WorldWideScience

Sample records for shock timing techniques

  1. Shock timing technique for the National Ignition Facility

    International Nuclear Information System (INIS)

    Munro, David H.; Celliers, Peter M.; Collins, Gilbert W.; Gold, David M.; Silva, Luiz B. da; Haan, Steven W.; Cauble, Robert C.; Hammel, Bruce A.; Hsing, Warren W.

    2001-01-01

    Among the final shots at the Nova laser [Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] was a series testing the VISAR (velocity interferometry system for any reflector) technique that will be the primary diagnostic for timing the shocks in a NIF (National Ignition Facility) ignition capsule. At Nova, the VISAR technique worked over the range of shock strengths and with the precision required for the NIF shock timing job--shock velocities in liquid D 2 from 12 to 65 μm/ns with better than 2% accuracy. VISAR images showed stronger shocks overtaking weaker ones, which is the basis of the plan for setting the pulse shape for the NIF ignition campaign. The technique is so precise that VISAR measurements may also play a role in certifying beam-to-beam and shot-to-shot repeatability of NIF laser pulses

  2. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    Science.gov (United States)

    Robey, H. F.; Munro, D. H.; Spears, B. K.; Marinak, M. M.; Jones, O. S.; Patel, M. V.; Haan, S. W.; Salmonson, J. D.; Landen, O. L.; Boehly, T. R.; Nikroo, A.

    2008-05-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  3. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H F; Munro, D H; Spears, B K; Marinak, M M; Jones, O S; Patel, M V; Haan, S W; Salmonson, J D; Landen, O L [Lawrence Livermore National Laboratory, Livermore, CA (United States); Boehly, T R [Laboratory for Laser Energetics, Rochester, NY (United States); Nikroo, A [General Atomics, San Diego, CA (United States)], E-mail: robey1@llnl.gov

    2008-05-15

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of {<=} +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  4. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    International Nuclear Information System (INIS)

    Robey, H F; Munro, D H; Spears, B K; Marinak, M M; Jones, O S; Patel, M V; Haan, S W; Salmonson, J D; Landen, O L; Boehly, T R; Nikroo, A

    2008-01-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of ≤ +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum

  5. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  6. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  7. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  8. Advances in NIF Shock Timing Experiments

    Science.gov (United States)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  9. Systems, Shocks and Time Bombs

    Science.gov (United States)

    Winder, Nick

    The following sections are included: * Introduction * Modelling strategies * Are time-bomb phenomena important? * Heuristic approaches to time-bomb phenomena * Three rational approaches to TBP * Two irrational approaches * Conclusions * References

  10. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  11. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  12. Shock timing measurements in DT ice layers

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL‐Nawawy

    2018-01-01

    Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  14. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.

    2016-10-12

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

  15. Direct measurement technique for shock wave velocity with irradiation drive

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  16. Collisionless Weibel shocks: Full formation mechanism and timing

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  17. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  18. Shock Timing Plan for the National Ignition Campaign

    Science.gov (United States)

    Munro, D. H.; Robey, H. F.; Spears, B. K.; Boehly, T. R.

    2006-10-01

    We report progress on the design of the shock timing tuning procedure for the 2010 ignition campaign at the National Ignition Facility. Our keyhole target design provides adequate drive surrogacy for us to time the first three shocks empirically. The major risk to our plan is hard x-ray preheat, which can cause the diagnostic window to become opaque.

  19. Microscale Shock Wave Physics Using Photonic Driver Techniques; TOPICAL

    International Nuclear Information System (INIS)

    SETCHELL, ROBERT E.; TROTT, WAYNE M.; CASTANEDA, JAIME N.; FARNSWORTH JR.,A. V.; BERRY, DANTE M.

    2002-01-01

    This report summarizes a multiyear effort to establish a new capability for determining dynamic material properties. By utilizing a significant reduction in experimental length and time scales, this new capability addresses both the high per-experiment costs of current methods and the inability of these methods to characterize materials having very small dimensions. Possible applications include bulk-processed materials with minimal dimensions, very scarce or hazardous materials, and materials that can only be made with microscale dimensions. Based on earlier work to develop laser-based techniques for detonating explosives, the current study examined the laser acceleration, or photonic driving, of small metal discs (''flyers'') that can generate controlled, planar shockwaves in test materials upon impact. Sub-nanosecond interferometric diagnostics were developed previously to examine the motion and impact of laser-driven flyers. To address a broad range of materials and stress states, photonic driving levels must be scaled up considerably from the levels used in earlier studies. Higher driving levels, however, increase concerns over laser-induced damage in optics and excessive heating of laser-accelerated materials. Sufficiently high levels require custom beam-shaping optics to ensure planar acceleration of flyers. The present study involved the development and evaluation of photonic driving systems at two driving levels, numerical simulations of flyer acceleration and impact using the CTH hydrodynamics code, design and fabrication of launch assemblies, improvements in diagnostic instrumentation, and validation experiments on both bulk and thin-film materials having well-established shock properties. The primary conclusion is that photonic driving techniques are viable additions to the methods currently used to obtain dynamic material properties. Improvements in launch conditions and diagnostics can certainly be made, but the main challenge to future applications

  20. Diagnostics of gas behind shock waves by refractive optical techniques

    International Nuclear Information System (INIS)

    Blaha, J.

    In a brief outline of optical methods for measuring neutral gas and plasma parameters, techniques are specifically dealt with based on the interferometric measurement of the refractive index. The investigation is shown of gas density changes in a shock tube using the optical Mach-Zehnder interferometer. While in a neutral gas the refractive index is determined by gas density, in a plasma the effects of all components, ie., electrons, ions and atoms are additive. The contributions to refraction from the various components may, in view of the different character and frequencies of the components, be resolved by measurement on more than one wavelength. (J.U.)

  1. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  2. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.; Ketcheson, David I.

    2016-01-01

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include

  3. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  4. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Hohenberger, M.; Boehly, T. R. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Nikroo, A. [General Atomics, San Diego, California 92196 (United States)

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  5. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  6. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    International Nuclear Information System (INIS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J.; Hohenberger, M.; Boehly, T. R.; Nikroo, A.

    2014-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing

  7. Reply on the comment of the paper "New probing techniques of radiative shocks"

    Science.gov (United States)

    Stehlé, Chantal; Kozlová, Michaela; Larour, Jean; Nejdl, Jaroslav; Suzuki-Vidal, Francisco; Cohen, Mathieu; Chaulagain, Uddhab P.; Champion, Norbert; Barroso, Patrice; Acef, Ouali; Delattre, Pierre-Alexandre; Dostál, Jan; Krus, Miroslav; Chièze, Jean-Pierre; Ibgui, Laurent

    2014-05-01

    Imaging the structure of a radiative shock is a challenging task as the high plasma densities produced need a short wavelength to penetrate the plasma, requiring highly sophisticated imaging techniques. In a recent paper (Stehlé et al., Opt. Commun. 285 (2012) 64-69 [1]) the feasibility of a novel imaging technique using an X-ray laser (XRL) at 21 nm with a pulse duration 0.15 ns was proved. The recorded image was attributed to a shock propagating with a velocity of ~60 km/s. This velocity is in agreement with measurements of the plasma self-emission using time and space resolved diode diagnostics, and also in qualitative agreement with 1D numerical simulations. However, due to the inhomogeneous reflectivity of the XUV imaging mirror and to the low number of XRL photons, the quality of the recorded image was insufficient to unambiguously identify the different shock regions. Thus, arguing an ad hoc spatial resolution of ~0.5 mm and a stepwise representation of the shock-piston system, the potential of the technique to observe a radiative precursor was contested (Busquet's comment (in press) [2]). In this reply we aim at clarifying different aspects of the experimental setup, spatial resolution and other questions raised in this comment in order to back up our findings together with their respective analysis and interpretations.

  8. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  9. Time-resolved shock compression of porous rutile: Wave dispersion in porous solids

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.U.; Graham, R.A.; Holman, G.T.

    1993-08-01

    Rutile (TiO{sub 2}) samples at 60% of solid density have been shock-loaded from 0.21 to 6.1 GPa with sample thickness of 4 mm and studied with the PVDF piezoelectric polymer stress-rate gauge. The technique uses a copper capsule to contain the sample which has PVDF gauge packages in direct contact with front and rear surfaces. A precise measure is made of the compressive stress wave velocity through the sample, as well as the input and propagated shock stress. Initial density is known from sample preparation, and the amount of shock-compression is calculated from the measurement of shock velocity and input stress. Shock states and re-shock states are measured. Observed data are consistent with previously published high pressure data. It is observed that rutile has a ``crush strength`` near 6 GPa. Propagated stress-pulse rise times vary from 234 to 916 nsec. Propagated stress-pulse rise times of shock-compressed HMX, 2Al + Fe{sub 2}O{sub 3}, 3Ni + Al, and 5Ti + 3Si are presented.

  10. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  11. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Nikroo, A.; Giraldez, E. [General Atomics, San Diego, California 92186-5608 (United States); Boehly, T. [Laboratory for Laser Energetics, Rochester, New York 14623-1299 (United States)

    2014-09-15

    An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.

  12. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  13. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  14. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  15. Time-dependent nonlinear cosmic ray shocks confirming abstract

    International Nuclear Information System (INIS)

    Dorfi, E.A.

    1985-01-01

    Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of this phenomenon are required

  16. Hybrid simulation techniques applied to the earth's bow shock

    Science.gov (United States)

    Winske, D.; Leroy, M. M.

    1985-01-01

    The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.

  17. Time-dependent diffusive acceleration of test particles at shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))

    1991-07-15

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).

  18. Time-dependent diffusive acceleration of test particles at shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1991-01-01

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)

  19. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  20. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  1. Shock fitting classical techniques, recent developments, and memoirs of Gino Moretti

    CERN Document Server

    Paciorri, Renato

    2017-01-01

    This book describes the revolutionary capabilities of new shock fitting algorithms; a great improvement in computational fluid dynamics (CFD) for high-speed numerical simulations. Shock fitting methods provide a solution to the current difficulties and inaccuracies in shock-capturing approaches. This work traces the evolution of shock-fitting methods, from the pioneering methods based on the structured grids (boundary and floating shock-fitting) to recent developments on unstructured grids, illustrating algorithmic details, significant applications and potential developments.  Also, to celebrate the centenary birth of the father of shock-fitting techniques, the book also includes a tribute to Gino Moretti, as well as his unpublished manuscript. This book will appeal to professionals, researchers, and graduate students in the field of CFD.

  2. Empirical estimation of the arrival time of ICME Shocks

    Science.gov (United States)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  3. Shock capturing techniques for hphp-adaptive finite elements

    Czech Academy of Sciences Publication Activity Database

    Hierro, A.; Kůs, Pavel; Badia, S.

    2016-01-01

    Roč. 309, 1 September (2016), s. 532-553 ISSN 0045-7825 Institutional support: RVO:67985840 Keywords : hphp-adaptivity * discontinuous Galerkin * shock capturing Subject RIV: BA - General Mathematics Impact factor: 3.949, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045782516305862

  4. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    Science.gov (United States)

    Cheng, David; Yoshinaka, Akio

    2014-11-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  5. Instrumentation techniques for monitoring shock and detonation waves

    Science.gov (United States)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  6. Flexible time domain averaging technique

    Science.gov (United States)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  7. Time Series Analysis of Wheat flour Price Shocks in Pakistan: A Case Analysis

    OpenAIRE

    Asad Raza Abdi; Ali Hassan Halepoto; Aisha Bashir Shah; Faiz M. Shaikh

    2013-01-01

    The current research investigates the wheat flour Price Shocks in Pakistan: A case analysis. Data was collected by using secondary sources by using Time series Analysis, and data were analyzed by using SPSS-20 version. It was revealed that the price of wheat flour increases from last four decades, and trend of price shocks shows that due to certain market variation and supply and demand shocks also play a positive relationship in price shocks in the wheat prices. It was further revealed th...

  8. Self-consistent technique for estimating the dynamic yield strength of a shock-loaded material

    International Nuclear Information System (INIS)

    Asay, J.R.; Lipkin, J.

    1978-01-01

    A technique is described for estimating the dynamic yield stress in a shocked material. This method employs reloading and unloading data from a shocked state along with a general assumption of yield and hardening behavior to estimate the yield stress in the precompressed state. No other data are necessary for this evaluation, and, therefore, the method has general applicability at high shock pressures and in materials undergoing phase transitions. In some special cases, it is also possible to estimate the complete state of stress in a shocked state. Using this method, the dynamic yield strength of aluminum at 2.06 GPa has been estimated to be 0.26 GPa. This value agrees reasonably well with previous estimates

  9. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    Science.gov (United States)

    Cao, D.; Boehly, T. R.; Gregor, M. C.; Polsin, D. N.; Davis, A. K.; Radha, P. B.; Regan, S. P.; Goncharov, V. N.

    2018-05-01

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the velocity interferometry system for any reflector diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ˜ 3) implosions, but agreement degrades for lower-adiabat (α ˜ 1) designs. Simulation results indicate that the shock timing discrepancy is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to the target offset and beam power imbalance. To aid in verifying the coronal profile's influence, a new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments.

  10. Management Styles and Techniques: Time.

    Science.gov (United States)

    Matthews, Priscilla J.

    1987-01-01

    Discusses strategies to improve individuals' use of time and personal satisfaction through time management. The 126-item bibliography includes citations for time management in general and special sections for career development, family and parenting, women, and home management. (CLB)

  11. Cost analysis of real-time polymerase chain reaction microbiological diagnosis in patients with septic shock.

    Science.gov (United States)

    Alvarez, J; Mar, J; Varela-Ledo, E; Garea, M; Matinez-Lamas, L; Rodriguez, J; Regueiro, B

    2012-11-01

    Antibiotic treatment for septic shock is generally prescribed on an empirical basis using broad-spectrum antibiotics. Molecular diagnostic techniques can detect the presence of microbial DNA in blood within a few hours and facilitate early, targeted treatment. The aim of this study was to evaluate the economic impact of a real-time polymerase chain reaction technique, LightCycler SeptiFast (LSC), in patients with sepsis. A cost-minimisation study was carried out in patients admitted with a diagnosis of severe sepsis or septic shock to the intensive care unit of a university hospital. The stay in the intensive care unit, hospital admission, 28-day and six-month mortality, and the economic cost of the clinical process were also evaluated. The study involved 48 patients in the LSC group and 54 patients in the control group. The total cost was €42,198 in the control group versus €32,228 in the LCS group with statistically significant differences (P average net saving of €9970 per patient. The mortality rate was similar in both groups. The main finding of this study was the significant economic saving afforded by the use of the LCS technique, due to the shortening of intensive care unit stay and the use of fewer antibiotics.

  12. Transmission of government spending shocks in the Euro area: time variation and driving forces

    NARCIS (Netherlands)

    Kirchner, M.; Cimadomo, J.; Hauptmeier, S.

    2010-01-01

    This paper provides new evidence on the effects of government spending shocks and the fiscal transmission mechanism in the euro area for the period 1980-2008. Our contribution is two-fold. First, we investigate changes in the macroeconomic impact of government spending shocks using time-varying

  13. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation

    International Nuclear Information System (INIS)

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.

    2017-01-01

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

  14. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  15. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  16. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  17. The effect of long and short time oil shocks on economic growth in Iran

    OpenAIRE

    Sayyed Abdolmajid Jalae; Sanaz Mohammadi

    2012-01-01

    Oil is one of the strategic good so that price fluctuations and shocks of it have major effects on economic growth and recession in depended countries to revenues of it. In this study, it is tried that the effect of oil price shocks investigated in two types (short and long time) on Economic growth in Iran. Its Period is from 1974 to 2006. According it, oil price uncertainty is quantized by GARCH model and is determined the effects of oil price shocks on economic growth in Iran during a short...

  18. Spatiotemporal evolution of a laser-induced shock wave measured by the background-oriented schlieren technique

    Science.gov (United States)

    Tagawa, Yoshiyuki; Yamamoto, Shota; Kameda, Masaharu

    2014-11-01

    We investigate the spatiotemporal evolution of a laser-induced shock wave in a liquid filled thin tube. In order to measure pressure distribution at shock front, we adopt the background-oriented schlieren (BOS) technique. This technique provides two- or three-dimensional pressure field in a small region with a simple setup. With an ultra high-speed video camera and a laser stroboscope, we successfully capture the spatial evolution of the shock every 0.2 μs. We find an angular variation of the pressure at the shock front. The maximum pressure is in the direction of the laser shot while the minimum value is in the perpendicular direction. We compare the temporal evolution of the pressure measured by BOS technique with those obtained by another method, i.e. pressure estimation from the shock front position. Overall trend from both methods show a good agreement. The pressure from the shock front position exists between the maximum and minimum values from BOS technique. It indicates that our quantification method can measure more detailed pressure field in two- or three-dimensions. Our results might be used for the efficient generation systems for the microjet, which can be applicable for needle free injection devices.

