzling high-rate dynamic phenomena associated with natural and man-made explosions to a discussion of the merits of modern numerical computer simulations. The subject is then treated in more detail and in chronological order in the central section of the book, while also being richly illustrated in form of a picture gallery. The bibliographic index provides 122 short biographies of eminent researchers who have contributed to the field. Further references for biographical sources are given, and both name and subject indices (with over 4500 and 2700 entries, respectively) are provided. "This book is of tr...

  1. Transonic shock wave. Boundary layer interaction at a convex wall

    NARCIS (Netherlands)

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  2. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  3. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  4. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  5. Shock wave physics group (M-6)

    International Nuclear Information System (INIS)

    Morris, C.E.

    1981-01-01

    Experimental facilities and activities of the shock wave physics group at LASL are described. The facilities include a compressed gas gun, two-stage gas gun, high explosive facilities, and a pulsed megagauss field facility

  6. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  7. Rayleigh-Taylor stability for a shock wave-density discontinuity interaction

    International Nuclear Information System (INIS)

    Fraley, G.S.

    1981-01-01

    Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given

  8. ULF Waves Upstream from Planetary Bow Shocks: Application to the Interball-Tail Observations at the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Rauch, J.L.; Klimov, S.; Nozdrachev, M.; Romanov, S.; Savin, S.; Skalsky, A.; Blecki, J.; Juchniewicz, J.; Amata, E.

    1999-01-01

    One of the outstanding problems in solar system plasma physics is the morphology of planetary and cometary foreshocks. A large variety of electron and ion velocity distribution functions, as well as electrostatic and electromagnetic waves phenomena, are indeed currently observed in these regions located upstream from, and magnetically connected to, bow shocks. Foreshocks being complex and highly dynamic, it is not easy to get a comprehensive description of them. Nevertheless, simple geometrical considerations can be of help to order foreshock structures. In light of the great number of results obtained in planetary foreshocks, which are briefly reviewed, we present an ongoing study of the upstream waves observed by the INTERBALL-TAIL magnetometers in the Ultra Low Frequency range. (author)

  9. Evolution of wave patterns and temperature field in shock-tube flow

    Science.gov (United States)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  10. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  11. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  12. The Shock Wave in the ionosphere during an Earthquake

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2016-01-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud.

  13. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  14. EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AS ...

    African Journals Online (AJOL)

    Objective To evaluate extracorporeal shock wave lithotripsy (ESWL) as a monotherapy for urolithiasis in patients with solitary kidney and to determine the factors that may affect its results. Patients and Methods Using the Dornier MFL 5000 lithotriptor, 106 patients with solitary kidney (80 men and 26 women) were treated for ...

  15. Biological effects of tandem shock waves demonstrated on magnetic resonance

    Czech Academy of Sciences Publication Activity Database

    Beneš, J.; Zeman, J.; Poučková, P.; Zadinová, M.; Šunka, Pavel; Lukeš, Petr

    Roč. 113, č. 6 ( 2012 ), s. 335-338 ISSN 0006-9248 R&D Projects: GA ČR GA202/09/1151 Institutional research plan: CEZ:AV0Z20430508 Keywords : electrical discharges in water * focused shock waves * cavitations * tandem shock waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.472, year: 2012

  16. Decay of a laser generated shock wave in an aluminium target

    International Nuclear Information System (INIS)

    Werdiger, M.

    1993-09-01

    When a shock wave arrives at the near surface of a solid material, a radical and fast change occurs in the reflection properties of the material. The phenomenon is used in the present work in order to develop a new way to measure the transit time of a shock wave in a target. A 10 milliwatt He:Ne laser is directed toward the rear surface of the target. The reflected beam arrives at a photo-diode with a fast rise time of 150 psec which detects the instant of the change in the reflection. This technique, called 'continuous back lightning', is used in experiments with aluminium foil thickness in the range of 40μm ≤x≥ 1000μm. The shock wave is induced by a laser pulse of an intensity of 3*10 13 W/cm 2 . The results show two main physical regimes: in the first one 40μ ≤x≥ 210μm, there is a constant shock wave velocity which in our experiments was measured to be (12.81±0.67)km/s. In the second range of the thickness where 300μm there is a decay of the shock velocity. For x ≥ 210μm the geometry is one dimensional for our experimental conditions, while for x ≥ 300μm the 1-D geometry changes to 2 dimensional (2-D) geometry. The 2-D shock wave decay asymptotically (x→∞ to an acoustic wave. shock wave is described by a pressure scaling as x -n (n is a positive constant). The phenomenological equation of the state is taken to be P=A**u s + B*u s 2 +Bu s , where P is the pressure, u s - the shock velocity, A and B are constants. Applying our experimental results to the solution of the differential equation in this model A*x 2 ± B*x=C*x -n yields a value of n in the range 3.16 ≤n≥ 3.51. This pressure scaling law agrees with the self-similar solution of a concentrated impact on a surface between two media. This situation is well simulated by the laser deposition energy on a metal surface. In the experiment a 5% accuracy is achieved. Such a good accuracy has not been achieved so far in a laser induced shock-wave measurements in solids. (author). 52 refs

  17. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  18. Cell detachment method using shock wave induced cavitation

    NARCIS (Netherlands)

    Junge, L.; Junge, L.; Ohl, C.D.; Wolfrum, B.; Arora, M.; Ikink, R.

    2003-01-01

    The detachment of adherent HeLa cells from a substrate after the interaction with a shock wave is analyzed. Cavitation bubbles are formed in the trailing, negative pressure cycle following the shock front. We find that the regions of cell detachment are strongly correlated with spatial presence of

  19. Formation and decay of laser-generated shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  20. A model for precursor structure in supercritical perpendicular, collisionless shock waves

    International Nuclear Information System (INIS)

    Sherwell, D.; Cairns, R.A.

    1978-01-01

    Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jsub(y)(x) of trapped ions perpendicular to Bsub(z)(x) and the wave velocity Vsub(x). Suitable ions are found immediately upstream of perpendicular collisionless shock waves and these are coincident with the often observed 'foot' in magnetic field profiles of moderately supercritical shocks. The theory is applied to previous experiments by modelling Jsub(y)(x), where Jsub(y)(x) is observed, the profiles in the foot are reproduced and explained. Insight into a number of features of fast shocks is obtained. (author)

  1. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading

    Directory of Open Access Journals (Sweden)

    Binqiang Luo

    2015-06-01

    Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.

  2. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  3. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  4. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  5. Excitation of intense shock waves by soft X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Branitskij, A V; Fortov, V E; Danilenko, K N; Dyabilin, K S; Grabovskij, E V; Vorobev, O Yu; Lebedev, M E; Smirnov, V P; Zakharov, A E; Persyantsev, I V [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm{sup 2}, a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs.

  6. Excitation of intense shock waves by soft X-radiation

    International Nuclear Information System (INIS)

    Branitskij, A.V.; Fortov, V.E.; Danilenko, K.N.; Dyabilin, K.S.; Grabovskij, E.V.; Vorobev, O. Yu.; Lebedev, M.E.; Smirnov, V.P.; Zakharov, A.E.; Persyantsev, I.V.

    1996-01-01

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm 2 , a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs

  7. Observation of interaction of shock wave with gas bubble by image converter camera

    Science.gov (United States)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  8. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  9. EFFECT OF SHOCK WAVE THERAPYVERSUS CORTICOSTEROID INJECTION IN MANAGEMENT OFKNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Elerian

    2016-04-01

    Full Text Available Background: knee Osteoarthritis is the most common cause of musculoskeletal pain and disability. Shockwaves have been used as an alternative treatment for musculoskeletal disorders; intra-articular injection of steroid is a common treatment for osteoarthritis of the knee. This study aimed to investigate the efficacy of Shock wave therapy versus Corticosteroid intra articular injection in case of knee osteoarthritis. Methods: Sixty patients were diagnosed mild to moderate knee osteoarthritis; they were included in the study. Their ages were 43:65 years with mean age 50 ± 3.5 years. Patients were divided randomly into three equal groups, group (A received shock wave therapy, group (B received two intra-articular injections of corticosteroid at 1-month intervals and group (C received sham shock wave. The outcome measurements were Western Ontario and McMaster Universities arthritis index (WOMAC values, knee ROM, and pain severity using the visual analogue scale (VAS were recorded. The patients were evaluated for these parameters before allocated in their groups then after 1, 2, and 6months later. Results: compared to sham group there were significant improvement of VAS and ROM of shock wave group and corticosteroid injection group than sham (placebo group (p<0.000, (p<0.006, and 0.02 respectively. Furthermore there was significant improve of shock wave group than corticosteroid injection group where p was <0.000 for VAS, ROM and (WOMAC. Conclusion: The results of this study suggested that shock wave therapy may provide effective modality for relieving pain, increase Range of motion and improve function in knee osteoarthritis patient than intra articular corticosteroid injection.

  10. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  11. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    Science.gov (United States)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  12. Shock wave compression and metallization of simple molecules

    International Nuclear Information System (INIS)

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  13. Time-history of shock waves overrunning three-dimensional, cylindrical models

    International Nuclear Information System (INIS)

    Langheim, H.; Loeffler, E.

    To investigate the time-history of the Mach-stem of a shock wave overrunning a nuclear power plant shadowgraphs of threedimensional, cylindrical models with a globe cap were analysed. These models simulating the containment building differ only in the height of the cylinder. They were exposed with shock waves of shock strengths of 1.2 and 1.4, being equal to a peak reflexion overpressure of 0.45 resp. 1.0 bar. The time-histories of the Mach-stem differ only slightly. For this reason it can be stated that these time-histories are independent of the shock strength and the height of the cylinder in the prescribed range of the research program. In comparison with values given in the literature great differences were found at the rear side near the stagnation point of the globe cap resp. the stagnation line of the cylinder. The measured time for overrunning of the shock wave is the same as the time of arrival of the pressure-pulse at the interesting point of the model. This knowledge is a necessary premise for pressure-measurings from which the total load of structure can be determined. (orig.) [de

  14. Shock waves in binary oxides memristors

    Science.gov (United States)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  15. Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.

    Science.gov (United States)

    Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong

    2017-10-01

    Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.

  16. Shock drift acceleration in the presence of waves

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  17. Experimental analysis of shock wave effects in copper

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  18. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  19. Shock wave response of ammonium perchlorate single crystals to 6 GPa

    International Nuclear Information System (INIS)

    Yuan, G.; Feng, R.; Gupta, Y. M.; Zimmerman, K.

    2000-01-01

    Plane shock wave experiments were carried out on ammonium perchlorate single crystals compressed along [210] and [001] orientations to peak stresses ranging from 1.2 to 6.2 GPa. Quartz gauge and velocity interferometer techniques were used to measure the elastic and plastic shock wave velocities, and stress and particle velocity histories in the shocked samples. The measured Hugoniot elastic limit (HEL) was 0.48±0.09 GPa. Above the HEL and up to about 6 GPa, the data show a clear two-wave structure, indicating an elastic-plastic response. Time-dependent elastic precursor decay and plastic wave ramping are discernable and orientation dependent in the low stress data. However, the orientation dependence of the peak state response is small. Hence, data for both orientations were summarized into a single isotropic, elastic-plastic-stress relaxation model. Reasonable agreement was obtained between the numerical simulations using this model and the measured wave profiles. At a shock stress of about 6 GPa and for the time duration and crystal orientations examined, we did not observe any features that may be identified as a sustained chemical reaction or a phase transformation. (c) 2000 American Institute of Physics

  20. Extracorporeal shock wave therapy for treatment of plantar fasciitis

    International Nuclear Information System (INIS)

    Dastgir, N.

