WorldWideScience

Sample records for shock wave boundary

  1. Transonic shock wave. Boundary layer interaction at a convex wall

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock waveboundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  2. Shock wave convergence in water with parabolic wall boundaries

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  3. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  4. Experimental research on crossing shock wave boundary layer interactions

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  5. Simulation of hypersonic shock wave - laminar boundary layer interactions

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  6. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  7. Transonic shock wave. Turbulent boundary layer interaction on a curved surface

    Nebbeling, C.; Koren, B.

    1988-01-01

    This paper describes an experimental investigation of a transonic shock wave - turbulent boundary layer interaction in a curved test section, in which the flow has been computed by a 2-D Euler flow method. The test section has been designed such that the flow near the shock wave on the convex curved

  8. Convergence of shock waves between conical and parabolic boundaries

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2016-07-15

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  9. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction

    Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of

  10. Interaction of a conical shock wave with a turbulent boundary layer

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  11. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

    Mehrnaz Rouhi Youssefi; Doyle Knight

    2017-01-01

    The goal of this study is to assess CFD capability for the prediction of shock wave laminar boundary layer interactions at hypersonic velocities. More specifically, the flow field over a double-cone configuration is simulated using both perfect gas and non-equilibrium Navier–Stokes models. Computations are compared with recent experimental data obtained from measurements conducted in the LENS XX (Large Energy National Shock Expansion Tunnel Version 2) at the Calspan University of Buffalo Rese...

  12. Passive shock wave/boundary layer control of wing at transonic speeds

    Ling Zhou

    2017-11-01

    Full Text Available At supercritical conditions a porous strip (or slot strip placed beneath a shock wave can reduce the drag by a weaker lambda shock system, and increase the buffet boundary, even may increase the lift. Passive shock wave/boundary layer control (PSBC for drag reduction was conducted by SC(2-0714 supercritical wing, with emphases on parameter of porous/slot and bump, such as porous distribution, hole diameter, cavity depth, porous direction and so on. A sequential quadratic programming (SQP optimization method coupled with adjoint method was adopted to achieve the optimized shape and position of the bumps. Computational fluid dynamics (CFD, force test and oil test with half model all indicate that PSBC with porous, slot and bump generally reduce the drag by weaker lambda shock at supercritical conditions. According to wind tunnel test results for angle of attack of 2° at Mach number M=0.8, the porous configuration with 6.21% porosity results in a drag reduction of 0.0002 and lift–drag ratio increase of 0.2, the small bump configuration results in a drag reduction of 0.0007 and lift–drag ratio increase of 0.3. Bump normally reduce drag at design point with shock wave position being accurately computed. If bump diverges from the position of shock wave, drag will not be easily reduced.

  13. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  14. A computational study on oblique shock wave-turbulent boundary layer interaction

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  15. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Davis, David Owen

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  16. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase I

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  17. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase II

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  18. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  19. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    Desjouy, C.; Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-01-01

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations

  20. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  1. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Kobayashi, Kazumichi [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kodama, Tetsuya [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Takahira, Hiroyuki, E-mail: kobakazu@eng.hokudai.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2011-10-07

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  2. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-01-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  3. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-10-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  4. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

    Mehrnaz Rouhi Youssefi

    2017-04-01

    Full Text Available The goal of this study is to assess CFD capability for the prediction of shock wave laminar boundary layer interactions at hypersonic velocities. More specifically, the flow field over a double-cone configuration is simulated using both perfect gas and non-equilibrium Navier–Stokes models. Computations are compared with recent experimental data obtained from measurements conducted in the LENS XX (Large Energy National Shock Expansion Tunnel Version 2 at the Calspan University of Buffalo Research Center (CUBRC. Four separate cases of freestream conditions are simulated to examine the models for a range of stagnation enthalpies from 5.44 MJ/kg to 21.77 MJ/kg and Mach numbers from 10.9 to 12.82.

  5. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  6. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin

  7. Shock Waves

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  8. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  9. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  10. Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer

    Melnik, R. E.; Grossman, B.

    1974-01-01

    The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.

  11. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  12. Analysis of dimensionality effect on shock wave boundary layer interaction in laminar hypersonic flows

    John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak

    2016-01-01

    Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.

  13. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Davis, David O.

    2015-01-01

    Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.

  14. 30th International Symposium on Shock Waves

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  15. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  16. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  17. An experimental study of three-dimensional shock wave/boundary layer interactions generated by sharp fins

    Lu, F. K.; Settles, G. S.; Bogdonoff, S. M.

    1983-01-01

    The interaction between a turbulent boundary layer and a shock wave generated by a sharp fin with leading edge sweepback was investigated. The incoming flow was at Mach 2.96 and at a unit Reynolds number of 63 x 10 to the 6th power 0.1 m. The approximate incoming boundary layer thickness was either 4 mm or 17 mm. The fins used were at 5 deg, 9 deg and 15 deg incidence and had leading edge sweepback from 0 deg to 65 deg. The tests consisted of surface kerosene lampblack streak visualization, surface pressure measurements, shock wave shape determination by shadowgraphs, and localized vapor screen visualization. The upstream influence lengths of the fin interactions were correlated using viscous and inviscid flow parameters. The parameters affecting the surface features close to the fin and way from the fin were also identified. Essentially, the surface features in the farfield were found to be conical.

  18. Bubble Dynamics and Shock Waves

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  19. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave Boundary-Layer Interaction

    Davis, David O.

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  20. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  1. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet

    Kim, Hyun Dae; Felder, James L.

    2011-01-01

    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  2. Shock wave interaction with turbulence: Pseudospectral simulations

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  3. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  4. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  5. PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions

    Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.

    2017-11-01

    Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.

  6. Dynamic Stress Concentration at the Boundary of an Incision at the Plate Under the Action of Weak Shock Waves

    Mikulich Olena

    2017-09-01

    Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of weak shock waves. For solution of the problem it uses the integral and discrete Fourier transforms. Calculation of transformed dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithm is based on the method of mechanical quadratures and collocation technique. For calculation of originals of the dynamic stresses it uses modified discrete Fourier transform. The algorithm is effective in the analysis of the dynamic stress state of defective plates.

  7. 29th International Symposium on Shock Waves

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  8. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  9. Flow control for oblique shock wave reflections

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  10. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  11. Experimental investigation of shock wave - bubble interaction

    Alizadeh, Mohsen

    2010-04-09

    amplification. The pressure can be enhanced by a factor of up to about 4 compared with the free bubble collapse pressure. The bubble centroid is translated in the original direction of the shock wave passage because of the momentum transfer from the shock to the bubble. This translation is more pronounced in the case that the cavity is collapsing at the moment of the shock wave arrival. The pressure profile measured above the laser-induced bubbles is broadened due to diffraction and absorption effects. Thus, the shock wave pulse amplitude measured at the top of the single bubbles is less than the one obtained in the free field. The amount of damping in the maximum shock pressure is increasing with the shock wave intensity. The dynamics of laser-induced single cavitation bubbles near to a solid wall under the influence of a lithotripter shock wave is investigated in chapter 6. The boundary is located parallel to the direction of the shock wave propagation. The distance between interface and the cavity is altered in several steps as well as the moment of the shock impact. The presence of the wall leads to an increase of the bubble collapse time while the shock wave tends to decrease it. It is shown that by increasing the distance between boundary and the bubble, the effect of the shock wave becomes more prominent. The bubble tip is inclined toward the wall and at large cavity distances, this inclination lowers and the liquid jet is developed in the direction of the shock wave passage. For a specific distance between cavity and the boundary, it is shown that the implosion of initially collapsing cavities is more violent compared to initially expanding bubbles.

  12. Fascinating World of Shock Waves

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  13. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  14. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  15. Flow control for oblique shock wave reflections

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  16. 28th International Symposium on Shock Waves

    2012-01-01

    The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

  17. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  18. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  19. Shock waves & explosions

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  20. Gravitational shock waves and extreme magnetomaterial shock waves

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  1. Shock waves in helium at low temperatures

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  2. Shock wave treatment in medicine

    Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...

  3. Oscillating nonlinear acoustic shock waves

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  4. Focusing of Shear Shock Waves

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  5. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  6. Shock wave treatment in medicine

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  7. Shock wave dynamics derivatives and related topics

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  8. Model for Shock Wave Chaos

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  9. Collisionless shock waves

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  10. Diaphragmless shock wave generators for industrial applications of shock waves

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  11. On possible structures of transverse ionizing shock waves

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  12. EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AS ...

    Objective To evaluate extracorporeal shock wave lithotripsy (ESWL) as a monotherapy for urolithiasis in patients with solitary kidney and to determine the factors that may affect its results. Patients and Methods Using the Dornier MFL 5000 lithotriptor, 106 patients with solitary kidney (80 men and 26 women) were treated for ...

  13. Model for Shock Wave Chaos

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  14. Shock waves in gas and plasma

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  15. Shock waves in weakly compressed granular media.

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  16. Experimental methods of shock wave research

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  17. Measurements in Regions of Shock Wave/Turbulent Boundary Layer Interaction from Mach 3 to 10 for Open and Blind Code Evaluation/Validation

    2013-03-01

    34Blind" Code Evaluation/Validation Michael S. Holden, Timothy P. Wadhams, Matthew G. MacLean, Aaron Dufrene CUBRC , Inc March 2013 Final...298 Back (Rev. 8/98) *Fellow, AIAA, Vice President-Hypersonics, CUBRC , 4455 Genesee Street, Buffalo, NY 14225 ** Member, AIAA, Project Engineers... CUBRC , 4455 Genesee Street, Buffalo, NY 14225 This work was supported by AFOSR Grant No. FA9550-11-1-0290 MEASUREMENTS IN REGIONS OF SHOCK WAVE

  18. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  19. Formation of the wave compressional boundary in the earth's foreshock

    Skadron, G.; Holdaway, R.D.; Lee, M.A.

    1988-01-01

    The authors analyze the interaction between energetic protons and hydromagnetic waves in the Earth's ion foreshock and locate compressional wave boundaries corresponding to interplanetary magnetic field (IMF) inclinations to the solar wind of θ BV equal to 45 degree and 25 degree. Protons injected into the solar wind at the bow shock interact with MHD waves traveling along the IMF lines intersecting the shock. Starting with the quasi-linear pitch angle diffusion equation, they obtain fluid equations for the densities and mean velocities of outward and inward streaming energetic protons. The excitation and damping of waves by these protons are described by linear growth rates for parallel propagation and evaluated using a model proton distribution function controlled by the local fluid variables. The coupled equations for the evolution of the wave intensities, proton densities, and mean velocities are solved numerically assuming a prescribed proton injection rate at the shock. They find that in the solar wind frame, (1) the dominant wave-particle interaction in the outer foreshock is the damping of inward propagating (toward the shock) left-polarized waves, producing a magnetically quiet region immediately downstream of the foreshock boundary; (2) excitation of outward propagating right-polarized waves farther downstream leads to the recovery of δ|B| and to an upstream boundary for enhanced compressional wave activity; (3) at θ BV = 45 degree, the calculated compressional boundary has a mean inclination of 78 degree from the Earth-Sun axis, compared with the observed range of 85 degree ± 3 degree

  20. Model for shock wave chaos.

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  1. Formation of the wave compressional boundary in the earth's foreshock

    Skadron, George; Holdaway, Robert D.; Lee, Martin A.

    1988-01-01

    Using an evolutionary model and allowing for nonuniform proton injection and wave growth rates, the compressional wave boundaries corresponding to IMF inclinations to the solar wind of theta(BV) equal to 45 and 25 deg were located. The compressional boundaries deduced from this model were found to support the results of Greenstadt and Baum (1986) who have concluded that the observed compressional boundaries are incompatible with wave growth at a fixed growth rate, due to the interaction of a uniform beam with the solar wind. The results indicate, however, that the compressional boundaries are quite compatible with nonuniform beams and growth rates which result from the coupled evolution of the energetic protons and the waves with which they interact. It was found that, in the solar wind frame, the dominant wave-particle interaction in the outer foreshock is the damping of inward propagating (toward the shock) left-polarized waves, producing a magnetically quiet region immediately downstream of the foreshock boundary.

  2. Physics of Collisionless Shocks Space Plasma Shock Waves

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  3. Shock wave attenuation in a micro-channel

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  4. Introduction to Shock Waves and Shock Wave Research

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  5. Factors influencing flow steadiness in laminar boundary layer shock interactions

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  6. Incidence of cavitation in the fragmentation process of extracorporeal shock wave lithotriptors

    Rink, K.; Delacrétaz, G.; Pittomvils, G.; Boving, R.; Lafaut, J. P.

    1994-05-01

    The fragmentation mechanism occurring in extracorporeal shock wave lithotripsy (ESWL) is investigated using a fiber optic stress sensing technique. With our technique, we demonstrate that cavitation is a major cause of fragmentation in ESWL procedures. When a target is placed in the operating area of the lithotriptor, two shock waves are detected. The first detected shock wave corresponds to the incoming shock wave generated by the lithotriptor. The second shock wave, detected some hundreds of microseconds later, is generated in situ. It results from the collapse of a cavitation bubble, formed by the reflection of the incoming shock wave at the target boundary. This cavitation induced shock wave generates the largest stress in the target area according to our stress sensing measurements.

  7. Shock Wave Dynamics in Weakly Ionized Plasmas

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  8. Overview of shock waves in medicine

    Cleveland, Robin O.

    2003-10-01

    A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.

  9. Unusual behaviour of usual materials in shock waves

    Kanel, G I

    2014-01-01

    Exotic results of investigations of inelastic deformation and fracture under shock wave loading are presented and briefly discussed. Temperature effects on the flow stress at high strain rate may differ even in sign from those we observe at low and moderate strain rates. Investigations of the temperature-rate dependence of the yield stress at shock compression demonstrate intense multiplication of dislocations. At the highest strain rates, so-called ideal (ultimate) shear and tensile strength is reached in experiments with picosecond durations of shock loading. Although grain boundaries, in general, reduce resistance to fracture as compared to single crystals, the spall strength of ultra-fine-grained metals usually slightly exceeds that of coarse-grain samples. Failure wave phenomena have been observed in shock-compressed glasses.

  10. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  11. Bubbles with shock waves and ultrasound: a review.

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  12. Shock wave physics group (M-6)

    Morris, C.E.

    1981-01-01

    Experimental facilities and activities of the shock wave physics group at LASL are described. The facilities include a compressed gas gun, two-stage gas gun, high explosive facilities, and a pulsed megagauss field facility

  13. Shock Wave Science and Technology Reference Library

    2007-01-01

    Shock waves in multiphase flows refers to a rich variety of phenomena of interest to physicists, chemists, and fluid dynamicists, as well as mechanical, biomedical and aeronautical engineers. This volume treats shock and expansion waves in (bullet) complex, bubbly liquids (L van Wijngaarden, Y Tomita, V Kedrinskii) and (bullet) cryogenic liquids (M Murakami) and examines the relationship of shock waves with (bullet) phase transitions (A Guha, CF Delale, G Schnerr, MEH van Dongen) (bullet) induced phase transitions (GEA Meier) as well as their interaction with (bullet) solid foams, textiles, porous and granular media (B Skews, DMJ Smeulders, MEH van Dongen, V Golub, O Mirova) All chapters are self-contained, so they can be read independently, although they are of course thematically interrelated. Taken together, they offer a timely reference on shock waves in multiphase flows, including new viewpoints and burgeoning developments. The book will appeal to beginners as well as professional scientists and engineer...

  14. Collisions on relativistic nuclei: shock waves

    Gudima, K.K.; Toneev, V.D.

    1976-01-01

    Experiments are analysed which indicate the possible generation of shock waves in collisions of two nuclei. Another interpretation of these data is proposed and the concerned new experiments are discussed

  15. Analysis of Z Pinch Shock Wave Experiments

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  16. Medical and biomedical applications of shock waves

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  17. Particle acceleration and shock wave structure

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  18. Shock wave collisions and thermalization in AdS5

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  19. Waves and Instabilities in Collisionless Shocks

    1984-04-01

    occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles

  20. Laser shock wave and its applications

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  1. Dynamic shock wave: hammer blow

    Lackme, Claude

    1978-01-01

    The general properties of shocks, their generation and the conditions of reflexion to an interface are dealt with in turn. By then applying these concepts to a liquid column and its environment (wall, free area, closing devices) the hammer blow is presented as being a relatively weak shock [fr

  2. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  3. Critical point anomalies include expansion shock waves

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  4. Shock wave science and technology reference library

    2009-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a t...

  5. Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: Theoretical formulation.

    Zhong, P; Chuong, C J

    1993-07-01

    To understand the physical process of the impingement of cavitation microjet and the resultant shock wave propagation in an elastic solid, a theoretical model using geometrical acoustics was developed. Shock waves induced in both the jet head (water) and the solid were analyzed during a tri-supersonic impact configuration when the contact edge between the jet head and the elastic boundary expands faster than the longitudinal wave speed in the solid. Impact pressure at the boundary was solved using continuity conditions along the boundary normal. Reflection and refraction of shock waves from a solid-water interface were also included in the model. With this model, the impact pressure at the solid boundary and the stress, strain as well as velocity discontinuities at the propagating shock fronts were calculated. A comparison with results from previous studies shows that this model provides a more complete and general solution for the jet impact problem.

  6. Computer simulations of collisionless shock waves

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  7. Shock parameter calculations at weak interplanetary shock waves

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  8. Report of 22nd International Symposium on Shock Waves; Dai 22 kai kokusai shogekiha symposium shusseki hokoku

    Takayama, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    1999-11-05

    Outlined herein are the topics at the 22nd. International Symposium on Shock Waves, held in July 1999 in London. Prof. Takayama of Tohoku University gave an invited lecture on application of shock waves to medical area, stressing significance of shock waves on a human body. A total of 81 papers were presented from Japan. Number of Japanese papers and number of Japanese attendees both accounted for approximately 25%. The themes of these papers are centered by behavior of shock waves (e.g., propagation, reflection, and diffraction), extreme supersonic flows, interference between shock wave and boundary layer, aerodynamics (e.g., interference between vortex and shock wave), numerical simulation of shock wave phenomena, development of a new shock wave tube and measurement method, researches on elementary steps in chemical reactions, shock wave phenomena in condensed media and multi-phase media, shock wave noise produced while a high-speed train is running in a tunnel, and application of shock waves to industrial and medical areas. Japan contributes much to the application to medical area, and a method dispensing with injection is reported. Japan's aerospace-related researches include interference between shock wave and boundary layer, in which the real gas effect is taken into consideration, designs for protection from heat during the re-entry into the atmosphere, and construction of the world largest free-piston type wind tunnel. (NEDO)

  9. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  10. Application of Underwater Shock Wave Focusing to the Development of Extracorporeal Shock Wave Lithotripsy

    Takayama, Kazuyoshi

    1993-05-01

    This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.