  19. The relationship between global oil price shocks and China's output: A time-varying analysis

    International Nuclear Information System (INIS)

    Cross, Jamie; Nguyen, Bao H.

    2017-01-01

    We employ a class of time-varying Bayesian vector autoregressive (VAR) models on new standard dataset of China's GDP constructed by to examine the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. The results are generally robust to three commonly employed indicators of global economic activity: Kilian's global real economic activity index, the metal price index and the global industrial production index, and two alternative oil price metrics: the US refiners' acquisition cost for imported crude oil and the West Texas Intermediate price of crude oil. - Highlights: • A class of time-varying BVARs is used to examine the relationship between China's economic growth and global oil market fluctuations. • The impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature. • Oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth while oil demand shocks tend to have positive effects. • Domestic output shocks have no significant impact on price or quantity movements within the global oil market.

  20. Shocks and finite-time singularities in Hele-Shaw flow

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO

    2008-01-01

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.

  1. Ultrafast streak and framing technique for the observation of laser driven shock waves in transparent solid targets

    International Nuclear Information System (INIS)

    Van Kessel, C.G.M.; Sachsenmaier, P.; Sigel, R.

    1975-01-01

    Shock waves driven by laser ablation in plane transparent plexiglass and solid hydrogen targets have been observed with streak and framing techniques using a high speed image converter camera, and a dye laser as a light source. The framing pictures have been made by mode locking the dye laser and using a wide streak slit. In both materials a growing hemispherical shock wave is observed with the maximum velocity at the onset of laser radiation. (author)

  2. Time-history of shock waves overrunning three-dimensional, cylindrical models

    International Nuclear Information System (INIS)

    Langheim, H.; Loeffler, E.

    To investigate the time-history of the Mach-stem of a shock wave overrunning a nuclear power plant shadowgraphs of threedimensional, cylindrical models with a globe cap were analysed. These models simulating the containment building differ only in the height of the cylinder. They were exposed with shock waves of shock strengths of 1.2 and 1.4, being equal to a peak reflexion overpressure of 0.45 resp. 1.0 bar. The time-histories of the Mach-stem differ only slightly. For this reason it can be stated that these time-histories are independent of the shock strength and the height of the cylinder in the prescribed range of the research program. In comparison with values given in the literature great differences were found at the rear side near the stagnation point of the globe cap resp. the stagnation line of the cylinder. The measured time for overrunning of the shock wave is the same as the time of arrival of the pressure-pulse at the interesting point of the model. This knowledge is a necessary premise for pressure-measurings from which the total load of structure can be determined. (orig.) [de

  3. Time series prediction: statistical and neural techniques

    Science.gov (United States)

    Zahirniak, Daniel R.; DeSimio, Martin P.

    1996-03-01

    In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.

  4. Time-resolved stereo PIV measurements of shock-boundary layer interaction on a supercritical airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Axel; Klaas, Michael; Schroeder, Wolfgang [RWTH Aachen University, Institute of Aerodynamics, Aachen (Germany)

    2012-03-15

    Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave-boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 x 10{sup 6} are analyzed regarding the origin and nature of the unsteady shock-boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa. (orig.)

  5. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  6. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  7. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    van der Klis, M.

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  8. On the timing of marriage, cattle and weather shocks

    NARCIS (Netherlands)

    Hoogeveen, H.; van der Klaauw, B.; van Lomwel, A.G.C.

    1970-01-01

    In this paper we focus on the timing of marriages of women, whose marriages are associated with bride wealth payments, which are transfers from (the family of) the groom to the bride's family. Unmarried daughters could therefore be considered assets who, at times of need, can be cashed in. We

  9. On the Timing of Marriage, Cattle and Weather Shocks

    NARCIS (Netherlands)

    Hoogeveen, Hans; Klaauw, van der Bas; Lomwel, van Gijsbert

    2004-01-01

    In this paper we focus on the timing of marriages of women, whose marriages are associated with bride wealth payments, which are transfers from (the family of) the groom to the bride's family. Unmarried daughters could therefore be considered assets who, at times of need, can be cashed in. We

  10. The impact of monetary policy and exchange rate shocks in Poland: evidence from a time-varying VAR

    OpenAIRE

    Arratibel, Olga; Michaelis, Henrike

    2014-01-01

    This paper follows the Bayesian time-varying VAR approach with stochastic volatility developed by Primiceri (2005), to analyse whether the reaction of output and prices to interest rate and exchange rate shocks has changed across time (1996-2012) in the Polish economy. The empirical findings show that: (1) output appears more responsive to an interest rate shock at the beginning of our sample. Since 2000, absorbing this shock has become less costly in terms of output, notwithstanding some rev...

  11. Employing innovative techniques to reduce inspection times

    International Nuclear Information System (INIS)

    Heumueller, R.; Guse, G.; Dirauf, F.; Fischer, E.

    1997-01-01

    Shorter inspection periods mean lower revision costs and less tight revision schedules, but must not detract from the quality of inspection findings. This requirement imposes upon the company performing the inspection the need for top achievements both in quality management and in the use of innovative techniques. Flexible equipment systems and inspection techniques adapted to specific purposes are able to reduce inspection times in many inspection jobs. As part of a complete system designed to reduce inspection times, the new Saphir (Siemens Alok Phased Array Integrated Reliable UT-System) inspection equipment system is the core of most of the recent innovations. Being an integrated inspection equipment system, it is able to handle conventional US probes as well as arrays and phased arrays. It is open for further matching to specific inspection and administrative requirements and developments, and it may be incorporated in the network of an integrated system with a database. A technological leap in probe design in the past few years has allowed controllable wave fields to be generated which are in no way inferior to those of conventional probes with fixed angles of incidence. In this way, a number of inspection techniques can be implemented with a single probe. This reduces inspection times, setup and retooling times, and doses. Typical examples already used in practice are the LLT (longitudinal-longitudinal-transverse waves) technique and the integration of inspections for longitudinal and transverse defects in a single run. In the near future, surfaces with complicated curvatures will be inspected by novel modular robot systems consisting of individual modules of linear axes and rotational axes. (orig.) [de

  12. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.; Badra, Jihad; Javed, Tamour; Alabbad, Mohammed; Bokhumseen, Nehal; Gaillard, Patrick; Babiker, Hassan; Farooq, Aamir; Sarathy, Mani

    2015-01-01

    work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range

  13. Transmission of government spending shocks in the Euro area: time variation and driving forces

    NARCIS (Netherlands)

    Kirchner, M.; Cimadomo, J.; Hauptmeier, S.

    This paper applies structural vector autoregressions with time-varying parameters in order to investigate changes in the effects of government spending shocks in the euro area, and the driving forces of those changes. Our contribution is two-fold. First, we present evidence that the short-run impact

  14. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    Science.gov (United States)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  15. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  16. Microprocessor-controlled time domain reflectometer for dynamic shock position measurements

    International Nuclear Information System (INIS)

    Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.

    1980-01-01

    Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements

  17. Microscopic simulations of shock propagation in condensed media: comparison between real time and frequency domains

    International Nuclear Information System (INIS)

    Karo, A.M.; Hardy, J.R.; Mehlman, M.H.

    1985-07-01

    Computer molecular dynamics (CMD) is now recognized as a very powerful technique for examining the microscopic details of a wide variety of chemical and physical phenomena, including the shock-induced fast decomposition processes that characterize the shock-initiation of energetic materials. The purpose of the present paper is to describe some results obtained by new methods of post processing of CMD data. First we present a pictorial history of a canonical system which is bonded with identical potentials and has identical atomic masses. We then present Fourier transforms of the energy components of different units judiciously chosen to show the ''frequency fingerprint'' of the shock impact and passage through specific units of the system, including, e.g., the behavior of spalled fragments. To complement these studies, we also display the behavior of our canonical system when defect (point or line) are present. In these studies we monitor the motion of diatoms above and below a line defect consisting of heavy masses. The Fourier transform techniques provide optimum compromise histories which present neither too much nor too little detail

  18. Time-dependent shock acceleration of energetic electrons including synchrotron losses

    International Nuclear Information System (INIS)

    Fritz, K.; Webb, G.M.

    1990-01-01

    The present investigation of the time-dependent particle acceleration problem in strong shocks, including synchrotron radiation losses, solves the transport equation analytically by means of Laplace transforms. The particle distribution thus obtained is then transformed numerically into real space for the cases of continuous and impulsive injections of particles at the shock. While in the continuous case the steady-state spectrum undergoes evolution, impulsive injection is noted to yield such unpredicted features as a pile-up of high-energy particles or a steep power-law with time-dependent spectral index. The time-dependent calculations reveal varying spectral shapes and more complex features for the higher energies which may be useful in the interpretation of outburst spectra. 33 refs

  19. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    2018-05-01

    Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

  20. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    Science.gov (United States)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  1. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  2. Shock timing on the National Ignition Facility: The first precision tuning series

    Directory of Open Access Journals (Sweden)

    Robey H.F.

    2013-11-01

    Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.

  3. Time-dependent bow shocks and the condensation structure of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.

    1987-01-01

    Some Herbig-Haro objects show a structure which appears to look like a bow shock, but also show a number of condensations superposed on this bow-shaped structure. In the case of HH 1 and HH 2 considerably different proper motions have been measured for the individual condensations. It is, however, very hard to explain why the condensations remain so close to each other if they are indeed separate entities. In this paper it is shown that an interpretation of the whole Herbig-Haro object as a single, time-dependent bow shock provides a natural explanation for the occurrence of condensations (which in numerical calculations appear to be associated with thermal instabilities in the postshock flow) with different proper motions. To this effect, time-dependent, axisymmetric, nonadiabatic bow shock models have been developed from which predictions were obtained for spatially resolved H-alpha intensity maps, and then these predictions are compared qualitatively with observations of a few Herbig-Haro objects. 57 references

  4. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    Science.gov (United States)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  5. Revisiting the “Golden Hour”: An Evaluation of Out-of-Hospital Time in Shock and Traumatic Brain Injury

    Science.gov (United States)

    Newgard, Craig D.; Meier, Eric N.; Bulger, Eileen M.; Buick, Jason; Sheehan, Kellie; Lin, Steve; Minei, Joseph P.; Barnes-Mackey, Roxy A.; Brasel, Karen

    2015-01-01

    Study Objective We evaluated shock and traumatic brain injury (TBI) patients previously enrolled in an out-of-hospital clinical trial to test the association between out-of-hospital time and outcome. Methods This was a secondary analysis of shock and TBI patients ≥ 15 years enrolled in a Resuscitation Outcomes Consortium out-of-hospital clinical trial by 81 EMS agencies transporting to 46 Level I and II trauma centers in 11 sites (May 2006 through May 2009). Inclusion criteria were: SBP ≤ 70 mmHg or SBP 71 - 90 mmHg with heart rate ≥ 108 beats per minute (shock cohort) and Glasgow Coma Scale score ≤ 8 (TBI cohort); patients meeting both criteria were placed in the shock cohort. Primary outcomes were 28-day mortality (shock cohort) and 6-month Glasgow Outcome Scale - Extended (GOSE) ≤ 4 (TBI cohort). Results There were 778 patients in the shock cohort (26% 28-day mortality) and 1,239 patients in the TBI cohort (53% 6-month GOSE ≤ 4). Out-of-hospital time > 60 minutes was not associated with worse outcomes after accounting for important confounders in the shock cohort (adjusted odds ratio [aOR] 1.42, 95% CI 0.77-2.62) or TBI cohort (aOR 0.80, 95% CI 0.52-1.21). However, shock patients requiring early critical hospital resources and arriving > 60 minutes had higher 28-day mortality (aOR 2.37, 95% CI 1.05-5.37); this finding was not observed among a similar TBI subgroup. Conclusions Among out-of-hospital trauma patients meeting physiologic criteria for shock and TBI, there was no association between time and outcome. However, the subgroup of shock patients requiring early critical resources arriving after 60 minutes had higher mortality. PMID:25596960

  6. A New Simulation Technique for Study of Collisionless Shocks: Self-Adaptive Simulations

    International Nuclear Information System (INIS)

    Karimabadi, H.; Omelchenko, Y.; Driscoll, J.; Krauss-Varban, D.; Fujimoto, R.; Perumalla, K.

    2005-01-01

    The traditional technique for simulating physical systems modeled by partial differential equations is by means of time-stepping methodology where the state of the system is updated at regular discrete time intervals. This method has inherent inefficiencies. In contrast to this methodology, we have developed a new asynchronous type of simulation based on a discrete-event-driven (as opposed to time-driven) approach, where the simulation state is updated on a 'need-to-be-done-only' basis. Here we report on this new technique, show an example of particle acceleration in a fast magnetosonic shockwave, and briefly discuss additional issues that we are addressing concerning algorithm development and parallel execution

  7. Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece

    Science.gov (United States)

    Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.

    2018-06-01

    The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.

  8. Time-dependence in relativistic collisionless shocks: theory of the variable

    Energy Technology Data Exchange (ETDEWEB)

    Spitkovsky, A

    2004-02-05

    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.

  9. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study

    OpenAIRE

    Prabhudesai, Sumant; Kanjani, Amruta; Bhagat, Isha; Ravikumar, Karnam G.; Ramachandran, Bala

    2015-01-01

    Aims: The aim of this prospective, observational study was to determine the accuracy of a real-time continuous glucose monitoring system (CGMS) in children with septic shock. Subjects and Methods: Children aged 30 days to 18 years admitted to the Pediatric Intensive Care Unit with septic shock were included. A real-time CGMS sensor was used to obtain interstitial glucose readings. CGMS readings were compared statistically with simultaneous laboratory blood glucose (BG). Results: Nineteen chil...

  10. A Few Techniques for Time Management

    OpenAIRE

    Zerihun, Dr. Temesgen Belayneh; Krishna, Dr. S Murali

    2012-01-01

    Tomorrow is always the busiest day of the week- Jonathon Lazear.Lack of time is a common complaint in western society. In response, there has been a proliferation of books, articles, and seminars on time management, along with their assertions, prescriptions and anecdotes. However, what exactly is time management? Despite the epidemic of time management training programs, there is currently a lack of agreement about the definition of time management and a dearth of literature summarizing tim...

  11. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-01-01

    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  12. Comparison of two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. A randomized controlled study.

    Science.gov (United States)

    Tornese, Davide; Mattei, Enrico; Lucchesi, Giampaolo; Bandi, Marco; Ricci, Gabriele; Melegati, Gianluca

    2008-09-01

    To describe and compare two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. Random assignment to two groups of treatment with two and eight months follow-up. The data were collected in outpatients. Forty-five subjects with a history of at least six months of heel pain were studied. Each subject received a three-session ultrasound-guided extracorporeal shock wave therapy (performed weekly). Perpendicular technique was used in group A (n=22, mean age 59.3 +/- 12 years) and tangential technique was used in group B (n= 23, mean age 58.8 +/- 12.3 years). Mayo Clinical Scoring System was used to evaluate each subject before the treatment and at two and eight months follow-up. Mayo Clinical Scoring System pretreatment scores were homogeneous between the groups (group A 55.2 +/-18.7; group B 53.5 +/- 20; P>0.05). In both groups there was a significant (Pwave therapy. The tangential technique was found to be better tolerated as regards treatment-induced pain, allowing higher energy dosages to be used.

  13. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Thermal shock is a principal cause of catastrophic wear of the refractory lining of high temperature installations in metal making processes. To investigate thermal shock experimentally with realistic and reproducible heat transfer conditions, chamotte and corund refractory samples of ambient

  14. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation

    Science.gov (United States)

    Pieper, Matthew S; Pulido, Juan; Gajic, Ognjen

    2011-01-01

    Objective Recruitment of patients into time sensitive clinical trials in intensive care units (ICU) poses a significant challenge. Enrollment is limited by delayed recognition and late notification of research personnel. The objective of the present study was to evaluate the effectiveness of the implementation of electronic screening (septic shock sniffer) regarding enrollment into a time sensitive (24 h after onset) clinical study of echocardiography in severe sepsis and septic shock. Design We developed and tested a near-real time computerized alert system, the septic shock sniffer, based on established severe sepsis/septic shock diagnostic criteria. A sniffer scanned patients' data in the electronic medical records and notified the research coordinator on call through an institutional paging system of potentially eligible patients. Measurement The performance of the septic shock sniffer was assessed. Results The septic shock sniffer performed well with a positive predictive value of 34%. Electronic screening doubled enrollment, with 68 of 4460 ICU admissions enrolled during the 9 months after implementation versus 37 of 4149 ICU admissions before sniffer implementation (p<0.05). Efficiency was limited by study coordinator availability (not available at nights or weekends). Conclusions Automated electronic medical records screening improves the efficiency of enrollment and should be a routine tool for the recruitment of patients into time sensitive clinical trials in the ICU setting. PMID:21508415

  15. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation.