    2014-01-01

    Objective: To explore the effect of extracorporeal shock wave therapy in patients with chronic plantar faciitis. Methods: The prospective study was conducted at Department of Orhopaedic, Regional Hospital, Limerick, Ireland from January to December 2004 and comprised 70 heels in 62 patients with chronic plantar fasciitis in whom conventional conservative treatment consisting of non-steroidal anti-inflammatory drugs, heel cup, orthoses and/or shoe modifications, local steroid injections had failed, and they were treated with low energy extracorporeal shock wave therapy. Patients were reviewed at 6, 12 and 24 weeks post treatment. Results: At follow-up there was significant decrease in pain on the visual analogue scale (p<0.027), with significant improvement in pain score (p<0.009) and in functional score (p<0.001). The comfortable walking distance had increased significantly and there were no reported side effects. Conclusion: Extracorporeal shock wave therapy is a new modality providing good pain relief and a satisfactory clinical outcome in patients with chronic plantar fasciitis. (author)

  1. Passive shock wave/boundary layer control of wing at transonic speeds

    Directory of Open Access Journals (Sweden)

    Ling Zhou

    2017-11-01

    Full Text Available At supercritical conditions a porous strip (or slot strip placed beneath a shock wave can reduce the drag by a weaker lambda shock system, and increase the buffet boundary, even may increase the lift. Passive shock wave/boundary layer control (PSBC for drag reduction was conducted by SC(2-0714 supercritical wing, with emphases on parameter of porous/slot and bump, such as porous distribution, hole diameter, cavity depth, porous direction and so on. A sequential quadratic programming (SQP optimization method coupled with adjoint method was adopted to achieve the optimized shape and position of the bumps. Computational fluid dynamics (CFD, force test and oil test with half model all indicate that PSBC with porous, slot and bump generally reduce the drag by weaker lambda shock at supercritical conditions. According to wind tunnel test results for angle of attack of 2° at Mach number M=0.8, the porous configuration with 6.21% porosity results in a drag reduction of 0.0002 and lift–drag ratio increase of 0.2, the small bump configuration results in a drag reduction of 0.0007 and lift–drag ratio increase of 0.3. Bump normally reduce drag at design point with shock wave position being accurately computed. If bump diverges from the position of shock wave, drag will not be easily reduced.

  2. Transonic shock wave. Turbulent boundary layer interaction on a curved surface

    NARCIS (Netherlands)

    Nebbeling, C.; Koren, B.

    1988-01-01

    This paper describes an experimental investigation of a transonic shock wave - turbulent boundary layer interaction in a curved test section, in which the flow has been computed by a 2-D Euler flow method. The test section has been designed such that the flow near the shock wave on the convex curved

  3. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  4. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  5. Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water

    Science.gov (United States)

    Noack, Joachim; Vogel, Alfred

    1995-05-01

    The shock wave emission after dielectric breakdown in water was investigated to assess potential shock wave effects in plasma mediated tissue ablation and intraocular photodisruption. Of particular interest was the dependence of shock wave pressure as a function of distance from the plasma for different laser pulse energies. We have generated plasmas in water with a Nd:YAG laser system delivering pulses of 6 ns duration. The pulses, with energies between 0.4 and 36 mJ (approximately equals 180 times threshold), were focused into a cuvette containing distilled water. The shock wave was visualized with streak photography combined with a schlieren technique. An important advantage of this technique is that the shock position as a function of time can directly be obtained from a single streak and hence a single event. Other methods (e.g. flash photography or passage time measurements between fixed locations) in contrast rely on reproducible events. Using the shock wave speed obtained from the streak images, shock wave peak pressures were calculated providing detailed information on the propagation of the shock. The shock peak pressure as a function of distance r from the optical axis was found to decrease faster than 1/r2 in regions up to distances of 100-150 micrometers . For larger distances it was found to be roughly proportional to 1/r. The scaling law for maximum shock pressure p, at a given distance was found to be proportional to the square root of the laser pulse energy E for distances of 50-200 micrometers from the optical axis.

  6. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  7. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    International Nuclear Information System (INIS)

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  8. Exact solution of planar and nonplanar weak shock wave problem in gasdynamics

    International Nuclear Information System (INIS)

    Singh, L.P.; Ram, S.D.; Singh, D.B.

    2011-01-01

    Highlights: → An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. → The density ahead of the shock is taken as a power of the position from the origin of the shock wave. → For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. → The solution obtained for the planer, and cylindrically symmetric flow is new one. → The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.

  9. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  10. Inaccuracy caused by the use of thermodynamic equation inside shock wave front

    International Nuclear Information System (INIS)

    Sano, Yukio; Abe, Akihisa; Tokushima, Koji; Arathoon, P.

    1998-01-01

    The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm 3 /g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The cause of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves

  11. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    Science.gov (United States)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  12. Experimental and numerical investigations of shock wave propagation through a bifurcation

    Science.gov (United States)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  13. A theoretical analysis of the weak shock waves propagating through a bubbly flow

    International Nuclear Information System (INIS)

    Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol

    2004-01-01

    Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data

  14. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    Science.gov (United States)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  15. Radiation phenomena of plasma waves, 1

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1978-06-01

    The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)

  16. Acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy

    Science.gov (United States)

    Lottati, Itzhak; Eidelman, Shmuel

    1993-07-01

    Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tait equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed results compare very well with the experimental results.

  17. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    Science.gov (United States)

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  18. Characterization and modification of cavitation pattern in shock wave lithotripsy

    Science.gov (United States)

    Arora, Manish; Ohl, Claus Dieter; Liebler, Marko

    2004-01-01

    The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a method to modify the cavitation pattern by timing two consecutive pressure waves at variable delays. It is found that the spatial and temporal dynamics of the cavitation bubble can be varied in large ranges. The ability to control cavitation dynamics allows discussing strategies for improvement of medical and biological applications of shock waves such as cell membrane poration and stone fragmentation.

  19. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    Science.gov (United States)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  20. Undercuts by Laser Shock Forming

    International Nuclear Information System (INIS)

    Wielage, Hanna; Vollertsen, Frank

    2011-01-01

    In laser shock forming TEA-CO 2 -laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 μm were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.

  1. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Science.gov (United States)

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. NUMERICAL EXPERIMENTS OF WAVE-LIKE PHENOMENA CAUSED BY THE DISRUPTION OF AN UNSTABLE MAGNETIC CONFIGURATION

    International Nuclear Information System (INIS)

    Wang Hongjuan; Shen Chengcai; Lin Jun

    2009-01-01

    The origin of the Moreton wave observed in the chromosphere and the EIT wave observed in the corona during the eruption remains an active research subject. We investigate numerically in this work the evolutionary features of the magnetic configuration that includes a current-carrying flux rope, which is used to model the filament, after the loss of equilibrium in the system takes place in a catastrophic fashion. Rapid motions of the flux rope following the catastrophe invoke the velocity vortices behind the rope, and may also invoke slow- and fast-mode shocks in front of the rope. The velocity vortices at each side of the flux rope propagate roughly horizontally away from the area where they are produced, and both shocks expand toward the flank of the flux rope. The fast shock may eventually reach the bottom boundary and produce two echoes moving back into the corona, but the slow one and the vortices totally decay somewhere in the lower corona before arriving of the bottom boundary. The interaction of the fast shock with the boundary leads to disturbance that accounts for the Moreton wave observed in Hα, and the disturbance in the corona caused by the slow shock and the velocity vortices should account for the EIT wave whose speed is about 40% that of the Moreton wave. The implication of these results to the observed correlation of the type II radio burst to the fast- and the slow-mode shocks and that of EIT waves to coronal mass ejections and flares has also been discussed.

  3. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  4. Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?

    Directory of Open Access Journals (Sweden)

    Tobias Kisch

    2015-01-01

    Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.

  5. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading

    International Nuclear Information System (INIS)

    Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao

    2009-01-01

    We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)

  6. Precise optical observation of 0.5-GPa shock waves in condensed materials

    Science.gov (United States)

    Nagayama, Kunihito; Mori, Yasuhito

    1999-06-01

    Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.

  7. Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases

    Directory of Open Access Journals (Sweden)

    Dushyant Nadar

    2000-01-01

    Full Text Available Objective: Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases. Patients and methods: 35 patients received shock wave therapy using Econolith 2000 lithotripter 19 patients had isolated lateral epicondylitis, 12 medical epicondylitis and 4 plantar fascitis. A total of 120 shock waves were given in the first sitting. Each patient received a total of three sittings with a gap of one week between each of them. Results: Based on the patients′ self-assessment, about 75% pain relief was observed in 60% of the patients. Fur-ther, in patients having isolated tendinopathies, the pain relief was better. Conclusion: The study indicated that the application of shock waves is not restricted to the fragmentation of urinary calculi. The shock waves can be effectively used for the pain relief in the common orthopedic diseases. Thus, the urologists can widen the application of lithotripters, in a cost-effective manner, to the other medical speciali-ties.

  8. Eikonal Approximation in AdS/CFT From Shock Waves to Four-Point Functions

    CERN Document Server

    Cornalba, L; Costa, Miguel S; Penedones, Joao; Cornalba, Lorenzo; Costa, M S; Penedones, J; Schiappa, Ricardo

    2007-01-01

    We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.

  9. Grain Destruction in a Supernova Remnant Shock Wave

    Science.gov (United States)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  10. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  11. Experimental investigations on the anomaly of the electric conductivity in magnetohydrodynamic shock waves

    International Nuclear Information System (INIS)

    Zeyer, G.

    1975-01-01

    In the present work results of experimental investigations on the structure of resistive MHD shock waves are reported. The anomaly of the electric conductivity possibly occurring in such shock waves is an effect which has given new insight on the interaction mechanims of a plasma. In a modified Theta-Pinch setup deuterium plasma shock waves perpendicular to the magnetic field are studied with the aid of probes and scattering of laser light to determine the internal magnetic field and electron temperature and density. (GG) [de

  12. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    International Nuclear Information System (INIS)

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  13. Convergence of shock waves between conical and parabolic boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2016-07-15

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  14. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Science.gov (United States)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  15. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  16. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  17. Transmission characteristics of the kinematics of the laser-plasma shock wave in air in compton scattering

    International Nuclear Information System (INIS)

    Hao Dongshan; Xie Hongjun

    2006-01-01

    By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)

  18. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  19. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    International Nuclear Information System (INIS)

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  20. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  1. Second sound shock waves in rotating superfluid helium

    International Nuclear Information System (INIS)

    Torczynski, J.R.

    1983-01-01

    Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case

  2. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  3. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  4. [Extracorporeal shock-wave lithotripsy of gallstones].

    Science.gov (United States)

    Freund, H R; Lebensart, P D; Muggia-Sullam, M; Durst, A L

    1989-08-01

    We performed 16 extracorporeal shock-wave lithotripsies (ESWL) to fragment gallstones in 11 women and 2 men, aged 19 to 57 (mean 41 +/- 10) years, during the past 10 months. Criteria for selection included a history of biliary colic, not more than 3 stones with a total diameter of not more than 30 mm, and a functioning gallbladder. 210 patients were examined, of whom 98 were referred for additional screening by combined ultrasonography and oral cholecystography. This resulted in rejection of another 71 patients due to multiple stones (38%), nonfunctioning gallbladder (22%), calcified stones (12%), stones not visualized in the prone position (9%), excessively large stones (3%) and other reasons (16%). Only 27 patients fulfilled all the criteria. Under epidural or general anesthesia (11 and 2 patients, respectively), we administered 1200-3500 (mean 2250 +/- 750) shock waves at 20-24 KV with the Tripter X1 (Direx, Israel-USA). This is an ultrasound-guided, modular portable, shock-wave generator utilizing underwater high energy spark discharge. Chenodeoxycholic or ursodeoxycholic acid, 10 mg/kg/day, was started 1 week prior to ESWL and continued for 3 months after disappearance of fragments and debris. We encountered skin petechiae in all patients, transient hematuria in 8, mild biliary colic in 1 and a small liver hematoma in 1. To date, 3 patients are free of stones, while in 7 only sludge and tiny fragments are present which we expect to disappear as a result of the litholytic therapy. 3 patients had fragments larger than 5 mm and required a second ESWL. Thus ESWL, which was indicated in only 13% of screened patients, proved to be safe and can be expected to be successful in 75% of selected candidates.