  11. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  12. Shock wave science and technology reference library

    2009-01-01

    This book is the second of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. Of the four extensive chapters in this volume, the first two describe the reactive behavior of condensed phase explosives, - Condensed-Phase Explosives: Shock Initiation and Detonation Phenomena (SA Sheffield and R Engelke) - First Principles Molecular Simulations of Energetic Materials at High-Pressures (F Zhang, S Alavi, and TK Woo), and the remaining two discuss the inert, mechanical response of solid materials. - Combined Compression and Shear Plane Waves (ZP Tang and JB Aidun), and - Dynamic Fragmentation of Solids (D Grady). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomen...

  13. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  15. Shock waves in P-bar target

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  16. Shock waves in P-bar target

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  17. Interstellar turbulence and shock waves

    Bykov, A.M.

    1982-01-01

    Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed

  18. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  19. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  20. Shock wave interactions with detonable clouds

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  1. Investigation of 3D Shock-Boundary Layer Interaction: A Combined Approach using Experiments, Numerical Simulations and Stability Analysis

    2015-12-02

    layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...Introduction Shock-wave boundary layer interactions (SBLIs) occur in most supersonic flight applications and have been the subject of many studies...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental

  2. Pseudo-shock waves and their interactions in high-speed intakes

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  3. Experimental investigation of wave boundary layer

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...

  4. International Shock-Wave Database: Current Status

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  5. Shock waves in collective field theories for many particle systems

    Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-10-01

    We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.

  6. State of the art extracorporeal shock wave lithotripsy

    Kandel, L.B. (State Univ. of New York at Stony Brook, Stony Brook, NY (US)); Harrison, L.H.; McCullough, D.L. (Wake Forest Univ. Medical Center, Winston-Salem, NC (US))

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL.

  7. State of the art extracorporeal shock wave lithotripsy

    Kandel, L.B.; Harrison, L.H.; McCullough, D.L.

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL

  8. Nonequilibrium recombination after a curved shock wave

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  9. Geodesics analysis of colliding gravitational shock waves

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  10. Success of electromagnetic shock wave lithotripter asmonotherapy ...

    Objectives: To evaluate the success of shock wave lithotripsy (SWL) as monotherapy for solitary renalstones larger than 2 cm without ureteral stenting. Hence, if our study result demonstrates acceptable successand safety, we can recommend ESWL as a treatment option for patients with large renal calculi. Subjects and ...

  11. Time-resolved stereo PIV measurements of shock-boundary layer interaction on a supercritical airfoil

    Hartmann, Axel; Klaas, Michael; Schroeder, Wolfgang [RWTH Aachen University, Institute of Aerodynamics, Aachen (Germany)

    2012-03-15

    Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave-boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 x 10{sup 6} are analyzed regarding the origin and nature of the unsteady shock-boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa. (orig.)

  12. Evolution of wave patterns and temperature field in shock-tube flow

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  13. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    2010-04-01

    ..., control console, imaging/localization system, and patient table. Prior to treatment, the urinary stone is targeted using either an integral or stand-alone localization/imaging system. Shock waves are typically... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that...

  14. High Temperature Phenomena in Shock Waves

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  15. Explosive volcanism, shock metamorphism and the K-T boundary

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  16. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  17. The theory of ionizing shock waves in a magnetic field

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  18. Analysis of a cylindrical imploding shock wave

    Mishkin, E.A.; Fujimoto, Y.

    1978-01-01

    the self-similar solution of the gasdynamic equations of a strong cylindrical shock wave moving through an ideal gas, with γ = csub(p)/csub(v), is considered. These equations are greatly simplified following the transformation of the reduced velocity U 1 (xi) → U 1 = 1/2(γ + 1 ) (U + xi). The requirement of a single maximum pressure, dsub(xi)P = 0, leads to an analytical determination of the self-similarity exponent α(γ). For gases with γ = 2 + 3sup(1/2), this maximum ensues right at the shock front and the pressure distribution then decreases monotonically. The postulate of analyticity by Gelfand and Butler is shown to concur with the requirement dsub(xi)P 0. The saturated density of the gas left in the wake of the shock is computed and - U is shown to be the reduced velocity of sound at P = P sub(m). (author)

  19. Uniform shock waves in disordered granular matter.

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  20. Fluid dynamics of the shock wave reactor

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  1. Multi-layer protective armour for underwater shock wave mitigation

    Ahmed Hawass; Hosam Mostafa; Ahmed Elbeih

    2015-01-01

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected p...

  2. Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows.

    1980-03-01

    distributions could be obtained. The pressure tappings were sampled using two computer controlled 48 port Model 48J4 Scanivalves equipped with Druck ...the boundary layer becomes turbulent, the upstream in- fluence drops to between 2 and 3D . 3.2 Pressure Distributions Off the Plane of Symmetry 3.2.1...upstream influence varies between 0.3 cm (0.12") and 7.6 cm (3.0"), a ratio of about 25, yet in terms of D , Iu lies between 2 and 3D . The figure shows

  3. Shock waves in binary oxides memristors

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  4. Shock-induced borehole waves and fracture effects

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  5. Dissociation of NF3 in shock waves

    Breshears, W.D.; Bird, P.F.

    1978-01-01

    The thermal dissociation rate of NF 3 in mixtures of 5% and 10%NF 3 in Ar has been measured behind incident shock waves over the temperature range 1330-2000 K. Dissociation rates were determined from postshock density gradients measured by laser beam deflection. The second order rate coefficient determined for NF 3 -Ar collisions is k/sub d/=2.31 x 10 15 exp(-20500/T) cm 3 mole sec

  6. Kidney changes after extracorporeal shock wave lithotripsy

    Yoshioka, Hiroyasu; Shindo, Hiroshi; Mabuchi, Nobuhisa; Kawakami, Akira; Fujii, Koichi; Hamada, Tatsumi; Ishida, Osamu; Umekawa, Toru; Kohri, Kenjiro

    1991-01-01

    MRI was performed before and after extracorporeal shock wave lithotripsy (ESWL) to determine the effects of ESWL on the kidney and perinephric tissues. Of the 40 kidneys studied, 24 showed one or more changes on MRI: loss of the corticomedullary junction (n=15), subcapsular fluid (n=14), subcapsular hematoma (n=1), thickening of bridging septa (n=8), high intensity area in the muscle (n=8). These relatively subtle changes detected on MRI may not be apparent with other imaging techniques. (author)

  7. Ionospheric shock waves triggered by rockets

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  8. Arrhythmia during extracorporeal shock wave lithotripsy.

    Zeng, Z R; Lindstedt, E; Roijer, A; Olsson, S B

    1993-01-01

    A prospective study of arrhythmia during extracorporeal shock wave lithotripsy (ESWL) was performed in 50 patients, using an EDAP LT01 piezoelectric lithotriptor. The 12-lead standard ECG was recorded continuously for 10 min before and during treatment. One or more atrial and/or ventricular ectopic beats occurred during ESWL in 15 cases (30%). The occurrence of arrhythmia was similar during right-sided and left-sided treatment. One patient developed multifocal ventricular premature beats and ventricular bigeminy; another had cardiac arrest for 13.5 s. It was found that various irregularities of the heart rhythm can be caused even by treatment with a lithotriptor using piezoelectric energy to create the shock wave. No evidence was found, however, that the shock wave itself rather than vagal activation and the action of sedo-analgesia was the cause of the arrhythmia. For patients with severe underlying heart disease and a history of complex arrhythmia, we suggest that the ECG be monitored during treatment. In other cases, we have found continuous monitoring of oxygen saturation and pulse rate with a pulse oximeter to be perfectly reliable for raising the alarm when depression of respiration and vaso-vagal reactions occur.

  9. Dust acoustic shock wave at high dust density

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  10. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  11. Shock-like structures in the tropical cyclone boundary layer

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  12. The Shock Wave in the ionosphere during an Earthquake

    Kuznetsov Vladimir

    2016-01-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud.

  13. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  14. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  15. Shock wave overtake measurements on cesium iodide

    Swenson, C.A.

    1986-01-01

    The luminosity of the shock front for CsI makes it an ideal material for which to measure directly sound velocities along the Hugoniot using shock wave overtake methods. In these measurements, the occurrence of melting along the Hugoniot is marked by a discontinuous decrease in the measured sound velocity. In addition, CsI is isoelectronic with xenon and is expected to begin to show metallic behavior along the Hugoniot near 0.9 Mbar. The directly-determined sound velocities and corresponding elastic moduli would be expected to be more sensitive to this transition than either Hugoniot equations of state or optical pyrometry experiments. This paper presents a brief description of the present experiments and results

  16. Shock Waves Science and Technology Library

    2012-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S. Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive appro...

  17. Wave and particle evolution downstream of quasi-perpendicular shocks

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  18. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  19. Dust acoustic solitary and shock waves in strongly coupled dusty ...

    between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves. Also shock ... et al have studied the effect of nonadiabatic dust charge variation on the nonlinear dust acoustic wave with ..... Figure 5 presents the border between oscillatory- and monotonic-type shock waves as functions of ...

  20. Second sound shock waves in rotating superfluid helium

    Torczynski, J.R.

    1983-01-01

    Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case

  1. Transient shock waves in heliosphere and Sun-Earth relations

    Voeroes, Z.

    1990-01-01

    The problem of shock waves, caused by solar activity in the Earth's magnetosphere and its magnetic field, is discussed. All types of shock waves have their origin either in solar corona effects or in solar eruptions. Ionospheric and magnetospheric effects, such as X and gamma radiation, particle production, geomagnetic storms and shock waves, caused by solar activity, are dealt with and attempts are made to explain their interdependence. The origin and propagation of coronal shock waves, interplanetary shock waves and geomagnetic field disorders are described and their relations discussed. The understanding of the solar corona and wind phenomena seems to allow prediction of geomagnetic storms. The measurement and analysis of solar activity and its effects could yield useful information about shock waves physics, geomagnetosphere structure and relations between the Earth and the Sun. (J.J.). 7 figs., 1 tab., 37 refs

  2. Subcritical collisionless shock waves. [in earth space plasma

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  3. A numerical investigation on the effects of slot geometry on shock boundary layer interaction

    Bazazzadeh, M.; Menshadi, M. D.; Karbasizadeh, M. [Dept. of Mechanical and Aerospace Engineering, Malek Ashtar University of Technology, Esfahan (Turkmenistan)

    2017-01-15

    Slot is one of the features that control Shock wave-boundary layer interaction (SBLI), which is generally used to prevent strong interference from shockwaves to the boundary layer in supersonic flows. With this feature, the height of the triple point of λ shock significantly increases, and this increase causes a decline in shock power and pressure drop rate. In the current paper, the main focus is on the monitoring of the geometrical effect of slot as an influential parameter on the structure of the shock and flow characteristics by using numerical methods. Therefore, the averaged implicit Navier-Stokes equations and two equation standard k-ω turbulence models for the numerical simulation of the flow field have been used. Results indicate that the numerical results are fairly consistent with the experimental data. Because of the increase in the number of slots (n), and the leading leg of the λ shock is located within the slot, the height of the triple point increases. However, because of the increasing drops due to viscosity, the total pressure changes are negligible. In addition, with an increase in this parameter, changes in the static pressure caused by the leading leg of the shock have increased. By increasing the width of the slots, the height of the triple point has had an upward trend up to s = 8 mm and then had nearly constant values. In this mode, the static pressure changes resulting from the leading leg of the shock are negligible. For increasing the number or the width of slots, the re-expansion waves formed within the slot are removed because of the reduction in the severity of the changes in the boundary layer. To simulate and compare the results with the data obtained from the experimental tests, results from the Cambridge University's wind tunnel tests have been used.

  4. Internal energy relaxation in shock wave structure

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-01-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream

  5. [Extracorporeal shock-wave lithotripsy of gallstones].

    Freund, H R; Lebensart, P D; Muggia-Sullam, M; Durst, A L

    1989-08-01

    We performed 16 extracorporeal shock-wave lithotripsies (ESWL) to fragment gallstones in 11 women and 2 men, aged 19 to 57 (mean 41 +/- 10) years, during the past 10 months. Criteria for selection included a history of biliary colic, not more than 3 stones with a total diameter of not more than 30 mm, and a functioning gallbladder. 210 patients were examined, of whom 98 were referred for additional screening by combined ultrasonography and oral cholecystography. This resulted in rejection of another 71 patients due to multiple stones (38%), nonfunctioning gallbladder (22%), calcified stones (12%), stones not visualized in the prone position (9%), excessively large stones (3%) and other reasons (16%). Only 27 patients fulfilled all the criteria. Under epidural or general anesthesia (11 and 2 patients, respectively), we administered 1200-3500 (mean 2250 +/- 750) shock waves at 20-24 KV with the Tripter X1 (Direx, Israel-USA). This is an ultrasound-guided, modular portable, shock-wave generator utilizing underwater high energy spark discharge. Chenodeoxycholic or ursodeoxycholic acid, 10 mg/kg/day, was started 1 week prior to ESWL and continued for 3 months after disappearance of fragments and debris. We encountered skin petechiae in all patients, transient hematuria in 8, mild biliary colic in 1 and a small liver hematoma in 1. To date, 3 patients are free of stones, while in 7 only sludge and tiny fragments are present which we expect to disappear as a result of the litholytic therapy. 3 patients had fragments larger than 5 mm and required a second ESWL. Thus ESWL, which was indicated in only 13% of screened patients, proved to be safe and can be expected to be successful in 75% of selected candidates.

  6. Fundamental structure of steady plastic shock waves in metals

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic–plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large de...

  7. Extracorporeal shock wave therapy (ESWT) in urology

    Fojecki, Grzegorz Lukasz; Thiessen, Stefan; Osther, Palle Jörn Sloth

    2017-01-01

    PURPOSE: The objective was to evaluate high-level evidence studies of extracorporeal shock wave therapy (ESWT) for urological disorders. METHODS: We included randomized controlled trials reporting outcomes of ESWT in urology. Literature search on trials published in English using EMBASE, Medline...... deviation and plaque size were observed. Four studies on erectile dysfunction (ED) including 337 participants were included. Using International Index of Erectile Function (IIEF-EF) and erectile hardness scale (EHS) data suggested a significant positive effect of ESWT in phosphodiesterase-5 inhibitor (PDE-5...

  8. On the interplay between cosmological shock waves and their environment

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  9. In-tube shock wave driven by atmospheric millimeter-wave plasma

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  10. Influence of interface scattering on shock waves in heterogeneous solids

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  11. An interferometric and numerical study of pseudo-stationary oblique-shock-wave reflections in sulfur hexafluoride (SF6)

    Hu, T. C. J.; Glass, I. I.

    Results are reported from experimental and analytical investigations of real-gas effects in the propagation of shock waves through SF6, a gas with 15 vibrational degrees of freedom. Shock waves with speeds ranging from Mach 1.25-8 were directed toward sharp steel wedges in a hypervelocity shock tube. Mach-Zehnder interferometry was used to obtain shock shape and geometry, isopycnic and density field data. Frozen-gas and equilibrium-gas (EQM) analyses modeling were performed for comparisons with experimental data, which depicted four types of reflection and transitions among them. Transition boundaries were best predicted with EQM treatment. A new criterion was derived for transition between single-Mach and complex-Mach reflection. Regular reflection continued past the boundary line defined by the transition criterion because of boundary layer growth produced on the wedge surface by passage of the shock wave.

  12. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  13. Shock Wave Diffraction Phenomena around Slotted Splitters

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  14. Extracorporeal shock wave lithotripsy: What is new?

    Bach, Christian; Karaolides, Theocharis; Buchholz, Noor

    2012-01-01

    Objectives Thirty years after its introduction, extracorporeal shockwave lithotripsy (ESWL) is still first-line treatment for more than half of all urinary tract stones, but machines and treatment strategies have significantly developed over time. In this review, we summarise the latest knowledge about the clinically important aspects of ESWL. Methods We searched PubMed to identify relevant reports and the latest European Association of Urology guidelines, and standard urological textbooks were consulted. Results New technical developments include: Twin-head and tandem-pulse shock-wave generators; wide-focus, low-pressure systems; optimised coupling; and automated location and acoustic tracking systems. Indications have been refined, making possible the identification of patients in whom ESWL treatment is likely to fail. By lowering the shock-wave rate, improving coupling, applying abdominal compression, power ‘ramping’ and postoperative medical expulsion therapy, treatment protocols have been optimised. Conclusions Promising new technical developments are under development, with the potential to increase the stone-free rate after ESWL. For optimal results, the refined indications need to be respected and optimised treatment protocols should be applied. PMID:26558039

  15. Shock wave propagation in neutral and ionized gases

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  16. The characteristic response of whistler mode waves to interplanetary shocks

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  17. Simple model for decay of laser generated shock waves

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  18. Effects of shock waves on Rayleigh-Taylor instability

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  19. Shock wave focusing in water inside convergent structures

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  20. Transverse MHD shock waves in a partly ionized plasma

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  1. Temperature maxima in stable two-dimensional shock waves

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-01-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society

  2. Biological effects of tandem shock waves demonstrated on magnetic resonance

    Beneš, J.; Zeman, J.; Poučková, P.; Zadinová, M.; Šunka, Pavel; Lukeš, Petr

    Roč. 113, č. 6 ( 2012 ), s. 335-338 ISSN 0006-9248 R&D Projects: GA ČR GA202/09/1151 Institutional research plan: CEZ:AV0Z20430508 Keywords : electrical discharges in water * focused shock waves * cavitations * tandem shock waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.472, year: 2012

  3. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy

    Loske, Achim M.; Prieto, Fernando E.; Fernández, Francisco; van Cauwelaert, Javier

    2002-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 µs is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 µs using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator.

  4. Extracorporeal shock wave lithotripsy of biliary and pancreatic stones

    R. den Toom (Rene)

    1993-01-01

    textabstractThe aim of the study was to answer the following questions: Is extracorporeal shock wave lithotripsy for gallbladder stones a safe and effective therapy? (Chapter 2) Is simultaneous treatment with extracorporeal shock wave lithotripsy and the solvent methyl te.rt-butyl ether feasible,

  5. Regional Wave Climates along Eastern Boundary Currents

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  6. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  7. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  8. Shock wave of vapor-liquid two-phase flow

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  9. Acceleration mechanisms flares, magnetic reconnection and shock waves

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  10. On cylindrically converging shock waves shaped by obstacles

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  11. Electro-acoustic shock waves in dusty plasmas

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  12. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  13. Shock-wave lithotripsy of gallstones

    Torres, W.E.; Baumgartner, B.R.; Nelson, R.C.; Morris, S.J.