    Science.gov (United States)

    Herasevich, Vitaly; Pieper, Matthew S; Pulido, Juan; Gajic, Ognjen

    2011-01-01

    Recruitment of patients into time sensitive clinical trials in intensive care units (ICU) poses a significant challenge. Enrollment is limited by delayed recognition and late notification of research personnel. The objective of the present study was to evaluate the effectiveness of the implementation of electronic screening (septic shock sniffer) regarding enrollment into a time sensitive (24 h after onset) clinical study of echocardiography in severe sepsis and septic shock. We developed and tested a near-real time computerized alert system, the septic shock sniffer, based on established severe sepsis/septic shock diagnostic criteria. A sniffer scanned patients' data in the electronic medical records and notified the research coordinator on call through an institutional paging system of potentially eligible patients. The performance of the septic shock sniffer was assessed. The septic shock sniffer performed well with a positive predictive value of 34%. Electronic screening doubled enrollment, with 68 of 4460 ICU admissions enrolled during the 9 months after implementation versus 37 of 4149 ICU admissions before sniffer implementation (p<0.05). Efficiency was limited by study coordinator availability (not available at nights or weekends). Automated electronic medical records screening improves the efficiency of enrollment and should be a routine tool for the recruitment of patients into time sensitive clinical trials in the ICU setting.

  16. Predicting optimal back-shock times in ultrafiltration hollow fibre modules through path-lines

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    This paper presents a two dimensional mathematical model of back-shocking in ultrafiltration. The model investigates the effect of back-shocking on concentration polarization. The model shows a positive effect on both the volumetric flux and the observed rejection when back-shocking is applied as...

  17. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    Science.gov (United States)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  18. Development of in-situ laser based cutting technique for shock absorber rear nut in pressurized heavy water reactors. CP-2.1

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Jain, R.K.; Upadhyaya, B.N.; Choubey, Ambar; Agrawal, D.K.; Oak, S.M.

    2007-01-01

    We have developed a laser based cutting technique for shock absorber rear nuts in pressurized heavy water reactors (PHWRs). This technique has been successfully used for in-situ laser cutting at RAPS-3 reactor. The technique consists of a motorized compact fixture, which holds a fiber optic beam delivery cutting nozzle and can be operated remotely

  19. Using Computer Techniques To Predict OPEC Oil Prices For Period 2000 To 2015 By Time-Series Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Esmail Ahmad

    2015-08-01

    Full Text Available The instability in the world and OPEC oil process results from many factors through a long time. The problems can be summarized as that the oil exports dont constitute a large share of N.I. only but it also makes up most of the saving of the oil states. The oil prices affect their market through the interaction of supply and demand forces of oil. The research hypothesis states that the movement of oil prices caused shocks crises and economic problems. These shocks happen due to changes in oil prices need to make a prediction within the framework of economic planning in a short run period in order to avoid shocks through using computer techniques by time series models.

  20. Time reversal technique for gas leakage detection.

    Science.gov (United States)

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  1. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  2. In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Zeman, J.; Horák, Vratislav; Hoffer, Petr; Poučková, P.; Holubová, Monika; Hosseini, S.H.R.; Akiyama, H.; Šunka, Pavel; Beneš, J.

    2015-01-01

    Roč. 103, June (2015), s. 103-110 ISSN 1567-5394 R&D Projects: GA MŠk ED2.1.00/03.0124 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 ; RVO:67985904 Keywords : Electrical discharge * Shock waves * Tumor damage * Necrosis * Apoptosis Subject RIV: BO - Biophysics Impact factor: 3.556, year: 2015 http://dx.doi.org/10.1016/j.bioelechem.2014.08.019

  3. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  4. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  5. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  6. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  7. Study on manufacturing technique of synthetic shock-absorbers for underground disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Iwasaki, Takashi; Onodera, Yoshio; Hayashi, Hiromichi; Ebina, Takeo; Nagase, Takako; Torii, Kazuo

    1997-01-01

    On the cse of underground disposal of high level radioactive wastes, natural bentonite is planned to be used for artificial barrier shock-absorber. This is due to expectation of sealing water or adsorbing nuclear materials using swelling and ion-exchanging capacities of smectite, which is a main component of bentonite. In this study, some swelling laminar compounds with various compositions and structures are synthesized to investigate their water sealing and nuclear adsorbing properties. And, according to their results, an optimum material is selected to develop its economic manufacturing method and investigate its alternative possibility for natural bentonite. From such reason, following two titled studies have been executed; 1) Synthesis of the swelling laminar compounds, and 2) Development of manufacturing technique of artificial shock-absorber. In 1995 FY, 1) Detail investigation on synthetic condition of double octahedral type smectite and 2) modeling of the smectite and stability of same type displacement for base of inducing the computer simulation for estimating creation process of optimum materials, were conducted. (G.K.)

  8. An integrated technique for developing real-time systems

    NARCIS (Netherlands)

    Hooman, J.J.M.; Vain, J.

    1995-01-01

    The integration of conceptual modeling techniques, formal specification, and compositional verification is considered for real time systems within the knowledge engineering context. We define constructive transformations from a conceptual meta model to a real time specification language and give

  9. Quantitative evaluation of stone fragments in extracorporeal shock wave lithotripsy using a time reversal operator

    Science.gov (United States)

    Wang, Jen-Chieh; Zhou, Yufeng

    2017-03-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used widely in the noninvasive treatment of kidney calculi. The fine fragments less than 2 mm in size can be discharged by urination, which determines the success of ESWL. Although ultrasonic and fluorescent imaging are used to localize the calculi, it's challenging to monitor the stone comminution progress, especially at the late stage of ESWL when fragments spread out as a cloud. The lack of real-time and quantitative evaluation makes this procedure semi-blind, resulting in either under- or over-treatment after the legal number of pulses required by FDA. The time reversal operator (TRO) method has the ability to detect point-like scatterers, and the number of non-zero eigenvalues of TRO is equal to that of the scatterers. In this study, the validation of TRO method to identify stones was illustrated from both numerical and experimental results for one to two stones with various sizes and locations. Furthermore, the parameters affecting the performance of TRO method has also been investigated. Overall, TRO method is effective in identifying the fragments in a stone cluster in real-time. Further development of a detection system and evaluation of its performance both in vitro and in vivo during ESWL is necessary for application.

  10. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  11. Calculating the number of shock waves, expulsion time, and optimum stone parameters based on noncontrast computerized tomography characteristics.

    Science.gov (United States)

    Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram

    2013-11-01

    To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments 934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    Science.gov (United States)

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  13. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    Science.gov (United States)

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  14. The Shock and Vibration Bulletin. Part 4. Prediction and Experimental Techniques, Isolation and Damping

    Science.gov (United States)

    1973-06-01

    D. 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico and A. F. Witte, Kaman Sciences, Colorado Springs, Colorado fi TRANSIENT VIBRATION...TEST TECHNIQUE USING LEAST FAVORABLE RESPONSES D. O. Smallwood , Sandia Laboratories, Albuquerque, New Mexico PAPERS APPEARING IN PART 2 Structural...Dynamic Systems, Measure- ments and Control, March 1971. 12. Favour, John D., Maclom C. Mitchell, and Norman L. Olson, "Transient Test Techniques for

  15. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  16. Reduced hands-off-time and time to first shock in CPR according to the ERC Guidelines 2005.

    Science.gov (United States)

    Roessler, B; Fleischhackl, R; Losert, H; Arrich, J; Mittlboeck, M; Domanovits, H; Hoerauf, K

    2009-01-01

    Chest compressions and early defibrillation are crucial in cardiopulmonary resuscitation (CPR). The Guidelines 2005 brought major changes to the basic life support and automated external defibrillator (BLS-AED) algorithm. We compared the European Resuscitation Council's Guidelines 2000 (group '00) and 2005 (group '05) on hands-off-time (HOT) and time to first shock (TTFS) in an experimental model. In a randomised, cross-over design, volunteers were assessed in performing BLS-AED over a period of 5min on a manikin in a simulated ventricular fibrillation cardiac arrest situation. Ten minutes of standardised teaching and 10min of training including corrective feedback were allocated for each of the guidelines before evaluation. HOT was chosen as the primary and TTFS as the secondary outcome parameter. Forty participants were enrolled; one participant dropped out after group allocation. During the 5-min evaluation period of adult BLS-AED, HOT was significantly (p<0.001) longer in group '00 [273+/-3s (mean+/-standard error)] than in group '05 (188+/-3s). The TTFS was significantly (p<0.001) longer in group '00 (91+/-3s) than in group '05 (71+/-3s). In this manikin setting, HOT and TTFS improved with BLS-AED performed according to Guidelines 2005.

  17. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  18. Timing, method and discontinuation of hydrocortisone administration for septic shock patients

    OpenAIRE

    Ibarra-Estrada, Miguel A; Ch?vez-Pe?a, Quetzalc?atl; Reynoso-Estrella, Claudia I; Rios-Zerme?o, Jorge; Aguilera-Gonz?lez, P?vel E; Garc?a-Soto, Miguel A; Aguirre-Avalos, Guadalupe

    2017-01-01

    AIM To characterize the prescribing patterns for hydrocortisone for patients with septic shock and perform an exploratory analysis in order to identify the variables associated with better outcomes. METHODS This prospective cohort study included 59 patients with septic shock who received stress-dose hydrocortisone. It was performed at 2 critical care units in academic hospitals from June 1st, 2015, to July 31st, 2016. Demographic data, comorbidities, medical management details, adverse effect...

  19. Time-Varying Uncertainty in Shock and Vibration Applications Using the Impulse Response

    Directory of Open Access Journals (Sweden)

    J.B. Weathers

    2012-01-01

    Full Text Available Design of mechanical systems often necessitates the use of dynamic simulations to calculate the displacements (and their derivatives of the bodies in a system as a function of time in response to dynamic inputs. These types of simulations are especially prevalent in the shock and vibration community where simulations associated with models having complex inputs are routine. If the forcing functions as well as the parameters used in these simulations are subject to uncertainties, then these uncertainties will propagate through the models resulting in uncertainties in the outputs of interest. The uncertainty analysis procedure for these kinds of time-varying problems can be challenging, and in many instances, explicit data reduction equations (DRE's, i.e., analytical formulas, are not available because the outputs of interest are obtained from complex simulation software, e.g. FEA programs. Moreover, uncertainty propagation in systems modeled using nonlinear differential equations can prove to be difficult to analyze. However, if (1 the uncertainties propagate through the models in a linear manner, obeying the principle of superposition, then the complexity of the problem can be significantly simplified. If in addition, (2 the uncertainty in the model parameters do not change during the simulation and the manner in which the outputs of interest respond to small perturbations in the external input forces is not dependent on when the perturbations are applied, then the number of calculations required can be greatly reduced. Conditions (1 and (2 characterize a Linear Time Invariant (LTI uncertainty model. This paper seeks to explain one possible approach to obtain the uncertainty results based on these assumptions.

  20. Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa

    Science.gov (United States)

    Liu, Q. C.; Zhou, X. M.

    2018-04-01

    To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.

  1. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel

    Science.gov (United States)

    Tanno, H.; Komuro, T.; Sato, K.; Fujita, K.; Laurence, S. J.

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm2. During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  2. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  3. Evaluation of Damping Using Time Domain OMA Techniques

    DEFF Research Database (Denmark)

    Bajric, Anela; Brincker, Rune; Georgakis, Christos T.

    2014-01-01

    . In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...

  4. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    Science.gov (United States)

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  5. Temperature measurements of shocked translucent materials by time-resolved infrared radiometry

    International Nuclear Information System (INIS)

    Von Holle, W.G.

    1981-01-01

    Infrared emission in the range 2 to 5.5 μm has been used to measure temperatures in shock-compressed states of nitromethane, cyclohexane and benzene and in polycrystalline KBr. Polymethylmethacrylate shows anomolous emission probably associated with some heterogeneity

  6. Early tumour detection: a transillumination, time-resolved technique

    International Nuclear Information System (INIS)

    Behin-Ain, S.; Van Doorn, T.; Patterson, J.

    2000-01-01

    Full text: Research into transillumination techniques for the detection of tumours in soft tissue has been ongoing for over 70 years. The resolution and contrast, however, remain severely limited by scatter. Single photon detection techniques, with ideally infinite extinction coefficients, have been proposed to accumulate sub-hertz photon transmitted frequencies in the early part of a transmitted pulse. Computer based simulations have been undertaken to examine the theoretical performance requirements of the detector and the resultant image qualities that may be expected with this imaging technique. This paper reports on the computational techniques required for implementing these simulations in an efficient manner. Controlled Monte Carlo (CMC) and Convolution of Layers (CL) techniques were employed to constrain the photon to those having more chance of detection and hence enhance the detection statistics. Extrapolation techniques are proposed to reconstruct the early part of the temporal profile. Computational methods were implemented to evaluate Path Integrals, which are otherwise overly complex to evaluate. CMC and CL reduce the computational time by more than 10 orders of magnitude by only tracking those photons more likely to reach the detector. In the case of an optically thick medium with high scattering coefficient, extrapolation techniques are used to reconstruct the early part of temporal profile. Analytical solutions were found to be too involved for the simplest geometries. However the CL and implementation of computational techniques make Path integrals a useful analytical tool to compliment full Monte Carlo techniques. Results have shown that these methods collectively enable detection of small inhomogeneites within soft tissues. Reduced computation times and full reconstruction of the temporal profile of transmitted photons through optically thick medium enable fast simulations of single photon detectors to be achieved with the above described

  7. Techniques for building timing-predictable embedded systems

    CERN Document Server

    Guan, Nan

    2016-01-01

    This book describes state-of-the-art techniques for designing real-time computer systems. The author shows how to estimate precisely the effect of cache architecture on the execution time of a program, how to dispatch workload on multicore processors to optimize resources, while meeting deadline constraints, and how to use closed-form mathematical approaches to characterize highly variable workloads and their interaction in a networked environment. Readers will learn how to deal with unpredictable timing behaviors of computer systems on different levels of system granularity and abstraction. Introduces promising techniques for dealing with challenges associated with deploying real-time systems on multicore platforms; Provides a complete picture of building timing-predictable computer systems, at the program level, component level and system level; Leverages different levels of abstraction to deal with the complexity of the analysis.

  8. The statistical chopper in the time-of-flight technique

    International Nuclear Information System (INIS)

    Albuquerque Vieira, J. de.

    1975-12-01

    A detailed study of the 'statistical' chopper and of the method of analysis of the data obtained by this technique is made. The study includes the basic ideas behind correlation methods applied in time-of-flight techniques; comparisons with the conventional chopper made by an analysis of statistical errors; the development of a FORTRAN computer programme to analyse experimental results; the presentation of the related fields of work to demonstrate the potential of this method and suggestions for future study together with the criteria for a time-of-flight experiment using the method being studied [pt

  9. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    International Nuclear Information System (INIS)

    Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.

    2014-01-01

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm 3 ; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm 3 about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics

  10. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Florido, R., E-mail: ricardo.florido@ulpgc.es; Mancini, R. C.; Nagayama, T. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Tommasini, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Delettrez, J. A.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-10-15

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm{sup 3}; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm{sup 3} about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics.

  11. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  12. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  13. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  14. Real-time emergency forecasting technique for situation management systems

    Science.gov (United States)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  15. High sensitivity probe absorption technique for time-of-flight ...

    Indian Academy of Sciences (India)

    Abstract. We report on a phase-sensitive probe absorption technique with high sen- sitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms.

  16. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  17. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  18. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  19. Comparison of correlation analysis techniques for irregularly sampled time series

    Directory of Open Access Journals (Sweden)

    K. Rehfeld

    2011-06-01

    Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.

    All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.

    We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.

  20. Appropriate evaluation and treatment of heart failure patients after implantable cardioverter-defibrillator discharge: time to go beyond the initial shock.