  5. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  7. Compression of interstellar clouds in spiral density-wave shocks

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  8. Flow control for oblique shock wave reflections

    NARCIS (Netherlands)

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  9. Studies on shock phenomena in two-phase flow, (4). Characteristics in channel flow consisting of bubbly mixture and liquid in series

    Energy Technology Data Exchange (ETDEWEB)

    Akagawa, Koji; Fujii, Terushige; Ito, Yutaka; Hiraki, Sei

    1982-04-01

    The research carried out so far was related to the case in which the mean void ratio in a pipe distributed almost invariably in axial direction. However, in actual piping system, the distribution of void ratio sometimes changes in axial direction such as evaporating tubes. In this study, in order to clarify the basic characteristics of shock phenomena in a piping system in which the density of two-phase flow changes in axial direction, experiment was carried out on air and water two-component bubbly flow, in which single phase was in upstream, and two-phase flow with constant void ratio in axial direction was in downstream. Also, the theoretical study on the phenomena was performed. The experimental setup and experimental method, the result of the waveform of pressure response, the behavior of pressure waves at the interface of two-phase flow and single phase flow, the qualitative analysis of the waveform of pressure response, and the analysis of pressure rise are reported. By the sudden closure of a valve, the pressure in two-phase flow rose by the initial potential surge, thereafter stepped pressure rise was observed. This phenomenon can be explained by the reflection of pressure waves at the interface of two-phase flow and single phase flow.

  10. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Directory of Open Access Journals (Sweden)

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  11. Sonoluminescence, shock waves, and micro-thermonuclear fusion

    International Nuclear Information System (INIS)

    Moss, W.C.; Clarke, D.B.; White, J.W.; Young, D.A.

    1995-08-01

    We have performed numerical hydrodynamic simulations of the growth and collapse of a sonoluminescing bubble in a liquid. Our calculations show that spherically converging shock waves are generated during the collapse of the bubble. The combination of the shock waves and a realistic equation of state for the gas in the bubble provides an explanation for the measured picosecond optical pulse widths and indicates that the temperatures near the center of the bubble may exceed 3O eV. This leads naturally to speculation about obtaining micro-thermonuclear fusion in a bubble filled with deuterium (D 2 ) gas. Consequently, we performed numerical simulations of the collapse of a D 2 bubble in D 2 0. A pressure spike added to the periodic driving amplitude creates temperatures that may be sufficient to generate a very small, but measurable number of thermonuclear D-D fusion reactions in the bubble

  12. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  13. Effect of the wave shocking treatment on the structure and strengthening of austenitic steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Chernogorova, O.P.; Drozdova, E.I.; Afanas'ev, I.A.

    2006-01-01

    The structure and hardening of austenitic manganese steels after shock wave treatment are studied. It is shown that the treatment results in the structure where an elementary cell size decreases with a pressure increase. The strain hardening resulted from shock wave loading can be estimated using a Hall-Petch equation. It is established that at similar degree of residual strains the shock wave loading compared to cold rolling gives rise to higher strengthening which value grows as austenite stacking fault energy decreases [ru

  14. Confinement effects of shock waves on laser-induced plasma from a graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn [Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  15. Shock wave science and technology reference library. Vol. 4. Heterogeneous detonation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan (ed.) [Defence Research and Development Canada, Suffield, AB (Canada)

    2009-07-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov). Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for graduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems. (orig.)

  16. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy.

    Science.gov (United States)

    Liang, Huey-Wen; Wang, Tyng-Guey; Chen, Wen-Shiang; Hou, Sheng-Mou

    2007-07-01

    Increased plantar fascia thickness is common with chronic plantar fasciitis, and reduction of the thickness after extracorporeal shock wave therapy or steroid injection has been reported. We hypothesized a decrease of plantar fascia thickness was associated with pain reduction after extracorporeal shock wave therapy. Fifty-three eligible patients with 78 symptomatic feet were randomly treated with piezoelectric-type extracorporeal shock wave therapy of two intensity levels (0.12 and 0.56 mJ/mm2). Two thousand shock waves for three consecutive sessions were applied at weekly intervals. A visual analog scale for pain, the Foot Function Index, the Short Form-36 Health Survey, and ultrasonographic measurement of plantar fascia thickness were evaluated at baseline and 3 and 6 months after treatment. We analyzed the association between pain level and plantar fascia thickness with generalized estimating equation analysis and adjusted for demographic and treatment-related variables. Patients with thinner plantar fascia experienced less pain after treatment; high-intensity treatment and regular exercise were associated with lower pain level. The overall success rates were 63% and 60% at the 3- and 6-month followups. High- and low-intensity treatments were associated with similar improvements in pain and function. Receiving high-intensity treatment, although associated with less pain at followup, did not provide a higher success rate.

  17. Laser-driven shock-wave propagation in pure and layered targets

    International Nuclear Information System (INIS)

    Salzmann, D.; Eliezer, S.; Krumbein, A.D.; Gitter, L.

    1983-01-01

    The propagation properties of laser-driven shock waves in pure and layered polyethylene and aluminum slab targets are studied for a set of laser intensities and pulse widths. The laser-plasma simulations were carried out by means of our one-dimensional Lagrangian hydrodynamic code. It is shown that the various parts of a laser-driven compression wave undergo different thermodynamic trajectories: The shock front portion is on the Hugoniot curve whereas the rear part is closer to an adiabat. It is found that the shock front is accelerated into the cold material till troughly-equal0.8tau (where tau is the laser pulse width) and only later is a constant velocity propagation attained. The scaling laws obtained for the pressure and temperature of the compression wave in pure targets are in good agreement with those published in other works. In layered targets, high compression and pressure were found to occur at the interface of CH 2 on Al targets due to impedance mismatch but were not found when the layers were reversed. The persistence time of the high pressure on the interface in the CH 2 on Al case is long enough relative to the characteristic times of the plasma to have an appreciable influence on the shock-wave propagation into the aluminum layer. This high pressure and compression on the interface can be optimized by adjusting the CH 2 layer thickness

  18. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  19. Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water

    Directory of Open Access Journals (Sweden)

    Dong Yan

    2017-01-01

    Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.

  20. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    Science.gov (United States)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  1. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  2. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    Science.gov (United States)

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  3. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    Science.gov (United States)

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures

  4. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  5. High-energy effective action from scattering of QCD shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  6. Dynamics of cylindrical converging shock waves interacting with aerodynamic obstacle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, F.; Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano (Italy)

    2015-06-15

    Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r{sub LE})/(r{sub LE}{sup ref}) are 1, 2, and 2.5, where r{sub LE}{sup ref}=7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M{sub s} are 2.2, 2.7, and 3.2 at the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r{sub LE}=7,M{sub s}=2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r{sub LE}{sup ref}. In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and

  7. Dynamics of cylindrical converging shock waves interacting with aerodynamic obstacle arrays

    International Nuclear Information System (INIS)

    Vignati, F.; Guardone, A.

    2015-01-01

    Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r LE )/(r LE ref ) are 1, 2, and 2.5, where r LE ref =7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M s are 2.2, 2.7, and 3.2 at the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r LE =7,M s =2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r LE ref . In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and collaborators

  8. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  9. Nonequilibrium recombination after a curved shock wave

    Science.gov (United States)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  10. Analogy between soap film and gas dynamics. II. Experiments on one-dimensional motion of shock waves in soap films

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chang-Jian, S.K.; Chuang, M.C. [Department of Mechanical Engineering, Da-Yeh University, Chang-Hwa (Taiwan)

    2003-02-01

    This paper presents an experimental investigation of one-dimensional moving shock waves in vertical soap films. The shock waves were generated by bursting the films with a perforating spark. Images of propagating shock waves and small disturbances were recorded using a fast line scan CCD camera. An aureole and a shock wave preceding the rim of the expanding hole were clearly observed. These images are similar to the x-t diagrams in gas dynamics and give the velocities of shock and sound waves. The moving shock waves cause jumps in thickness. The variations of the induced Mach number, M{sub 2} and the ratio of film thickness across the shock wave, {delta}{sub 2}/{delta}{sub 1}, are plotted versus the shock Mach number, M{sub s}. Both results suggest that soap films are analogous to compressible gases with a specific heat ratio of {gamma}{approx_equal}1.0. (orig.)

  11. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  12. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization

    International Nuclear Information System (INIS)

    Straub, G.K.; Holian, B.L.; Petschek, R.G.

    1979-01-01

    The thermalization behavior behind a shock front in one-dimensional chains has been studied in a series of molecular-dynamics computer experiments. We have found that a shock wave generated in a chain initially at finite temperature has essentially the same characteristics as in a chain initially at zero temperature. We also find that the final velocity distribution function for particles behind the shock front is not the Maxwell-Boltzmann distribution for an equilibrium system of classical particles. For times long after the shock has passed, we propose a nonequilibrium velocity distribution which is based upon behavior in the harmonic and hard-rod limits and agrees with our numerical results. Temperature profiles for both harmonic and anharmonic chains are found to exhibit a long-time tail that decays inversely with time. Finally, we have run a computer experiment to generate what qualitatively resembles solitons in Toda chains by means of shock waves

  13. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  14. Focused and Radial Shock Wave Therapy in the Treatment of Tennis Elbow: A Pilot Randomised Controlled Study

    Directory of Open Access Journals (Sweden)

    Król Piotr

    2015-09-01

    Full Text Available The purpose of this article was to evaluate and compare the efficacy of radial and focused shock wave therapies applied to treat tennis elbow. Patients with tennis elbow were randomized into two comparative groups: focused shock wave therapy (FSWT; n=25 and radial shock wave therapy (RSWT; n=25. Subjects in the FSWT and RSWT groups were applied with a focused shock wave (3 sessions, 2000 shocks, 4 Hz, 0.2 mJ/mm2 and a radial shock wave (3 sessions, 2000 + 2000 shocks, 8 Hz, 2.5 bar, respectively. The primary study endpoints were pain relief and functional improvement (muscle strength one week after therapy. The secondary endpoint consisted of the results of the follow-up observation (3, 6 and 12 weeks after the study. Successive measurements showed that the amount of pain patients felt decreased in both groups. At the same time grip strength as well as strength of wrist extensors and flexors of the affected extremity improved significantly. Both focused and radial shock wave therapies can comparably and gradually reduce pain in subjects with tennis elbow. This process is accompanied by steadily improved strength of the affected extremity.

  15. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    Science.gov (United States)

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  16. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  17. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    Science.gov (United States)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  18. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Science.gov (United States)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  19. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-01-01

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  20. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    International Nuclear Information System (INIS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-01-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  1. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    Science.gov (United States)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  2. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  3. Massive retroperitoneal haemorrhage after extracorporeal shock wave lithotripsy (ESWL).

    Science.gov (United States)

    Inoue, Hiromasa; Kamphausen, Thomas; Bajanowski, Thomas; Trübner, Kurt

    2011-01-01

    A 76-year-old male suffering from nephrolithiasis developed a shock syndrome 5 days after extracorporal shock wave lithotripsy (ESWL). CT scan of the abdomen showed massive haemorrhage around the right kidney. Although nephrectomy was performed immediately, the haemorrhage could not be controlled. Numerous units of erythrocytes were transfused, but the patient died. The autopsy revealed massive retroperitoneal haemorrhage around the right kidney. The kidney showed a subcapsular haematoma and a rupture of the capsule. The right renal artery was dissected. The inferior vena cava was lacerated. Accordingly, a hemorrhagic shock as the cause of death was determined, which might mainly have resulted from the laceration of the inferior vena cava due to ESWL. ESWL seems to be a relatively non-invasive modality, but one of its severe complications is perirenal hematoma. The injuries of the blood vessels might have been caused by excessive shock waves. Subsequently, anticoagulation therapy had been resumed 3 days after EWSL, which might have triggered the haemorrhage. Physicians should note that a haemorrhage after an ESWL can occur and they should pay attention to the postoperative management in aged individuals especially when they are under anticoagulation therapy.

  4. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  5. Influence of shock waves from plasma actuators on transonic and supersonic airflow

    Science.gov (United States)

    Mursenkova, I. V.; Znamenskaya, I. A.; Lutsky, A. E.

    2018-03-01

    This paper presents experimental and numerical investigations of high-current sliding surface discharges of nanosecond duration and their effect on high-speed flow as plasma actuators in a shock tube. This study deals with the effectiveness of a sliding surface discharge at low and medium air pressure. Results cover the electrical characteristics of the discharge and optical visualization of the discharge and high-speed post-discharge flow. A sliding surface discharge is first studied in quiescent air conditions and then in high-speed flow, being initiated in the boundary layer at a transverse flow velocity of 50-950 m s-1 behind a flat shock wave in air of density 0.04-0.45 kg m-3. The discharge is powered by a pulse voltage of 25-30 kV and the electric current is ~0.5 kA. Shadow imaging and particle image velocimetry (PIV) are used to measure the flow field parameters after the pulse surface discharge. Shadow imaging reveals shock waves originating from the channels of the discharge configurations. PIV is used to measure the velocity field resulting from the discharge in quiescent air and to determine the homogeneity of energy release along the sliding discharge channel. Semicylindrical shock waves from the channels of the sliding discharge have an initial velocity of more than 600 m s-1. The shock-wave configuration floats in the flow along the streamlined surface. Numerical simulation based on the equations of hydrodynamics matched with the experiment showed that 25%-50% of the discharge energy is instantly transformed into heat energy in a high-speed airflow, leading to the formation of shock waves. This energy is comparable to the flow enthalpy and can result in significant modification of the boundary layer and the entire flow.