    1990-01-01

    This paper evaluates the American Dornier MPL-9000 gallstone study on the effectiveness and safety of biliary extracorporeal shock wave lithotripsy (ESWL) and, in a prospective double blind manner, the need for ursodeoxycholic acid (UDCA). At our institution, 174 symptomatic patients with gallstones (149 with noncalcified stones and 25 with calcified stones) were randomized to receive UDCA or placebo for 6 months. The gallstones were fragmented in 171/174 patients (98%). Evaluation by ultrasound was done at 6 weeks following ESWL; retreatment was done on 42/174 patients for fragments larger than 5 mm. Cholecystectomy was done in 6/174 patients. The 6- and 12- month stone-free rates were noncalcified stones + UDCA, 31% and 41%; noncalcified stones + placebo, 24% and 15%; calcified gallstones, 8% and 8%

  14. Plane shock wave studies of geologic media

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  15. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  16. Effects of shock on hypersonic boundary layer stability

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  17. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  18. Shock and Rarefaction Waves in a Heterogeneous Mantle

    Jordan, J.; Hesse, M. A.

    2012-12-01

    We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave

  19. Subgrid-scale turbulence in shock-boundary layer flows

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  20. Scattering of Rossby and Poincare waves off rough lateral boundaries

    Fernandes, A.A; Prahalad, Y.S.; Sengupta, D.

    Unified treatment of wave scattering from a rough boundary, which was originally developed by Nakayama et al. is presented. The stationary nature of the boundary process is used to show that the wave field is also stationary, and therefore can...

  1. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  2. Resonant ion acceleration by collisionless magnetosonic shock waves

    Ohsawa, Y.

    1985-01-01

    Resonant ion acceleration ( the ν/sub rho/xΒ acceleration ) in laminar magnetosonic shock waves is studied by theory and simulation. Theoretical analysis based on a two-fluid model shows that, in laminar shocks, the electric field strength in the direction of the wave normal is about (m/sub i/m/sub e/) 1 2 times large for quasi-perpendicular shocks than that for the quasi-parallel shocks, which is a reflection of the fact that the width of quasi-perpendicular shocks is much smaller than that of the quasi-parallel shocks. Trapped ions can be accelerated up to the speed about ν/sub A/(m/sub i/m/sub e/) 1 2(M/sub A/-1) 3 2 in quasi-perpendicular shocks. Time evolution of self-consistent magnetosonic shock waves is studied by using a 2-12 dimensional fully relativistic, fully electromagnetic particle simulation with full ion and electron dynamics. Even a low-Mach-number shock wave can significantly accelerate trapped ions by the ν/sub rho/xΒ acceleration. The resonant ion acceleration occurs more strongly in quasi-perpendicular shocks, because the magnitude of this acceleration is proportional to the electric field strength

  3. Magnetic field amplification in interstellar collisionless shock waves

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  4. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  5. Direct measurement technique for shock wave velocity with irradiation drive

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  6. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  7. Fundamental structure of steady plastic shock waves in metals

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  8. Fundamental structure of steady plastic shock waves in metals

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  9. Plasma waves in the Earth's foreshock, bow shock, and magnetosheath

    Onsager, T.G.

    1988-01-01

    The research presented in this dissertation is a detailed analysis of electrostatic waves in the Earth's foreshock, bow shock, and magnetosheath. The wave modes measured in these regions, the possible generation mechanisms, and the process which drive the plasma to its unstable state are investigated. The measurements used in this study were obtained from the plasma wave receiver, the particle instrument, and the magnetometer on board the Active Magnetospheric Particle Tracer Explorer (AMPTE) Ion Release Module (IRM). Electron beam mode waves have been identified in the Earth's foreshock. A technique is developed which allows the rest frame frequency and wave number of the electron beam mode waves to be determined from the measurements. The experimentally determined values are compared with theoretical predictions, and approximate limits are put on the beam temperatures. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler shifted ion acoustic waves, yet below the Langmuir frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. This identification is based on the measured frequencies and electric field polarization directions. Data from 45 bow shock crossings are then used to investigate possible correlations between the electron beam mode waves and the near shock plasma parameters. The best correlations are found with Alfven Mach number and electron beta. Possible mechanism which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results

  10. Dynamics of ionizing shock waves on adiabatic motions of gases

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  11. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-11-25

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.

  12. Effects of explosion-generated shock waves in ducts

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  13. Shock waves in water at low energy pulsed electric discharges

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  14. Particle acceleration by coronal and interplanetary shock waves

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  15. Shock wave equation of state of powder material

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A model is proposed to predict the following quantities for powder materials compacted by shock waves: the pressure, the specific volume, the internal energy behind the shock wave, and the shock-wave velocity U-s. They are calculated as a function of flyerplate velocity u(p) and initial powder specific volume V-00. The model is tested on Cu, Al2024, and Fe. Calculated U-s vs u(p) curves agree well with experiments provided V-00 is smaller than about two times the solid specific volume. The mo...

  16. Quantum field theory in a gravitational shock wave background

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  17. Entropy jump across an inviscid shock wave

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  18. Shock waves in relativistic nuclear matter, I

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  19. The microphysics of collisionless shock waves

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active ga...

  20. Microgravity Experiment: The Fate of Confined Shock Waves

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  1. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  2. Shock Protection of Portable Electronic Products: Shock Response Spectrum, Damage Boundary Approach, and Beyond

    Suresh Goyal

    1997-01-01

    Full Text Available The pervasive shock response spectrum (SRS and damage boundary methods for evaluating product fragility and designing external cushioning for shock protection are described in detail with references to the best available literature. Underlying assumptions are carefully reviewed and the central message of the SRS is highlighted, particularly as it relates to standardized drop testing. Shortcomings of these methods are discussed, and the results are extended to apply to more general systems. Finally some general packaging and shock-mounting strategies are discussed in the context of protecting a fragile disk drive in a notebook computer, although the conclusions apply to other products as well. For example, exterior only cushioning (with low restitution to reduce subsequent impacts will provide a slenderer form factor than the next best strategy: interior cushioning with a “dead” hard outer shell.

  3. US evaluation in extracorporeal shock wave lithotripsy

    Baumgartner, B.R.; Steinberg, H.V.; Ambrose, S.S.; Walton, K.N.; Bernardino, M.E.

    1986-01-01

    Real-time US was performed in 100 consecutive patients the day preceding and/or 24 and 48 hours after extracorporeal shock wave lithotripsy (ESWL) therapy. In the 87 treated kidneys containing three or fewer stones, a total of 111 stones were found; 104 were radiopaque. Pre-ESWL US was not available for six stones. Sixty-eight stones (64.5%) were visualized. Of the 37 stones not seen, 10 (27%) were ≤ 5 mm in diameter, and of the larger stones, 19 (51%) were in the ureter or ureteropelvic junction; only six (16%) were in the calyces, and two (5%) were in the renal pelvis. Comparison of pre-ESWL and post-ESWL in 80 kidneys revealed no change in 37 (46%), more stones or fragments detected in 23 (29%), fewer stones or a change in location of stones in 12 (15%), and decreased size of the original stone in eight (10%). The ability of US to detect renal calculi seems to be related not only to stone size but also to location. Hydronephrosis was detected on pre-ESWL US in 16 kidneys (20%). After ESWL the hydronephrosis did not change in seven, decreased or resolved in eight, and increased in only one. Hydronephrosis was noted to develop after ESWL in 21 (26%) other kidneys. Pre-ESWL and post-ESWL hydronephrosis found on US must be considered in conjunction with the clinical picture and other radiographic studies

  4. Outcome of Extracorporeal Shock Wave Lithotripsy

    B Shrestha

    2010-03-01

    Full Text Available NTRODUCTION: Extracorporeal Shock Wave Lithotripsy is an effective noninvasive method to treat urolithiasis. This study aims to evaluate itsoutcome and determine appropriate management strategies for urolithiasis. METHODS: It was a prospective study which included one hundred patients who underwent ESWL for the management of solitary urolithiasis during a period of eight months (December 2007-August 2008. Status of stone and complications were observed and managed accordingly within a period of six postoperative weeks. RESULTS: Out of 100 patients, 93% had complete clearance of stone by the end of six postoperative weeks. Seven percent of the patients required adjunct invasive intervention including open surgery in 3%. Number of sessions of ESWL was found to increase as the size of stone increased. However, in three patients stones were completely refractory to ESWL even after two consecutive sessions. CONCLUSIONS: ESWL is highly effective noninvasive modality in the management of urolithiasis in appropriately selected patients. Keywords: double J stent, extracorporal shockwave lithotripsy, steinstrasse, ultrasonography, ureterorenoscopy.

  5. Propagation and dispersion of shock waves in magnetoelastic materials

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  6. Exploratory laser-driven shock wave studies

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  7. The thickness of the interplanetary collisionless shock waves

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  8. Compression of interstellar clouds in spiral density-wave shocks

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  9. Nonstandard jump functions for radically symmetric shock waves

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  10. Experimental observation of azimuthal shock waves on nonlinear acoustical vortices

    Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois

    2009-01-01

    Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.

  11. Multi-layer protective armour for underwater shock wave mitigation

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  12. Success of electromagnetic shock wave lithotripter as monotherapy ...

    K.S. Meitei

    Objectives: To evaluate the success of shock wave lithotripsy (SWL) as monotherapy for solitary .... history of previous renal surgery on the affected side were excluded .... energy. Twelve (63.2%) of the steinstrasse cases were managed con-.

  13. The acceleration of cosmic ray by shock waves

    Axford, W.I.; Leer, E.; Skadron, G.

    1977-01-01

    The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)

  14. Topics in Computational Modeling of Shock and Wave Propagation

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  15. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  16. Cell detachment method using shock wave induced cavitation

    Junge, L.; Junge, L.; Ohl, C.D.; Wolfrum, B.; Arora, M.; Ikink, R.

    2003-01-01

    The detachment of adherent HeLa cells from a substrate after the interaction with a shock wave is analyzed. Cavitation bubbles are formed in the trailing, negative pressure cycle following the shock front. We find that the regions of cell detachment are strongly correlated with spatial presence of

  17. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  18. Grain Destruction in a Supernova Remnant Shock Wave

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  19. Shock waves in luminous early-type stars

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  20. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  1. Improvement of an installation to generate shock waves

    1974-04-29

    An installation to generate a shock wave in a fluid layer is described. A water projectile is moved at a high velocity. It leaves behind an underpressure in which the adjacent water implodes, therby generating the desired shock wave. The installation is characterized by a tube-shaped hull in which a piston can move freely. One side of the hull is connected to the pressure-generator chamber of the piston. (6 claims)

  2. Experiments on second-sound shock waves in superfluid helium

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  3. Boundary mediated position control of traveling waves

    Martens, Steffen; Ziepke, Alexander; Engel, Harald

    Reaction control is an essential task in biological systems and chemical process industry. Often, the excitable medium supporting wave propagation exhibits an irregular shape and/or is limited in size. In particular, the analytic treatment of wave phenomena is notoriously difficult due to the spatial modulation of the domain's. Recently, we have provided a first systematic treatment by applying asymptotic perturbation analysis leading to an approximate description that involves a reduction of dimensionality; the 3D RD equation with spatially dependent NFBCs on the reactants reduces to a 1D reaction-diffusion-advection equation. Here, we present a novel method to control the position ϕ (t) of traveling waves in modulated domains according to a prespecified protocol of motion. Given this protocol, the ``optimal'' geometry of reactive domains Q (x) is found as the solution of the perturbatively derived equation of motion. Noteworthy, such a boundary control can be expressed in terms of the uncontrolled wave profile and its propagation velocity, rendering detailed knowledge of the reaction kinetics unnecessary. German Science Foundation DFG through the SFB 910 ''Control of Self-Organizing Nonlinear Systems''.

  4. The structure of steady shock waves in porous metals

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  5. Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?

    Tobias Kisch

    2015-01-01

    Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.

  6. [Extracorporeal shock wave therapy in chronic prostatitis].

    Kul'chavenya, E V; Shevchenko, S Yu; Brizhatyuk, E V

    2016-04-01

    Chronic prostatitis is a prevalent urologic disease, but treatment outcomes are not always satisfactory. As a rule, chronic prostatitis results in chronic pelvic pain syndrome, significantly reducing the patient's quality of life. Open pilot prospective non-comparative study was conducted to test the effectiveness of extracorporeal shock wave therapy (ESWT) using Aries (Dornier) machine in patients with chronic prostatitis (CP) of IIIb category. A total of 27 patients underwent ESWL as monotherapy, 2 times a week for a course of 6 sessions. Exposure settings: 5-6 energy level (by sensation), the frequency of 5 Hz, 2000 pulses per session; each patient received a total energy up to 12000 mJ. per procedure. Treatment results were evaluated using NIH-CPSI (National Institute of Health Chronic Prostatitis Symptom Index) upon completing the 3 week course of 6 treatments and at 1 month after ESWT. Immediately after the ESWT course positive trend was not significant: pain index decreased from 9.1 to 7.9, urinary symptom score remained almost unchanged (4.2 at baseline, 4.1 after treatment), quality of life index also showed a slight improvement, dropping from 7.2 points to 6.0. Total NIH-CPSI score decreased from 20.5 to 18.0. One month post-treatment pain significantly decreased to 3.2 points, the urinary symptom score fell to 2.7 points, the average quality of life score was 3.9 points. ESWT, performed on Aries (Dornier) machine, is highly effective as monotherapy in patients with category IIIb chronic prostatitis.

  7. Formation and decay of laser-generated shock waves

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  8. PENETRATION OF A SHOCK WAVE IN A FLAME FRONT

    Dan PANTAZOPOL

    2009-09-01

    Full Text Available The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and reflected shock waves.

  9. Influence of shock waves from plasma actuators on transonic and supersonic airflow

    Mursenkova, I. V.; Znamenskaya, I. A.; Lutsky, A. E.

    2018-03-01

    This paper presents experimental and numerical investigations of high-current sliding surface discharges of nanosecond duration and their effect on high-speed flow as plasma actuators in a shock tube. This study deals with the effectiveness of a sliding surface discharge at low and medium air pressure. Results cover the electrical characteristics of the discharge and optical visualization of the discharge and high-speed post-discharge flow. A sliding surface discharge is first studied in quiescent air conditions and then in high-speed flow, being initiated in the boundary layer at a transverse flow velocity of 50-950 m s-1 behind a flat shock wave in air of density 0.04-0.45 kg m-3. The discharge is powered by a pulse voltage of 25-30 kV and the electric current is ~0.5 kA. Shadow imaging and particle image velocimetry (PIV) are used to measure the flow field parameters after the pulse surface discharge. Shadow imaging reveals shock waves originating from the channels of the discharge configurations. PIV is used to measure the velocity field resulting from the discharge in quiescent air and to determine the homogeneity of energy release along the sliding discharge channel. Semicylindrical shock waves from the channels of the sliding discharge have an initial velocity of more than 600 m s-1. The shock-wave configuration floats in the flow along the streamlined surface. Numerical simulation based on the equations of hydrodynamics matched with the experiment showed that 25%-50% of the discharge energy is instantly transformed into heat energy in a high-speed airflow, leading to the formation of shock waves. This energy is comparable to the flow enthalpy and can result in significant modification of the boundary layer and the entire flow.

  10. Nonlinear interaction of the surface waves at a plasma boundary

    Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1976-01-01

    Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)

  11. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  12. Development of a Novel Shock Wave Catheter Ablation System

    Yamamoto, H.; Hasebe, Yuhi; Kondo, Masateru; Fukuda, Koji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    Although radio-frequency catheter ablation (RFCA) is quite effective for the treatment tachyarrhythmias, it possesses two fundamental limitations, including limited efficacy for the treatment of ventricular tachyarrhythmias of epicardial origin and the risk of thromboembolism. Consequently, new method is required, which can eradicate arrhythmia source in deep part of cardiac muscle without heating. On the other hand, for a medical application of shock waves, extracorporeal shock wave lithotripter (ESWL) has been established [1]. It was demonstrated that the underwater shock focusing is one of most efficient method to generate a controlled high pressure in a small region [2]. In order to overcome limitations of existing methods, we aimed to develop a new catheter ablation system with underwater shock waves that can treat myocardium at arbitrary depth without causing heat.

  13. Nonlinear reflection of shock shear waves in soft elastic media.

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  14. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  15. Attenuation of shock waves in copper and stainless steel

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  16. Attenuation of shock waves in copper and stainless steel

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  17. Disintegration of a profiled shock wave at the cumulation point

    Kaliski, S.

    1978-01-01

    The disintegration at the cumulation point is analyzed of a shock wave generated with the aid of a profiled pressure. The quantitative relations are analyzed for the disintegration waves for typical compression parameters in systems of thermonuclear microfusion. The quantitative conclusions are drawn for the application of simplifying approximate calculations in problems of microfusion. (author)

  18. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  19. Characterization and modification of cavitation pattern in shock wave lithotripsy

    Arora, Manish; Ohl, Claus Dieter; Liebler, Marko

    2004-01-01

    The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a method to modify the cavitation pattern by timing two consecutive pressure waves at variable delays. It is found that the spatial and temporal dynamics of the cavitation bubble can be varied in large ranges. The ability to control cavitation dynamics allows discussing strategies for improvement of medical and biological applications of shock waves such as cell membrane poration and stone fragmentation.

  20. Dispersive shock waves in nonlinear and atomic optics

    Kamchatnov Anatoly

    2017-01-01

    Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.

  1. Shape of shock wave produced by a concentrated impact on a surface

    Nutt, G.; Klein, L.

    1981-01-01

    An approximate similarity solution, derived by Raizer, of a concentrated impact (or intense explosion) at the boundary of a semi-infinite volume of a perfect gas is used to determine the propagation velocity of the shock front as a function of its position. This velocity function is then used to obtain the shape of the propagating shock wave. It is shown that dish-shaped shock fronts are formed when the movement of the gas at the surface is into the gas region and that cup-shaped shock fronts are formed when the movement is out of the gas region. Comparison of these results with the shapes of explosions and meteorite craters are discussed

  2. Rogue and shock waves in nonlinear dispersive media

    Resitori, Stefania; Baronio, Fabio

    2016-01-01

    This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...