    Science.gov (United States)

    Mishkin, Joseph D; Saxonhouse, Sherry J; Woo, Gregory W; Burkart, Thomas A; Miles, William M; Conti, Jamie B; Schofield, Richard S; Sears, Samuel F; Aranda, Juan M

    2009-11-24

    Multiple clinical trials support the use of implantable cardioverter-defibrillators (ICDs) for prevention of sudden cardiac death in patients with heart failure (HF). Unfortunately, several complicating issues have arisen from the universal use of ICDs in HF patients. An estimated 20% to 35% of HF patients who receive an ICD for primary prevention will experience an appropriate shock within 1 to 3 years of implant, and one-third of patients will experience an inappropriate shock. An ICD shock is associated with a 2- to 5-fold increase in mortality, with the most common cause being progressive HF. The median time from initial ICD shock to death ranges from 168 to 294 days depending on HF etiology and the appropriateness of the ICD therapy. Despite this prognosis, current guidelines do not provide a clear stepwise approach to managing these high-risk patients. An ICD shock increases HF event risk and should trigger a thorough evaluation to determine the etiology of the shock and guide subsequent therapeutic interventions. Several combinations of pharmacologic and device-based interventions such as adding amiodarone to baseline beta-blocker therapy, adjusting ICD sensitivity, and employing antitachycardia pacing may reduce future appropriate and inappropriate shocks. Aggressive HF surveillance and management is required after an ICD shock, as the risk of sudden cardiac death is transformed to an increased HF event risk.

  1. Time response measurements of pressure sensors using pink noise technique

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Santos, Roberto Carlos dos

    2009-01-01

    This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)

  2. Study of the ultrasonic technique of elapsed time of notch

    International Nuclear Information System (INIS)

    Gomes, L.C.F.L.; Rebello, J.M.A.

    1989-01-01

    The study of the ultrasonic technique of elapsed time in the dimensionment of notch inclined of 15 and 30 degree and of depth of 5 and 10 mm using the superficial Rayleigh wave and the mode conversion, with a headstock transmitter and other receiver. The dimensionment of notch and of the binding of the piece were made with headstock in different positions. Between the various results obtained can be mentioned the increase of the dimensionment, by two techniques, with the increase of the angle and/or of the depth. (V.R.B.)

  3. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Khaled, Fathi; Vasu, Subith S.; Farooq, Aamir

    2014-01-01

    Ketones are potential biofuel candidates and are also formed as intermediate products during the oxidation of large hydrocarbons or oxygenated fuels, such as alcohols and esters. This paper presents shock tube ignition delay times and OH reaction

  4. The Impact of Timing of Antibiotics on Outcomes in Severe Sepsis and Septic Shock: A Systematic Review and Meta-analysis

    Science.gov (United States)

    Sterling, Sarah A.; Miller, W. Ryan; Pryor, Jason; Puskarich, Michael A.; Jones, Alan E.

    2015-01-01

    Objectives We sought to systematically review and meta-analyze the available data on the association between timing of antibiotic administration and mortality in severe sepsis and septic shock. Data Sources and Study Selection A comprehensive search was performed using a pre-defined protocol. Inclusion criteria: adult patients with severe sepsis or septic shock, reported time to antibiotic administration in relation to ED triage and/or shock recognition, and mortality. Exclusion criteria: immunosuppressed populations, review article, editorial, or non-human studies. Data Extraction Two reviewers screened abstracts with a third reviewer arbitrating. The effect of time to antibiotic administration on mortality was based on current guideline recommendations: 1) administration within 3 hours of ED triage; 2) administration within 1 hour of severe sepsis/septic shock recognition. Odds Ratios (OR) were calculated using a random effect model. The primary outcome was mortality. Data Synthesis 1123 publications were identified and 11 were included in the analysis. Among the 11 included studies, 16,178 patients were evaluable for antibiotic administration from ED triage. Patients who received antibiotics more than 3 hours after ED triage (antibiotic administration from severe sepsis/septic shock recognition. Patients who received antibiotics more than 1 hour after severe sepsis/shock recognition (5 hours in antibiotic administration from severe sepsis/shock recognition. Conclusion Using the available pooled data we found no significant mortality benefit of administering antibiotics within 3 hours of ED triage or within 1 hour of shock recognition in severe sepsis and septic shock. These results suggest that currently recommended timing metrics as measures of quality of care are not supported by the available evidence. PMID:26121073

  5. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  6. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  7. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    Science.gov (United States)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  8. An Improved Scheduling Technique for Time-Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1999-01-01

    clock synchronization and mode changes. We have improved the quality of the schedules by introducing a new priority function that takes into consideration the communication protocol. Communication has been optimized through packaging messages into slots with a properly selected order and lengths......In this paper we present an improved scheduling technique for the synthesis of time-triggered embedded systems. Our system model captures both the flow of data and that of control. We have considered communication of data and conditions for a time-triggered protocol implementation that supports...

  9. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  10. Real-time forecasting of ICME shock arrivals at L1 during the "April Fool’s Day" epoch: 28 March – 21 April 2001

    Directory of Open Access Journals (Sweden)

    W. Sun

    Full Text Available The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.

    Key words. Interplanetary physics (flare and stream dynamics; interplanetary shocks – Magnetosheric physics (storms and substorms

  11. Effect of intra-abdominal volume increment technique for the treatment of intra-abdominal hypertension on the liver after resuscitation of hemorrhagic shock in pig

    Directory of Open Access Journals (Sweden)

    Zheng-gang WANG

    2012-02-01

    Full Text Available Objective  To observe the effect of vacuum sealing drainage (VSD assisted intra-abdominal volume increment (IAVI technique on the liver in the treatment of intra-abdominal hypertension (IAH following hemorrhagic shock resuscitation in pigs. Methods  Twelve healthy mini-pigs (Bama, Guangxi were selected for bloodletting from the femoral artery to reproduce hemorrhagic shock model (mean arterial blood pressure, 50mmHg, 1h, and IAH model was successfully reproduced in eight pigs by partial occlusion of portal vein. The eight pigs were randomly divided into the intra-abdominal volume increment treatment (IT group (n=4 and sham operation control (SC group (n=4. Vesical pressure (VP and inferior vena cava pressure (IVCP were observed before shock, 2h after IAH, and 22h after IAVI treatment. Aspartate aminotransferase (AST and alanine aminotransferase (ALT were measured. In addition, the ratio of the abdominal anteroposterior diameter to the transverse diameter was assessed, and the liver CT values were measured after enhanced CT scanning. The pigs were sacrificed 26h after operation. Liver specimens were collected to measure the ratio of wet weight to dry weight and pathological examination. Results  The VP in 8 IAH pigs was 21.16±4.63mmHg. The ratio of abdominal anteroposterior diameter to the transverse diameter increased remarkably 2h after IAH compared with that before shock (1.22±1.41 vs 0.96±0.08, PPvs 42.73±4.92HU, PPPvs 5.14±0.71, PConclusions  The established model could better reproduce the symptoms of IAH after hemorrhagic shock and fluid resuscitation, accompanied by liver damage. IAVI helps to relieve liver functional disturbance after IAH, which is related to decreased intra-abdominal pressure and hypoxia-ischemia of the liver.

  12. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  13. Impactful times memories of 60 years of shock wave research at Sandia National Laboratories

    CERN Document Server

    Asay, James R; Lawrence, R Jeffery; Sweeney, Mary Ann

    2017-01-01

    This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollec...

  14. The Stop-Only-While-Shocking algorithm reduces hands-off time by 17% during cardiopulmonary resuscitation

    DEFF Research Database (Denmark)

    Hansen, Lars Koch; Mohammed, Anna; Pedersen, Magnus

    2016-01-01

    INTRODUCTION: Reducing hands-off time during cardiopulmonary resuscitation (CPR) is believed to increase survival after cardiac arrests because of the sustaining of organ perfusion. The aim of our study was to investigate whether charging the defibrillator before rhythm analyses and shock delivery...... significantly reduced hands-off time compared with the European Resuscitation Council (ERC) 2010 CPR guideline algorithm in full-scale cardiac arrest scenarios. METHODS: The study was designed as a full-scale cardiac arrest simulation study including administration of drugs. Participants were randomized...... compressions. RESULTS: Sample size was calculated with an α of 0.05 and 80% power showed that we should test four scenarios with each algorithm. Twenty-nine physicians participated in 11 scenarios. Hands-off time was significantly reduced 17% using the SOWS algorithm compared with ERC2010 [22.1% (SD 2.3) hands...

  15. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  17. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  18. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  19. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow

    Directory of Open Access Journals (Sweden)

    Zijun CHEN

    2018-02-01

    Full Text Available The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve. Keywords: Force, Self-similar solution, Shock-shock interaction, Shock waves, Unsteady flow

  20. Acoustic, finite-difference, time-domain technique development

    International Nuclear Information System (INIS)

    Kunz, K.

    1994-01-01

    A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling

  1. Microgrids Real-Time Pricing Based on Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-05-01

    Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.

  2. Momentum-subtraction renormalization techniques in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-10-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.

  3. Momentum-subtraction renormalization techniques in curved space-time

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should

  4. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  5. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma

    Directory of Open Access Journals (Sweden)

    Maciej Skotak

    2018-02-01

    Full Text Available Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2 at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly

  6. Process mining techniques: an application to time management

    Science.gov (United States)

    Khowaja, Ali Raza

    2018-04-01

    In an environment people have to make sure that all of their work are completed within a given time in accordance with its quality. In order to achieve the real phenomenon of process mining one needs to understand all of these processes in a detailed manner. Personal Information and communication has always been a highlighting issue on internet but for now information and communication tools within factual life refers to their daily schedule, location analysis, environmental analysis and, more generally, social media applications support these systems which makes data available for data analysis generated through event logs, but also for process analysis which combines environmental and location analysis. Process mining can be used to exploit all these real live processes with the help of the event logs which are already available in those datasets through user censored data or may be user labeled data. These processes could be used to redesign a user's flow and understand all these processes in a bit more detailed manner. In order to increase the quality of each of the processes that we go through our daily lives is to give a closer look to each of the processes and after analyzing them, one should make changes to get better results. On the contrarily, we applied process mining techniques on seven different subjects combined in a single dataset collected from Korea. Above all, the following paper comments on the efficiency of processes in the event logs referring to time management's sphere of influence.

  7. Real-time pulse deinterleaving using digital delay line techniques

    Science.gov (United States)

    Lentz, L. F.; Palermo, T. J.

    This paper describes an implementation of a tracking pulse sorter based on predictive gating techniques. Real-time pulse sorters or pulse train gating devices have been utilized by the ELINT signal analyst for many years. The more elementary of these devices employed a retriggerable delay interval and an acceptance gate, which were used in predictive fashion to track pulse trains whose PRIs fall within the limits of the programmed delay interval. This design utilizes the pulse hit/miss history of individual track files in a variation of a sequential observer detection algorithm. Use of a digital delay line with pulse history allows multiple pulse trains to be tracked simultaneously and independently without interference. The design also provides flexibility in lock-on and track criteria to allow maintenance of acquisition probability and false alarm rate in dense signal environments and with low SNRs. The hardware provides time interval resolution to 12.5 nsec and covers a PRI range of 50 microsec to 50 msec.

  8. Integrated intensities in inverse time-of-flight technique

    International Nuclear Information System (INIS)

    Dorner, Bruno

    2006-01-01

    In traditional data analysis a model function, convoluted with the resolution, is fitted to the measured data. In case that integrated intensities of signals are of main interest, one can use an approach which does not require a model function for the signal nor detailed knowledge of the resolution. For inverse TOF technique, this approach consists of two steps: (i) Normalisation of the measured spectrum with the help of a monitor, with 1/k sensitivity, which is positioned in front of the sample. This means at the same time a conversion of the data from time of flight to energy transfer. (ii) A Jacobian [I. Waller, P.O. Froeman, Ark. Phys. 4 (1952) 183] transforms data collected at constant scattering angle into data as if measured at constant momentum transfer Q. This Jacobian works correctly for signals which have a constant width at different Q along the trajectory of constant scattering angle. The approach has been tested on spectra of Compton scattering with neutrons, having epithermal energies, obtained on the inverse TOF spectrometer VESUVIO/ISIS. In this case the width of the signal is increasing proportional to Q and in consequence the application of the Jacobian leads to integrated intensities slightly too high. The resulting integrated intensities agree very well with results derived in the traditional way. Thus this completely different approach confirms the observation that signals from recoil by H-atoms at large momentum transfers are weaker than expected

  9. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  10. An on-road shock and vibration response test series utilizing worst case and statistical analysis techniques

    International Nuclear Information System (INIS)

    Cap, J.S.

    1997-01-01

    Defining the maximum expected shock and vibration responses for an on-road truck transportation environment is strongly dependent on the amount of response data that can be obtained. One common test scheme consists of measuring response data over a relatively short prescribed road course and then reviewing that data to obtain the maximum response levels. The more mathematically rigorous alternative is to collect an unbiased ensemble of response data during a long road trip. This paper compares data gathered both ways during a recent on-road certification test for a tractor trailer van being designed by Sandia

  11. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  12. Observation of energy-time dispersed ion structures in the magnetosheath by CLUSTER: possible signatures of transient acceleration processes at shock

    Directory of Open Access Journals (Sweden)

    P. Louarn

    Full Text Available We analyse energy-time dispersed ion signatures that have been observed by CLUSTER in the dayside magnetosheath. These events are characterized by sudden increases in the ion flux at energies larger than 10 keV. The high energy ions (30 keV are first detected, with the transition to the low energy ions (5 keV lasting about 100 s. These injections are often associated with transient plasma structures of a few minutes in duration, characterized by a hotter, less dense plasma and a diverted flow velocity, thus presenting similarities with "hot flow anomalies". They also involve modifications of the magnetic field direction, suggesting that the shock interacts with a solar wind discontinuity at the time of the event. The injections can originate from the magnetosphere or the shock region. Studying in detail a particular event, we discuss this last hypothesis. We show that the observed energy/time dispersion can be explained by combining a time-of-flight effect with a drift of the source of energetic particles along the shock. We propose that the acceleration results from a Fermi process linked to the interaction of the discontinuity with a quasi-perpendicular shock. This model explains the observed pitch-angle selection of the accelerated particles. The Fermi process acting on the beam of ions reflected from the shock appears to be sufficiently efficient to accelerate over short time scales (less than 30 s particles at energies above 30 keV.

    Key words. Magnetospheric physics (solar-wind-magnetosphere interaction; magnetosheath – Space plasma physics (shock waves

  13. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  14. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  15. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    Science.gov (United States)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  16. Treatment of Moderate Sized Renal Pelvis Calculi: Stone Clearance Time Comparison of Extracorporeal Shock Wave Lithotripsy and Retrograde Intrarenal Surgery.

    Science.gov (United States)

    Ercil, Hakan; Alma, Ergun; Bas, Okan; Sener, Nevzat Can; Vuruskan, Ediz; Kuyucu, Faruk; Unal, Umut; Gören, Mehmet Resit; Evliyaoglu, Yalcin

    2016-03-05

    To compare the stone clearance times in patients undergoing extracorporeal shock wave lithotripsy (SWL) or retrograde intrarenal surgery (RIRS) for single radiopaque renal pelvis stones 10-20 mm in size. The results of this study may guide urologists and patients and aid in selecting the optimal preoperative treatment. Between January 2013 and February 2015, we conducted a retrospective study and collected data from 333 patients treated with SWL (n = 172) or RIRS (n = 161). We included successfully treated patients with a single radiopaque renal pelvis stone 10-20 mm in size to calculate stone clearance times. The average stone size for the SWL group was 14.62 ± 2.58 mm and 14.91 ± 2.92 mm for the RIRS group. The mean Hounsfield unit (HU) of the patients was 585.40 ± 158.39 HU in the SWL group and 567.74 ± 186.85 HU in the RIRS group. Following full fragmentation, the mean stone clearance time was 26.55 ± 9.71 days in the SWL group and 11.59 ± 7.01 days in the RIRS group (P < .001). One of the most overlooked parameters in urinary stone treatments is stone clearance. We believe this study will shed light for those who aim to conduct larger randomized prospective studies. .

  17. Techniques used for IUI: is it time for a change?

    Science.gov (United States)

    Lemmens, L; Kos, S; Beijer, C; Braat, D D M; Nelen, W L D M; Wetzels, A M M

    2017-09-01

    Are the guidelines for the technical aspects of IUI (WHO, 2010) still in accordance with the current literature? In general, the laboratory guidelines of the World Health Organization (WHO) are a suitable protocol, although the evidence is not always conclusive and some changes are advisable. Lack of standardization of the technical procedures required for IUI might result in inter-laboratory variation in pregnancy rates. Most centers still use their own materials and methods even though some guidelines are available. A structural review focusing on the association between pregnancy rates and the procedures of semen collection (e.g. ejaculatory abstinence, collection place), semen processing (e.g. preparation method, temperature during centrifugation/storage), insemination (e.g. timing of IUI, bed rest after IUI) and the equipment used. A literature search was performed in Medline and the Cochrane library. When no adequate studies of the impact of a parameter on pregnancy results were found, its association with sperm parameters was reviewed. For most variables, the literature review revealed a low level of evidence, a limited number of studies and/or an inadequate outcome measure. Moreover, the comparison of procedures (i.e. semen preparation technique, time interval between semen, collection, processing and IUI) revealed no consensus about their results. It was not possible to develop an evidence-based, optimal IUI treatment protocol. The included studies exhibited a lack of standardization in inclusion criteria and methods used. This review emphasizes the need for more knowledge about and standardization of assisted reproduction technologies. Our literature search indicates that some of the recommendations in the laboratory guidelines could be adapted to improve standardization, comfort, quality control and to cut costs. The Dutch Foundation for Quality Assessment in Medical Laboratories (SKML), Nijmegen, The Netherlands. S.K. and W.N. have no conflicts of

  18. Bank loan components and the time-varying effects of monetary policy shocks

    NARCIS (Netherlands)

    den Haan, W.J.; Sumner, S.W.; Yamashiro, G.M.