  6. Success of electromagnetic shock wave lithotripter as monotherapy ...

    African Journals Online (AJOL)

    K.S. Meitei

    Objectives: To evaluate the success of shock wave lithotripsy (SWL) as monotherapy for solitary .... history of previous renal surgery on the affected side were excluded .... energy. Twelve (63.2%) of the steinstrasse cases were managed con-.

  7. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y. [Department of Industrial Design, Far East University, No. 49, Zhonghua Road, Xinshi District, Tainan City 744, Taiwan (China); Chang, M. H. [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 701, Taiwan (China)

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  8. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    Science.gov (United States)

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  9. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  10. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  11. Success of electromagnetic shock wave lithotripter asmonotherapy ...

    African Journals Online (AJOL)

    Objectives: To evaluate the success of shock wave lithotripsy (SWL) as monotherapy for solitary renalstones larger than 2 cm without ureteral stenting. Hence, if our study result demonstrates acceptable successand safety, we can recommend ESWL as a treatment option for patients with large renal calculi. Subjects and ...

  12. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  13. Remote effects of extracorporeal shock wave therapy on cutaneous microcirculation.

    Science.gov (United States)

    Kisch, Tobias; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix; Mailänder, Peter; Krämer, Robert

    2015-11-01

    Extracorporeal shock wave treatment (ESWT) has proven its clinical benefits in different fields of medicine. Tissue regeneration and healing is improved after shock wave treatment. Even in the case of burn wounds angiogenesis and re-epithelialization is accelerated, but ESWT in extensive burn wounds is impracticable. High energy ESWT influences cutaneous microcirculation at body regions remote from application site. Eighteen Sprague Dawley rats were randomly assigned to two groups and received either high energy ESWT (Group A: total 1000 impulses, 10 J) or placebo shock wave treatment (Group B: 0 impulses, 0 J), applied to the dorsal lower leg of the hind limb. Ten minutes later microcirculatory effects were assessed at the contralateral lower leg of the hind limb (remote body region) by combined Laser-Doppler-Imaging and Photospectrometry. In Group A cutaneous capillary blood velocity was significantly increased by 152.8% vs. placebo ESWT at the remote body location (p = 0.01). Postcapillary venous filling pressure remained statistically unchanged (p > 0.05), while cutaneous tissue oxygen saturation increased by 12.7% in Group A (p = 0.220). High energy ESWT affects cutaneous hemodynamics in body regions remote from application site in a standard rat model. The results of this preliminary study indicate that ESWT might be beneficial even in disseminated and extensive burn wounds by remote shock wave effects and should therefore be subject to further scientific evaluation. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  14. Internal energy relaxation in shock wave structure

    International Nuclear Information System (INIS)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-01-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream

  15. The acceleration of cosmic ray by shock waves

    International Nuclear Information System (INIS)

    Axford, W.I.; Leer, E.; Skadron, G.

    1977-01-01

    The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)

  16. Shock wave plasticity in Mo at 293K and 1673K

    International Nuclear Information System (INIS)

    Tonks, D.L.

    1996-01-01

    The shock wave plasticity of Mo is extracted from two VISAR wave profiles; of about 110 kbar strength at 293 K and of about 120 kbar strength at 1673 K. The Wallace weak shock analysis is used to obtain the plastic strain and deviatoric stress, and the normal stress and volumetric strain, through the shock rise from the velocity profile data. The Wallace analysis uses the steady wave assumption for the plastic portion of the shock rise, a plausible evolution for the precursor portion, a thermoelastic model, and the mechanical equations of motion. Comparison of the high and low temperature results is of interest in assessing the mechanisms of plastic flow. In the results, the (von Mises equivalent) peak deviatoric stresses are 12.8 kbar and 20.3 kbar, for the hot and cold Mo, respectively, while the peak plastic strain rate of the hot Mo is about 2.6 times that of the cold Mo. These values rule out thermal activation. In addition, they are not consistent with a simple phonon viscosity linear in the temperature. Additional effects are needed to explain the results, e.g. evolution of the mobile dislocation density. copyright 1996 American Institute of Physics

  17. Bacterial sepsis after extracorporeal shock-wave lithotripsy (ESWL) of calyceal diverticular stone.

    Science.gov (United States)

    Oh, Mi Mi; Kim, Jin Wook; Kim, Jong Wook; Chae, Ji Yun; Yoon, Cheol Yong; Park, Hong Seok; Park, Min Gu; Moon, Du Geon

    2013-02-01

    Most calyceal diverticula are asymptomatic but symptoms occur when there is urinary stasis leading to infection and calculi. Septic shock after ESWL of calyceal stone occurs rarely. A 24-year-old woman had septic shock due to after extracorporeal shock-wave lithotripsy (ESWL) of asymptomatic calyceal diverticular stone.

  18. Experimental particle acceleration by water evaporation induced by shock waves

    Science.gov (United States)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  19. Model for shock wave chaos.

    Science.gov (United States)

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  20. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    Science.gov (United States)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  1. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  2. A study on early microstructural changes in the rabbit gallbladder induced by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eun Oak [Hong-Sung Koryo Hospital, Hongsung (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Ryo, Dae Sik; Choi, Yun Sun; Song, In Sup; Kim, Young Koo [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1994-05-15

    In order to evaluate microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit gallbladders. A preliminary study(2 rabbits) was performed to determine the dosage intensity of shock waves needed to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lothotriptor. The Gallbladders of three different groups of rabbits were given shock waves of various intensity. A storage value of 100, 50, 25 at rate of 20/sec under 80% power were given to group I (4 rabbits), group II (4 rabbits), and group III (3 rabbits), respectively. The rabbits were sacrificed 6-12 hours later. The observed pathologic changes in the transmission electron microscopy were vaculization of cytoplasm and swelling of epithelial cells with dilatation and structural alteration of intracellular organelles, especially endoplasmic reticulum. Cell membrane rupture and necrosis were observed at the markedly affected area. The structural changes of intracellular organelles were minimally found at a storage value of 25. However, above pathologic changes with dilatation and structural alterations of endoplasmic reticulums were more profound at value of 100. Early histologic changes induced by shocked waves are dose dependent and findings of cellular damage caused by ESWL might be explained as above.

  3. Topics in Computational Modeling of Shock and Wave Propagation

    National Research Council Canada - National Science Library

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  4. Observation of shock transverse waves in elastic media.

    Science.gov (United States)

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  5. Extracorporeal shock wave lithotripsy for gallbladder stones - an experimental and clinical study -

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Park, Sil Moo; Lee, Jung Hyo; Kim, Young Goo; Song, Kounn Sik; Lee, Kwan Seh; Lee, Jong Beum; Kim, Sang Joon; Chang, Sun Taik

    1988-01-01

    Although many alternative treatment technics have been proposed recently for gallstone to substitute cholecystectomy, the extracorporeal shock wave lithotripsy (ESWL) for gallbladder stones has rarely been tried. We have carried out a series of experiments to evaluate how effective the ESWL for gallbladder stones in and how safe this procedure is. At first, in vitro shock were application was carried out to 10 gallbladder stones which were obtained from human gallbladder. Secondly, gallbladder stones were implanted to canine gallbladder and treated with shock wave. Lastly, a total of 41 volunteers with confirmed gallbladder stones were treated with shock wave and combined oral administration of ursodeoxycholic acid. In the in vitro experiment, all of the 10 gallstones were fragmented with variable firing rates and duration. In animal experiment, the implanted stones were successfully fragmented and the organs included in the pathway of shock wave were proved to be intact histologically. In human study, complete disappearance of gallstones was noted in 78.6% of patients with single radiolucent gallbladder stones, smaller than 2.5cm in the longest diameter. Two patients underwent cholecystectomy after ESWL due to sudden colic attack. One patient had experienced an episode of mild transient obstructive jaundice. It may be concluded that the ESWL for gallbladder stones is an effective and safe method of treatment of gallbladder stones in the selected cases, for example, small radiolucent stones, and the further study is needed to establish improved technology of the ESWL for gallbladder stones.

  6. Extracorporeal shock wave lithotripsy for gallbladder stones - an experimental and clinical study -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Park, Sil Moo; Lee, Jung Hyo; Kim, Young Goo; Song, Kounn Sik; Lee, Kwan Seh; Lee, Jong Beum; Kim, Sang Joon; Chang, Sun Taik [Chung-Ang University College of Medicine, Seoul (Korea, Republic of)

    1988-08-15

    Although many alternative treatment technics have been proposed recently for gallstone to substitute cholecystectomy, the extracorporeal shock wave lithotripsy (ESWL) for gallbladder stones has rarely been tried. We have carried out a series of experiments to evaluate how effective the ESWL for gallbladder stones in and how safe this procedure is. At first, in vitro shock were application was carried out to 10 gallbladder stones which were obtained from human gallbladder. Secondly, gallbladder stones were implanted to canine gallbladder and treated with shock wave. Lastly, a total of 41 volunteers with confirmed gallbladder stones were treated with shock wave and combined oral administration of ursodeoxycholic acid. In the in vitro experiment, all of the 10 gallstones were fragmented with variable firing rates and duration. In animal experiment, the implanted stones were successfully fragmented and the organs included in the pathway of shock wave were proved to be intact histologically. In human study, complete disappearance of gallstones was noted in 78.6% of patients with single radiolucent gallbladder stones, smaller than 2.5cm in the longest diameter. Two patients underwent cholecystectomy after ESWL due to sudden colic attack. One patient had experienced an episode of mild transient obstructive jaundice. It may be concluded that the ESWL for gallbladder stones is an effective and safe method of treatment of gallbladder stones in the selected cases, for example, small radiolucent stones, and the further study is needed to establish improved technology of the ESWL for gallbladder stones.

  7. Conversion of piston-driven shocks from powerful solar flares to blast wave shocks in the solar wind

    International Nuclear Information System (INIS)

    Pinter, S.

    1990-01-01

    It was suggested by Smart and Shea (1985) that the time of arrival of solar-flare-generated shock waves at any point in space may be predicted by assuming that they are first driven from the Sun after which they decay into blast shocks. Their study was extended by using the duration of the Type IV radio emission as a phenomenological symptom of the piston-driven phase of these shocks. Using a sample of 39 cases of combined Type II/Type IV observations from 1972 to 1982 solar flares, it was found that the average predicted times-of-arrival of these shocks to Earth (and elsewhere) deviate from the actual times by 1.40 hr with a standard deviation of 1.25 hr. On the average, a representative shock from this sample is emitted from a powerful flare with a velocity of 1,560 km sec -1 ; moves at a constant inertial velocity to a distance of 0.12 AU after which it begins to decelerate as a classical (Sedov-type) blast shock that is convected by the ambient solar wind as suggested by Smart and Shea; and arrives to Earth 45.8 hr after its initiation in the Sun. Shocks that appear to deviate from this phenomenological scenario by virtue of lack of detection on Earth are assumed to decay into fast mode MHD waves. (author). 7 figs., 1 tab., 53 refs

  8. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  9. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    International Nuclear Information System (INIS)

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  10. Dynamic behavior of zirconium alloy E110 under submicrosecond shock-wave loading

    Directory of Open Access Journals (Sweden)

    Kazakov D.N.