  3. Extracorporeal shock wave lithotripsy for urinary stones

    Shinn, Kyung Sub; Kim, Hyun; Byun, Jae Young; Lee, Myung Hee; Bahk, Yong Whee; Park, Yong Hyun

    1988-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is a new noninvasive treatment modality for urinary stones, and it sometimes is to necessitate endourologic techniques. ESWL with an Edap lithotripter which uses piezo-electric elements, was performed in 142 cases (130 patients) with urinary stones including 68 in calices, 30 in pelves, and 44 in ureters. Technical factors were 100 storages at 5 to 10 pulse rates/sec and 70-100% adjustable power for about 60 minutes (15-90) for renal stones, and 200 storages at 20 pulse rates/sec and 100% adjustable power for about 60 minutes for ureteral stones in a single treatment under stone localization by 5 MHz ultrasonic sector scanner. All patients were treated at Kangnam St.Mary's Hospital of Catholic University Medical College during the 5 months period from May 1, 1987. Every patient had pre-treatment chest, plain abdomen, intravenous urogram and ultrasonogram studies and post-treatment follow-up abdominal radiograms in 1 to 3 months after ESWL.The overall success rate of ESWL in 142 cases was 94.4%. Eight out of 142 cases were successful. Thus, 134 cases were analysed. Of these, 58 cases (43.3%) received one treatment, 33 cases (24.6%) two treatments, 16 cases (11.9%) three treatments and 27 cases (20.2%) more than four treatments. Renal stones were more successfully treated (98.0%) than ureteral stones (88.1%), and calyceal stones presented the highest success rate (98.5%). The stones as small as 5 to 10 mm in size were easily fragmented and the stones of round of oval shape were more easily pulverized than those of staghorn or amorphous shape. The adjunctive endourlogic techniques such as percutaneous nephrostomy, ureteral catheterization or internal ureteral stenting with a double pigtail catheter were required in 17 cases (11.9%). Complications of ESWL for urolithiasis included hematuria (84.5%), flank pain (8.5%) and fever (5.6%), which were controlled without specific treatment. ESWL using ultrasonic localization was

  4. Extracorporeal shock wave lithotripsy for urinary stones

    Shinn, Kyung Sub; Kim, Hyun; Byun, Jae Young; Lee, Myung Hee; Bahk, Yong Whee; Park, Yong Hyun [Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of)

    1988-06-15

    Extracorporeal shock wave lithotripsy (ESWL) is a new noninvasive treatment modality for urinary stones, and it sometimes is to necessitate endourologic techniques. ESWL with an Edap lithotripter which uses piezo-electric elements, was performed in 142 cases (130 patients) with urinary stones including 68 in calices, 30 in pelves, and 44 in ureters. Technical factors were 100 storages at 5 to 10 pulse rates/sec and 70-100% adjustable power for about 60 minutes (15-90) for renal stones, and 200 storages at 20 pulse rates/sec and 100% adjustable power for about 60 minutes for ureteral stones in a single treatment under stone localization by 5 MHz ultrasonic sector scanner. All patients were treated at Kangnam St.Mary's Hospital of Catholic University Medical College during the 5 months period from May 1, 1987. Every patient had pre-treatment chest, plain abdomen, intravenous urogram and ultrasonogram studies and post-treatment follow-up abdominal radiograms in 1 to 3 months after ESWL.The overall success rate of ESWL in 142 cases was 94.4%. Eight out of 142 cases were successful. Thus, 134 cases were analysed. Of these, 58 cases (43.3%) received one treatment, 33 cases (24.6%) two treatments, 16 cases (11.9%) three treatments and 27 cases (20.2%) more than four treatments. Renal stones were more successfully treated (98.0%) than ureteral stones (88.1%), and calyceal stones presented the highest success rate (98.5%). The stones as small as 5 to 10 mm in size were easily fragmented and the stones of round of oval shape were more easily pulverized than those of staghorn or amorphous shape. The adjunctive endourlogic techniques such as percutaneous nephrostomy, ureteral catheterization or internal ureteral stenting with a double pigtail catheter were required in 17 cases (11.9%). Complications of ESWL for urolithiasis included hematuria (84.5%), flank pain (8.5%) and fever (5.6%), which were controlled without specific treatment. ESWL using ultrasonic localization

  5. Electron beams by shock waves in the solar corona

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  6. An Analysis of an Implicit Factored Scheme for Simulating Shock Waves

    1988-05-01

    can cope with a wide range of boundary conditions and equations of state, For modelling -( shock waves in solids, elastic- plastic terms must also be...positive caracteristic speeds. One-sided schemes have superior dissipative and dispersive properties compared to those of centered schemes (Steger and...Elastic- plastic con. ditions must be- incorporated into the problem and usually the addition of suitable bource or sink terms to c-’ustion (1

  7. [Renal hematomas after extracorporeal shock-wave lithotripsy (ESWL)].

    Pastor Navarro, Héctor; Carrión López, Pedro; Martínez Ruiz, Jesús; Pastor Guzmán, José Ma; Martínez Martín, Mariano; Virseda Rodríguez, Julio A

    2009-03-01

    The use of fragmentation due to shock- waves as a treatment of urinary stone was one of the most important therapeutics findings in the history of urology. It's the first election treatment for most of the calculus at renal and urethral location due to the fact that it is a low invasive treatment and it has a few number of complications, but this method also has a few negative side effects, it can caused a more or less important traumatic lesion at the organs which crosses the shock-waves, including the kidney where it can caused a small contusion or renal hematoma with different resolution and treatment. We reviewed 4815 extracorporeal shock-wave lithotripsy that we performed in our department in which we found six cases with subcapsular and perirenal hematoma which we followed up and treated. After the urological complications (pain, obstruction and infection) the renal and perirenal hematic collections are the most frequent adverse effects of shock-waves used in lithotripsy, these are related to the power of energy used and patient age. Between the years 1992-2007 we performed 4.815 extracorporeal shock-wave lithotripsy finding seven cases of severe hematoma, less then 1%. Treatment of these complications is usually not aggressive though sometimes it is necessary to perform surgical drainage and even nephrectomy.

  8. Excitation of intense shock waves by soft X-radiation

    Branitskij, A.V.; Fortov, V.E.; Danilenko, K.N.; Dyabilin, K.S.; Grabovskij, E.V.; Vorobev, O. Yu.; Lebedev, M.E.; Smirnov, V.P.; Zakharov, A.E.; Persyantsev, I.V.

    1996-01-01

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm 2 , a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs

  9. Excitation of intense shock waves by soft X-radiation

    Branitskij, A V; Fortov, V E; Danilenko, K N; Dyabilin, K S; Grabovskij, E V; Vorobev, O Yu; Lebedev, M E; Smirnov, V P; Zakharov, A E; Persyantsev, I V [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm{sup 2}, a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs.

  10. Failure Waves in Shock-Compressed Glasses

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  11. Data collected by the Shock Wave Data Center

    Van Thiel, M.

    1976-01-01

    The Shock Wave Data Center of the Lawrence Livermore Lab collects and disseminates P.V.E. data obtained with shock waves. It has been in existence since 1964. An extensive number of papers reporting shock data had become available by that time. This was so in spite of the fact that the technology was developed only during the 2nd World War. Collection and partial evaluation of this data was therefore of value to facilitate its use by our laboratory and others who were involved with science and engineering in the high pressure field. The pressure range of the data collected is quite extensive and extends from 1 MPa to 1 TPa. One very important difference between shock wave compression data and those obtained with static presses must be emphasized, since it is often not fully appreciated. The pressure-volume locus of shock wave states (Hugoniot), which is obtained by passing increasingly stronger shocks into samples with the same initial state, rapidly increases in temperature as the shocks get stronger and the pressure and compression get higher. As a consequence, this Hugoniot locus must have a lower compressibility than isotherms obtained under static conditions. In fact, if porous or otherwise expanded samples are used, states at or near the critical region of metals can be obtained if the shock pressure is allowed to decrease in a controlled manner. Such pressure release measurements have so far only been utilized to a limited extent since the compression process has been of primary interest to workers in the field. As the use of this data in the energy field increases, however, such data will be needed more often. Applications are discussed that involve transient high pressure processes, practically all of which involve both compressed and expanded states

  12. Production of high energy neutrinos in relativistic supernova shock waves

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  13. Time development of a blast wave with shock heated electrons

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  14. DSMC Computations for Regions of Shock/Shock and Shock/Boundary Layer Interaction

    Moss, James N.

    2001-01-01

    This paper presents the results of a numerical study of hypersonic interacting flows at flow conditions that include those for which experiments have been conducted in the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel and the ONERA R5Ch low-density wind tunnel. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 9.3 to 11.4 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The results presented highlight the sensitivity of the calculations to grid resolution, provide results concerning the conditions for incipient separation, and provide information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  15. Experimental analysis of shock wave effects in copper

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  16. Shock drift acceleration in the presence of waves

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  17. Shock-wave structure formation in a dusty plasma

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  18. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  19. An Experimental Study into the Scaling of an Unswept-Sharp-Fin-Generated Shock/Turbulent Boundary Layer Interaction.

    1983-01-01

    Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250

  20. Plasma acceleration by magnetic nozzles and shock waves

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  1. Shock waves: a new physical principle in medicine.

    Brendel, W

    1986-01-01

    Shock wave therapy of kidney- and gallstones, i.e. extracorporeal shock wave lithotripsy (ESWL), is a new, noninvasive technique to destroy concrements in the kidney, the gallbladder and in the ductus choledochus. This method was developed by the Dornier Company, Friedrichshafen, FRG, and tested in animal experiments at the Institute for Surgical Research of the University of Munich. In the meantime, kidney lithotripsy has gained world-wide acceptance. More than 60,000 patients suffering from urolithiasis have been treated successfully, what made surgical removal of their kidney stones obsolete. Gallstone lithotripsy is, however, still at the very beginning of clinical trial. Lithotripsy of gallbladder stones will have to be applied in combination with urso- or chenodesoxycholic acid in order to obtain complete dissolution of the fragments. Potential hazards to living tissues are briefly mentioned. Since the lung is particularly susceptible, shock waves must enter the body at an angle which ensures that lung tissue is not affected.

  2. Interaction of weak shock waves with rectangular meshes in plate

    O.A. Mikulich

    2016-09-01

    Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.

  3. Intraluminal bubble dynamics induced by lithotripsy shock wave

    Song, Jie; Bai, Jiaming; Zhou, Yufeng

    2016-12-01

    Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.

  4. CALCULATION OF SHOCK-WAVE PULSE EFFECT ON OUTSTRETCHED SPINE

    G. A. Esman

    2011-01-01

    Full Text Available Combined effects of a shock-wave pulse method and mechanotherapy on a spine is considered as an alternative to conservative and operative methods.Methodology for spinal disease treatment while applying a shock-wave therapy is characterized by the following specific features. Firstly, it is necessary to limit a penetration depth of shock pulses in a biological object in order to exclude damage to a spinal cord. Secondly, it is necessary to limit an energy flux density:Imax≤ 0,280 J∕m2and  pressure in focus:PFmax≤ 0,040 MPа,in order to exclude traumatizing of spinal tissue and only stimulate blood  circulation and metabolic processes in them.Where an acceptable value of the force acting on the inter-vertebral disc while a shock wave is passing is determined by the following formula: F max = PFmaxS = PFmax πr02 = 0,040 ∙106 ∙3,14 ∙(8∙10-32 = 9 N, where r0 – a focal spot radius, mm.Mechanotherapy is applied in combination with the shock-wave therapy and it presupposes the following: an outstretching force acts created in a longitudinal direction of the spine and it is directed across a vertebral column, whose value usually ranges from 50 to 500 N.   

  5. Lower hybrid waves at the shock front: a reassessment

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  6. Lower hybrid waves at the shock front: a reassessment

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  7. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  8. ShockWave science and technology reference library

    2007-01-01

    This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetration. Of the eight chapters in this volume three chapters survey recent, exciting experimental advances in - ultra-short shock dynamics at the atomic and molecular scale (D.S. More, S.D. Mcgrane, and D.J. Funk), - Z accelerator for ICE and Shock compression (M.D. Knudson), and - failure waves in glass and ceramics (S.J. Bless and N.S. Brar). The subsequent four chapters are foundational, and cover the subjects of - equation of state (R. Menikoff), - elastic-plastic shock waves (R. Menikoff), - continuum plasticity (R. M. Brannon), and - numerical methods (D. J. Benson). The last chapter, but not the least, describes a tour de force illustration of today’s computing power in - modeling heterogeneous reactive solids at the grain scale (M.R. Baer). All chapters a...

  9. Shock wave fabricated ceramic-metal nozzles

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  10. The importance of microjet vs shock wave formation in sonophoresis.

    Wolloch, Lior; Kost, Joseph

    2010-12-01

    Low-frequency ultrasound application has been shown to greatly enhance transdermal drug delivery. Skin exposed to ultrasound is affected in a heterogeneous manner, thus mass transport through the stratum corneum occurs mainly through highly permeable localized transport regions (LTRs). Shock waves and microjets generated during inertial cavitations are responsible for the transdermal permeability enhancement. In this study, we evaluated the effect of these two phenomena using direct and indirect methods, and demonstrated that the contribution of microjets to skin permeability enhancement is significantly higher than shock waves. Copyright © 2010. Published by Elsevier B.V.

  11. Have shock waves been observed in nuclear collisions

    Gudima, K.K.; Toneev, V.D.

    Experimental data on shock wave phenomena in nuclear reactions are analyzed within the kinetic theory rather than that of the hydrodynamic approach. Beginning with a presentation of the model, which is a generalization of the cascade--evaporation model to the case of the interaction of two nuclei, it is then ascertained to what degree the developed approach is valid. Next on the basis of this model the results of experiments performed are examined to find the effects of a shock wave. The results of this analysis and the related set-up of new experiments are discussed also. 34 references

  12. Spatiotemporal dynamics of underwater conical shock wave focusing

    Hoffer, Petr; Lukeš, Petr; Akiyama, H.; Hosseini, H.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 685-690 ISSN 0938-1287 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Underwater shock wave focusing * multichannel * electrohydraulic discharge * conical shock wave reflection * medical application Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.107, year: 2016 https://link.springer.com/article/10.1007/s00193-016-0703-7

  13. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  14. Evolution of Shock Waves in Silicon Carbide Rods

    Balagansky, I. A.; Balagansky, A. I.; Razorenov, S. V.; Utkin, A. V.

    2006-01-01

    Evolution of shock waves in self-bonded silicon carbide bars in the shape of 20 mm x 20 mm square prisms of varying lengths (20 mm, 40 mm, and 77.5 mm) is investigated. The density and porosity of the test specimens were 3.08 g/cm3 and 2%, respectively. Shock waves were generated by detonating a cylindrical shaped (d=40 mm and 1=40 mm) stabilized RDX high explosive charge of density 1.60 g/cm3. Embedded manganin gauges at various distances from the impact face were used to monitor the amplitude of shock pressure profiles. Propagation velocity of the stress pulse was observed to be equal to the elastic bar wave velocity of 11 km/s and was independent of the amplitude of the impact pulse. Strong fuzziness of the stress wave front is observed. This observation conforms to the theory on the instability of the shock formation in a finite size elastic body. This phenomenon of wave front fuzziness may be useful for desensitization of heterogeneous high explosives

  15. The bactericidal effect of shock waves

    Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Goff, M. J.; Hameed, A.; Hazell, P. J.

    2014-05-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case.

  16. The bactericidal effect of shock waves

    Leighs, J A; Appleby-Thomas, G J; Wood, D C; Goff, M J; Hameed, A; Hazell, P J

    2014-01-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case

  17. A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control

    Baurle, Robert A.; Norris, Andrew T.

    2011-01-01

    A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.

  18. Gas-gun facility for shock wave research at BARC

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  19. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  20. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  1. Blast effects physical properties of shock waves

    2018-01-01

    This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.

  2. Shock wave compression and metallization of simple molecules

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  3. Shock waves from non-spherically collapsing cavitation bubbles

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  4. Admissibility region for rarefaction shock waves in dense gases

    Zamfirescu, C.; Guardone, A.; Colonna, P.

    2008-01-01

    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic ? is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are

  5. Maximum intensity of rarefaction shock waves for dense gases

    Guardone, A.; Zamfirescu, C.; Colonna, P.

    2009-01-01

    Modern thermodynamic models indicate that fluids consisting of complex molecules may display non-classical gasdynamic phenomena such as rarefaction shock waves (RSWs) in the vapour phase. Since the thermodynamic region in which non-classical phenomena are physically admissible is finite in terms of

  6. Collisionless shocks and upstream waves and particles: Introductory remarks

    Kennel, C.F.

    1981-01-01

    We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come

  7. Acoustic waves in shock tunnels and expansion tubes

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  8. The gravitational shock wave of a massless particle

    Hooft, G. 't; Dray, T

    1985-01-01

    The (spherical) gravitational shock wave due to a massless particle moving at the speed of light along the horizon of the Schwarzchild black hole is obtained. Special cases of our procedure yield previous results by Aichelburg and Sexl[1] for a photon in Minkowski vpace and by Penrose [2] for

  9. Changing the Window of Shock Wave Application. How it improves ...

    Objectives: The aim of this work is to study the impact of using multiple windows of shock wave application on the results of ESWL therapy for renal calculi. Patients and Methods: Between January 1996 and October 2002, 676 patients with single pelvic stones ≤ 2.5 cm and either no or mild back pressure changes were ...

  10. paediatric ureteric calculi: in-situ extracorporeal shock wave lithotripsy

    Objective To evaluate prospectively the efficacy of in-situ extracorporeal shock wave lithotripsy (ESWL) in the treatment of ureteric calculi in the paediatric age group. Patients and Methods Twenty children (aged 2.2 16 years) with 22 ureteric stones were evaluated and treated with in-situ ESWL using the Dornier S lithotripter ...

  11. Characterization and modification of cavitation pattern in shock wave lithotripsy

    Arora, M.; Ohl, C.D.; Liebler, Marko

    2004-01-01

    The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a

  12. Cavitation cluster dynamics in shock-wave lithotripsy: Part I

    Arora, M.; Junge, L.; Junge, L.; Ohl, C.D.

    2005-01-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30

  13. Dynamic Theory: some shock wave and energy implications

    Williams, P.E.