    2011-01-01

    The impulse response function (IRF) of an aggregate variable is time-varying if the IRFs of its components are different from each other and the relative magnitudes of the components are not constant—two conditions likely to be true in practice. We model the behaviour of loan components and document

  19. Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effect

    International Nuclear Information System (INIS)

    Yun, Tae Jin; Sohn, Chul-Ho; Yoo, Roh-Eul; Kang, Kyung Mi; Choi, Seung Hong; Kim, Ji-hoon; Park, Sun-Won; Hwang, Moonjung; Lebel, R.M.

    2018-01-01

    This study aimed to evaluate the usefulness of transit time corrected cerebral blood flow (CBF) maps based on multi-phase arterial spin labeling MR perfusion imaging (ASL-MRP). The Institutional Review Board of our hospital approved this retrospective study. Written informed consent was waived. Conventional and multi-phase ASL-MRPs and dynamic susceptibility contrast MR perfusion imaging (DSC-MRP) were acquired for 108 consecutive patients. Vascular territory-based volumes of interest were applied to CBF and time to peak (TTP) maps obtained from DSC-MRP and CBF maps obtained from conventional and multi-phase ASL-MRPs. The concordances between normalized CBF (nCBF) from DSC-MRP and nCBF from conventional and transition time corrected CBF maps from multi-phase ASL-MRP were evaluated using Bland-Altman analysis. In addition, the dependence of difference between nCBF (ΔnCBF) values obtained from DSC-MRP and conventional ASL-MRP (or multi-phase ASL-MRP) on TTP obtained from DSC-MRP was also analyzed using regression analysis. The values of nCBFs from conventional and multi-phase ASL-MRPs had lower values than nCBF based on DSC-MRP (mean differences, 0.08 and 0.07, respectively). The values of ΔnCBF were dependent on TTP values from conventional ASL-MRP technique (F = 5.5679, P = 0.0384). No dependency of ΔnCBF on TTP values from multi-phase ASL-MRP technique was revealed (F = 0.1433, P > 0.05). The use of transit time corrected CBF maps based on multi-phase ASL-MRP technique can overcome the effect of delayed transit time on perfusion maps based on conventional ASL-MRP. (orig.)

  20. Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effect

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Jin; Sohn, Chul-Ho; Yoo, Roh-Eul; Kang, Kyung Mi; Choi, Seung Hong; Kim, Ji-hoon [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Park, Sun-Won [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Hwang, Moonjung [GE Healthcare Korea, Seoul (Korea, Republic of); Lebel, R.M. [GE Healthcare Canada, Calgary (Canada)

    2018-03-15

    This study aimed to evaluate the usefulness of transit time corrected cerebral blood flow (CBF) maps based on multi-phase arterial spin labeling MR perfusion imaging (ASL-MRP). The Institutional Review Board of our hospital approved this retrospective study. Written informed consent was waived. Conventional and multi-phase ASL-MRPs and dynamic susceptibility contrast MR perfusion imaging (DSC-MRP) were acquired for 108 consecutive patients. Vascular territory-based volumes of interest were applied to CBF and time to peak (TTP) maps obtained from DSC-MRP and CBF maps obtained from conventional and multi-phase ASL-MRPs. The concordances between normalized CBF (nCBF) from DSC-MRP and nCBF from conventional and transition time corrected CBF maps from multi-phase ASL-MRP were evaluated using Bland-Altman analysis. In addition, the dependence of difference between nCBF (ΔnCBF) values obtained from DSC-MRP and conventional ASL-MRP (or multi-phase ASL-MRP) on TTP obtained from DSC-MRP was also analyzed using regression analysis. The values of nCBFs from conventional and multi-phase ASL-MRPs had lower values than nCBF based on DSC-MRP (mean differences, 0.08 and 0.07, respectively). The values of ΔnCBF were dependent on TTP values from conventional ASL-MRP technique (F = 5.5679, P = 0.0384). No dependency of ΔnCBF on TTP values from multi-phase ASL-MRP technique was revealed (F = 0.1433, P > 0.05). The use of transit time corrected CBF maps based on multi-phase ASL-MRP technique can overcome the effect of delayed transit time on perfusion maps based on conventional ASL-MRP. (orig.)

  1. Time series analysis of wind speed using VAR and the generalized impulse response technique

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Bradley T. [Area of Information Systems and Quantitative Sciences, Rawls College of Business and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX 79409-2101 (United States); Kruse, Jamie Brown [Center for Natural Hazard Research, East Carolina University, Greenville, NC (United States); Schroeder, John L. [Department of Geosciences and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Smith, Douglas A. [Department of Civil Engineering and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States)

    2007-03-15

    This research examines the interdependence in time series wind speed data measured in the same location at four different heights. A multiple-equation system known as a vector autoregression is proposed for characterizing the time series dynamics of wind. Additionally, the recently developed method of generalized impulse response analysis provides insight into the cross-effects of the wind series and their responses to shocks. Findings are based on analysis of contemporaneous wind speed time histories taken at 13, 33, 70 and 160 ft above ground level with a sampling rate of 10 Hz. The results indicate that wind speeds measured at 70 ft was the most variable. Further, the turbulence persisted longer at the 70-ft measurement than at the other heights. The greatest interdependence is observed at 13 ft. Gusts at 160 ft led to the greatest persistence to an 'own' shock and led to greatest persistence in the responses of the other wind series. (author)

  2. Is quantitative diffusion-weighted MRI a valuable technique for the detection of changes in kidneys after extracorporeal shock wave lithotripsy?

    Science.gov (United States)

    Hocaoglu, Elif; Inci, Ercan; Aydin, Sibel; Cesme, Dilek Hacer; Kalfazade, Nadir

    2015-01-01

    Objective The aim of this study was to evaluate the capability and the reliability of diffusion-weighted imaging (DWI) in the changes of kidneys occurring after extracorporeal shock wave lithotripsy (ESWL) treatment for renal stones. Materials and Methods A total of 32 patients who underwent ESWL treatment for renal stone disease between June and December 2011 were enrolled in this prospective study. Color Doppler ultrasonography (CDUS) and DWI were performed before and within 24 hours after ESWL. DWI was obtained with b factors of 0, 500 and 1000 s/mm2 at 1.5 T MRI. Each of Resistive index (RI) and ADC values were calculated from the three regions of renal upper, middle and lower zones for both of the affected and contralateral kidneys. Paired sample t test was used for statistical analyses. Results After ESWL, the treated kidneys had statistically significant lower ADC values in all different regions compared with previous renal images. The best discriminative parameter was signal intensity with a b value of 1000 s/mm2. The changes of DWI after ESWL were noteworthy in the middle of the treated kidney (pESWL (p>0.05). Conclusion DWI is a valuable technique enables the detection of changes in DWI after ESWL treatment that may provide useful information in prediction of renal damage by shock waves, even CDUS is normal. PMID:25928520

  3. Magnetohydrodynamic shocks in molecular clouds

    International Nuclear Information System (INIS)

    Chernoff, D.F.

    1985-01-01

    Part one develops the mathematical and physical theory of one-dimensional, time-independent subalfvenic flow in partially ionized gas with magnetic fields, for application to shocks in molecular clouds. Unlike normal gas-dynamic shocks, the neutral flow may be continuous and cool if the gas radiates efficiently and does not self-ionize. Analytic solutions are given in the limit that the neutral gas is either adiabatic or isothermal (cold). Numerical techniques are developed and applied to find the neutral flow under general circumstances. Part two extends the theory and results of part one in three ways: (1) to faster, superalfvenic flow, (2) to complex gases containing heavy charged particles (grains) in addition to ions, containing heavy charged particles (grains) in addition to ions, electrons and neutrals, and (3) to the entire range in (Omega tau), the ratio of charged particle damping time to gyroperiod, expected in gas flows in molecular clouds

  4. Review of available synchronization and time distribution techniques

    Science.gov (United States)

    Hall, R. G.; Lieberman, T. N.; Stone, R. R.

    1974-01-01

    The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed.

  5. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  6. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Of Techniques

    International Nuclear Information System (INIS)

    Wei-Hua, Chen; Xiao-Dong, Hu; Xiang-Ning, Kang; Xu-Rong, Zhou; Xiao-Min, Zhang; Tong-Jun, Yu; Zhi-Jian, Yang; Ke, Xu; Guo-Yi, Zhang; Xu-Dong, Shan; Li-Ping, You

    2009-01-01

    Ultra-violet (KrF excimer laser, λ = 248 nm) laser lift-of (LLO) techniques have been operated to the GaN/sapphire structure to separate GaN from the sapphire substrate. Hexagonal to cubic phase transformation induced by the ultra-violet laser lift-of (UV-LLO) has been characterized by micro-Raman spectroscopy, micro-photoluminescence, along with high-resolution transmission electron microscopy (HRTEM). HRTEM indicates that UV-LLO induced phase transition takes place above the LLO interface, without phase transition under the LLO interface. The formed cubic GaN often exists as nanocrystal grains attaching on the bulk hexagonal GaN. The half-loop-cluster-like UV-LLO interface indicates that the LLO-induced shock waves has generated and played an assistant role in the decomposition of the hexagonal GaN and in the formation of cubic GaN grains at the LLO surface

  7. Time-dependence and averaging techniques in atomic photoionization calculations

    International Nuclear Information System (INIS)

    Scheibner, K.F.

    1984-01-01

    Two distinct problems in the development and application of averaging techniques to photoionization calculations are considered. The first part of the thesis is concerned with the specific problem of near-resonant three-photon ionization in hydrogen, a process for which no cross section exists. Effects of the inclusion of the laser pulse characteristics (both temporal and spatial) on the dynamics of the ionization probability and of the metastable state probability are examined. It is found, for example, that the ionization probability can decrease with increasing field intensity. The temporal profile of the laser pulse is found to affect the dynamics very little, whereas the spatial character of the pulse can affect the results drastically. In the second part of the thesis techniques are developed for calculating averaged cross sections directly without first calculating a detailed cross section. Techniques are developed whereby the detailed cross section never has to be calculated as an intermediate step, but rather, the averaged cross section is calculated directly. A variation of the moment technique and a new method based on the stabilization technique are applied successfully to atomic hydrogen and helium

  8. Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.

    Science.gov (United States)

    Christensen, Kasper B; Günther, Michael; Schmitt, Syn; Siebert, Tobias

    2017-10-16

    In terrestrial locomotion, muscles undergo damped oscillations in response to limb impacts with the ground. Muscles are also actuators that generate mechanical power to allow locomotion. The corresponding elementary contractile process is the work stroke of an actin-myosin cross-bridge, which may be forcibly detached by superposed oscillations. By experimentally emulating rat leg impacts, we found that full activity and non-fatigue must meet to possibly prevent forcible cross-bridge detachment. Because submaximal muscle force represents the ordinary locomotor condition, our results show that forcible, eccentric cross-bridge detachment is a common, physiological process even during isometric muscle contractions. We also calculated the stiffnesses of the whole muscle-tendon complex and the fibre material separately, as well as Young's modulus of the latter: 1.8 MPa and 0.75 MPa for fresh, fully active and passive fibres, respectively. Our inferred Young's modulus of the tendon-aponeurosis complex suggests that stiffness in series to the fibre material is determined by the elastic properties of the aponeurosis region, rather than the tendon material. Knowing these stiffnesses and the muscle mass, the complex' eigenfrequency for responses to impacts can be quantified, as well as the size-dependency of this time scale of muscular wobbling mass dynamics.

  9. Expansion shock waves in the implosion process from a time-reversible molecular-dynamics simulation of a dual explosion process

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Abe, Takashi

    2007-01-01

    Why does not an expansion shock wave exist in a gaseous medium in nature? The reason has been widely believed to be the irreversibility in nature, while an obvious demonstration for this belief has not been accomplished yet. In order to resolve the question from a microscopic viewpoint, an implosion process dual to an explosion process was investigated by means of the molecular-dynamics method (MD). To this aim, we employed a ''bit-reversible algorithm (Bit MD)'' that was completely time-reversible in a microscopic viewpoint and was free from any round-off error. Here we show that, through a dual implosion simulation (i.e., a time-reversible simulation of the explosion), a kind of expansion shock wave is successfully formed in the Bit MD simulation. Furthermore, we show that when the controlled noise is intentionally added to the Bit MD, the expansion shock wave disappears dramatically and turns into an isentropic expansion wave, even if the noise is extremely small. Since the controlled noise gives rise to the irreversibility in the Bit MD simulation, it can be concluded that the irreversibility in the system prohibits the expansion shock wave from appearing in the system

  10. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  11. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  12. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  13. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one

    KAUST Repository

    Badra, Jihad

    2014-03-01

    Ketones are potential biofuel candidates and are also formed as intermediate products during the oxidation of large hydrocarbons or oxygenated fuels, such as alcohols and esters. This paper presents shock tube ignition delay times and OH reaction rates of 2-butanone (C2H5COCH3) and 3-buten-2-one (C2H3COCH3). Ignition delay measurements were carried out over temperatures of 1100-1400K, pressures of 3-6.5atm, and at equivalence ratios (F{cyrillic}) of 0.5 and 1. Ignition delay times were monitored using two different techniques: pressure time history and OH absorption near 306nm. The reaction rates of hydroxyl radicals (OH) with these two ketones were measured over the temperature range of 950-1400K near 1.5atm. The OH profiles were monitored by the narrow-line-width ring-dye laser absorption of the well-characterized R1(5) line in the OH A-X (0, 0) band near 306.69nm. We found that the ignition delay times of 2-butanone and 3-buten-2-one mixtures scale with pressure as P-0.42 and P-0.52, respectively. The ignition delay times of 3-buten-2-one were longer than that of 2-butanone for stoichiometric mixtures, however, for lean mixtures (F{cyrillic}=0.5), 2-butanone had longer ignition delay times. The chemical kinetic mechanism of Serinyel et al. [1] over-predicted the ignition delay times of 2-butanone at all tested conditions, however, the discrepancies were smaller at higher pressures. The mechanism was updated with recent rate measurements to decrease discrepancy with the experimental data. A detailed chemistry for the oxidation of 3-buten-2-one was developed using rate estimation method and reasonable agreements were obtained with the measured ignition delay data. The measured reaction rate of 2-butanone with OH agreed well with the literature data, while we present the first high-temperature measurements for the reaction of OH with 3-buten-2-one. The following Arrhenius expressions are suggested over the temperature range of 950-1450K: kC2H5COCH3+OH=6.78×1013exp

  14. Simple flight time calibration generator in PLL technique

    International Nuclear Information System (INIS)

    Lauch, J.

    1975-01-01

    Calibration and routine check-ups of flight time measuring systems can be carried out with the aid of defined flight time calibration spectra. This paper describes a simple flight time calibration generator capable of generating such calibration spectra in the form of line spectra or of a white spectrum. The flight time of the generator is adjustable in steps from 100 to 3,200 ns. The number of calibration lines can be set to 10 or to 20, resulting in line spacings ranging from 5 to 320 ns. The stop signals are generated by a crystal oscillator, the start signals are generated by a voltage-controlled oscillator locked in a phase control circuit. The start and stop rates can be adjusted in steps. (orig.) [de

  15. "DK Crush" Technique for a Tightly Stenosed Conjoined SVG Lesion in a Patient with Acute Coronary Syndrome and Cardiogenic Shock.

    Science.gov (United States)

    Chen, Kuan-Ju; Lee, Wen-Lieng; Liu, Tsun-Jui; Chang, Wei-Chun; Wang, Kuo-Yang; Su, Chieh-Shou

    2015-05-01

    Coronary artery bifurcation disease of saphenous venous graft (SVG) is extremely rare. SVG disease remains a challenging lesion to treat because of increased morbidity and mortality with repeated coronary artery bypass graft surgery (CABG), high rates of periprocedural complications, and in-stent restenosis or occlusion requiring repeat revascularization with percutaneous coronary intervention. Herein, we present the first reported case of using the "DK crush" technique to treat an inverted Y-shaped SVG bifurcation disease in a patient with a prior CABG and new-onset acute coronary syndrome. Arising from our treatment, favorable immediate and mid-term angiographic and clinical outcomes were obtained. Coronary artery bypass surgery (CABG); "DK crush" technique; Saphenous venous graft (SVG).