    2015-01-01

    Full Text Available Stress waves have been measured under shock wave loading of zirconium alloy E110 samples with the 0.5 – 8 mm thickness at normal and elevated temperatures. Duration of shock loading pulses varied from ∼0.05 up to 1μs with the amplitude varying from 3.4 up to 23 GPa. Free-surface velocity profiles have been registered using VISAR and PDV interferometers with nanosecond resolution. Attenuation of the elastic precursor has been measured to determine plastic strain rate behind the elastic precursor front. The plastic strain rate was observed to decrease with propagation from 106 s−1 at the 0.46-mm distance down to 2 ⋅ 104 s−1 at the 8-mm distance. Spall strength has been measured under normal and elevated temperatures. Spall strength versus strain rate relationships have been constructed in the 105 s−1 – 106s−1 range. Under shock compression higher than 10.6 GPa, the three-wave configuration of the shock wave has been registered and the polymorphous α → ω transition is considered to be the reason of this phenomenon. This work was supported by State Atomic Energy Corporation “Rosatom” within State Contract # H.4x.44.90.13.1111

  11. Dynamic behavior of zirconium alloy E110 under submicrosecond shock-wave loading

    Science.gov (United States)

    Kazakov, D. N.; Kozelkov, O. E.; Mayorova, A. S.; Malyugina, S. N.; Mokrushin, S. S.; Pavlenko, A. V.

    2015-09-01

    Stress waves have been measured under shock wave loading of zirconium alloy E110 samples with the 0.5 - 8 mm thickness at normal and elevated temperatures. Duration of shock loading pulses varied from ˜0.05 up to 1μs with the amplitude varying from 3.4 up to 23 GPa. Free-surface velocity profiles have been registered using VISAR and PDV interferometers with nanosecond resolution. Attenuation of the elastic precursor has been measured to determine plastic strain rate behind the elastic precursor front. The plastic strain rate was observed to decrease with propagation from 106 s-1 at the 0.46-mm distance down to 2 ṡ 104 s-1 at the 8-mm distance. Spall strength has been measured under normal and elevated temperatures. Spall strength versus strain rate relationships have been constructed in the 105 s-1 - 106s-1 range. Under shock compression higher than 10.6 GPa, the three-wave configuration of the shock wave has been registered and the polymorphous α → ω transition is considered to be the reason of this phenomenon. This work was supported by State Atomic Energy Corporation "Rosatom" within State Contract # H.4x.44.90.13.1111

  12. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  13. Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Orikasa, S.; Takayama, K.

    1991-06-01

    A new device to prevent erroneously focused shock waves to the renal parenchyma during extracorporeal shock wave lithotripsy (ESWL) has been developed; an anti-miss-shot control device (AMCD) and experiments have been conducted to evaluate its effectiveness. For shock wave generation and stone localization, piezoceramic elements (PSE) and ultrasound localization, respectively were used. After stone localization, probing ultrasounds (PU) were emmitted from the PSE towards the focal region and the reflected sound levels (RSL) were monitored by the PSE which also functioned as a microphone. A direct hit by the PU to the stone or a miss was judged from the RSL, i.e. a high RSL indicates a direct hit and a low RSL indicates a miss. Shock waves were generated only when the RSL exceeded the level which indicated a direct hit. The experimental results showed that the injury to the renal parenchyma was decreased by using the AMCD. Clinical application of the AMCD is expected to increase the safety of ESWL.

  14. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    International Nuclear Information System (INIS)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  15. A computational study on oblique shock wave-turbulent boundary layer interaction

    Science.gov (United States)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  16. Extracorporeal shock wave therapy in periodontics: A new paradigm.

    Science.gov (United States)

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K

    2014-05-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.

  17. Simulation and Analysis of Converging Shock Wave Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  18. SSS: A code for computing one dimensional shock and detonation wave propagation

    International Nuclear Information System (INIS)

    Sun Chengwei

    1986-01-01

    The one-dimensional hydrodynamic code SSS for shock and detonation wave propagation in inert and reactive media is described. The elastic-plastic-hydrodynamic model and four burn techniques (the Arrhenius law, C-J volume, sharp shock and Forest Fire) are used. There are HOM and JWL options for the state equation of detonation products. Comparing with the SIN code published by LANL, the SSS code has several new options: laser effects, blast waves, diverging and instantaneous detonation waves with arbitrary initiation positions. Two examples are given to compare the SSS and SIN calculations with the experimental data

  19. Focused tandem shock waves in water and their potential application in cancer treatment

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Poučková, P.; Zadinová, M.; Zeman, J.; Dibdiak, L.; Kolářová, H.; Tománková, K.; Binder, S.; Beneš, J.

    2014-01-01

    Roč. 24, č. 1 (2014), s. 51-57 ISSN 0938-1287. [International Symposium on Shock Waves/28./. Manchester, 17.07.2011-22.07.2011] R&D Projects: GA ČR GA202/09/1151 Institutional support: RVO:61389021 Keywords : focused shock waves * underwater discharge * cancer treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.885, year: 2014

  20. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    Science.gov (United States)

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  1. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    Science.gov (United States)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  2. Generation of Two Successive Shock Waves Focusedto a Common Focal Point

    Czech Academy of Sciences Publication Activity Database

    Šunka, Pavel; Stelmashuk, Vitaliy; Babický, Václav; Člupek, Martin; Beneš, J.; Poučková, P.; Kašpar, J.; Bodnár, M.

    2006-01-01

    Roč. 34, č. 4 (2006), s. 1382-1385 ISSN 0093-3813. [International Power Modulator Conference. Washington D.C., 14.5.2006-18.5.2006] R&D Projects: GA ČR(CZ) GA202/05/0685 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cavitation collpse * double shocks * focused shock waves * liver injury * secondary shocks Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.144, year: 2006

  3. Extracorporeal shock wave lithotripsy: What is new?

    Science.gov (United States)

    Bach, Christian; Karaolides, Theocharis; Buchholz, Noor

    2012-01-01

    Objectives Thirty years after its introduction, extracorporeal shockwave lithotripsy (ESWL) is still first-line treatment for more than half of all urinary tract stones, but machines and treatment strategies have significantly developed over time. In this review, we summarise the latest knowledge about the clinically important aspects of ESWL. Methods We searched PubMed to identify relevant reports and the latest European Association of Urology guidelines, and standard urological textbooks were consulted. Results New technical developments include: Twin-head and tandem-pulse shock-wave generators; wide-focus, low-pressure systems; optimised coupling; and automated location and acoustic tracking systems. Indications have been refined, making possible the identification of patients in whom ESWL treatment is likely to fail. By lowering the shock-wave rate, improving coupling, applying abdominal compression, power ‘ramping’ and postoperative medical expulsion therapy, treatment protocols have been optimised. Conclusions Promising new technical developments are under development, with the potential to increase the stone-free rate after ESWL. For optimal results, the refined indications need to be respected and optimised treatment protocols should be applied. PMID:26558039

  4. Shock formation in small-data solutions to 3D quasilinear wave equations

    CERN Document Server

    Speck, Jared

    2016-01-01

    In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...

  5. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.; Pang, Genny A.; Chakraborty, Sreyashi; Ren, Wei; Wang, Shengkai; Davidson, David Frank

    2013-01-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we

  6. Extracorporeal shock-wave lithotripsy as an adjunct to biliary interventional procedures

    International Nuclear Information System (INIS)

    Zeman, R.K.; Garra, B.S.; Matsumoto, A.H.; Teitelbaum, G.P.; Barth, K.H.; Cattau, E.L.; Davros, W.J.; McClennan, B.L.; Picus, D.; Paushter, D.M.

    1989-01-01

    This paper reviews the records of nine patients undergoing extracorporeal shock wave lithotripsy (ESWL) of bile duct stones as an adjunct to other biliary intervention. Lithotripsy was successful in producing fragmentation in seven of nine patients. Keeping the duct mildly distended with contrast medium, distributing the shock waves over the stone(s) by taking advantage of respiratory excursion, and pinning stone fragments with balloon catheters facilitated fragmentation. Six patients underwent duct manipulation (stricture dilation, fragment extraction) within 24 hours of ESWL, suggesting that immediate instrumentation is safe in conjunction with lithotripsy

  7. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  8. Analysis of a cylindrical imploding shock wave

    International Nuclear Information System (INIS)

    Mishkin, E.A.; Fujimoto, Y.

    1978-01-01

    the self-similar solution of the gasdynamic equations of a strong cylindrical shock wave moving through an ideal gas, with γ = csub(p)/csub(v), is considered. These equations are greatly simplified following the transformation of the reduced velocity U 1 (xi) → U 1 = 1/2(γ + 1 ) (U + xi). The requirement of a single maximum pressure, dsub(xi)P = 0, leads to an analytical determination of the self-similarity exponent α(γ). For gases with γ = 2 + 3sup(1/2), this maximum ensues right at the shock front and the pressure distribution then decreases monotonically. The postulate of analyticity by Gelfand and Butler is shown to concur with the requirement dsub(xi)P 0. The saturated density of the gas left in the wake of the shock is computed and - U is shown to be the reduced velocity of sound at P = P sub(m). (author)

  9. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  10. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  11. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  12. Stability of stagnation via an expanding accretion shock wave

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.

    2016-01-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  13. Stability of stagnation via an expanding accretion shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Velikovich, A. L.; Giuliani, J. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Taylor, B. D. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States); Zalesak, S. T. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States); Iwamoto, Y. [Ehime University, Matsuyama, Ehime Pref. 790-8577 (Japan)

    2016-05-15

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  14. Stability of stagnation via an expanding accretion shock wave

    Science.gov (United States)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  15. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    NARCIS (Netherlands)

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  17. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  18. On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism

    Directory of Open Access Journals (Sweden)

    Huseyin Cavus

    2013-01-01

    Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.

  19. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    Science.gov (United States)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  20. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Trott, W.M.; Chandler, G.A.; Holland, K.G.; Fleming, K.J.; Trucano, T.G.

    1998-01-01

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  1. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.

    2013-09-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  2. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  3. Multi-layer protective armour for underwater shock wave mitigation

    Directory of Open Access Journals (Sweden)

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  4. Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Meshcherkin, A.P.

    1987-01-01

    Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion

  5. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    Science.gov (United States)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  6. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  7. Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: Theoretical formulation.

    Science.gov (United States)

    Zhong, P; Chuong, C J

    1993-07-01

    To understand the physical process of the impingement of cavitation microjet and the resultant shock wave propagation in an elastic solid, a theoretical model using geometrical acoustics was developed. Shock waves induced in both the jet head (water) and the solid were analyzed during a tri-supersonic impact configuration when the contact edge between the jet head and the elastic boundary expands faster than the longitudinal wave speed in the solid. Impact pressure at the boundary was solved using continuity conditions along the boundary normal. Reflection and refraction of shock waves from a solid-water interface were also included in the model. With this model, the impact pressure at the solid boundary and the stress, strain as well as velocity discontinuities at the propagating shock fronts were calculated. A comparison with results from previous studies shows that this model provides a more complete and general solution for the jet impact problem.

  8. Extracorporeal shock wave therapy in periodontics: A new paradigm

    Science.gov (United States)

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K.

    2014-01-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome. PMID:25024562

  9. Extracorporeal shock wave therapy in periodontics: A new paradigm

    Directory of Open Access Journals (Sweden)

    Munivenkatappa Lakshmaiah Venkatesh Prabhuji

    2014-01-01

    Full Text Available The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.

  10. MR imaging of kidneys following extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Baumgartner, B.R.; Dickey, K.W.; Nelson, R.C.; Ambrose, S.S.; Walton, K.N.; Bernardino, M.E.

    1986-01-01

    MR images were obtained the day after extracorporeal shock wave lithotripsy (ESWL) therapy in 34 patients; the untreated kidneys served as controls. Five patients underwent ESWL of both kidneys before MR imaging. The kidneys were imaged with a spin-echo technique. Multisection coronal, sagittal, and axial images were obtained with T1-weighted pulse sequences. MR imaging studies of 39 kidneys after ESWL showed no abnormality in ten (25%) cases. The other kidneys (75%) had one or more of several findings. Small subcapsular or perinephric fluid collections were noted in ten (25%) patients. Generalized loss of corticomedullary junction (CMJ) was noted in eight (21%) cases and focal loss in 16 (24%). The more pronounced alterations in the CMJ correlated with increased numbers of shock waves received by the kidney

  11. The Universal Role of Tubulence in the Propagation of Strong Shocks and Detonation Waves

    Science.gov (United States)

    Lee, John H.