    1981-02-01

    The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas

  14. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  15. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  16. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  17. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  18. Influence of plasma shock wave on the morphology of laser drilling in different environments

    Zhai, Zhaoyang; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Huizhu

    2017-05-01

    Nanosecond pulse laser was used to study nickel-based alloy drilling and compare processing results of microholes in air environment and water environment. Through analysis and comparison, it's found that environmental medium had obvious influence on morphology of laser drilling. High-speed camera was used to shoot plasma morphology during laser drilling process, theoretical formula was used to calculate boundary dimension of plasma and shock wave velocity, and finally parameters were substituted into computational fluid dynamics simulation software to obtain solutions. Obtained analysis results could intuitively explain different morphological features and forming reasons between laser drilling in air environment and water environment in the experiment from angle of plasma shock waves. By comparing simulation results and experimental results, it could help to get an understanding of formation mechanism of microhole morphology, thus providing basis for further improving process optimization of laser drilling quality.

  19. Shock wave treatment in medicine; J. Biosci. 30 269–275

    Unknown

    269. Keywords. Acoustical energy; electromagnetic field; piezoelectric effect; shock wave ... life without being noticed. The sound of ... A typical pressure profile of a shock wave in the focus of an ... shock waves create low side effects on the way through muscles, fat- ... luation of the ESWT for orthopedic diseases many clini-.

  20. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  1. The causal boundary of wave-type spacetimes

    Flores, J.L.; Sanchez, M.

    2008-01-01

    A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions)

  2. Simulations of Shock Wave Interaction with a Particle Cloud

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  4. Observation of shock transverse waves in elastic media.

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  5. Acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy

    Lottati, Itzhak; Eidelman, Shmuel

    1993-07-01

    Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tait equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed results compare very well with the experimental results.

  6. Exploring nonlocal observables in shock wave collisions

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; Stricker, Stefan A. [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Schee, Wilke van der [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-11-09

    We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.

  7. Ion-acoustic shock waves with negative ions in presence of dust particulates

    Sarma, Arun; Nakamura, Y.

    2009-01-01

    Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration 'r c ' negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to 'r c ' both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.

  8. The Curious Events Leading to the Theory of Shock Waves

    Salas, Manuel D.

    2006-01-01

    We review the history of the development of the modern theory of shock waves. Several attempts at an early-theory quickly collapsed for lack of foundations in mathematics and thermodynamics. It is not until the works of Rankine and later Hugoniot that a full theory is established. Rankine is the first to show that within the shock a non-adiabatic process must occur. Hugoniot showed that in the absence of viscosity and heat conduction conservation of energy implies conservation of entropy in smooth regions and a jump in entropy across a shock. Even after the theory is fully developed, old notions continue to pervade the literature well into the early part of the 20th Century.

  9. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  10. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  11. Sonoluminescence, shock waves, and micro-thermonuclear fusion

    Moss, W.C.; Clarke, D.B.; White, J.W.; Young, D.A.

    1995-08-01

    We have performed numerical hydrodynamic simulations of the growth and collapse of a sonoluminescing bubble in a liquid. Our calculations show that spherically converging shock waves are generated during the collapse of the bubble. The combination of the shock waves and a realistic equation of state for the gas in the bubble provides an explanation for the measured picosecond optical pulse widths and indicates that the temperatures near the center of the bubble may exceed 3O eV. This leads naturally to speculation about obtaining micro-thermonuclear fusion in a bubble filled with deuterium (D 2 ) gas. Consequently, we performed numerical simulations of the collapse of a D 2 bubble in D 2 0. A pressure spike added to the periodic driving amplitude creates temperatures that may be sufficient to generate a very small, but measurable number of thermonuclear D-D fusion reactions in the bubble

  12. Extracorporeal shock wave therapy in periodontics: A new paradigm

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K.

    2014-01-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome. PMID:25024562

  13. Extracorporeal shock wave therapy in periodontics: A new paradigm.

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K

    2014-05-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.

  14. On the evolution of normal ionizing shock waves in helium

    Synakh, V.S.; Zakajdakov, V.V.

    1982-01-01

    The generation, structure and propagation of one-dimensional ionizing MHD shock waves in helium under a pressure of 100 mTorr are investigated with the help of numerical simulation. The normal magnetic field varies within 3 to 10 kG and the longitudinal magnetic field varies up to 2.5 kG. The model includes the kinetics of ionization and photo-processes. If a solid conducting piston is a source of perturbation, it may give rise to generation and further development of an MHD switch-on wave. Its evolution at an advanced stage depends weakly on the source. The curves for the dependence of the shock speed on time and the driving magnetic field as well as the profiles for the main quantities are presented. A possibility of comparison with real experiments is discussed. Algorithms based on Godunov's sliding meshes and the imbedding methods are used for numerical simulation. (author)

  15. Extracorporeal shock wave therapy in periodontics: A new paradigm

    Munivenkatappa Lakshmaiah Venkatesh Prabhuji

    2014-01-01

    Full Text Available The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.

  16. Simulation and Analysis of Converging Shock Wave Test Problems

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  17. Renal pelvic stones: choosing shock wave lithotripsy or percutaneous nephrolithotomy

    Robert Marcovich

    2003-06-01

    Full Text Available Introduction of minimally invasive techniques has revolutionized the surgical management of renal calculi. Extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy are now both well-established procedures. Each modality has advantages and disadvantages, and the application of each should be based on well-defined factors. These variables include stone factors such as number, size, and composition; factors related to the stone's environment, including the stone's location, spatial anatomy of the renal collecting system, presence of hydronephrosis, and other anatomic variables, such as the presence of calyceal diverticula and renal anomalies; and clinical or patient factors like morbid obesity, the presence of a solitary kidney, and renal insufficiency. The morbidity of each procedure in relation to its efficacy should be taken in to account. This article will review current knowledge and suggest an algorithm for the rational management of renal calculi with shock wave lithotripsy and percutaneous nephrolithotomy.

  18. MR imaging of kidneys following extracorporeal shock wave lithotripsy

    Baumgartner, B.R.; Dickey, K.W.; Nelson, R.C.; Ambrose, S.S.; Walton, K.N.; Bernardino, M.E.

    1986-01-01

    MR images were obtained the day after extracorporeal shock wave lithotripsy (ESWL) therapy in 34 patients; the untreated kidneys served as controls. Five patients underwent ESWL of both kidneys before MR imaging. The kidneys were imaged with a spin-echo technique. Multisection coronal, sagittal, and axial images were obtained with T1-weighted pulse sequences. MR imaging studies of 39 kidneys after ESWL showed no abnormality in ten (25%) cases. The other kidneys (75%) had one or more of several findings. Small subcapsular or perinephric fluid collections were noted in ten (25%) patients. Generalized loss of corticomedullary junction (CMJ) was noted in eight (21%) cases and focal loss in 16 (24%). The more pronounced alterations in the CMJ correlated with increased numbers of shock waves received by the kidney

  19. Some health physics implications of extracorporeal shock wave lithotripsy

    Henderson, J.E.

    1987-01-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is a relatively new, noninvasive technique for the destruction of renal calculi (kidney stones) in vivo. X-ray localizing techniques are used to position the stone for shock wave destruction. The combination of radiographic and fluoroscopic exposure contributes significantly to patient dose. This presentation considers alternative techniques for measuring patient exposure during ESWL and details many of the problems attendant to those measurements. Factors that contribute to patient dose are described. Comparisons are made to previous interventions for renal calculi involving radiological considerations. Operator exposures are negligible for this procedure, but skin entrance exposures for patients have been found on the order of 10 R to 17 R. Attempts to quantify gonadal doses during ESWL treatment at the University of Virginia are described. A rationale for continued studies in this area is offered

  20. Massive retroperitoneal haemorrhage after extracorporeal shock wave lithotripsy (ESWL).

    Inoue, Hiromasa; Kamphausen, Thomas; Bajanowski, Thomas; Trübner, Kurt

    2011-01-01

    A 76-year-old male suffering from nephrolithiasis developed a shock syndrome 5 days after extracorporal shock wave lithotripsy (ESWL). CT scan of the abdomen showed massive haemorrhage around the right kidney. Although nephrectomy was performed immediately, the haemorrhage could not be controlled. Numerous units of erythrocytes were transfused, but the patient died. The autopsy revealed massive retroperitoneal haemorrhage around the right kidney. The kidney showed a subcapsular haematoma and a rupture of the capsule. The right renal artery was dissected. The inferior vena cava was lacerated. Accordingly, a hemorrhagic shock as the cause of death was determined, which might mainly have resulted from the laceration of the inferior vena cava due to ESWL. ESWL seems to be a relatively non-invasive modality, but one of its severe complications is perirenal hematoma. The injuries of the blood vessels might have been caused by excessive shock waves. Subsequently, anticoagulation therapy had been resumed 3 days after EWSL, which might have triggered the haemorrhage. Physicians should note that a haemorrhage after an ESWL can occur and they should pay attention to the postoperative management in aged individuals especially when they are under anticoagulation therapy.

  1. The use of a wave boundary layer model in SWAN

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  2. Remote effects of extracorporeal shock wave therapy on cutaneous microcirculation.

    Kisch, Tobias; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix; Mailänder, Peter; Krämer, Robert

    2015-11-01

    Extracorporeal shock wave treatment (ESWT) has proven its clinical benefits in different fields of medicine. Tissue regeneration and healing is improved after shock wave treatment. Even in the case of burn wounds angiogenesis and re-epithelialization is accelerated, but ESWT in extensive burn wounds is impracticable. High energy ESWT influences cutaneous microcirculation at body regions remote from application site. Eighteen Sprague Dawley rats were randomly assigned to two groups and received either high energy ESWT (Group A: total 1000 impulses, 10 J) or placebo shock wave treatment (Group B: 0 impulses, 0 J), applied to the dorsal lower leg of the hind limb. Ten minutes later microcirculatory effects were assessed at the contralateral lower leg of the hind limb (remote body region) by combined Laser-Doppler-Imaging and Photospectrometry. In Group A cutaneous capillary blood velocity was significantly increased by 152.8% vs. placebo ESWT at the remote body location (p = 0.01). Postcapillary venous filling pressure remained statistically unchanged (p > 0.05), while cutaneous tissue oxygen saturation increased by 12.7% in Group A (p = 0.220). High energy ESWT affects cutaneous hemodynamics in body regions remote from application site in a standard rat model. The results of this preliminary study indicate that ESWT might be beneficial even in disseminated and extensive burn wounds by remote shock wave effects and should therefore be subject to further scientific evaluation. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  3. Admissibility region for rarefaction shock waves in dense gases

    Zamfirescu, C.; Guardone, A.; Colonna, P.

    2008-01-01

    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic ? is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are physically admissible, namely they obey the second law of thermodynamics and fulfil the speed-orienting condition for mechanical stability. Previous studies have demonstrated that the thermodynami...

  4. Observation and Control of Shock Waves in Individual Nanoplasmas

    2014-03-18

    quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide...and observed ion energies indicates that the hydrodynamic calculations capture the physics of the plasma expansion. The hydrodynamic calculations ...2006). [23] A. Kawabata and R. Kubo , J. Phys. Soc. Jpn. 21, 1765 (1966). [24] M.M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S

  5. Spectrally modified chirped pulse generation of sustained shock waves

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  6. Kidney changes after extracorporeal shock wave lithotripsy; MR evaluation

    Yoshioka, Hiroyasu; Shindo, Hiroshi; Mabuchi, Nobuhisa; Kawakami, Akira; Fujii, Koichi; Hamada, Tatsumi; Ishida, Osamu; Umekawa, Toru; Kohri, Kenjiro (Kinki Univ., Osakasayama, Osaka (Japan). School of Medicine)

    1991-02-01

    MRI was performed before and after extracorporeal shock wave lithotripsy (ESWL) to determine the effects of ESWL on the kidney and perinephric tissues. Of the 40 kidneys studied, 24 showed one or more changes on MRI: loss of the corticomedullary junction (n=15), subcapsular fluid (n=14), subcapsular hematoma (n=1), thickening of bridging septa (n=8), high intensity area in the muscle (n=8). These relatively subtle changes detected on MRI may not be apparent with other imaging techniques. (author).

  7. Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes.

    McAdams, Sean; Shukla, Aseem R

    2010-10-01

    Extracorporeal shock wave lithotripsy (ESWL) is currently a first-line procedure of most upper urinary tract stones ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.

  8. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  9. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  10. Effect of externally generated turbulence on wave boundary layer

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  11. Coherent structures in wave boundary layers. Part 2. Solitary motion

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...

  12. Extracorporeal shock wave therapy for treatment of plantar fasciitis

    Dastgir, N.

    2014-01-01

    Objective: To explore the effect of extracorporeal shock wave therapy in patients with chronic plantar faciitis. Methods: The prospective study was conducted at Department of Orhopaedic, Regional Hospital, Limerick, Ireland from January to December 2004 and comprised 70 heels in 62 patients with chronic plantar fasciitis in whom conventional conservative treatment consisting of non-steroidal anti-inflammatory drugs, heel cup, orthoses and/or shoe modifications, local steroid injections had failed, and they were treated with low energy extracorporeal shock wave therapy. Patients were reviewed at 6, 12 and 24 weeks post treatment. Results: At follow-up there was significant decrease in pain on the visual analogue scale (p<0.027), with significant improvement in pain score (p<0.009) and in functional score (p<0.001). The comfortable walking distance had increased significantly and there were no reported side effects. Conclusion: Extracorporeal shock wave therapy is a new modality providing good pain relief and a satisfactory clinical outcome in patients with chronic plantar fasciitis. (author)

  13. Stability of stagnation via an expanding accretion shock wave

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.

    2016-01-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  14. Stability of stagnation via an expanding accretion shock wave

    Velikovich, A. L.; Giuliani, J. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Taylor, B. D. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States); Zalesak, S. T. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States); Iwamoto, Y. [Ehime University, Matsuyama, Ehime Pref. 790-8577 (Japan)

    2016-05-15

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  15. Stability of stagnation via an expanding accretion shock wave

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  16. Laser shock wave consolidation of nanodiamond powders on aluminum 319

    Molian, Pal [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu; Molian, Raathai; Nair, Rajeev [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)

    2009-01-01

    A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm{sup -1} and 1600 cm{sup -1} respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 {mu}m and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kg{sub f}/mm{sup 2} (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (R{sub a}) in the range of 1.5-4 {mu}m depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.

  17. Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics

    Gurevich, A.V.; Meshcherkin, A.P.

    1987-01-01

    Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion

  18. Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave

    Shooshtari, S.H. Rajaee; Shahsavand, A.

    2017-01-01

    Natural gases provide around a quarter of energy consumptions around the globe. Supersonic separators (3S) play multifaceted role in natural gas industry processing, especially for water and hydrocarbon dew point corrections. These states of the art devices have minimum energy requirement and favorable process economy compared to conventional facilities. Their relatively large pressure drops may limit their application in some situations. To maximize the energy recovery of the dew point correction facility, the pressure loss across the 3S unit should be minimized. The optimal structure of 3s unit (including shock wave location and diffuser angle) is selected using simultaneous combination of normal shock occurrence and condensation in the presence of nucleation and growth processes. The condense-free gas enters the non-isentropic normal shock wave. The simulation results indicate that the normal shock location, pressure recovery coefficient and onset position strongly vary up to a certain diffuser angle (β = 8°) with the maximum pressure recovery of 0.88 which leads to minimum potential energy loss. Computational fluid dynamic simulations show that separation of boundary layer does not happen for the computed optimal value of β and it is essentially constant when the inlet gas temperatures and pressures vary over a relatively broad range. - Highlights: • Supersonic separators have found numerous applications in oil and gas industries. • Maximum pressure recovery is crucial for such units to maximize energy efficiency. • Simultaneous condensation and shock wave occurrence are studied for the first time. • Diverging nozzle angle of 8° can provide maximum pressure recovery of 0.88. • The optimal diffuser angle remains constant over a broad range of inlet conditions.

  19. Fast wave evanescence in filamentary boundary plasmas

    Myra, J. R.

    2014-01-01

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed

  20. Asymptotic boundary conditions for dissipative waves: General theory

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  1. Asymptotic boundary conditions for dissipative waves - General theory

    Hagstrom, Thomas

    1991-01-01

    An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  2. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  3. Some recent advances of shock wave physics research at the Laboratory for Shock Wave and Detonation Physics Research

    Jing Fu Qian

    2002-01-01

    Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...

  4. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  5. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  6. Propagation of a shock wave in a radiating spherically symmetric distribution of matter

    Herrera, L.; Nunez, L.; Universidad de Los Andes, Merida, Venezuela)

    1987-01-01

    A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere and a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references

  7. Luminosity profiles and the evolution of shock waves in general relativistic radiating spheres

    Herrera, L.; Nunez, L.A.

    1989-10-01

    A method recently proposed by the authors to study the evolution of discontinuities in radiating spherically symmetric distributions of matter is systematically applied to model the evolution of a composite radiant sphere. The matter configuration, free of singularities, is divided in two regions by a shock wave front, and at each side of this interface a different equation of state is considered. Solutions are matched across the shock via the Rankine-Hugoniot conditions while the outer region metric joins the Vaidya solution at the boundary surface. The influence on the evolution of these composite spheres of different shapes of neutrino outburst profiles, and particular neutrino-transfer processes from the inner core to the outer mantel is explored. Prospective applications to supernova scenarios are discussed. (author). 18 refs, 4 figs, 1 tab

  8. Relativistic shock waves and the excitation of plerions

    Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  9. Experimental particle acceleration by water evaporation induced by shock waves

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  10. Implementation of boundary conditions for locked waves

    Petit, H.A.H.; Battjes, J.A.

    2001-01-01

    This report refers to the work done at the Fluid Mechanics Section within the framework of the Netherlands Centre for Coastal Research (NCK). As shown by Reniers et al. (2000) there are strong indications that wave-group related phenomena are important in the development of rip channels. It is to be

  11. The shock tube as wave reactor for kinetic studies and material systems

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  12. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.

    Furia, John P

    2008-03-01

    High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P wave therapy and control groups were 12 and 0 (P wave therapy group than in the control group (P wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.

  13. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    Hanson, Ronald K.; Pang, Genny A.; Chakraborty, Sreyashi; Ren, Wei; Wang, Shengkai; Davidson, David Frank

    2013-01-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we

  14. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  15. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  16. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  17. Principles underlying the Fourth Power Nature of Structured Shock Waves

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  18. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    Van Swearingen, F.L.; McCullough, D.L.; Dyer, R.; Appel, B.

    1987-01-01

    Extracorporeal shock wave lithotripsy is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved to image the stones it is important to know how much radiation the patient receives during this procedure. Surface radiation exposure to the patient was measured in more than 300 fluoroscopic and radiographic procedures using thermoluminescent dosimeters. Initial results showed an average skin exposure of 10.1 rad per procedure for each x-ray unit, comparing favorably with exposure rates for percutaneous nephrostolithotomy and other routine radiological procedures. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician experience and number of shocks required. Suggestions are given that may result in a 50 per cent reduction of radiation exposure

  19. Plastic flow in weak shock waves in uranium

    Tonks, D.L.