  16. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  17. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  18. Some techniques to improve time structure of slow extracted beam

    International Nuclear Information System (INIS)

    Shoji, Y.; Sato, H.; Toyama, T.; Marutsuka, K.; Sueno, T.; Mikawa, K.; Ninomiya, S.; Yoshii, M.

    1992-01-01

    In order to improve the time structure of slow extracted beam spill for the KEK 12GeV PS, the spill control system has been upgraded by adding feed forward signal to feedback signal. Further, the wake field in the RF cavity has been cancelled by the beam bunch signal to reduce the re-bunch effect during extraction period. (author)

  19. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  20. Predicting optimal back-shock times in ultrafiltration hollow fiber modules II: Effect of inlet flow and concentration dependent viscosity

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2015-01-01

    This paper concerns mathematical modeling and computational fluid dynamics of back-shocking during hollow fibre ultrafiltration of dextran T500. In this paper we present a mathematical model based on first Principles, i.e., solving the Navier-Stokes equation along with the continuity equation...

  1. Real time simulation techniques in Taiwan - Maanshan compact simulator

    International Nuclear Information System (INIS)

    Liang, K.-S.; Chuang, Y.-M.; Ko, H.-T.

    2004-01-01

    Recognizing the demand and potential market of simulators in various industries, a special project for real time simulation technology transfer was initiated in Taiwan in 1991. In this technology transfer program, the most advanced real-time dynamic modules for nuclear power simulation were introduced. Those modules can be divided into two categories; one is modeling related to catch dynamic response of each system, and the other is computer related to provide special real time computing environment and man-machine interface. The modeling related modules consist of the thermodynamic module, the three-dimensional core neutronics module and the advanced balance of plant module. As planned in the project, the technology transfer team should build a compact simulator for the Maanshan power plant before the end of the project to demonstrate the success of the technology transfer program. The compact simulator was designed to support the training from the regular full scope simulator which was already equipped in the Maanshan plant. The feature of this compact simulator focused on providing know-why training by the enhanced graphic display. The potential users were identified as senior operators, instructors and nuclear engineers. Total about 13 important systems were covered in the scope of the compact simulator, and multi-graphic displays from three color monitors mounted on the 10 feet compact panel were facilitated to help the user visualize detailed phenomena under scenarios of interest. (author)

  2. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  3. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  4. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  5. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  6. Time-series-analysis techniques applied to nuclear-material accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Downing, D.J.

    1982-05-01

    This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother

  7. Innovative techniques to analyze time series of geomagnetic activity indices

    Science.gov (United States)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  8. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  9. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  10. Effect of Initiation Time of Hydrostatic Pressure Shock on Chromosome Set Doubling of Tetraploidization in Turbot Scophthalmus maximus.

    Science.gov (United States)

    Zhu, Xiangping; Lin, Zhengmei; Wu, Zhihao; Li, Jiandong; You, Feng

    2017-10-01

    The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at

  11. Stuck in Time: Negative Income Shock Constricts the Temporal Window of Valuation Spanning the Future and the Past.

    Directory of Open Access Journals (Sweden)

    Warren K Bickel

    Full Text Available Insufficient resources are associated with negative consequences including decreased valuation of future reinforcers. To determine if these effects result from scarcity, we examined the consequences of acute, abrupt changes in resource availability on delay discounting-the subjective devaluation of rewards as delay to receipt increases. In the current study, 599 individuals recruited from Amazon Mechanical Turk read a narrative of a sudden change (positive, neutral, or negative to one's hypothetical future income and completed a delay discounting task examining future and past monetary gains and losses. The effects of the explicit zero procedure, a framing manipulation, was also examined. Negative income shock significantly increased discounting rates for gains and loses occurring both in the future and the past. Positive income windfalls significantly decreased discounting to a lesser extent. The framing procedure significantly reduced discounting under all conditions. Negative income shocks may result in short-term choices.

  12. Study of water flowrate using time transient and cross-correlation techniques with 82Br radiotracer

    International Nuclear Information System (INIS)

    Salgado, William L.; Brandao, Luiz E.B.

    2013-01-01

    This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI (T1) detectors adequately positioned on the outside of pipe and a gamma-ray source ( 82 Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowrate previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones. (author)

  13. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    Science.gov (United States)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  14. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  15. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  16. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  17. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  18. [Inheritance and evolution of acupuncture manipulation techniques of Zhejiang acupuncture masters in modern times].

    Science.gov (United States)

    Yu, Daxiong; Ma, Ruijie; Fang, Jianqiao

    2015-05-01

    There are many eminent acupuncture masters in modern times in the regions of Zhejiang province, which has developed the acupuncture schools of numerous characteristics and induces the important impacts at home and abroad. Through the literature collection on the acupuncture schools in Zhejiang and the interviews to the parties involved, it has been discovered that the acupuncture manipulation techniques of acupuncture masters in modern times are specifically featured. Those techniques are developed on the basis of Neijing (Internal Classic), Jinzhenfu (Ode to Gold Needle) and Zhenjiu Dacheng (Great Compendium of Acupuncture and Moxibustion). No matter to obey the old maxim or study by himself, every master lays the emphasis on the research and interpretation of classical theories and integrates the traditional with the modern. In the paper, the acupuncture manipulation techniques of Zhejiang acupuncture masters in modern times are stated from four aspects, named needling techniques in Internal Classic, feijingzouqi needling technique, penetrating needling technique and innovation of acupuncture manipulation.

  19. A surface-micromachining-based inertial micro-switch with compliant cantilever beam as movable electrode for enduring high shock and prolonging contact time

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiu [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Yang, Zhuoqing, E-mail: yzhuoqing@sjtu.edu.cn [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fu, Bo; Li, Jianhua; Wu, Hao [Huaihai Industrial Group Co., Ltd., Changzhi, Shanxi Province, 046012 (China); Zhang, Qihuan; Sun, Yunna; Ding, Guifu; Zhao, Xiaolin [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The designed cantilever beam attached to the proof mass can endure a larger shock acceleration (∼1000 g order of magnitude) compared to those traditional designs (∼100 g order of magnitude). • Effect of the pulse width on the threshold acceleration, the response time and the contact time is investigated. • A constraint sleeve structure is introduced to lower the off-axis sensitivity. - Abstract: A novel laterally-driven inertial micro-switch with two L-shaped elastic cantilever beams as the movable electrode, which is attached to the proof mass, is proposed in this paper. The advantage of this design is that the contact time of the inertial micro-switch can be prolonged. Meanwhile, the micro-switch can withstand a higher shock than the traditional designs whose cantilever beams are attached to the fixed electrode. The designed inertial micro-switch was simulated and optimized with ANSYS software and fabricated on a quartz substrate by surface micromachining technology. The simulated result demonstrates that the threshold acceleration (a{sub ths}) under stable switch-on state is about 288 g and the contact time is about 198 μs when the pulse width of acceleration loads is 1 ms. At the same time, it indicates that the threshold acceleration, the response time and the contact time of designed micro-switch all increase with the pulse width of acceleration loads. The simulation of impact process in non-sensitive direction shows that the introduced constraint sleeve structure in the novel inertial micro-switch can lower the off-axis sensitivity. The fabricated micro-switch prototype has been tested by a standard dropping hammer system under shock accelerations with various amplitudes and pulse widths. The experimental measurements show that the contact time is about 150 μs when the threshold acceleration is about 288 g. It also indicates that the response time and the contact time both increase with the pulse width, which is consistent with the

  20. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  1. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  2. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  3. On the Nonlinear Dynamics of a Tunable Shock Micro-switch

    Science.gov (United States)

    Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa

    2016-12-01

    A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.

  4. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  5. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  6. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    Science.gov (United States)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  7. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.

    Science.gov (United States)

    Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier

    2018-05-22

    In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.

  8. Biomagnetic techniques for evaluating gastric emptying, peristaltic contraction and transit time.

    Science.gov (United States)

    la Roca-Chiapas, Jose María De; Cordova-Fraga, Teodoro

    2011-10-15

    Biomagnetic techniques were used to measure motility in various parts of the gastrointestinal (GI) tract, particularly a new technique for detecting magnetic markers and tracers. A coil was used to enhance the signal from a magnetic tracer in the GI tract and the signal was detected using a fluxgate magnetometer or a magnetoresistor in an unshielded room. Estimates of esophageal transit time were affected by the position of the subject. The reproducibility of estimates derived using the new biomagnetic technique was greater than 85% and it yielded estimates similar to those obtained using scintigraphy. This technique is suitable for studying the effect of emotional state on GI physiology and for measuring GI transit time. The biomagnetic technique can be used to evaluate digesta transit time in the esophagus, stomach and colon, peristaltic frequency and gastric emptying and is easy to use in the hospital setting.

  9. Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems

    International Nuclear Information System (INIS)

    Jin, Maolin; Chang, Pyung Hun

    2009-01-01

    This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lue system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings. Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.

  10. REAL TIME MICRODISPLACEMENTS TESTING BY OPTO-DIGITAL HOLOGRAPHIC INTERFEROMETRY TECHNIQUE

    Directory of Open Access Journals (Sweden)

    L BOUAMAMA

    2007-12-01

    Since all the process is controlled numerically, it is possible to follow in real time using the holographic interferometry techniques, double exposure, real time or time average, any changes in the object under study and to start and stop the process at any time by adequate software. This can be done by subtracting a reference image by suitable software directly on the CCD camera. We show also, the ability of the technique to study in real time all evolutional phenomena.

  11. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  12. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-10-01

    Full Text Available Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination. Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC and intact (ICC cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change, significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min. Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes both in laboratory-scale research and full-scale system investigations in practice.

  13. Analysis of the computational methods on the equipment shock response based on ANSYS environments

    International Nuclear Information System (INIS)

    Wang Yu; Li Zhaojun

    2005-01-01

    With the developments and completions of equipment shock vibration theory, math calculation method simulation technique and other aspects, equipment shock calculation methods are gradually developing form static development to dynamic and from linearity to non-linearity. Now, the equipment shock calculation methods applied worldwide in engineering practices mostly include equivalent static force method, Dynamic Design Analysis Method (abbreviated to DDAM) and real-time simulation method. The DDAM is a method based on the modal analysis theory, which inputs the shock design spectrum as shock load and gets hold of the shock response of the integrated system by applying separate cross-modal integrating method within the frequency domain. The real-time simulation method is to carry through the computational analysis of the equipment shock response within the time domain, use the time-history curves obtained from real-time measurement or spectrum transformation as the equipment shock load and find an iterative solution of a differential equation of the system movement by using the computational procedure within the time domain. Conclusions: Using the separate DDAM and Real-time Simulation Method, this paper carried through the shock analysis of a three-dimensional frame floating raft in ANSYS environments, analyzed the result, and drew the following conclusion: Because DDAM does not calculate damping, non-linear effect and phase difference between mode responses, the result is much bigger than that of real-time simulation method. The coupling response is much complex when the mode result of 3-dimension structure is being calculated, and the coupling response of non-shock direction is also much bigger than that of real-time simulation method when DDAM is applied. Both DDAM and real-time simulation method has its good points and scope of application. The designers should select the design method that is economic and in point according to the features and anti-shock

  14. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  15. A Comparison of the Effects of Intraosseous and Intravenous 5% Albumin on Infusion Time and Hemodynamic Measures in a Swine Model of Hemorrhagic Shock.

    Science.gov (United States)

    Muir, Stacy L; Sheppard, Lance B; Maika-Wilson, Anne; Burgert, James M; Garcia-Blanco, Jose; Johnson, Arthur D; Coyner, Jennifer L

    2016-08-01

    Introduction Obtaining intravenous (IV) access in patients in hemorrhagic shock is often difficult and prolonged. Failed IV attempts delay life-saving treatment. Intraosseous (IO) access may often be obtained faster than IV access. Albumin (5%) is an option for prehospital volume expansion because of the absence of interference with coagulation and platelet function. Hypothesis/Problem There are limited data comparing the performance of IO and IV administered 5% albumin. The aims of this study were to compare the effects of tibial IO (TIO) and IV administration of 500 mL of 5% albumin on infusion time and hemodynamic measurements of heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) in a swine model of hemorrhagic shock. Sixteen male swine were divided into two groups: TIO and IV. All subjects were anesthetized and a Class III hemorrhage was achieved by exsanguination of 31% of estimated blood volume (EBV) from a femoral artery catheter. Following exsanguination, 500 mL of 5% albumin was administered under pressurized infusion (300 mmHg) by the TIO or IV route and infusion time was recorded. Hemodynamic measurements of HR, MAP, CO, and SV were collected before and after exsanguination and every 20 seconds for 180 seconds during 5% albumin infusion. An independent t-test determined that IV 5% albumin infusion was significantly faster compared to IO (P=.01). Mean infusion time for TIO was seven minutes 35 seconds (SD=two minutes 44 seconds) compared to four minutes 32 seconds (SD=one minute 08 seconds) in the IV group. Multivariate Analysis of Variance was performed on hemodynamic data collected during the 5% albumin infusion. Analyses indicated there were no significant differences between the TIO and IV groups relative to MAP, CO, HR, or SV (P>.05). While significantly longer to infuse 5% albumin by the TIO route, the longer TIO infusion time may be negated as IO devices can be placed more quickly compared to repeated IV

  16. Shock and vibration technology with applications to electrical systems

    Science.gov (United States)

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  17. Spall wave-profile and shock-recovery experiments on depleted uranium

    International Nuclear Information System (INIS)

    Hixson, R.S.; Vorthman, J.E.; Gustavsen, R.L.; Zurek, A.K.; Thissell, W.R.; Tonks, D.L.

    1998-01-01

    Depleted Uranium of two different purity levels has been studied to determine spall strength under shock wave loading. A high purity material with approximately 30 ppm of carbon impurities was shock compressed to two different stress levels, 37 and 53 kbar. The second material studied was uranium with about 300 ppm of carbon impurities. This material was shock loaded to three different final stress level, 37, 53, and 81 kbar. Two experimental techniques were used in this work. First, time-resolved free surface particle velocity measurements were done using a VISAR velocity interferometer. The second experimental technique used was soft recovery of samples after shock loading. These two experimental techniques will be briefly described here and VISAR results will be shown. Results of the spall recovery experiments and subsequent metallurgical analyses are described in another paper in these proceedings. copyright 1998 American Institute of Physics

  18. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  19. A Novel Analytic Technique for the Service Station Reliability in a Discrete-Time Repairable Queue

    Directory of Open Access Journals (Sweden)

    Renbin Liu

    2013-01-01

    Full Text Available This paper presents a decomposition technique for the service station reliability in a discrete-time repairable GeomX/G/1 queueing system, in which the server takes exhaustive service and multiple adaptive delayed vacation discipline. Using such a novel analytic technique, some important reliability indices and reliability relation equations of the service station are derived. Furthermore, the structures of the service station indices are also found. Finally, special cases and numerical examples validate the derived results and show that our analytic technique is applicable to reliability analysis of some complex discrete-time repairable bulk arrival queueing systems.

  20. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions.

    Science.gov (United States)

    García-Reina, Andrés; Rodríguez-García, María Juliana; Ramis, Guillermo; Galián, José

    2017-06-01

    The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  1. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    Science.gov (United States)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  2. Posterior Segment Intraocular Foreign Body: Extraction Surgical Techniques, Timing, and Indications for Vitrectomy

    Directory of Open Access Journals (Sweden)

    Dante A. Guevara-Villarreal

    2016-01-01

    Full Text Available Ocular penetrating injury with Intraocular Foreign Body (IOFB is a common form of ocular injury. Several techniques to remove IOFB have been reported by different authors. The aim of this publication is to review different timing and surgical techniques related to the extraction of IOFB. Material and Methods. A PubMed search on “Extraction of Intraocular Foreign Body,” “Timing for Surgery Intraocular Foreign Body,” and “Surgical Technique Intraocular Foreign Body” was made. Results. Potential advantages of immediate and delayed IOFB removal have been reported with different results. Several techniques to remove IOFB have been reported by different authors with good results. Conclusion. The most important factor at the time to perform IOFB extraction is the experience of the surgeon.