    2001-06-01

    The passage of a strong shock wave usually results in irreversible physical and chemical changes in the medium. If the chemical reactions are sufficiently exothermic, the shock wave can be self-propagating, i.e., sustained by the chemical energy release via the expansion work of the reaction products. Although shocks and detonations can be globally stable and propagate at constant velocities (in the direction of motion), their structure may be highly unstable and exhibit large hydrodynamic fluctuations, i.e., turbulence. Recent investigations on plastic deformation of polycrystalline material behind shock waves have revealed particle velocity dispersion at the mesoscopic level, a result of vortical rotational motion similar to that of turbulent fluid flows at high Reynolds number.1 Strong ionizing shocks in noble gases2, as well as dissociating shock waves in carbon dioxide,3 also demonstrate a turbulent density fluctuation in the non-equilibrium shock transition zone. Perhaps the most thoroughly investigated unstable structure is that of detonation waves in gaseous explosives.4 Detonation waves in liquid explosives such as nitromethane also take on similar unstable structure as gaseous detonations.5 There are also indications that detonations in solid explosives have a similar unsteady structure under certain conditions. Thus, it appears that it is more of a rule than an exception that the structure of strong shocks and detonations are unstable and exhibit turbulent-like fluctuations as improved diagnostics now permit us to look more closely at the meso- and micro-levels. Increasing attention is now devoted to the understanding of the shock waves at the micro-scale level in recent years. This is motivated by the need to formulate physical and chemical models that contain the correct physics capable of describing quantitatively the shock transition process. It should be noted that, in spite of its unstable 3-D structure, the steady 1-D conservation laws (in the

  12. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    Science.gov (United States)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  13. Shock wave overtake measurements on cesium iodide

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1986-01-01

    The luminosity of the shock front for CsI makes it an ideal material for which to measure directly sound velocities along the Hugoniot using shock wave overtake methods. In these measurements, the occurrence of melting along the Hugoniot is marked by a discontinuous decrease in the measured sound velocity. In addition, CsI is isoelectronic with xenon and is expected to begin to show metallic behavior along the Hugoniot near 0.9 Mbar. The directly-determined sound velocities and corresponding elastic moduli would be expected to be more sensitive to this transition than either Hugoniot equations of state or optical pyrometry experiments. This paper presents a brief description of the present experiments and results

  14. TUMOR-GROWTH DELAY BY LASER-GENERATED SHOCK-WAVES

    NARCIS (Netherlands)

    de Reijke, T. M.; Schamhart, D. H.; Kurth, K. H.; Löwik, C. W.; Donkers, L. H.; Sterenborg, H. J.

    1994-01-01

    The antiproliferative effect of laser-generated shock waves (L-SW) was investigated on a human renal cell carcinoma, RC-8, grown subcutaneously in the nu/nu mouse. The RC-8 is characterized by the syndrome of humoral hypercalcemia of malignancy (HHM) associated with profound cachexia, increase of

  15. Spallation reactions in shock waves at supernova explosions and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru [RAS, V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry (Russian Federation)

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  16. Assessment of thermodynamic parameters of plasma shock wave

    International Nuclear Information System (INIS)

    Vasileva, O V; Isaev, Yu N; Budko, A A; Filkov, A I

    2014-01-01

    The work is devoted to the solution of the one-dimensional equation of hydraulic gas dynamics for the coaxial magneto plasma accelerator by means of Lax-Wendroff modified algorithm with optimum choice of the regularization parameter artificial viscosity. Replacement of the differential equations containing private derivatives is made by finite difference method. Optimum parameter of regularization artificial viscosity is added using the exact known decision of Soda problem. The developed algorithm of thermodynamic parameter calculation in a braking point is proved. Thermodynamic parameters of a shock wave in front of the plasma piston of the coaxial magneto plasma accelerator are calculated on the basis of the offered algorithm. Unstable high-frequency fluctuations are smoothed using modeling and that allows narrowing the ambiguity area. Results of calculation of gas dynamic parameters in a point of braking coincide with literary data. The chart 3 shows the dynamics of change of speed and thermodynamic parameters of a shock wave such as pressure, density and temperature just before the plasma piston

  17. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  18. Disintegration of a profiled shock wave at the cumulation point

    International Nuclear Information System (INIS)

    Kaliski, S.

    1978-01-01

    The disintegration at the cumulation point is analyzed of a shock wave generated with the aid of a profiled pressure. The quantitative relations are analyzed for the disintegration waves for typical compression parameters in systems of thermonuclear microfusion. The quantitative conclusions are drawn for the application of simplifying approximate calculations in problems of microfusion. (author)

  19. Geodesics analysis of colliding gravitational shock waves

    International Nuclear Information System (INIS)

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  20. Laser-driven Mach waves for gigabar-range shock experiments

    Science.gov (United States)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  2. International shock-wave database project : report of the requirements workshop.

    Energy Technology Data Exchange (ETDEWEB)

    Aidun, John Bahram (Institute of Problems of chemical Physics of Russian Academy of Sciences); Lomonosov, Igor V. (Institute of Problems of chemical Physics of Russian Academy of Sciences); Levashov, Pavel R. (Joint Institute for High Temperatures of Russian Academy of Sciences)

    2012-03-01

    We report on the requirements workshop for a new project, the International Shock-Wave database (ISWdb), which was held October 31 - November 2, 2011, at GSI, Darmstadt, Germany. Participants considered the idea of this database, its structure, technical requirements, content, and principles of operation. This report presents the consensus conclusions from the workshop, key discussion points, and the goals and plan for near-term and intermediate-term development of the ISWdb. The main points of consensus from the workshop were: (1) This international database is of interest and of practical use for the shock-wave and high pressure physics communities; (2) Intermediate state information and off-Hugoniot information is important and should be included in ISWdb; (3) Other relevant high pressure and auxiliary data should be included to the database, in the future; (4) Information on the ISWdb needs to be communicated, broadly, to the research community; and (5) Operating structure will consist of an Advisory Board, subject-matter expert Moderators to vet submitted data, and the database Project Team. This brief report is intended to inform the shock-wave research community and interested funding agencies about the project, as its success, ultimately, depends on both of these groups finding sufficient value in the database to use it, contribute to it, and support it.

  3. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    Science.gov (United States)

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  4. Observation of the shock wave propagation induced by a high-power laser irradiation into an epoxy material

    International Nuclear Information System (INIS)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Mercier, Patrick; Benier, Jacky

    2013-01-01

    The propagation of laser-induced shock waves in a transparent epoxy sample is investigated by optical shadowgraphy. The shock waves are generated by a focused laser (3 ns pulse duration—1.2 to 3.4 TW cm −2 ) producing pressure from 44 to 98.9 GPa. It is observed that the shock wave and the release wave created by the shock reverberation at the rear face are both followed by a dark zone in the pictures. This corresponds to the creation of a tensile zone resulting from the crossing on the loading axis of the release waves coming from the edge of the impact area (2D effects). After the laser shock experiment, the residual stresses in the targets are identified and quantified through a photoelasticimetry analysis of the recovered samples. This work results in a new set of original data which can be directly used to validate numerical models implemented to reproduce the behaviour of epoxy under extreme strain rate loading. The residual stresses observed prove that the high-pressure shocks can modify the pure epoxy properties, which could have an influence on the use made of these materials. (paper)

  5. Shock Wave Speed and Transient Response of PE Pipe with Steel-Mesh Reinforcement

    Directory of Open Access Journals (Sweden)

    Wuyi Wan

    2016-01-01

    Full Text Available A steel mesh can improve the tensile strength and stability of a polyethylene (PE pipe in a water supply pipeline system. However, it can also cause more severe water hammer hazard due to increasing wave speed. In order to analyze the influence of the steel mesh on the shock wave speed and transient response processes, an improved wave speed formula is proposed by incorporating the equivalent elastic modulus. A field measurement validates the wave speed formula. Moreover, the transient wave propagation and extreme pressures are simulated and compared by the method of characteristics (MOC for reinforced PE pipes with various steel-mesh densities. Results show that a steel mesh can significantly increase the shock wave speed in a PE pipe and thus can cause severe peak pressure and hydraulic surges in a water supply pipeline system. The proposed wave speed formula can more reasonably evaluate the wave speed and improve the transient simulation of steel-mesh-reinforced PE pipes.

  6. Some health physics implications of extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Henderson, J.E.

    1987-01-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is a relatively new, noninvasive technique for the destruction of renal calculi (kidney stones) in vivo. X-ray localizing techniques are used to position the stone for shock wave destruction. The combination of radiographic and fluoroscopic exposure contributes significantly to patient dose. This presentation considers alternative techniques for measuring patient exposure during ESWL and details many of the problems attendant to those measurements. Factors that contribute to patient dose are described. Comparisons are made to previous interventions for renal calculi involving radiological considerations. Operator exposures are negligible for this procedure, but skin entrance exposures for patients have been found on the order of 10 R to 17 R. Attempts to quantify gonadal doses during ESWL treatment at the University of Virginia are described. A rationale for continued studies in this area is offered

  7. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Science.gov (United States)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  8. Predictability of the individual clinical outcome of extracorporeal shock wave therapy for cellulite

    OpenAIRE

    Schlaudraff, Kai-Uwe; Kiessling, Maren C; Császár, Nikolaus BM; Schmitz, Christoph

    2014-01-01

    Kai-Uwe Schlaudraff,1 Maren C Kiessling,2 Nikolaus BM Császár,2 Christoph Schmitz21Concept Clinic, Geneva, Switzerland; 2Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, GermanyBackground: Extracorporeal shock wave therapy has been successfully introduced for the treatment of cellulite in recent years. However, it is still unknown whether the individual clinical outcome of cellulite treatment with extracorporeal shock wave therapy can be predict...

  9. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  10. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  11. The gravitational shock wave of a massless particle

    NARCIS (Netherlands)

    Hooft, G. 't; Dray, T

    1985-01-01

    The (spherical) gravitational shock wave due to a massless particle moving at the speed of light along the horizon of the Schwarzchild black hole is obtained. Special cases of our procedure yield previous results by Aichelburg and Sexl[1] for a photon in Minkowski vpace and by Penrose [2] for

  12. Switch-shock wave structure in a magnetized partly-ionized gas

    International Nuclear Information System (INIS)

    Cramer, N.F.

    1975-01-01

    The effect of the interaction of plasma and neutral gas on the structure of switch-type shock waves propagating in a partly-ionized gas is studied. These shocks, in which the magnetic field is perpendicular to the shock front either upstream or downstream, exhibit a spiralling behaviour of the magnetic field in the shock transition region, if the Hall term is important in the Ohm's law. Observations of this behaviour for shocks propagating into a plasma with a residual neutral content of about 15% has implied an anomalously high resistivity of the plasma. We show that this can be partly explained by considering the collisions of ions with the neutral atoms in a magnetic field. We show that the extra dissipation due to the increase in resistivity goes primarily to the ions and neutrals. Thus even in the absence of viscous dissipation within each species, the heavy particles can be appreciably heated in a shock propagating into a partly-ionized gas in a magnetic field. (author)

  13. Study of laser-driven shock wave propagation in Plexiglas targets

    International Nuclear Information System (INIS)

    Dhareshwar, L.J.; Naik, P.A.; Pant, H.C.; Kaushik, T.C.

    1992-01-01

    An experimental study of laser-driven shock wave propagation in a transparent material such as Plexiglas using a high-speed optical shadowgraphy technique is presented in this paper. A Nd: glass laser was used to produce laser intensity in the range 10 12 -10 14 W/cm 2 on the target. Optical shadowgrams of the propagating shock front were recorded with a second-harmonic (0.53-μm) optical probe beam. Shock pressures were measured at various laser intensities, and the scaling was found to agree with the theoretically predicted value. Shock pressure values have also been obtained from a one-dimensional Lagrangian hydrodynamic simulation, and they match well with experimental results. Shadowgrams of shock fronts produced by nonuniform spatial laser beam irradiation profiles have shown complete smoothing when targets with a thin coating of a material of high atomic number such as gold were used. Shock pressures in such coated targets are also found to be considerably higher compared with those in uncoated targets. (Author)

  14. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    Science.gov (United States)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  15. Shock Waves Science and Technology Library

    CERN Document Server

    2012-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S. Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive appro...

  16. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  17. Can cellulite be treated with low-energy extracorporeal shock wave therapy?