    1992-01-01

    Measurements of the particle velocity in weak shock waves in metals are available for a number of materials. These measurements use the laser interferometer or VISAR technique in conjunction with a plate impact experiment. These measurements are important for determining the elastic -- plastic behavior of materials at high strain rates. Strain rates up to 10 7 /s are measurable with this technique, while more conventional mechanical testing machines, such as the Hopkinson bar, achieve rates only up to about 10 4 /s. In this paper, the VISAR measurements of Grady on uranium are analyzed using the weak shock analysis of Wallace to extract the plastic and total strains, the deviatoric and total stresses, and the plastic strain rates. A brief error analysis of the results will be given. 7 refs

  20. Oblique shock waves in granular flows over bluff bodies

    Gopan Nandu

    2017-01-01

    Full Text Available Granular flows around an object have been the focus of numerous analytical, experimental and simulation studies. The structure and nature of the oblique shock wave developed when a quasi-two dimensional flow of spherical granular particles streams past an immersed, fixed cylindrical obstacle forms the focus of this study. The binary granular mixture, consisting of particles of the same diameter but different material properties, is investigated by using a modified LIGGGHTS package as the simulation engine. Variations in the solid fraction and granular temperature within the resulting flow are studied. The Mach number is calculated and is used to distinguish between the subsonic and the supersonic regions of the bow shock.

  1. Acceleration of galactic cosmic rays in shock waves

    Lagage, P.O.

    1981-06-01

    The old problem of the origin of cosmic rays has triggered off fresh interest owing to the discovery of a new model which enables a lot of energy to be transferred to a small number of particles on the one hand and the discovery of the coronal environment in which this transfer occurs, on the other. In this paper, interest is taken in the galactic cosmic rays and an endeavour is made to find out if the model can reveal the existence of cosmic rays over a wide energy range. The existence of an energy break, predicted by the model, was recognized fairly early but, in the literature, it varies from 30 GeV ro 10 6 GeV according to the authors. A study has been made of the two main causes of an energy break: the sphericity of the shock and the life time of the shock wave [fr

  2. Dust acoustic shock wave generation due to dust charge variation in ...

    to generation of shock wave in the dusty plasma described as collisionless shock wave. ... Trans- forming to the frame of the wave with velocity λ ζ = x λd -λωpdt =X -λT. (2) .... Jd =0, there exists steady state (apart from the initial state) defined.

  3. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading

    Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao

    2009-01-01

    We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)

  4. Modeling of shock wave propagation in large amplitude ultrasound.

    Pinton, Gianmarco F; Trahey, Gregg E

    2008-01-01

    The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.

  5. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  6. Investigation of the Propagation Characteristics of Underwater Shock Waves in Underwater Drilling Blasting

    Xin Liu

    2018-01-01

    Full Text Available During the first-stage project of the main channel of Ningbo-Zhoushan Port’s Shipu Harbor, underwater shock waves were monitored. By analyzing a typical measured pressure time history curve, the characteristics of underwater shock waves in an engineering context were obtained. We obtained a traditional exponential attenuation formula for underwater shock waves based on the measured data, simplified the model of underwater drilling blasting based on engineering practice, deduced a revised formula for underwater shock wave peak overpressure on the basis of dimensional analysis, established a linear fitting model, and obtained the undetermined coefficients of the revised formula using a linear regression analysis. In addition, the accuracies of the two formulas used to predict underwater shock wave peak overpressure and the significance order of influence and influence mechanism of factors included in the revised formula on the underwater shock wave peak overpressure were discussed.

  7. Critical deflagration waves leading to detonation onset under different boundary conditions

    Lin Wei; Zhou Jin; Lin Zhi-Yong; Fan Xiao-Hua

    2015-01-01

    High-speed turbulent critical deflagration waves before detonation onset in H 2 –air mixture propagated into a square cross section channel, which was assembled of optional rigid rough, rigid smooth, or flexible walls. The corresponding propagation characteristic and the influence of the wall boundaries on the propagation were investigated via high-speed shadowgraph and a high-frequency pressure sampling system. As a comprehensive supplement to the different walls effect investigation, the effect of porous absorbing walls on the detonation propagation was also investigated via smoke foils and the high-frequency pressure sampling system. Results are as follows. In the critical deflagration stage, the leading shock and the closely following turbulent flame front travel at a speed of nearly half the CJ detonation velocity. In the preheated zone, a zonary flame arises from the overlapping part of the boundary layer and the pressure waves, and then merges into the mainstream flame. Among these wall boundary conditions, the rigid rough wall plays a most positive role in the formation of the zonary flame and thus accelerates the transition of the deflagration to detonation (DDT), which is due to the boost of the boundary layer growth and the pressure wave reflection. Even though the flexible wall is not conducive to the pressure wave reflection, it brings out a faster boundary layer growth, which plays a more significant role in the zonary flame formation. Additionally, the porous absorbing wall absorbs the transverse wave and yields detonation decay and velocity deficit. After the absorbing wall, below some low initial pressure conditions, no re-initiation occurs and the deflagration propagates in critical deflagration for a relatively long distance. (paper)

  8. Modeling secondary accidents identified by traffic shock waves.

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CT evaluation of the kidneys following extracorporeal shock wave lithotripsy

    Rubin, J.I.; Arger, P.H.; Pollack, H.M.; Banner, M.P.; Coleman, B.G.; Mintz, M.C.; Van Arsdalen, K.N.

    1986-01-01

    CT scans of the kidneys were obtained iln 50 patients before and after extracorporeal shock wave lithotripsy (ESWL). Post-ESWL scans demonstrated subcapsular hematomas in eight (15%) and intrarenal hematomas in two (4%) patients. Water-density subcapsular collections were seen in three (6%) patients. Treated kidneys showed a mean increase in renal size of 9%. Perinephric stranding and fascial thickening were seen in 37 (70%) of 53 treated renal fossae. While most patients undergoing ESWL will show some posttreatment abnormality on CT, the procedure appears to be associated with a low incidence of serious renal trauma

  10. CT appearance of renal hemorrhage after extracorporeal shock wave lithotripsy

    Kanazawa, Susumu; Araki, Toru; Takamoto, Hitoshi; Hata, Kazuhiro

    1988-07-01

    Computed Tomography (CT) was performed in three patients who were suspicious of renal hemorrhage after extracorporeal shock wave lithotripsy (ESWL). Post-ESWL scans demonstrated subcapsular hematoma in all three cases, and intrarenal hemorrhage in two cases, one of which had fluid collection in the pararenal space and hemorrhage in the posterior pararenal space on CT. Thickening of gerota fascia and bridging septa in the perirenal space was visualized on CT in all of them. CT demonstrated clearly the anatomic distribution and extent of renal hemorrhage, and it is important to comprehend the imaging anatomy of the perirenal area for CT evaluation.

  11. Shock Induced Melting in Aluminum: Wave Profile Measurements

    Chhabildas, Lalit C.; Furnish, Michael D.; Reinhart, William D.

    1999-06-23

    We have developed launch capabilities that can propel macroscopic plates to hypervelocities (8 to 16 km/s). This capability has been used to determine the first time-resolved wave profile measurements using velocity interferometry techniques at impact velocities of 10 km/s. These measurements show that alu- minum continues to exhibit normal release behavior to 161 GPa with complete loss of strength in the shocked state. Results of these experiments are discussed and compared with the results of lower pressure experi- ments conducted at lower impact velocities.

  12. Investigation of supersonic jets shock-wave structure

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  13. NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY

    P. V. Bulat

    2016-05-01

    Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.

  14. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    Marti, J.M.; Robles, J.E.; Arbizu, J.; Castro, F. de; Berian, J.M.; Richter, J.A.

    1992-01-01

    We analyzed the radiological exposure to patients during Extracorporeal Shock Wave Lithotripsy (ESWL) using a second generator lithotriptor. Stone location is accomplished by fluoroscopy and 'quick pics' or snapshots. A prospective study over 55 patients showed a mean exposure of 32.2 R. The introduction of the ALARA criterion reduced it to 16.1 R in the following 145 patients. Mean radiation exposure to patient varies according to treatment difficulty. A mean increase of radiation exposure of 1.6 between low and high difficulty treatment groups was observed. This variation was about 96% when the physician who performed the treatment was considered. (author)

  15. CT appearance of renal hemorrhage after extracorporeal shock wave lithotripsy

    Kanazawa, Susumu; Araki, Toru; Takamoto, Hitoshi; Hata, Kazuhiro

    1988-01-01

    Computed Tomography (CT) was performed in three patients who were suspicious of renal hemorrhage after extracorporeal shock wave lithotripsy (ESWL). Post-ESWL scans demonstrated subcapsular hematoma in all three cases, and intrarenal hemorrhage in two cases, one of which had fluid collection in the pararenal space and hemorrhage in the posterior pararenal space on CT. Thickening of gerota fascia and bridging septa in the perirenal space was visualized on CT in all of them. CT demonstrated clearly the anatomic distribution and extent of renal hemorrhage, and it is important to comprehend the imaging anatomy of the perirenal area for CT evaluation. (author)

  16. Fundamentals of Non-relativistic Collisionless Shock Physics: IV. Quasi-Parallel Supercritical Shocks

    Treumann, R. A.; Jaroschek, C. H.

    2008-01-01

    1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent ...

  17. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  18. Large Eddy Simulation of the ventilated wave boundary layer

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  19. Interaction of rippled shock wave with flat fast-slow interface

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  20. Diffuse Waves and Energy Densities Near Boundaries

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  1. Wave boundary layer over a stone-covered bed

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...

  2. Assessment of thermodynamic parameters of plasma shock wave

    Vasileva, O V; Isaev, Yu N; Budko, A A; Filkov, A I

    2014-01-01

    The work is devoted to the solution of the one-dimensional equation of hydraulic gas dynamics for the coaxial magneto plasma accelerator by means of Lax-Wendroff modified algorithm with optimum choice of the regularization parameter artificial viscosity. Replacement of the differential equations containing private derivatives is made by finite difference method. Optimum parameter of regularization artificial viscosity is added using the exact known decision of Soda problem. The developed algorithm of thermodynamic parameter calculation in a braking point is proved. Thermodynamic parameters of a shock wave in front of the plasma piston of the coaxial magneto plasma accelerator are calculated on the basis of the offered algorithm. Unstable high-frequency fluctuations are smoothed using modeling and that allows narrowing the ambiguity area. Results of calculation of gas dynamic parameters in a point of braking coincide with literary data. The chart 3 shows the dynamics of change of speed and thermodynamic parameters of a shock wave such as pressure, density and temperature just before the plasma piston

  3. Renal tissue damage induced by focused shock waves

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  4. Extracorporeal shock-wave lithotripsy of bile duct stones

    Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro

    1989-01-01

    During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred

  5. Detecting cavitation in vivo from shock-wave therapy devices

    Matula, Thomas J.; Yu, Jinfei; Bailey, Michael R.

    2005-04-01

    Extracorporeal shock-wave therapy (ESWT) has been used as a treatment for plantar faciitis, lateral epicondylitis, shoulder tendonitis, non-unions, and other indications where conservative treatments have been unsuccessful. However, in many areas, the efficacy of SW treatment has not been well established, and the mechanism of action, particularly the role of cavitation, is not well understood. Research indicates cavitation plays an important role in other ultrasound therapies, such as lithotripsy and focused ultrasound surgery, and in some instances, cavitation has been used as a means to monitor or detect a biological effect. Although ESWT can generate cavitation easily in vitro, it is unknown whether or not cavitation is a significant factor in vivo. The purpose of this investigation is to use diagnostic ultrasound to detect and monitor cavitation generated by ESWT devices in vivo. Diagnostic images are collected at various times during and after treatment. The images are then post-processed with image-processing algorithms to enhance the contrast between bubbles and surrounding tissue. The ultimate goal of this research is to utilize cavitation as a means for optimizing shock wave parameters such as amplitude and pulse repetition frequency. [Work supported by APL internal funds and NIH DK43881 and DK55674.

  6. Wireless device for activation of an underground shock wave absorber

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  7. Extracorporeal shock-wave lithotripsy of bile duct stones

    Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred.

  8. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  9. On the wave equation with semilinear porous acoustic boundary conditions

    Graber, Philip Jameson; Said-Houari, Belkacem

    2012-01-01

    The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.

  10. On the wave equation with semilinear porous acoustic boundary conditions

    Graber, Philip Jameson

    2012-05-01

    The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.

  11. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  12. Bacterial sepsis after extracorporeal shock-wave lithotripsy (ESWL) of calyceal diverticular stone.

    Oh, Mi Mi; Kim, Jin Wook; Kim, Jong Wook; Chae, Ji Yun; Yoon, Cheol Yong; Park, Hong Seok; Park, Min Gu; Moon, Du Geon

    2013-02-01

    Most calyceal diverticula are asymptomatic but symptoms occur when there is urinary stasis leading to infection and calculi. Septic shock after ESWL of calyceal stone occurs rarely. A 24-year-old woman had septic shock due to after extracorporeal shock-wave lithotripsy (ESWL) of asymptomatic calyceal diverticular stone.

  13. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  14. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  15. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  16. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  17. CHARACTERISTICS OF THE SECONDARY BUBBLE CLUSTER PRODUCED BY AN ELECTROHYDRAULIC SHOCK WAVE LITHOTRIPTER

    Zhou, Yufeng; Qin, Jun; Zhong, Pei

    2013-01-01

    This study investigated the characteristics of the secondary bubble cluster produced by an electrohydraulic lithotripter using high-speed imaging and passive cavitation detection techniques. The results showed that (i) the discrepancy of the collapse time between near a flat rigid boundary and in a free field of the secondary bubble cluster was not as significant as that by the primary one; (ii) the secondary bubble clusters were small but in a high bubble density and nonuniform in distribution, and they did not expand and aggregate significantly near a rigid boundary; and (iii) the corresponding bubble collapse was weaker with few microjet formation and bubble rebound. By applying a strong suction flow near the electrode tip, the production of the secondary shock wave (SW) and induced bubble cluster could be disturbed significantly, but without influence on the primary ones. Consequently, stone fragmentation efficiency was reduced from 41.2 ± 7.1% to 32.2 ± 3.5% after 250 shocks (p <0.05). Altogether, these observations suggest that the secondary bubble cluster produced by an electrohydraulic lithotripter may contribute to its ability for effective stone fragmentation. PMID:22390990

  18. Controllability for a Wave Equation with Moving Boundary

    Lizhi Cui

    2014-01-01

    Full Text Available We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint.

  19. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  20. Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases

    Dushyant Nadar

    2000-01-01

    Full Text Available Objective: Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases. Patients and methods: 35 patients received shock wave therapy using Econolith 2000 lithotripter 19 patients had isolated lateral epicondylitis, 12 medical epicondylitis and 4 plantar fascitis. A total of 120 shock waves were given in the first sitting. Each patient received a total of three sittings with a gap of one week between each of them. Results: Based on the patients′ self-assessment, about 75% pain relief was observed in 60% of the patients. Fur-ther, in patients having isolated tendinopathies, the pain relief was better. Conclusion: The study indicated that the application of shock waves is not restricted to the fragmentation of urinary calculi. The shock waves can be effectively used for the pain relief in the common orthopedic diseases. Thus, the urologists can widen the application of lithotripters, in a cost-effective manner, to the other medical speciali-ties.

  1. Various continuum approaches for studying shock wave structure in carbon dioxide

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  2. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  3. The Basic Research for Pulverization of Rice Using Underwater Shock Wave by Electric Discharge

    M Ide

    2016-09-01

    Full Text Available In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level in major developed countries. This reason includes decreasing of diverting rice consumption in Japan and increasing abandonment of cultivation. Therefore, these problems are solved by using rice powder instead of expensive flour, and we manage to increase the food selfsupport rate. Previously, the rice powder is manufactured by two methods. One is dry type, and the other is wet type. The former is the method getting rice powder by running dried rice to rotating metal, and has a problem which that starch is damaged by heat when processing was performed. The latter is performed same method against wet rice, and has a problem which a large quantity of water is used. As a method to solve these problems, an underwater shock wave is used. Shock wave is the pressure wave which is over speed of sound by discharging high energy in short time. Propagating shock wave in water is underwater shock wave. The characters of underwater shock wave are long duration of shock wave because water density is uniform, water is low price and easy to get and not heat processing. Thinking of industrialization, the electric discharge is used as the generating source of underwater shock wave in the experiment. As the results, the efficiency of obtaining enough grain size, 100ìm, of rice powder was too bad only using the simple processing using underwater shock wave. Therefore, in Okinawa National College of Technology collaborating with us, obtaining rice powder with higher efficiency by using converged underwater shock wave is the goal of this research. In this research, the underwater shock wave with equal energy of the experimental device of underwater shock wave is measured by the optical observation. In addition, the appearance converging underwater shock wave is simulated by numerical analysis, and the pressure appreciation rate between the first wave and converged

  4. Shock-Wave Acceleration of Protons on OMEGA EP

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2015-11-01

    Recent experimental results using shock-wave acceleration (SWA) driven by a CO2 laser in a H2 gas-jet plasma have shown the possibility of producing proton beams with energy spreads emission from a UV ablated material. The desired characteristics optimal for SWA are met: (a) peak plasma density is overcritical for the 1- μm main pulse and (b) the plasma profile exponentially decays over a long scale length on the rear side. Results will be shown using a 4 ω probe to experimentally characterize the plasma density profile. Scaling from simulations of the SWA mechanism shows that ion energies in the range of 100 MeV/amu are achievable with a focused a0 of 5 from the OMEGA EP Laser System. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Stenting and extracorporeal shock wave lithotripsy in chronic pancreatitis

    Holm, M; Matzen, Peter

    2003-01-01

    BACKGROUND: Early observational studies of endoscopic treatment and extracorporeal shock wave lithotripsy (ESWL) reported considerable or complete relief of pain in 50%-80% of patients with chronic pancreatitis. There is no consensus on the measurement of pain, making comparison of observational...... studies difficult, and little attention has been paid to the type and amount of analgesics used by patients before and after decompressive treatment. METHODS: We performed a retrospective study of all patients with chronic pancreatitis and large-duct disease and receiving decompressing treatment between 1...... November 1994 and 31 July 1999. Primary parameters were type and amount of analgesics used. RESULTS: Forty-nine patients with chronic pancreatitis and large-duct disease received stenting of the pancreatic duct (28 patients), ESWL (6 patients) or both (15 patients). After a median follow-up of 21 months...