  3. Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water

    Science.gov (United States)

    Noack, Joachim; Vogel, Alfred

    1995-05-01

    The shock wave emission after dielectric breakdown in water was investigated to assess potential shock wave effects in plasma mediated tissue ablation and intraocular photodisruption. Of particular interest was the dependence of shock wave pressure as a function of distance from the plasma for different laser pulse energies. We have generated plasmas in water with a Nd:YAG laser system delivering pulses of 6 ns duration. The pulses, with energies between 0.4 and 36 mJ (approximately equals 180 times threshold), were focused into a cuvette containing distilled water. The shock wave was visualized with streak photography combined with a schlieren technique. An important advantage of this technique is that the shock position as a function of time can directly be obtained from a single streak and hence a single event. Other methods (e.g. flash photography or passage time measurements between fixed locations) in contrast rely on reproducible events. Using the shock wave speed obtained from the streak images, shock wave peak pressures were calculated providing detailed information on the propagation of the shock. The shock peak pressure as a function of distance r from the optical axis was found to decrease faster than 1/r2 in regions up to distances of 100-150 micrometers . For larger distances it was found to be roughly proportional to 1/r. The scaling law for maximum shock pressure p, at a given distance was found to be proportional to the square root of the laser pulse energy E for distances of 50-200 micrometers from the optical axis.

  4. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    International Nuclear Information System (INIS)

    Cao Zhongxiang; Li Quanliang; Han Ye; Qin Qi; Feng Peng; Liu Liyuan; Wu Nanjian

    2014-01-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques. (semiconductor devices)

  5. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  6. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  7. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  8. Shock-jump conditions in a general medium: weak-solution approach

    Science.gov (United States)

    Forbes, L. K.; Krzysik, O. A.

    2017-05-01

    General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.

  9. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

  10. Vis-A-Plan /visualize a plan/ management technique provides performance-time scale

    Science.gov (United States)

    Ranck, N. H.

    1967-01-01

    Vis-A-Plan is a bar-charting technique for representing and evaluating project activities on a performance-time basis. This rectilinear method presents the logic diagram of a project as a series of horizontal time bars. It may be used supplementary to PERT or independently.

  11. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  12. Synchronization of uncertain time-varying network based on sliding mode control technique

    Science.gov (United States)

    Lü, Ling; Li, Chengren; Bai, Suyuan; Li, Gang; Rong, Tingting; Gao, Yan; Yan, Zhe

    2017-09-01

    We research synchronization of uncertain time-varying network based on sliding mode control technique. The sliding mode control technique is first modified so that it can be applied to network synchronization. Further, by choosing the appropriate sliding surface, the identification law of uncertain parameter, the adaptive law of the time-varying coupling matrix element and the control input of network are designed, it is sure that the uncertain time-varying network can synchronize effectively the synchronization target. At last, we perform some numerical simulations to demonstrate the effectiveness of the proposed results.

  13. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  14. Relative locations of the bow shocks of the terrestrial planets

    International Nuclear Information System (INIS)

    Russell, C.T.

    1977-01-01

    The observed bow shock encounters at Mercury, Venus and Mars are least square fit using the same technique so that their sizes and shapes can be intercompared. The shock front of Mercury most resembles the terrestrial shock in shape, and the shock stand off distance is consistent with the observed moment. The shapes of the Venus and Mars shock fronts more resemble each other than the earth's and the stand off distances are consistent with direct interaction of the solar wind with the ionosphere on the dayside. The Venus shock is closer to the planet than the Mars shock suggesting more absorption of the solar wind at Venus

  15. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  16. An Overview on Base Real-Time Hard Shadow Techniques in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Mohd Shahrizal Sunar

    2012-03-01

    Full Text Available Shadows are elegant to create a realistic scene in virtual environments variety type of shadow techniques encourage us to prepare an overview on all base shadow techniques. Non real-time and real-time techniques are big subdivision of shadow generation. In non real-time techniques ray tracing, ray casting and radiosity are well known and are described deeply. Radiosity is implemented to create very realistic shadow on non real-time scene. Although traditional radiosity algorithm is difficult to implement, we have proposed a simple one. The proposed pseudo code is easier to understand and implement. Ray tracing is used to prevent of collision of movement objects. Projection shadow, shadow volume and shadow mapping are used to create real-time shadow in virtual environments. We have used projection shadow for some objects are static and have shadow on flat surface. Shadow volume is used to create accurate shadow with sharp outline. Shadow mapping that is the base of most recently techniques is reconstructed. The reconstruct algorithm gives some new idea to propose another algorithm based on shadow mapping.

  17. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  18. Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia.

    Directory of Open Access Journals (Sweden)

    Shunichi Sato

    Full Text Available Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3-4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of

  19. Applied measuring techniques for the investigation of time-dependent flow phenomena in centrifugal compressors

    International Nuclear Information System (INIS)

    Hass, U.; Haupt, U.; Jansen, M.; Kassens, K.; Knapp, P.; Rautenberg, M.

    1978-01-01

    During the past 10 years new measuring techniques have been developed for the experimental investigation of highly loaded centrifugal compressors. These measuring techniques take into account the time dependency of the fluctuating physical quantities such as pressure, temperature, and velocity. Some key points of these experimental techniques are shown and explained in this paper. An important basis for such measurements is the accurate dynamic calibration of the measuring apparatus. In addition, some problems involved analyzing measured signals are dealt with and pressure measurements and their interpretation are shown. Finally optical, acoustical and vibrational measuring procedures are described which are additionally used for the investigation of non-stationary flow phenomena. (orig.) [de

  20. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  1. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  2. Implementation of lean construction techniques for minimizing the risks effect on project construction time

    Directory of Open Access Journals (Sweden)

    Usama Hamed Issa

    2013-12-01

    Full Text Available The construction projects involve various risk factors which have various impacts on time objective that may lead to time-overrun. This study suggests and applies a new technique for minimizing risk factors effect on time using lean construction principles. The lean construction is implemented in this study using the last planner system through execution of an industrial project in Egypt. Evaluating the effect of using the new tool is described in terms of two measurements: Percent Expected Time-overrun (PET and Percent Plan Completed (PPC. The most important risk factors are identified and assessed, while PET is quantified at the project start and during the project execution using a model for time-overrun quantification. The results showed that total project time is reduced by 15.57% due to decreasing PET values, while PPC values improved. This is due to minimizing and mitigating the effect of most of the risk factors in this project due to implementing lean construction techniques. The results proved that the quantification model is suitable for evaluating the effect of using lean construction techniques. In addition, the results showed that average value of PET due to factors affected by lean techniques represents 67% from PET values due to all minimized risk factors.

  3. An application of the baseline correction technique for correcting distorted seismic acceleration time histories

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Jong Wook; Jeoung, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae; Kim, Keung Koo

    2008-03-01

    Three kinds of baseline correction techniques named as 'Newmark', 'Zero-VD' and 'Newmark and Zero-VD' were introduced to correct the distorted physical characteristics of a seismic time history accelogram. The corrected seismic accelerations and distorted raw acceleration showed an identical response spectra in frequency domains, but showed various time history profiles in velocity and displacement domains. The referred correction techniques were programmed with UNIX-HP Fortran. The verification of the baseline corrected seismic data in terms of frequency response spectrum were performed by ANSYS of a commerical FEM software

  4. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  5. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  6. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  7. Development, relevance, and applications of 'atom-at-a-time' techniques

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    2012-01-01

    A brief history of the development and some of the first uses of 'atom-at-a-time' techniques to investigate the chemical and nuclear properties of the actinide and transactinide elements are presented. The currently known transactinides (all elements with Z > 103) were discovered using physical (nuclear) techniques rather than chemical separation techniques because of their short half-lives and low production rates and the difficulty in accurately predicting chemical properties of the heaviest elements because of relativistic effects. Some of the constraints on systems suitable for such studies and whether these tracer-scale results can be extended to the macro-scale are discussed. The relevance and importance of the methods and their potential for application to some current problems such as nuclear forensics and proliferation and environmental concerns are considered. The value of graduate research utilizing such techniques in helping to attract and educate the next generation of nuclear scientists is highlighted. (author)

  8. A technique for filling gaps in time series with complicated power spectra

    International Nuclear Information System (INIS)

    Brown, T.M.

    1984-01-01

    Fahlman and Ulrych (1982) describe a method for estimating the power and phase spectra of gapped time series, using a maximum-entropy reconstruction of the data in the gaps. It has proved difficult to apply this technique to solar oscillations data, because of the great complexity of the solar oscillations spectrum. We describe a means for avoiding this difficulty, and report the results of a series of blind tests of the modified technique. The main results of these tests are: 1. Gap-filling gives good results, provided that the signal-to-noise ration in the original data is large enough, and provided the gaps are short enough. For low-noise data, the duty cycle of the observations should not be less than about 50%. 2. The frequencies and widths of narrow spectrum features are well reproduced by the technique. 3. The technique systematically reduces the apparent amplitudes of small features in the spectrum relative to large ones. (orig.)

  9. Use of Jigsaw Technique to Teach the Unit "Science within Time" in Secondary 7th Grade Social Sciences Course and Students' Views on This Technique

    Science.gov (United States)

    Yapici, Hakki

    2016-01-01

    The aim of this study is to apply the jigsaw technique in Social Sciences teaching and to unroll the effects of this technique on learning. The unit "Science within Time" in the secondary 7th grade Social Sciences text book was chosen for the research. It is aimed to compare the jigsaw technique with the traditional teaching method in…

  10. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  11. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    KAUST Repository

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  12. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  13. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  14. Just-in-Time Teaching Techniques through Web Technologies for Vocational Students' Reading and Writing Abilities

    Science.gov (United States)

    Chantoem, Rewadee; Rattanavich, Saowalak

    2016-01-01

    This research compares the English language achievements of vocational students, their reading and writing abilities, and their attitudes towards learning English taught with just-in-time teaching techniques through web technologies and conventional methods. The experimental and control groups were formed, a randomized true control group…

  15. Optimal time-domain technique for pulse width modulation in power electronics

    Directory of Open Access Journals (Sweden)

    I. Mayergoyz

    2018-05-01

    Full Text Available Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  16. Shock physics with the nova laser for ICF applications. Revision 1

    International Nuclear Information System (INIS)

    Hammel, B.A.; Cauble, R.; Celliers, P.

    1995-01-01

    The physics of high pressure shocks plays a central role in Inertial Confinement Fusion (ICF). In indirect drive ICF, x-rays from a gold cavity (hohlraum) are used to ablatively drive a series of high pressure shocks into a spherical target (capsule). These shocks converge at the center, compressing the fuel and forming a hot dense core. The target performance, such as peak fuel density and temperature and neutron yield, depends critically on hock timing, and material compressibility. Accurate predictions of NIF target performance depends critically on shock timing and material compressibility. Current measurement techniques enable us to accurately determine shock timing in planar samples of abator material as a function of laser drive. Although this technique does not separately address uncertainties in material EOS and opacity, it does allow us to tune the laser drive until the desired shock timing is achieved. Experiments to directly address the EOS of D 2 ice are planned to further increase the margin for ignition in current target designs

  17. The effect of varying incubation times for hypotonic treatment of lymphocytes in dicentric assay technique

    International Nuclear Information System (INIS)

    Noraisyah Yusof; Noriah Jamal; Rahimah Abdul Rahim; Juliana Mahamad Napiah

    2010-01-01

    The International Atomic Energy Agency (IAEA) has recommended that incubation time for the hypotonic treatment of lymphocytes in dicentric assay technique to be between 15 to 20 minutes. Incubation time will effect the hypotonic treatment of lymphocytes and thus, the breakage of cytoplasmic membrane. The objective of this study is to examine the effect of varying incubation times for hypotonic treatment of lymphocytes in dicentric assay technique. In this study, we choose to use our standard protocol for dicentric assay technique. However, for the hypotonic treatment of lymphocytes, the incubation times were varied from 10, 15, 20, 25 and 30 minutes respectively. Lymphocytes were then fixed and stained with Giemsa. The cells were then analyzed for clear background that indicates good metaphases. We found that incubation time of 30 minutes gives the best metaphase images. This incubation time is longer than what has been recommended by the IAEA. This maybe explained by the fact that our country's climate is of higher humidity compared with the European countries. (author)

  18. Novel techniques of real-time blood flow and functional mapping: technical note.

    Science.gov (United States)

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  19. On-line diagnostic techniques for air-operated control valves based on time series analysis

    International Nuclear Information System (INIS)

    Ito, Kenji; Matsuoka, Yoshinori; Minamikawa, Shigeru; Komatsu, Yasuki; Satoh, Takeshi.

    1996-01-01

    The objective of this research is to study the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves - numerous valves of the type which are used in PWR plants. Generally the techniques can detect anomalies by failures in the initial stages for which detection is difficult by conventional surveillance of process parameters measured directly. However, the effectiveness of these techniques depends on the system being diagnosed. The difficulties in applying diagnostic techniques to air-operated control valves seem to come from the reduced sensitivity of their response as compared with hydraulic control systems, as well as the need to identify anomalies in low level signals that fluctuate only slightly but continuously. In this research, simulation tests were performed by setting various kinds of failure modes for a test valve with the same specifications as of a valve actually used in the plants. Actual control signals recorded from an operating plant were then used as input signals for simulation. The results of the tests confirmed the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves. (author)

  20. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  1. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method

    International Nuclear Information System (INIS)

    Tang Qi; Song Zifeng; Chen Jiabin; Zhan Xiayu

    2013-01-01

    Ion temperature of implosion hotspot is a very important parameter for inertial confinement fusion. It reflects the energy level of the hotspot, and it is very sensitive to implosion symmetry and implosion speed. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method were described. A neutron TOF spectrometer was developed using a ultrafast plastic scintillator as the neutron detector. Time response of the spectrometer has 1.1 ns FWHM and 0.5 ns rising time. TOF spectrum resolving method based on deconvolution and low pass filter was illuminated. Implosion hotspot ion temperature in low neutron yield and low ion temperature condition at Shenguang-Ⅲ facility was acquired using the diagnostic techniques. (authors)

  2. The effects of the Bowen technique on hamstring flexibility over time: a randomised controlled trial.

    Science.gov (United States)

    Marr, Michelle; Baker, Julian; Lambon, Nicky; Perry, Jo

    2011-07-01

    The hamstring muscles are regularly implicated in recurrent injuries, movement dysfunction and low back pain. Links between limited flexibility and development of neuromusculoskeletal symptoms are frequently reported. The Bowen Technique is used to treat many conditions including lack of flexibility. The study set out to investigate the effect of the Bowen Technique on hamstring flexibility over time. An assessor-blind, prospective, randomised controlled trial was performed on 120 asymptomatic volunteers. Participants were randomly allocated into a control group or Bowen group. Three flexibility measurements occurred over one week, using an active knee extension test. The intervention group received a single Bowen treatment. A repeated measures univariate analysis of variance, across both groups for the three time periods, revealed significant within-subject and between-subject differences for the Bowen group. Continuing increases in flexibility levels were observed over one week. No significant change over time was noted for the control group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  4. The constrained discrete-time state-dependent Riccati equation technique for uncertain nonlinear systems

    Science.gov (United States)

    Chang, Insu

    The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently

  5. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  6. Automatic detection of health changes using statistical process control techniques on measured transfer times of elderly.

    Science.gov (United States)

    Baldewijns, Greet; Luca, Stijn; Nagels, William; Vanrumste, Bart; Croonenborghs, Tom

    2015-01-01

    It has been shown that gait speed and transfer times are good measures of functional ability in elderly. However, data currently acquired by systems that measure either gait speed or transfer times in the homes of elderly people require manual reviewing by healthcare workers. This reviewing process is time-consuming. To alleviate this burden, this paper proposes the use of statistical process control methods to automatically detect both positive and negative changes in transfer times. Three SPC techniques: tabular CUSUM, standardized CUSUM and EWMA, known for their ability to detect small shifts in the data, are evaluated on simulated transfer times. This analysis shows that EWMA is the best-suited method with a detection accuracy of 82% and an average detection time of 9.64 days.

  7. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  8. Real-time analytics techniques to analyze and visualize streaming data

    CERN Document Server

    Ellis, Byron

    2014-01-01

    Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development,

  9. A time-dependent event tree technique for modelling recovery operations

    International Nuclear Information System (INIS)

    Kohut, P.; Fitzpatrick, R.

    1991-01-01

    The development of a simplified time dependent event tree methodology is presented. The technique is especially applicable to describe recovery operations in nuclear reactor accident scenarios initiated by support system failures. The event tree logic is constructed using time dependent top events combined with a damage function that contains information about the final state time behavior of the reactor core. Both the failure and the success states may be utilized for the analysis. The method is illustrated by modeling the loss of service water function with special emphasis on the RCP [reactor coolant pump] seal LOCA [loss of coolant accident] scenario. 5 refs., 2 figs., 2 tabs

  10. Multi-disciplinary techniques for understanding time-varying space-based imagery

    Science.gov (United States)

    Casasent, D.; Sanderson, A.; Kanade, T.