    Science.gov (United States)

    Angehrn, Fiorenzo; Kuhn, Christoph; Voss, Axel

    2007-01-01

    The present study investigates the effects of low-energy defocused extracorporeal generated shock waves on collagen structure of cellulite afflicted skin. Cellulite measurement using high-resolution ultrasound technology was performed before and after low-energy defocused extracorporeal shock wave therapy (ESWT) in 21 female subjects. ESWT was applied onto the skin at the lateral thigh twice a week for a period of six weeks. Results provide evidence that low-energy defocused ESWT caused remodeling of the collagen within the dermis of the tested region. Improving device-parameters and therapy regimes will be essential for future development of a scientific based approach to cellulite treatment. PMID:18225463

  18. Determining integral density distribution in the mach reflection of shock waves

    Science.gov (United States)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  19. Morphological alterations of the gall-bladder following extracorporeal shock-wave lithotripsy

    International Nuclear Information System (INIS)

    Schumacher, K.A.; Zoeller, A.; Swobodnik, W.; Janowitz, P.

    1990-01-01

    The present study reports on 51 patients with symptomatic cholecystolithiasis, who accordingly underwent extracorporeal shock-wave lithotripsy (ESWL). In all cases, computed tomography (CT) was performed prior to and after the therapeutic procedure to delineate changes in gall-bladder morphology. Slight edematous thickening of the gall-bladder wall was found in 15 patients. One patient presented a rupture of the gall-bladder with formation of a bilioma in the adjacent liver tissue. In case of calcific concrements, CT revealed a characteristic pattern of fragment distribution following shock-wave treatment, and fragments of various sizes exhibited distinct adhesion to the gall-bladder wall. (orig.) [de

  20. Numerical study of shock waves in non-ideal magnetogasdynamics (MHD

    Directory of Open Access Journals (Sweden)

    Addepalli Ramu

    2016-01-01

    Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.

  1. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  2. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    Science.gov (United States)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  3. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  4. A study on early microstructural changes in the rabbit kidney induced by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Soo [Sung Ae Hospital, Seoul (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Song, In Sup; Lee, Yong Chul; Song, Kei Yong [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1993-07-15

    Many reports have been published on the tissue damage of a shock wave with respect to histopathological changes in light microscopy and various imaging modalities. However, the studies on the electron microscopic findings and cause of renal functional change such as parenchymal obstructive pattern following extracorporeal shock wave lithotripsy (ESWL) have not been elucidated. In order to evaluate the microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit kidneys. Preliminary study (n=2) was performed to determine the dosage intensity of shock waves to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lithotriptor. A shock wave of various intensities were given to the left kidneys of 3 different groups of rabbits. Storage of value of 100, 50, 25 at rate of 20/sec under 87% power were given to group I (n=4), group II (n=4), and group III (n=3) respectively. The right kidneys were preserved as the control group. The rabbits were killed 6-12 hour later. In gross, there were a few subcapsular hemorrhage foci and mild congestion of corticomedullary junction without a large hematoma formation. No significant differences were noted between each group. Light microscopic findings were mainly hydropic changes in the proximal convoluted tubules and congestion without significant necrotic changes. The observed pathologic changes in the transmission electron microscopy were vacuolization of cytoplasm with swelling of epithelial cells especially porximal convoluted tubules. There were also tubular obstruction due to swelling and desquamation of epithelial cells into tubular lumen. The structural changes of intracellular organelles were not found at storage values of 25 and 50. But dilatation and structural alterations of endoplasmic reticulums were noted at value of 100 with cell membrane rupture. The findings of this study suggest that tubular obstructions with

  5. Machine learning to analyze images of shocked materials for precise and accurate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.; Meehan, B. T.; Ramos, Kyle J.; Bolme, Cindy A.; Sandberg, Richard L.; Nelson, Keith A.

    2017-09-14

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast images of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.

  6. Cavitation cluster dynamics in shock-wave lithotripsy: Part I

    NARCIS (Netherlands)

    Arora, M.; Junge, L.; Junge, L.; Ohl, C.D.

    2005-01-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30

  7. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  8. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  9. Laser shock wave consolidation of nanodiamond powders on aluminum 319

    Energy Technology Data Exchange (ETDEWEB)

    Molian, Pal [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu; Molian, Raathai; Nair, Rajeev [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)

    2009-01-01

    A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm{sup -1} and 1600 cm{sup -1} respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 {mu}m and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kg{sub f}/mm{sup 2} (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (R{sub a}) in the range of 1.5-4 {mu}m depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.

  10. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  11. State equations and stability of shock wave fronts in homogeneous and heterogeneous metallic medium

    International Nuclear Information System (INIS)

    Romain, Jean-Pierre

    1977-01-01

    This research thesis in physical sciences reports a theoretical and experimental study of some mechanical and thermodynamic aspects related to a shock wave propagation in homogeneous and heterogeneous metallic media: state equations, stability and instability of shock wave fronts. In the first part, the author reports the study of the Grueneisen coefficient for some metallic elements with known static and dynamic compression properties. The second part reports the experimental investigation of dynamic compressibility of some materials (lamellar Al-Cu compounds). The front shock wave propagation has been visualised, and experimental Hugoniot curves are compared with those deduced from a developed numeric model and other models. The bismuth Hugoniot curve is also determined, and the author compares the existence and nature of phase transitions obtained by static and dynamic compression

  12. Effects of extracorporeal shock wave lithotripsy on the kidney and perinephric tissues: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kounn Sik; Kim, Kun Sang; Kim, Sae Chul [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of)

    1987-12-15

    Since the first successful treatment of the patient with renal stone by extracorporeal shock wave lithotripsy at the Institute for Surgical Research, West Germany, on February 7, 1980, extracorporeal shock wave lithotripsy (ESWL) has been a non-invasive technique for the treatment of the renal and ureteral calculi. In spite of the fact that the acoustic energy of the focused shock waves must pass through the soft tissues of back, perinephric tissues and renal parenchyme before reaching calculi, little is known about the effects of ESWL in the renal parenchyme and perinephric soft tissues. So we analyzed a pre and post-ESWL computed tomography scans of the kidneys in 130 patients treated at our hospital during a three month period to evaluate the effects of ESWL on the kidney and perinephric soft tissues.

  13. Effects of extracorporeal shock wave lithotripsy on the kidney and perinephric tissues: CT evaluation

    International Nuclear Information System (INIS)

    Song, Kounn Sik; Kim, Kun Sang; Kim, Sae Chul

    1987-01-01

    Since the first successful treatment of the patient with renal stone by extracorporeal shock wave lithotripsy at the Institute for Surgical Research, West Germany, on February 7, 1980, extracorporeal shock wave lithotripsy (ESWL) has been a non-invasive technique for the treatment of the renal and ureteral calculi. In spite of the fact that the acoustic energy of the focused shock waves must pass through the soft tissues of back, perinephric tissues and renal parenchyme before reaching calculi, little is known about the effects of ESWL in the renal parenchyme and perinephric soft tissues. So we analyzed a pre and post-ESWL computed tomography scans of the kidneys in 130 patients treated at our hospital during a three month period to evaluate the effects of ESWL on the kidney and perinephric soft tissues

  14. Dynamic Theory: some shock wave and energy implications

    International Nuclear Information System (INIS)

    Williams, P.E.

    1981-02-01

    The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas

  15. Comparison of the effectiveness of local corticosteroid injection and extracorporeal shock wave therapy in patients with lateral epicondylitis.

    Science.gov (United States)

    Beyazal, Münevver Serdaroğlu; Devrimsel, Gül

    2015-12-01

    [Purpose] This study aimed to determine and compare the effectiveness of extracorporeal shock wave therapy and local corticosteroid injection in patients with lateral epicondylitis. [Subjects and Methods] Sixty-four patients with lateral epicondylitis were randomly divided into extracorporeal shock wave therapy and steroid injection groups. Patients were evaluated using hand grip strength, visual analog scale, and short-form McGill pain questionnaire at baseline and at 4 and 12 weeks post-treatment. [Results] Both groups showed statistically significant increase in hand grip strength and decreases on the visual analog scale and short form McGill pain questionnaire overtime. There was no statistically significant difference in the percentage of improvement in hand grip strength and on the short-form McGill pain questionnaire between groups at 4 weeks post-treatment, whereas the extracorporeal shock wave therapy group showed better results on the visual analog scale. The percentages of improvements in all 3 parameters were higher in the extracorporeal shock wave therapy group than in the injection group at 12 weeks post-treatment. [Conclusion] Both the extracorporeal shock wave therapy and steroid injection were safe and effective in the treatment of lateral epicondylitis. However, extracorporeal shock wave therapy demonstrated better outcomes than steroid injection at the long-term follow-up.

  16. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  17. Dissociation of NF3 in shock waves

    International Nuclear Information System (INIS)

    Breshears, W.D.; Bird, P.F.

    1978-01-01

    The thermal dissociation rate of NF 3 in mixtures of 5% and 10%NF 3 in Ar has been measured behind incident shock waves over the temperature range 1330-2000 K. Dissociation rates were determined from postshock density gradients measured by laser beam deflection. The second order rate coefficient determined for NF 3 -Ar collisions is k/sub d/=2.31 x 10 15 exp(-20500/T) cm 3 mole sec

  18. Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Schmitt, A.J.; Metzler, N.; Gardner, J.H.

    2003-01-01

    When a rippled surface of a planar target is irradiated with a short (subnanosecond) laser pulse, the shock wave launched into the target and the mass distribution of the shocked plasma will oscillate. These oscillations are found to be surprisingly strong compared, for example, to the case when the laser radiation is not turned off but rather keeps pushing the shock wave into the target. Being stronger than the areal mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar targets, which have recently been observed at the Naval Research Laboratory (NRL) [Aglitskiy et al., Phys. Plasmas 9, 2264 (2002)], these oscillations should therefore be directly observable with the same diagnostic technique. Irradiation of a target with a short laser pulse represents a particular case of an impulsive loading, a fast release of finite energy in a thin layer near the surface of a target. Renewed interest to the impulsive loading in the area of direct-drive laser fusion is due to the recent proposals of using a short pulse prior to the drive pulse to make the target more resistant to laser imprint and Rayleigh-Taylor growth. Impulsive loading produces a shock wave that propagates into the target and is immediately followed by an expansion wave, which gradually reduces the shock strength. If the irradiated surface is rippled, then, while the shock wave propagates through the target, its modulation amplitude grows, exceeding the initial ripple amplitude by a factor of 2 or more. The oscillating areal mass reaches the peak values that exceed the initial mass modulation amplitude (density times ripple height) by a factor of 5-7 or more, and reverses its phase several times after the laser pulse is over. The oscillatory growth is more pronounced in fluids with higher shock compressibility and is probably related to the Vishniac's instability of a blast wave. Frequency of the oscillations is determined by the speed of sound in the shocked material, and

  19. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    International Nuclear Information System (INIS)

    Desjouy, C.; Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-01-01

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations

  20. Impact of aging and comorbidity on the efficacy of low-intensity shock wave therapy for erectile dysfunction.

    Science.gov (United States)

    Hisasue, Shin-ichi; China, Toshiyuki; Horiuchi, Akira; Kimura, Masaki; Saito, Keisuke; Isotani, Shuji; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Horie, Shigeo

    2016-01-01

    To evaluate the efficacy of low-intensity shock wave therapy and to identify the predictive factors of its efficacy in Japanese patients with erectile dysfunction. The present study included 57 patients with erectile dysfunction who satisfied all the following conditions: more than 6-months history of erectile dysfunction, sexual health inventory for men score of ≤ 12 without phosphodiesterase type-5 inhibitor, erection hardness score grade 1 or 2, mean penile circumferential change by erectometer assessing sleep related erection of energy shock waves generator (ED1000; Medispec, Gaithersburg, MD, USA). A total of 12 shock wave treatments were applied. Sexual health inventory for men score, erection hardness score with or without phosphodiesterase type-5 inhibitor, and mean penile circumferential change were assessed at baseline, 1, 3 and 6 months after the termination of low-intensity shock wave therapy. Of 57 patients who were assigned for the low-intensity shock wave therapy trial, 56 patients were analyzed. Patients had a median age of 64 years. The sexual health inventory for men and erection hardness score (with and without phosphodiesterase type-5 inhibitor) were significantly increased (P wave therapy (P wave therapy seems to be an effective physical therapy for erectile dysfunction. Age and comorbidities are negative predictive factors of therapeutic response. © 2015 The Japanese Urological Association.

  1. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  2. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  3. Compendium of shock wave data. Section A2. Inorganic compounds. Section B. Hydrocarbons

    International Nuclear Information System (INIS)

    van Thiel, M.; Shaner, J.; Salinas, E.