  6. Improvements in the electromechanical conversion of energy using shock waves

    Landure, Yves

    1971-01-01

    This report concerns the electrical mechanical conversion. In this study it was obtained by the depolarization of a ferroelectric ceramic. We are particularly interested by the high electrical horse-power. Shock wave which produces depolarization is created by a gun powder. The speed of the projectile is measured and the pressures generated in the ceramic is determined graphically. The energy freed is released on a linear resistive load. We were able to prove by different parameters how to obtain the maximum electrical energy. On a resistive load of 26 ohms, it was freed 0,91 J/cm 3 in less than 0,5 μs corresponding to an electrical horse-power superior to 2 MW/cm 3 . (author) [fr

  7. New particle accelerations by magnetized plasma shock waves

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  8. SHOCK WAVE ANALYSIS OF THE CONSEQUENCES OF A REACTOR ACCIDENT

    Klickman, A E; Nicholson, R B; Nims, J B

    1963-06-15

    The solution to the problem of transmission and attenuation of the shock wave resulting from a large reactor accident is demonstrated for a configuration typical of many reactors. The particular configuration is that of a spherical gas bubble surrounded by one or more concentric regions of compressible material. A systematic parameter study was made in which the physical characteristics of the compressible shield regions and the expansion characteristics of a gas were assumed to be parameters. Results for seven cases are shown, and similar cases with only one important difference are compared. From these comparisons it was concluded that under certain conditions alternative materials can be substituted for reactor materials in model experiments and TNT can be used as an energy source instead of uranium. In the outer crushable region the total mass of material is the important factor. (A.G.W.)

  9. Approach to Residual Kidney Stone Fragments After Shock Wave Therapy

    Tumay Ižpekci

    2014-04-01

    Full Text Available For kidney stones up to 2 cm in diameter shock wave therapy (SDT is safely applied and kidney stones smaller than 5mm remaining in the kidney after treatment are regarded as clinically insignificant. Management of this condition is still controversial among clinicians. These stones in the kidney may continue to persist without any clinical symptoms or begin to cause clinical signs. In the event that the clinical symptoms are present, it requires detailed urological examination and treatment. The aim in the surgical treatment of urinary tract stones is completely stone clearance but in stones that are not infected, not causing urinary tract obstruction and without clinical symptoms medical treatment is also beneficial fort he prevention of growth and recurrence. In addition, surgical intervention is also possible for the residual stone fragments which become symptomatic during follow-up.

  10. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang (Division of Urology, Dept. of Surgery, National Yang-Ming Medical College and Veterans General Hospital-Taipei, Taiwan (China))

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au).

  11. Extracorporeal shock wave lithotripsy for renal stone with infundibular stenosis

    Lee, Won Hong; Son, Soon Yong; Kang, Seong Ho; Lee, Yong Moon; Yoon, Seok Hwan

    2006-01-01

    We analyzed retrospectively our experience to evaluate an effect of extracorporeal shock wave lithotripsy (ESWL) for renal stone with infundibular stenosis. From January 2002 to August 2005, 35 patients with renal stone with infundibular stenosis were treated with ESWL. The diagnosis of infundibular stenosis was made by intravenous pyelography or retrograde pyelography. The final follow-up check was performed by simple abdominal film or computed tomography and interview after 6 months to 24 months (mean 10 months). 7 (20.0%) of 35 patients was freed completely, but Stone free rate including less than 2 mm size was 80% (28/35). 30 (85.7%) patients became asymptomatic, 4 (11.4%) patients were continued, and 1 (2.9%) patient was required the percutaneous nephrostolithotomy. Although ESWL has a low complete stone free rate, We suggest that renal stone with infundibular stenosis should be treated with ESWL, because that is likely to produce a high symptom free and low complications

  12. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au)

  13. Extracorporeal shock wave lithotripsy for renal stone with infundibular stenosis

    Lee, Won Hong; Son, Soon Yong; Kang, Seong Ho; Lee, Yong Moon [Asan Medical Center, Seoul (Korea, Republic of); Yoon, Seok Hwan [Dongnam Health College, Suwon (Korea, Republic of)

    2006-06-15

    We analyzed retrospectively our experience to evaluate an effect of extracorporeal shock wave lithotripsy (ESWL) for renal stone with infundibular stenosis. From January 2002 to August 2005, 35 patients with renal stone with infundibular stenosis were treated with ESWL. The diagnosis of infundibular stenosis was made by intravenous pyelography or retrograde pyelography. The final follow-up check was performed by simple abdominal film or computed tomography and interview after 6 months to 24 months (mean 10 months). 7 (20.0%) of 35 patients was freed completely, but Stone free rate including less than 2 mm size was 80% (28/35). 30 (85.7%) patients became asymptomatic, 4 (11.4%) patients were continued, and 1 (2.9%) patient was required the percutaneous nephrostolithotomy. Although ESWL has a low complete stone free rate, We suggest that renal stone with infundibular stenosis should be treated with ESWL, because that is likely to produce a high symptom free and low complications.

  14. A new shock wave assisted wood preservative injection system

    Rao, K. S.; Ravikumar, G.; Lai, Ram; Jagadeesh, G.

    Preservative treatment of many tropical hard woods and bamboo pose severe problem. A number of wood preservatives (chemical formulations toxic to wood decay/ destroying organisms like fungi, wood destroying termites, marine borers etc.) and wood impregnating techniques are currently in use for improving bio resistance of timber and bamboo and thereby enhancing service life for different end uses. How ever, some species of tropical hardwoods and many species of bamboo are difficult to treat, posing technical problems. In this paper we report preliminary results of treatment of bamboo with a novel Shockwave assisted injection treatment. Samples (30×2.5×1.00 cm) of an Indian species of bamboo Dendrocalamus strictus prepared from defect free culms of dry bamboo are placed in the driven section of a vertical shock tube filled with the 4Coppepr-Chrome-Arsenic(CCA) preservative solution.The bamboo samples are subjected to repeated shock wave loading (3 shots) with typical over pressures of 30 bar. The results from the study indicate excellent penetration and retention of CCA preservative in bamboo samples. The method itself is much faster compared to the conventional methods like pressure treatment or hot and cold process.

  15. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  16. Does extracorporeal shock wave lithotripsy cause hearing impairment?

    Tuncer, Murat; Erdogan, Banu A; Yazici, Ozgur; Sahin, Cahit; Altin, Gokhan; Faydaci, Gokhan; Eryildirim, Bilal; Sarica, Kemal

    2014-07-01

    To evaluate the possible effects of extracorporeal shock wave lithotripsy (ESWL) on the hearing status of the patients in this prospective controlled study. A total of 40 patients with normal hearing function were included to the study. We had 20 patients each in the study group and control group. The treatment parameters were standardized in all 3 sessions in which a total of 3000 shock waves with a rate of 90/min along with a total energy value of 126 J at the fourth energy level have been applied (Dornier Compact Sigma, Medtech, Germany). In addition to the testing of hearing functions and possible cochlear impairment by Transient Evoked Otoacoustic Emissions test at 1.0, 1.4, 2.0, 2.8, and 4.0 kHz frequencies, complications such as ear pain, tinnitus, and hearing loss have been well evaluated in each patient before the procedure and 2 hours and 1 month after the completion of the third session of ESWL in the study group. The same evaluation procedures were performed before the study and after 7-weeks in the control group. Regarding Transient Evoked Otoacoustic Emissions data obtained in study group and control group patients, there was no significant alteration in values obtained after ESWL when compared with the values before the procedure. A well-planned ESWL procedure is a safe and effective treatment in urinary stones and causes no detectable harmful effect on the hearing function of treated patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  18. Interfacial instability induced by a shock wave in a gas-liquid horizontal stratified system

    Sutradhar, S.C.; Chang, J.S.; Yoshida, H.

    1987-01-01

    The experiments are performed in a rectangular lucite duct equipped with the facility of generating shock waves. Piezo-type pressure transducers are used to monitor the strength and propagation velocity of the shock wave. As the liquid phase has high sound velocity, a prepulse wave system of flow amplitude travels in this phase at a speed faster than the principal shock wave. The magnitude of the transmitted wave in the liquid phase is estimated using a transmission coefficient for gas-liquid system. From the initial pressure ratio of the shock wave, the amplitude of the prepulse as well as the induced interfacial fluid velocity are calculated. The wave length and height of the ripples during the passage of the shock wave are estimated for a specific strength of shock wave moving through the phases. From the high speed photographs, the wave length of the ripples can be assessed. The interfacial friction factor is calculated using colebrook's equation for high speed flow. At least five distinct phenomena are observed to exist during the propagation of a shock wave. These are - (1) the energy carried by the pre-pulse is utilized in perturbing the interface; (2) shock wave induces a mass velocity at the interface; (3) the wavelength of the ripples at the interface is the product of induced interfacial mass velocity and the time period of the prepulse; (4) a portion of the liquid mass of the perturbed interface is entrained in the gas phase may be due to the hydrodynamic lift in that phase; and finally (5) waves with long wavelength are established at the interface

  19. Shock Wave / Boundary Layer Interaction Experiment on Control Surface

    2007-06-01

    attachment points to the cold structure of the capsule (see Figure 16, left). Vibrational and acoustical loads are relevant for electronic components. Noise...thermal detector subsystems. Table 1: Summary of infrared technologies considered. Thermal Detectors Quantum Detectors Bolometer Pyrometer InGaAs...holes but a decrease in sensitivity at lower temperature results. Pyrometers are suitable for high temperature measurement, but they respond only to

  20. Experiments on ion-acoustic shock waves in a dusty plasma

    Nakamura, Y.

    2002-01-01

    Dust ion-acoustic shock waves have been investigated experimentally in a homogeneous unmagnetized dusty double-plasma device. An initial compressional wave with a ramp shape steepens to form oscillations at the leading part due to dispersion. The oscillation develops to a train of solitons when the plasma contains no dust grain. The wave becomes an oscillatory shock wave when the dust is mixed in the plasma and the density of the dust grains is smaller than a critical value. When the dust density is larger than the critical value, only steepening is observed at the leading part of the wave and a monotonic shock structure is observed. The velocity and width of the shock waves are measured and compared with results of numerical integrations of the modified Korteweg-de Vries-Burgers equation

  1. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  2. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  3. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  4. Eikonal Approximation in AdS/CFT From Shock Waves to Four-Point Functions

    Cornalba, L; Costa, Miguel S; Penedones, Joao; Cornalba, Lorenzo; Costa, M S; Penedones, J; Schiappa, Ricardo

    2007-01-01

    We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.

  5. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  6. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  7. Nucleus-acoustic shock waves in white dwarfs

    Jannat, S.; Mamun, A. A.

    2018-04-01

    The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.

  8. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  9. Analogy between soap film and gas dynamics. II. Experiments on one-dimensional motion of shock waves in soap films

    Wen, C.Y.; Chang-Jian, S.K.; Chuang, M.C. [Department of Mechanical Engineering, Da-Yeh University, Chang-Hwa (Taiwan)

    2003-02-01

    This paper presents an experimental investigation of one-dimensional moving shock waves in vertical soap films. The shock waves were generated by bursting the films with a perforating spark. Images of propagating shock waves and small disturbances were recorded using a fast line scan CCD camera. An aureole and a shock wave preceding the rim of the expanding hole were clearly observed. These images are similar to the x-t diagrams in gas dynamics and give the velocities of shock and sound waves. The moving shock waves cause jumps in thickness. The variations of the induced Mach number, M{sub 2} and the ratio of film thickness across the shock wave, {delta}{sub 2}/{delta}{sub 1}, are plotted versus the shock Mach number, M{sub s}. Both results suggest that soap films are analogous to compressible gases with a specific heat ratio of {gamma}{approx_equal}1.0. (orig.)

  10. Effect of target-fixture geometry on shock-wave compacted copper powders

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  11. Molecular dynamics simulation of shock-wave loading of copper and titanium

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  12. Conversion of piston-driven shocks from powerful solar flares to blast wave shocks in the solar wind

    Pinter, S.

    1990-01-01

    It was suggested by Smart and Shea (1985) that the time of arrival of solar-flare-generated shock waves at any point in space may be predicted by assuming that they are first driven from the Sun after which they decay into blast shocks. Their study was extended by using the duration of the Type IV radio emission as a phenomenological symptom of the piston-driven phase of these shocks. Using a sample of 39 cases of combined Type II/Type IV observations from 1972 to 1982 solar flares, it was found that the average predicted times-of-arrival of these shocks to Earth (and elsewhere) deviate from the actual times by 1.40 hr with a standard deviation of 1.25 hr. On the average, a representative shock from this sample is emitted from a powerful flare with a velocity of 1,560 km sec -1 ; moves at a constant inertial velocity to a distance of 0.12 AU after which it begins to decelerate as a classical (Sedov-type) blast shock that is convected by the ambient solar wind as suggested by Smart and Shea; and arrives to Earth 45.8 hr after its initiation in the Sun. Shocks that appear to deviate from this phenomenological scenario by virtue of lack of detection on Earth are assumed to decay into fast mode MHD waves. (author). 7 figs., 1 tab., 53 refs

  13. Large amplitude solitary waves in and near the Earth’s magnetosphere, magnetopause and bow shock: Polar and Cluster observations

    C. Cattell

    2003-01-01

    Full Text Available Solitary waves with large electric fields (up to 100's of mV/m have been observed throughout the magnetosphere and in the bow shock. We discuss observations by Polar at high altitudes ( ~ 4-8 RE , during crossings of the plasma sheet boundary and cusp, and new measurements by Polar at the equatorial magnetopause and by Cluster near the bow shock, in the cusp and at the plasma sheet boundary. We describe the results of a statistical study of electron solitary waves observed by Polar at high altitudes. The mean solitary wave duration was ~ 2 ms. The waves have velocities from ~ 1000 km/s to  > 2500 km/s. Observed scale sizes (parallel to the magnetic field are on the order of 1-10lD, with eF/kTe from ~ 0.01 to O(1. The average speed of solitary waves at the plasma sheet boundary is faster than the average speed observed in the cusp and at cusp injections. The amplitude increases with both velocity and scale size. These observations are all consistent with the identification of the solitary waves as electron hole modes. We also report the discovery of solitary waves at the magnetopause, observed in Polar data obtained at the subsolar equatorial magnetopause. Both positive and negative potential structures have been observed with amplitudes up to ~ 25 mV/m. The velocities range from 150 km/s to >2500 km/s, with scale sizes the order of a kilometer (comparable to the Debye length. Initial observations of solitary waves by the four Cluster satellites are utilized to discuss the scale sizes and time variability of the regions where the solitary waves occur. Preliminary results from the four Cluster satellites have given a glimpse of the spatial and temporal variability of the occurrence of solitary waves and their association with other wave modes. In all the events studied, significant differences were observed in the waveforms observed simultaneously at the four locations separated by ~ 1000 km. When solitary waves were seen at one satellite, they

  14. Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2015-04-01

    We present the results of a statistical study of the distribution of mirror and Alfvén-ion cyclotron (AIC) waves in the magnetosheath together with plasma parameters important for the stability of ULF waves, specifically ion temperature anisotropy and ion beta. Magnetosheath crossings registered by Cluster spacecraft over the course of 2 years served as a basis for the statistics. For each observation we used bow shock, magnetopause, and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of both plasma parameters and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. We analyzed a joint dependence of the same parameters on ΘBn and fractional distance between shock and magnetopause, zenith angle, and length of the flow line. Finally, the occurrence of mirror and AIC modes was compared against the respective instability thresholds. We noted that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of different characters of nonlinear saturation of the two modes.

  15. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  16. Shock wave and flame front induced detonation in a rapid compression machine

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  17. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  18. Melting Behaviour of Mo by Shock Wave Experiment

    Xiu-Lu, Zhang; Ling-Cang, Cai; Jun, Chen; Ji-An, Xu; Fu-Qian, Jing

    2008-01-01

    In order to clarify the apparent discrepancy in determinations of melting temperature T m of Mo between diamond-anvil cell (DAC) measurements from 0 to about 100 GPa and shock wave (SW) measurement at only one pressure of about 390 GPa by comparison with visual extrapolation, we perform SW experiments to replenish more T m data on purpose to make this comparison more directly and rationally as well. The techniques adopted consist of Hügoniot sound velocity measurement for porous Mo and shock-induced release T m measurements for both solid and porous Mo. Totally five SW T m data, which extends the measured pressure range from previous about 390 GPa down to about 136 GPa that is close to the highest pressure (about 100 GPa) attained by previous DAC experiments, are therefore obtained. These measured Tm data, other than the extrapolated as mentioned above, exhibit a manner of continuous variation with pressure and can be fitted well with Lindemann melting description. More significantly, the measured T m data at lowest pressure are still much higher than that of the DACs and the overall trend of these T m data is against to the two-segment melting curve model, with a sudden change in dT m /d P at about 210 GPa, previously proposed by Errandonea [Physica B 357 (2005) 356]. Though the problem of large discrepancy in T m data measured between DAC and SW has not been completely explained, our knowledge on this matter achieves indubitable progress since it is of value to programme the next clarification. Some suggestions for further clarifying the issue of large discrepancy between DAC and SW measurements are also proposed. (condensed matter: structure, mechanical and thermal properties)

  19. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  20. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  1. Experimental investigations on the anomaly of the electric conductivity in magnetohydrodynamic shock waves

    Zeyer, G.

    1975-01-01

    In the present work results of experimental investigations on the structure of resistive MHD shock waves are reported. The anomaly of the electric conductivity possibly occurring in such shock waves is an effect which has given new insight on the interaction mechanims of a plasma. In a modified Theta-Pinch setup deuterium plasma shock waves perpendicular to the magnetic field are studied with the aid of probes and scattering of laser light to determine the internal magnetic field and electron temperature and density. (GG) [de

  2. Effect of the wave shocking treatment on the structure and strengthening of austenitic steels

    Blinov, V.M.; Chernogorova, O.P.; Drozdova, E.I.; Afanas'ev, I.A.

    2006-01-01

    The structure and hardening of austenitic manganese steels after shock wave treatment are studied. It is shown that the treatment results in the structure where an elementary cell size decreases with a pressure increase. The strain hardening resulted from shock wave loading can be estimated using a Hall-Petch equation. It is established that at similar degree of residual strains the shock wave loading compared to cold rolling gives rise to higher strengthening which value grows as austenite stacking fault energy decreases [ru

  3. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  4. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-01-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  5. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  6. A model for precursor structure in supercritical perpendicular, collisionless shock waves

    Sherwell, D.; Cairns, R.A.