    1977-06-01

    This volume lists in a concise manner the thermodynamic data in condensed media obtained by shock wave techniques. The volume should be useful both to people working in the shockwave field and to others interested primarily in thermodynamic properties at high pressure. Therefore, both dynamic variables and volumetric quantities associated with the shock wave are given. The format was selected to make the volume useful in engineering as well as scientific reserch activities. Data on the elements are contained in this volume

  4. Secondary sound classification for the assessment of focus positioning in shock-wave lithotripsy

    OpenAIRE

    Grennberg, Anders; Almquist, Lars-Olof; Holmner, Nils-Gunnar; Olsson, Lennart

    1993-01-01

    A problem encountered when using acoustic shock-waves for kidney stone disintegration is that the positioning of the focus relative to a stone, for the best possible fragmenting effect, is crtitical. The standard methods for focus positioning are ultrasound or x-ray imaging. These methods are, however, not always sufficient and a better indication of a well positioned focus would be valuable. The secondary sound emitted as a result of each shock-wave has been found to contain valuable informa...

  5. Inquiry learning: Students' perception of light wave phenomena in an informal environment

    Science.gov (United States)

    Ford, Ken

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the

  6. Collisionless shocks and upstream waves and particles: Introductory remarks

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1981-01-01

    We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come

  7. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  8. Acoustic waves in shock tunnels and expansion tubes

    Science.gov (United States)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  9. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    Science.gov (United States)

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  10. Experience with extracorporeal shock wave therapy (ESWT) in the United States

    Science.gov (United States)

    Furia, John P.

    2005-04-01

    The purpose of this presentation is to summarize the literature and to report on single treatment, high-energy ESWT for the treatment of chronic plantar fasciitis and lateral epicondylitis. Fifty-three patients (60 heels) were treated with 3800 shock waves. Sixteen patients (19 heels) were active, 21 (22 heels), were moderately active, and 16 (19 heels) were sedentary. Twelve weeks post treatment, mean visual analog scores (VAS) for the entire group improved from 9.2 to 2.4 (plateral epicondylitis were treated with 3200 shock waves. There were 9 workers compensation and 27 non-workers compensation patients. Twelve weeks post treatment, the mean VAS for the entire group improved from 8.0 to 2.5 (plateral epicondylitis.

  11. Measurement of the development and evolution of shock waves in a laser-induced gas breakdown plasma

    International Nuclear Information System (INIS)

    Chu, T.K.; Johnson, L.C.

    1975-01-01

    Space- and time-resolved interferometric measurements of electron density in CO 2 -laser produced plasmas in helium or hydrogen are made near the laser focal spot. Immediately after breakdown, a rapidly growing region of approximately uniform plasma density appears at the focal spot. After a few tens of nanoseconds, shock waves are formed, propagating both transverse and parallel to the incident laser beam direction. Behind the transverse propagating shock is an on-axis density minimum, which results in laser-beam self-trapping. The shock wave propagating toward the focusing lens effectively shields the interior plasma from the incident beam because the lower plasma temperature and higher plasma density in the shock allow strong absorption of the incident beam energy. By arranging the laser radiation-plasma interaction to begin at a plasma-vacuum interface at the exit of a free-expansion jet, this backward propagating shock wave is eliminated, thus permitting efficient energy deposition in the plasma interior

  12. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  13. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  14. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  15. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  16. Waves and particles two essays on fundamental physics

    CERN Document Server

    Newton, Roger G

    2014-01-01

    The book consists of two separate parts, the first part is on waves and the second part on particles. In part 1, after describing the awesome power of tsunami and the history of their occurrences, the book turns to the history of explaining phenomena by means of mathematical equations. Then it describes other wave phenomena and the laws governing them: the vibration of strings and drums in musical instruments, the sound waves making them audible, ultrasound and its uses, sonar, and shock waves; electromagnetic waves: light waves, refraction, diffraction, why the sky is blue, the rainbow, and the glory; microwaves and radio waves: radar, radio astronomy, the discovery of the cosmic microwave background radiation, microwave ovens and how a radio works, lasers and masers; waves in modern physics: the Schrödinger wave function and gravitational waves in general relativity; water waves in the ocean, tides and tidal waves, and the quite different solitary waves, solitons discovered in canals. Finally we return to ...

  17. An interferometric and numerical study of pseudo-stationary oblique-shock-wave reflections in sulfur hexafluoride (SF6)

    Science.gov (United States)

    Hu, T. C. J.; Glass, I. I.

    Results are reported from experimental and analytical investigations of real-gas effects in the propagation of shock waves through SF6, a gas with 15 vibrational degrees of freedom. Shock waves with speeds ranging from Mach 1.25-8 were directed toward sharp steel wedges in a hypervelocity shock tube. Mach-Zehnder interferometry was used to obtain shock shape and geometry, isopycnic and density field data. Frozen-gas and equilibrium-gas (EQM) analyses modeling were performed for comparisons with experimental data, which depicted four types of reflection and transitions among them. Transition boundaries were best predicted with EQM treatment. A new criterion was derived for transition between single-Mach and complex-Mach reflection. Regular reflection continued past the boundary line defined by the transition criterion because of boundary layer growth produced on the wedge surface by passage of the shock wave.

  18. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  19. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    Science.gov (United States)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  20. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  1. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  2. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5

    Science.gov (United States)

    Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang

    2017-11-01

    A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.

  3. Strong ion accelerating by collisionless magnetosonic shock wave propagating perpendicular to a magnetic field

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu.

    1984-12-01

    A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)

  4. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    Science.gov (United States)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  5. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  6. Upstream region, foreshock and bow shock wave at Halley's Comet from plasma electron measurements

    International Nuclear Information System (INIS)

    Anderson, K.A.; Carlson, C.W.; Curtis, D.W.

    1986-01-01

    Halley plasma electron parameters from 2.7 million km from the comet nucleus to the bow shock wave at 1.1 million km and beyond are surveyed. The features of the electron foreshock lying outside the shock to a distance of 230,000 km are described. It is a region of intense solar wind-comet plasma interaction in which energetic electrons are prominent. Several spikes of electrons whose energies extend to 2.5 keV appear in front of the shock. These energetic electrons may be accelerated in the same way electrons are accelerated at the Earth's bow shock to energies of 1 to 10 keV. The direction of the electron bulk flow direction changes abruptly between 1920 and 1922 UT, and the flow speed begins a sharp decline at the same time. It is suggested that the spacecraft entered the bow shock wave between 1920 and 1922 UT. Electron density variations at Halley are very much smaller than those at Giacobini-Zinner

  7. The Curious Events Leading to the Theory of Shock Waves

    Science.gov (United States)

    Salas, Manuel D.

    2006-01-01

    We review the history of the development of the modern theory of shock waves. Several attempts at an early-theory quickly collapsed for lack of foundations in mathematics and thermodynamics. It is not until the works of Rankine and later Hugoniot that a full theory is established. Rankine is the first to show that within the shock a non-adiabatic process must occur. Hugoniot showed that in the absence of viscosity and heat conduction conservation of energy implies conservation of entropy in smooth regions and a jump in entropy across a shock. Even after the theory is fully developed, old notions continue to pervade the literature well into the early part of the 20th Century.

  8. Analysis of internal stress and anelasticity in the shock-compressed state from unloading wave data

    International Nuclear Information System (INIS)

    Johnson, J.N.; Lomdahl, P.S.; Wills, J.M.

    1991-01-01

    This paper reports on time resolved shock-wave measurements have often been used to infer microstructural behavior in crystalline solids. The authors apply this approach to an interpretation of the release-wave response of an aluminum alloy (6061-T6) as it is dynamically unloaded from a shock-compressed state of 20.7 GPa. The anelastic behavior in the initial portion of the unloading wave is attributed to the accumulation of internal stresses created by the shock process. Specific internal-stress models which are investigated are the double pile-up, the single pile-up, and single dislocation loops between pinning points. It is found that the essential characteristics of double and single pile-ups can be represented by a single dislocation between two pinned dislocations of like sing. Calculations of anelastic wave speeds at constant unloading strain rate are then compared with experimental data. The results suggest that the residual internal stress is due to pinned loops of density 10 15 M - 2 , and the viscous drag coefficient in the shock-compressed state is on the order of 10 - 7 MPa s (approximately two orders of magnitude greater than expected under ambient conditions)

  9. Interaction of a conical shock wave with a turbulent boundary layer

    Science.gov (United States)

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  10. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  11. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  12. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    Science.gov (United States)

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  13. Theoretical and experimental investigation of shock wave stressing of metal powders by an explosion

    Directory of Open Access Journals (Sweden)

    Lukyanov Ya.L.

    2011-01-01

    Full Text Available Joint theoretical and experimental investigations have allowed to realize an approach with use of mathematical and physical modeling of processes of a shock wave loading of powder materials. Hugoniot adiabats of the investigated powder have been measured with a noncontact electromagnetic method. The mathematical model of elastic-plastic deformation of the powder media used in the investigation has been validated. Numerical simulation of shock wave propagation and experimental assembly deformation has been performed.

  14. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  15. Low Intensity Shock Wave Treatment for Erectile Dysfunction-How Long Does the Effect Last?

    Science.gov (United States)

    Kitrey, Noam D; Vardi, Yoram; Appel, Boaz; Shechter, Arik; Massarwi, Omar; Abu-Ghanem, Yasmin; Gruenwald, Ilan

    2018-03-01

    We studied the long-term efficacy of penile low intensity shock wave treatment 2 years after an initially successful outcome. Men with a successful outcome of low intensity shock wave treatment according to the minimal clinically important difference on the IIEF-EF (International Index of Erectile Function-Erectile Function) questionnaire were followed at 6, 12, 18 and 24 months. Efficacy was assessed by the IIEF-EF. Failure during followup was defined as a decrease in the IIEF-EF below the minimal clinically important difference. We screened a total of 156 patients who underwent the same treatment protocol but participated in different clinical studies. At 1 month treatment was successful in 99 patients (63.5%). During followup a gradual decrease in efficacy was observed. The beneficial effect was maintained after 2 years in only 53 of the 99 patients (53.5%) in whom success was initially achieved. Patients with severe erectile dysfunction were prone to earlier failure than those with nonsevere erectile dysfunction. During the 2-year followup the effect of low intensity shock wave treatment was lost in all patients with diabetes who had severe erectile dysfunction at baseline. On the other hand, patients with milder forms of erectile dysfunction without diabetes had a 76% chance that the beneficial effect of low intensity shock wave treatment would be preserved after 2 years. Low intensity shock wave treatment is effective in the short term but treatment efficacy was maintained after 2 years in only half of the patients. In patients with milder forms of erectile dysfunction the beneficial effect is more likely to be preserved. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    International Nuclear Information System (INIS)

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  17. Theory of the corrugation instability of a piston-driven shock wave.

    Science.gov (United States)

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  18. Characterization and modification of cavitation pattern in shock wave lithotripsy

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Liebler, Marko

    2004-01-01

    The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a

  19. Data derived from constitutive laws for description of shock wave propagation in concrete. Final report

    International Nuclear Information System (INIS)

    Eibl, J.; Ockert, J.

    1994-01-01

    Especially the need to design safe reactor containments, but also the necessity to protect facilities and human beings against impacts induced secondarily by explosions and detonations, demand simulations and design calculations of concrete under shock wave loading. The necessary computer codes are available, but the relevant constitutive laws for concrete with volumetric pressures up to more than 10000 MPa are lacking. Therefore shock wave tests have been carried out to develop such constitutive laws by loading concrete slabs with contact explosions. By the use of hot-molded carbon composition resistors shock waves propagating through the slab were measured. Pressures up to 13900 MPa were registered. Additionally shock wave velocities were determined from the different arrival times of the wave at the gages. By these two measured values and the conservation equations of mass and momentum the needed p-V relationship, the so called Hugoniot-Curve, was established up to 13900 MPa. Using the theory of Mie-Grueneisen and the so called P-α model the Hugoniot-Curve was extended to the equation of state for concrete. In a first step the deviatoric part of the constitutive law was attached from own static experiments considering the existing knowledge of strain rate effects since relevant dynamic tests under extreme loads are not available. With this constitutive law the analysis of the experiments then was backward verified in detail. (orig.) [de

  20. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    Science.gov (United States)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.