    1978-01-01

    Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jsub(y)(x) of trapped ions perpendicular to Bsub(z)(x) and the wave velocity Vsub(x). Suitable ions are found immediately upstream of perpendicular collisionless shock waves and these are coincident with the often observed 'foot' in magnetic field profiles of moderately supercritical shocks. The theory is applied to previous experiments by modelling Jsub(y)(x), where Jsub(y)(x) is observed, the profiles in the foot are reproduced and explained. Insight into a number of features of fast shocks is obtained. (author)

  7. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  8. Application of pressure-sensitive paint in shock-boundary layer interaction experiments

    Seivwright, Douglas L.

    1996-01-01

    Approved for public release; distribution is unlimited A new type of pressure transducer, pressure-sensitive paint, was used to obtain pressure distributions associated with shock-boundary layer interaction. Based on the principle of photoluminescence and the process of oxygen quenching, pressure-sensitive paint provides a continous mapping of a pressure field over a surface of interest. The data measurement and acquisition system developed for use with the photoluminescence sensor was eva...

  9. Twin boundary spacing effects on shock response and spall behaviors of hierarchically nanotwinned fcc metals

    Yuan, Fuping; Chen, Liu; Jiang, Ping; Wu, Xiaolei

    2014-01-01

    Atomistic deformation mechanisms of hierarchically nano-twinned (NT) Ag under shock conditions have been investigated using a series of large-scale molecular dynamics simulations. For the same grain size d and the same spacing of primary twins λ 1 , the average flow stress behind the shock front in hierarchically NT Ag first increases with decreasing spacing of secondary twins λ 2 , achieving a maximum at a critical λ 2 , and then drops as λ 2 decreases further. Above the critical λ 2 , the deformation mechanisms are dominated by three type strengthening mechanisms: (a) partial dislocations emitted from grain boundaries (GBs) travel across other boundaries; (b) partial dislocations emitted from twin boundaries (TBs) travel across other TBs; (c) formation of tertiary twins. Below the critical λ 2 , the deformation mechanism are dominated by two softening mechanisms: (a) detwinning of secondary twins; (b) formation of new grains by cross slip of partial dislocations. Moreover, the twin-free nanocrystalline (NC) Ag is found to have lower average flow stress behind the shock front than those of all hierarchically NT Ag samples except the one with the smallest λ 2 of 0.71 nm. No apparent correlation between the spall strength and λ 2 is observed in hierarchically NT Ag, since voids always nucleate at both GBs and boundaries of the primary twins. However, twin-free NC Ag is found to have higher spall strength than hierarchically NT Ag. Voids can only nucleate from GBs for twin-free NC Ag, therefore, twin-free NC Ag has less nucleation sources along the shock direction when compared to hierarchically NT Ag, which requiring higher tensile stress to create spallation. These findings should contribute to the understandings of deformation mechanisms of hierarchically NT fcc metals under extreme deformation conditions

  10. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  11. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  12. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  13. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  14. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  15. EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY IN TREATMENT OF PEDIATRIC UROLITHIASIS

    Emilija Golubovic

    2006-04-01

    Full Text Available The paper presents the experiences in the treatment of urinary tract calculosis in 114 children aged 6 months to 14 years by means of extracorporeal shock wave lithotripsy (ESWL.The treatment was performed at the Institute of Radiology and the Clinic for Pediatric Surgery and Orthopedics in Nis, in the period 1988-2000 on Siemens Litostar lithotriptor. The children were treated after clinical, laboratory and radiological preparation, provided that the stone was not greater than 3 cm (measured in native urinary tract graph and that it was not located in the pelvic part of the ureter. In the present study, the success in application of ESWL for treating pediatric patients was 88%. The total clearance of fragments was found in 57% of patients, whereas retention of fragments smaller than 4 mm three months after the last treatment was present in 31% of patients. ESWL treatment failed in 12% of patients since they had retained fragments greater than 4 mm.The authors recommend this method as a method of choice in the treatment of renal and urethral calculi in children.

  16. Radial shock wave therapy in dogs with hip osteoarthritis.

    Souza, Alexandre N A; Ferreira, Marcio P; Hagen, Stefano C F; Patrício, Geni C F; Matera, Julia M

    2016-01-01

    The study aims were to evaluate the effects of radial shock wave therapy (RSWT) in dogs with hip osteoarthritis (OA) using clinical assessment and kinetic analysis. Thirty dogs diagnosed with bilateral hip OA and 30 healthy dogs were used. In OA dogs, one limb was randomly selected for treatment with RSWT while the contralateral limb served as an untreated control. Dogs were evaluated while walking on a pressure walkway. Peak vertical force (PVF) and vertical impulse (VI) were documented; symmetry index (SI) was also calculated. Blinded clinical evaluation was performed using a visual analogue scale (VAS). Owner perception data regarding levels of physical activity were also collected. The RSWT protocol (2000 pulses, 10 Hz, 2-3.4 bars) consisted of three weekly treatment sessions (days 1, 8 and 16). Follow-up data were collected 30, 60 and 90 days after the first session. Data were compared between time points, groups and limbs pairs. At the end of the experimental period, mean PVF and VI values had increased (25.9 to 27.6%BW and 2.1 to 12.7%BW × s respectively) in treated limbs, with no significant differences in control limbs; SI values suggest improvement. Mean PVF and VI remained lower in the treated compared to the healthy group following treatment. The VAS scores suggested improvement in pain and lameness in treated dogs. Owner perception data suggested improved levels of physical activity following treatment. Outcomes of this study suggested beneficial effects of RSWT in dogs with hip osteoarthritis.

  17. Efficient transformation of Mycosphaerella fijiensis by underwater shock waves.

    Escobar-Tovar, Lina; Magaña-Ortíz, Denis; Fernández, Francisco; Guzmán-Quesada, Mauricio; Sandoval-Fernández, Jorge A; Ortíz-Vázquez, Elizabeth; Loske, Achim M; Gómez-Lim, Miguel A

    2015-12-01

    Black leaf streak disease, also known as black Sigatoka, causes dramatic losses in production of banana and plantains fruits. The disease is caused by the pathogenic fungus Mycosphaerella fijiensis (anamorph Pseudocercospora fijiensis; Mycosphaerellaceae). Genetic transformation of M. fijiensis would allow a better understanding of molecular basis of pathogenicity and design novel approaches to control the infection caused by this pathogen. However, transformation of this fungus has not been easy. We report here a protocol for genetic transformation of M. fijiensis employing underwater shock waves and intact conidia. The recombinant strains recovered showed genetic stability over >10 generations. The frequency of transformation obtained was between 75 and 150 times higher than the efficiency reported in the only article published on transformation of M. fijiensis using spheroplasts. This improvement allowed the use of a thousand times less cells than the amount employed before, avoiding the need for cumbersome successive batch cultures. Our protocol is simple, highly efficient, fast and reproducible and together with the available genomes of M. fijiensis and Musa acuminata, it offers new possibilities to study the diverse mechanisms of pathogenesis of the fungus. Copyright © 2015. Published by Elsevier B.V.

  18. Emergency extracorporeal shock wave lithotripsy (ESWL) for obstructing ureteral stones.

    Tligui, M; El Khadime, M R; Tchala, K; Haab, F; Traxer, O; Gattegno, B; Thibault, P

    2003-05-01

    To evaluate emergency treatment of obstructing ureteral stones by in situ extracorporeal shock wave lithotripsy (ESWL) during acute renal colic. From January 1994 to February 2000, 200 patients (mean age: 42 years) were treated by ESWL (EDAP LT-02) for obstructing ureteral stones causing acute renal colic refractory to medical treatment or recurring within 24hours of such treatment. Stones were visualised by fluoroscopic imaging and/or ultrasound. Follow-up included radiological and/or ultrasound examinations and lasted three months. Mean stone size was 7mm (3-20mm). At three months, 164/200 (82%) patients were stone-free. This rate ranged from 79% to 83% according to the location of the stone, and from 75% to 86% according to the size of the stone. These differences in rate were not significant. Two or three ESWL sessions were required in 79 patients. ESWL was well tolerated in 90% of patients. The only complication was a case of pyelonephritis requiring the placement of a JJ stent, administration of antibiotics, and distant ureteroscopy. The 36 patients, in whom ESWL failed, underwent ureteroscopy (n=23) or lithotripsy with a Dornier machine (n=13). Non-deferred ESWL for acute renal colic secondary to obstructing ureteral stones has a satisfactory success rate and very low morbidity.

  19. Design of compact piezoelectric transducers for shock wave applications

    Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer E.; Ginter, Siegfried

    2003-10-01

    The application of focused intense sound pulses to treat several orthopedic diseases has gained in importance during the past years. Self-focusing piezoelectric transducers known from ESWL are not well suited for this purpose due to their size. Therefore compact transducers have to be designed. This implies an increase of the pressure pulse amplitude generated at the radiating surface. A stacked placement of two piezoelectric layers driven by two high-voltage pulses with an adjustable delay accomplishes this. Several designs are presented here representing transducers of different sizes. In principle piezoelectric transducers have the ability to vary the pressure pulse shape to a wider extent than other shock wave sources. Based on FEM simulations of the transducer the influence of some driving parameters, like a variation of the interpulse delay or shape of the driving voltage, on the resulting focal pressure signal is demonstrated. The results show the feasibility to control some parameters of the signal, for example the peak negative pressure amplitude. This possibility could provide new aspects in basic research as well as in clinical applications.

  20. Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes

    Sean McAdams

    2010-01-01

    Full Text Available Extracorporeal shock wave lithotripsy (ESWL is currently a first-line procedure of most upper urinary tract stones <2 cm of size because of established success rates, its minimal invasiveness and long-term safety with minimal complications. Given that alternative surgical and endourological options exist for the management of stone disease and that ESWL failure often results in the need for repeat ESWL or secondary procedures, it is highly desirable to identify variables predicting successful outcomes of ESWL in the pediatric population. Despite numerous reports and growing experience, few prospective studies and guidelines for pediatric ESWL have been completed. Variation in the methods by which study parameters are measured and reported can make it difficult to compare individual studies or make definitive recommendations. There is ongoing work and a need for continuing improvement of imaging protocols in children with renal colic, with a current focus on minimizing exposure to ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.

  1. Generation of Two Successive Shock Waves Focusedto a Common Focal Point

    Šunka, Pavel; Stelmashuk, Vitaliy; Babický, Václav; Člupek, Martin; Beneš, J.; Poučková, P.; Kašpar, J.; Bodnár, M.

    2006-01-01

    Roč. 34, č. 4 (2006), s. 1382-1385 ISSN 0093-3813. [International Power Modulator Conference. Washington D.C., 14.5.2006-18.5.2006] R&D Projects: GA ČR(CZ) GA202/05/0685 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cavitation collpse * double shocks * focused shock waves * liver injury * secondary shocks Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.144, year: 2006

  2. Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water

    Noack, Joachim; Vogel, Alfred

    1995-05-01

    The shock wave emission after dielectric breakdown in water was investigated to assess potential shock wave effects in plasma mediated tissue ablation and intraocular photodisruption. Of particular interest was the dependence of shock wave pressure as a function of distance from the plasma for different laser pulse energies. We have generated plasmas in water with a Nd:YAG laser system delivering pulses of 6 ns duration. The pulses, with energies between 0.4 and 36 mJ (approximately equals 180 times threshold), were focused into a cuvette containing distilled water. The shock wave was visualized with streak photography combined with a schlieren technique. An important advantage of this technique is that the shock position as a function of time can directly be obtained from a single streak and hence a single event. Other methods (e.g. flash photography or passage time measurements between fixed locations) in contrast rely on reproducible events. Using the shock wave speed obtained from the streak images, shock wave peak pressures were calculated providing detailed information on the propagation of the shock. The shock peak pressure as a function of distance r from the optical axis was found to decrease faster than 1/r2 in regions up to distances of 100-150 micrometers . For larger distances it was found to be roughly proportional to 1/r. The scaling law for maximum shock pressure p, at a given distance was found to be proportional to the square root of the laser pulse energy E for distances of 50-200 micrometers from the optical axis.

  3. Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Armaroli, Andrea; Trillo, Stefano; Fratalocchi, Andrea

    2009-01-01

    single soliton input and in the regime where dispersive shock waves develop (multisoliton regime). Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation. © 2009 The American Physical Society.

  4. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  5. Characteristics of shock waves in neutrino-thick medium of collapsing stars

    Imshennik, V.S.; Murzina, M.V.

    1989-01-01

    Hugoniot relations for shock waves in neutrino-thick medium of colapsing stars are formulated. The equations obtained are solved numerically for rather wide range of shock wave velocities (D=(1,3,5)x10 9 cm/s) as well as for values of medium physical parameters against the shock wave front ( temperature T=(3,5,10)x1 -9 K; medium degree Θ 0 =n n /n p =10;100; at ρ 0 =10 11 g/cm 3 density).Presence of neutrino radiation is shown to result in matter essential deneutronization (up to Θ=10-30) at shock wave passage though contribution of leptonic component into the matter main characteristics (pressure, internal energy, temperature etc.) is rather small. 17 refs.; 3 figs.; 3 tabs

  6. Liver fibrosis after extracorporeal shock-wave lithotripsy of gallbladder stones - A case report

    P.W. Plaisier; J.F. Hamming (Jaap); R.L. van der Hul (René); R. den Toom (Rene); H.A. Bruining (Hajo)

    1994-01-01

    textabstractWe encountered significant liver fibrosis in a healthy young patient undergoing laparoscopic cholecystectomy for symptomatic gallstone disease. Twelve months prior to cholecystectomy the patient underwent multiple extracorporeal shock-wave lithotripsy (ESWL) sessions with adjuvant oral

  7. Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention

    Skolarikos, Andreas; Alivizatos, Gerasimos; de la Rosette, Jean

    2006-01-01

    OBJECTIVE: We review the pathophysiology and possible prevention measures of complications after extracorporeal shock wave lithotripsy (ESWL). METHODS: A literature search was performed with the Medline database on ESWL between 1980 and 2004. RESULTS: ESWL application has been intuitively connected

  8. Laser Induced Shock Waves and Vaporization in Biological System and Material Science

    Gerstman, Bernard S

    2008-01-01

    .... We have developed a computational model that allows the calculation of damage resulting from a laser pulse of any duration or energy due to temperature rise, explosive bubble formation, and shock wave production...

  9. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  10. Shock wave-induced evaporation of water droplets in a gas-droplet mixture 646

    Goossens, H.W.J.; Cleijne, J.W.; Smolders, H.J.; Dongen, van M.E.H.

    1988-01-01

    A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = <2,=" and=" droplet=" radii=" in=" the="

  11. Variable field-to-normal angles in the shock foreshock boundary observed by ISEE 1 and 2

    Greenstadt, E.W.; Mellot, M.M.

    1985-01-01

    Saturated ULF waves in the foreshock, with amplitudes comparable to the magnitude of the average field, are convected by the solar wind to the quasi-parallel shock where the average field-normal angle is less than, or about, 45 0 . Several examples from ISEE 1 and 2 magnetometer data show waves that defined local, instantaneous field-normal angles very different periodically from the average. Local geometric conditions at the nominally quasi-parallel shock varied from nearly parallel to nearly perpendicular, at the periods of typical upstream waves. Clear magnetic shock transitions occurred under temporarily quasi-perpendicular geometry

  12. Focused tandem shock waves in water and their potential application in cancer treatment

    Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Poučková, P.; Zadinová, M.; Zeman, J.; Dibdiak, L.; Kolářová, H.; Tománková, K.; Binder, S.; Beneš, J.

    2014-01-01

    Roč. 24, č. 1 (2014), s. 51-57 ISSN 0938-1287. [International Symposium on Shock Waves/28./. Manchester, 17.07.2011-22.07.2011] R&D Projects: GA ČR GA202/09/1151 Institutional support: RVO:61389021 Keywords : focused shock waves * underwater discharge * cancer treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.885, year: 2014

  13. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  14. Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts

    2017-11-01

    Many TBIs are associated with blast from improvised explosive devices.2–4 Explosions are physical, chemical , or nuclear reactions involving a rapid...ARL-TR-8210 ● NOV 2017 US Army Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave...Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts by Nicole E Zander, Thuvan

  15. Compendium of shock wave data. Section A2. Inorganic compounds. Section B. Hydrocarbons

    van Thiel, M.; Shaner, J.; Salinas, E.

    1977-06-01

    This volume lists in a concise manner the thermodynamic data in condensed media obtained by shock wave techniques. The volume should be useful both to people working in the shockwave field and to others interested primarily in thermodynamic properties at high pressure. Therefore, both dynamic variables and volumetric quantities associated with the shock wave are given. The format was selected to make the volume useful in engineering as well as scientific reserch activities. Data on the elements are contained in this volume

  16. Secondary sound classification for the assessment of focus positioning in shock-wave lithotripsy

    Grennberg, Anders; Almquist, Lars-Olof; Holmner, Nils-Gunnar; Olsson, Lennart

    1993-01-01

    A problem encountered when using acoustic shock-waves for kidney stone disintegration is that the positioning of the focus relative to a stone, for the best possible fragmenting effect, is crtitical. The standard methods for focus positioning are ultrasound or x-ray imaging. These methods are, however, not always sufficient and a better indication of a well positioned focus would be valuable. The secondary sound emitted as a result of each shock-wave has been found to contain valuable informa...

  17. Predictability of the individual clinical outcome of extracorporeal shock wave therapy for cellulite

    Schlaudraff, Kai-Uwe; Kiessling, Maren C; Császár, Nikolaus BM; Schmitz, Christoph

    2014-01-01

    Kai-Uwe Schlaudraff,1 Maren C Kiessling,2 Nikolaus BM Császár,2 Christoph Schmitz21Concept Clinic, Geneva, Switzerland; 2Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, GermanyBackground: Extracorporeal shock wave therapy has been successfully introduced for the treatment of cellulite in recent years. However, it is still unknown whether the individual clinical outcome of cellulite treatment with extracorporeal shock wave therapy can be predict...

  18. Theoretical and experimental investigation of shock wave stressing of metal powders by an explosion

    Lukyanov Ya.L.

    2011-01-01

    Full Text Available Joint theoretical and experimental investigations have allowed to realize an approach with use of mathematical and physical modeling of processes of a shock wave loading of powder materials. Hugoniot adiabats of the investigated powder have been measured with a noncontact electromagnetic method. The mathematical model of elastic-plastic deformation of the powder media used in the investigation has been validated. Numerical simulation of shock wave propagation and experimental assembly deformation has been performed.

  19. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  20. Characteristics of coronal shock waves and solar type 2 radio bursts

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.