    1984-06-01

    A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.

  11. Comparison of success rate and onset time of two different anesthesia techniques

    Science.gov (United States)

    Haghighat, Abbas; Hasheminia, Dariush; Samandari, Mohammad-Hasan; Safarian, Vajihe; Davoudi, Amin

    2015-01-01

    Background Using local anesthetic is common to control the pain through blocking the nerve reversibly in dental procedures. Gow-Gates (GG) technique has a high success rate but less common. This study aimed to compare the onset time and success rate in GG and standard technique of inferior alveolar nerve block (IANB). Material and Methods This descriptive, single blind study was consisted of 136 patients (59 males and 77 females) who were randomly received GG or IANB for extraction of mandibular molar teeth. Comparisons between the successes of two anesthetic injection techniques were analyzed with Chi-square test. Incidence of pulpal anesthesia and soft tissue anesthesia were analyzed with Kaplan-Meier method. Mean onset times of pulpal anesthesia, soft tissue and lip numbness were analyzed with Log-Rank test. Comparisons were considered significant at P≤0.05 by using SPSS software ver.15. Results The incidence of pulpal anesthesia in the IANB group (canine 49.3%, premolar 60.3%) were not significantly different from the GG group (canine 41.3%, premolar 74.6%) (P=0.200 and P=0.723). The success rate in the IANB group (80.82%) was not significantly different from the GG group (92.02%) (P=0.123). Furthermore, onset time of lip and buccal soft tissue numbness in GG group (3.25, 4.96 minutes) was quite similar to IANB group (3.22, 4.89 minutes) (all Pvalues >0.05). Conclusions Although this study demonstrated higher clinical success rate for GG than IANB technique, no significant differences in success rates and onset time were observed between two techniques. Key words: Anesthesia, Inferior alveolar nerve, nerve block, success rate. PMID:25858085

  12. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  13. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  14. Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques

    Science.gov (United States)

    Lee, Hanbong; Malik, Waqar; Jung, Yoon C.

    2016-01-01

    Predicting the taxi-out times of departures accurately is important for improving airport efficiency and takeoff time predictability. In this paper, we attempt to apply machine learning techniques to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction. To find the key factors affecting aircraft taxi times, surface surveillance data is first analyzed. From this data analysis, several variables, including terminal concourse, spot, runway, departure fix and weight class, are selected for taxi time prediction. Then, various machine learning methods such as linear regression, support vector machines, k-nearest neighbors, random forest, and neural networks model are applied to actual flight data. Different traffic flow and weather conditions at Charlotte airport are also taken into account for more accurate prediction. The taxi-out time prediction results show that linear regression and random forest techniques can provide the most accurate prediction in terms of root-mean-square errors. We also discuss the operational complexity and uncertainties that make it difficult to predict the taxi times accurately.

  15. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour; Badra, J.; Jaasim, Mohammed; Es-sebbar, Et-touhami; Labastida, M.F.; Chung, Suk-Ho; Im, Hong G.; Farooq, Aamir

    2016-01-01

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times

  16. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  17. New technique for real-time distortion-invariant multiobject recognition and classification

    Science.gov (United States)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  18. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID

    Directory of Open Access Journals (Sweden)

    Grishma Khadka

    2017-01-01

    Full Text Available Radio-frequency identification (RFID is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other’s communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  19. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  20. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  1. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  2. A study of residence time distribution using radiotracer technique in the large scale plant facility

    Science.gov (United States)

    Wetchagarun, S.; Tippayakul, C.; Petchrak, A.; Sukrod, K.; Khoonkamjorn, P.

    2017-06-01

    As the demand for troubleshooting of large industrial plants increases, radiotracer techniques, which have capability to provide fast, online and effective detections to plant problems, have been continually developed. One of the good potential applications of the radiotracer for troubleshooting in a process plant is the analysis of Residence Time Distribution (RTD). In this paper, the study of RTD in a large scale plant facility using radiotracer technique was presented. The objective of this work is to gain experience on the RTD analysis using radiotracer technique in a “larger than laboratory” scale plant setup which can be comparable to the real industrial application. The experiment was carried out at the sedimentation tank in the water treatment facility of Thailand Institute of Nuclear Technology (Public Organization). Br-82 was selected to use in this work due to its chemical property, its suitable half-life and its on-site availability. NH4Br in the form of aqueous solution was injected into the system as the radiotracer. Six NaI detectors were placed along the pipelines and at the tank in order to determine the RTD of the system. The RTD and the Mean Residence Time (MRT) of the tank was analysed and calculated from the measured data. The experience and knowledge attained from this study is important for extending this technique to be applied to industrial facilities in the future.

  3. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  4. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  5. Ultra-small time-delay estimation via a weak measurement technique with post-selection

    International Nuclear Information System (INIS)

    Fang, Chen; Huang, Jing-Zheng; Yu, Yang; Li, Qinzheng; Zeng, Guihua

    2016-01-01

    Weak measurement is a novel technique for parameter estimation with higher precision. In this paper we develop a general theory for the parameter estimation based on a weak measurement technique with arbitrary post-selection. The weak-value amplification model and the joint weak measurement model are two special cases in our theory. Applying the developed theory, time-delay estimation is investigated in both theory and experiments. The experimental results show that when the time delay is ultra-small, the joint weak measurement scheme outperforms the weak-value amplification scheme, and is robust against not only misalignment errors but also the wavelength dependence of the optical components. These results are consistent with theoretical predictions that have not been previously verified by any experiment. (paper)

  6. Measuring the diameter of rising gas bubbles by means of the ultrasound transit time technique

    Energy Technology Data Exchange (ETDEWEB)

    Richter, T., E-mail: Thomas.Richter6@tu-dresden.de; Eckert, K., E-mail: Kerstin.Eckert@tu-dresden.de; Yang, X.; Odenbach, S.

    2015-09-15

    Highlights: • Ultrasound transit time technique (UTTT) is applied to the zig-zag raise of gas bubble. • Comparison of bubble diameter and tilt, measured by UTTT, with high-speed imaging. • Uncertainty in the determination of the bubble diameter by UTTT is less than 7%. • UTTT is able to measure dynamic changes in bubble size in opaque liquids and vessels. • UTTT can be applied to liquid metal loops. - Abstract: This study presents ultrasound transit time technique (UTTT) measurements of the diameter variations of single argon bubbles rising in a zig-zag trajectory in water. Simultaneous size measurements with a high-speed camera show that UTTT resolves both the apparent diameter and the tilt of the bubble axis with an accuracy of better than 7%. This qualifies UTTT for the measurement of bubble sizes in opaque liquids, such as liquid metals, or vessels.

  7. Investigation of interfacial wave structure using time-series analysis techniques

    International Nuclear Information System (INIS)

    Jayanti, S.; Hewitt, G.F.; Cliffe, K.A.

    1990-09-01

    The report presents an investigation into the interfacial structure in horizontal annular flow using spectral and time-series analysis techniques. Film thickness measured using conductance probes shows an interesting transition in wave pattern from a continuous low-frequency wave pattern to an intermittent, high-frequency one. From the autospectral density function of the film thickness, it appears that this transition is caused by the breaking up of long waves into smaller ones. To investigate the possibility of the wave structure being represented as a low order chaotic system, phase portraits of the time series were constructed using the technique developed by Broomhead and co-workers (1986, 1987 and 1989). These showed a banded structure when waves of relatively high frequency were filtered out. Although these results are encouraging, further work is needed to characterise the attractor. (Author)

  8. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  9. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  10. Nonlinear techniques for forecasting solar activity directly from its time series

    Science.gov (United States)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  11. Melodic pattern extraction in large collections of music recordings using time series mining techniques

    OpenAIRE

    Gulati, Sankalp; Serrà, Joan; Ishwar, Vignesh; Serra, Xavier

    2014-01-01

    We demonstrate a data-driven unsupervised approach for the discovery of melodic patterns in large collections of Indian art music recordings. The approach first works on single recordings and subsequently searches in the entire music collection. Melodic similarity is based on dynamic time warping. The task being computationally intensive, lower bounding and early abandoning techniques are applied during distance computation. Our dataset comprises 365 hours of music, containing 1,764 audio rec...

  12. Time of flight diffraction technique and applications for retaining rings and turbine discs

    International Nuclear Information System (INIS)

    Ashwin, P.

    1990-01-01

    During recent times the term Time of Flight has become a popular phrase in ultrasonic terminology. It is true to say that since ultrasonic energy was first applied for NDE applications, we have used the time of flight to measure the material thickness and establish the presence of discontinuities in metals and other materials. However, as digital ultrasonic systems have evolved we have added new terminology to the field of nondestructive testing, such that phrases as Time of Flight are often misunderstood or over used. Conventional ultrasonic practice (meaning code based ultrasonic inspection) is in most reliant on the measurement of the reflected amplitude response to establish the presence and size of material discontinuities, where the time of flight is the measurement of the ultrasound as it travels to and from the reflector. This industry standard technique has on many occasions been questioned in terms of its value, especially during defect sizing applications. To address the known limitations of amplitude based sizing criteria, a new technique was developed referred to as Time Of Flight Diffraction -TOFD. Instead of using the amount of ultrasonic energy reflected by a discontinuity, TOFD relies on an aspect of ultrasonics that until more recently has been ignored or overlooked. This is the phenomena of diffracted ultrasonic energy, Using diffracted energy it is possible to more accurately measure the size of a defect. More recently the technique has been used for the detection of defects, where due to the imaging capabilities of the instrumentation used, TOFD has illustrated the presence of defects which could not be identified by other ultrasonic methods

  13. Effect of heat shock and recovery temperature on variability of single cell lag time of Cronobacter turicensis.

    Science.gov (United States)

    Xu, Y Zh; Métris, A; Stasinopoulos, D M; Forsythe, S J; Sutherland, J P

    2015-02-01

    The effect of heat stress and subsequent recovery temperature on the individual cellular lag of Cronobacter turicensis was analysed using optical density measurements. Low numbers of cells were obtained through serial dilution and the time to reach an optical density of 0.035 was determined. Assuming the lag of a single cell follows a shifted Gamma distribution with a fixed shape parameter, the effect of recovery temperature on the individual lag of untreated and sublethally heat treated cells of Cr. turicensis were modelled. It was found that the shift parameter (Tshift) increased asymptotically as the temperature decreased while the logarithm of the scale parameter (θ) decreased linearly with recovery temperature. To test the validity of the model in food, growth of low numbers of untreated and heat treated Cr. turicensis in artificially contaminated infant first milk was measured experimentally and compared with predictions obtained by Monte Carlo simulations. Although the model for untreated cells slightly underestimated the actual growth in first milk at low temperatures, the model for heat treated cells was in agreement with the data derived from the challenge tests and provides a basis for reliable quantitative microbiological risk assessments for Cronobacter spp. in infant milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A novel time-to-pulse height converter for fast-neutron time-of-flight techniques

    International Nuclear Information System (INIS)

    Christiansen, J.

    1962-01-01

    An electronic time-to-pulse height converter is described which uses a multiplicative method instead of the usual one of adding overlapping pulses. This is achieved by a coincidence of a linear sawtooth and a sharply clipped needle-pulse. The sawtooth is fed to the grid of a beam-deflecting tube (E80T) and the needle-pulse is applied to the deflecting plates and opens the tube only during a time-interval of about 5.10 -9 s. The plate gets a charge proportional to the time-difference between the start of the sawtooth and the needle pulse. The plate-pulse is stretched and amplified and its height represents a measurement of the time-difference. With this method we got a time resolution of 2τ = 7 x 10 -12 s with artificial pulses, 2τ = 3 x 10 -10 s with Co 60 γ-coincidences by using NE 102 plastic crystals and 2τ = 1.4 x 10 -9 s with 511-keV γ-coincidences using NaI(Te) crystals. The method was also used with pulsed beam techniques. In this case we got from the pulsing RF an 8-Mc, sharply-peaked pulse-sequence, which was fed to the E80T plates. We had a time-resolution of 2τ = 1.1 x 10 -9 s with 4-MeV neutrons using plastic crystals 0.7 in long. Normally the region of linear response was 30 ns but it was possible to go up to 120 ns. (author) [fr

  15. Real-time lossless data compression techniques for long-pulse operation

    International Nuclear Information System (INIS)

    Vega, J.; Ruiz, M.; Sanchez, E.; Pereira, A.; Portas, A.; Barrera, E.

    2007-01-01

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent of the data source. Data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability and, on the other hand, to the off-line data access. Due to the large data volume expected, data compression is a useful candidate to prevent the waste of resources in communication and storage systems. On-line data distribution in a long-pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply lossless compression techniques. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different databases (TJ-II and JET) and computation times for compression/decompression are shown. Finally, the validity and implementation of these techniques for long-pulse operation and real-time requirements is also discussed

  16. Real-time lossless data compression techniques for long-pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Ruiz, M. [Dpto. de Sistemas Electronicos y de Control, UPM, Campus Sur. Ctra., Valencia km 7, 28031 Madrid (Spain); Sanchez, E.; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Barrera, E. [Dpto. de Sistemas Electronicos y de Control, UPM, Campus Sur. Ctra., Valencia km 7, 28031 Madrid (Spain)

    2007-10-15

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent of the data source. Data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability and, on the other hand, to the off-line data access. Due to the large data volume expected, data compression is a useful candidate to prevent the waste of resources in communication and storage systems. On-line data distribution in a long-pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply lossless compression techniques. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different databases (TJ-II and JET) and computation times for compression/decompression are shown. Finally, the validity and implementation of these techniques for long-pulse operation and real-time requirements is also discussed.

  17. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    expanded beam of a Q-switched laser pulse at wavelength of λ=532 nm and with pulse duration of ∼4 ns is focused at the center of a water tank using an aberration minimized lens design. Single cavitation bubbles are initiated via optical breakdown at this location which coincides with the position of which the shock wave is focused. The energy of the shock wave source has been altered in 8 steps. The pressure pulse amplitude of the impinging shock wave measured at the distance of about 1.8 mm above the focus location range from 24.4 MPa to 108.1 MPa. The lithotripter shock wave impact time is varied in three steps which provides the possibility of investigation of the bubble dynamics in both cases of collapsing and expanding cavities at the moment of the shock wave impingement. After the shock wave impact, the bubble spherical symmetry is broken and a liquid jet develops in the original direction of the shock propagation. The speed of the jet is increasing with the shock wave energy. Due to the energy transfer from the shock wave to the bubble, the forced cavity implosion is more violent in comparison to free oscillation. The pressure pulse amplitude released from the forced bubble collapse is amplified and the collapse time is reduced. These effects are discussed in chapter 5. Generally, when the bubble is collapsing at the time of the shock impact, the forced cavity collapse is more violent with a resultant of more pressure enhancement compared to the expanding bubbles at the moment of the shock arrival. The maximum pressure enhancement and reduction of bubble collapse time occur when the time interval between the moments of the shock impact and bubble collapse approaches the pulse duration of the compression part of the shock wave profile (i.e. ∼1 μs). For each specific shock wave arrival time, increasing the shock intensity leads to the fact that the bubble collapse takes place earlier relative to the moment of the shock impact and having more collapse pressure

  18. INTEGRITY ANALYSIS OF REAL-TIME PPP TECHNIQUE WITH IGS-RTS SERVICE FOR MARITIME NAVIGATION

    Directory of Open Access Journals (Sweden)

    M. El-Diasty

    2017-10-01

    Full Text Available Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS, it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability immediately (after 1 second, after 2 minutes and after 42 minutes

  19. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    Science.gov (United States)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence

  20. Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox

    DEFF Research Database (Denmark)

    Nonejad, Nima

    This paper details Particle Markov chain Monte Carlo techniques for analysis of unobserved component time series models using several economic data sets. PMCMC combines the particle filter with the Metropolis-Hastings algorithm. Overall PMCMC provides a very compelling, computationally fast...... and efficient framework for estimation. These advantages are used to for instance estimate stochastic volatility models with leverage effect or with Student-t distributed errors. We also model changing time series characteristics of the US inflation rate by considering a heteroskedastic ARFIMA model where...

  1. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  2. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-01-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  3. Dual-phase helical CT using bolus triggering technique: optimization of transition time

    International Nuclear Information System (INIS)

    Choi, Young Ho; Kim, Tae Kyoung; Park, Byung Kwan; Koh, Young Hwan; Han, Joon Koo; Choi, Byung Ihn

    1999-01-01

    To optimize the transition time between the triggering point in monitoring scanning and the initiation of diagnostic hepatic arterial phase (HAP) scanning in hepatic spiral CT, using a bolus triggering technique. One hundred consecutive patients with focal hepatic lesion were included in this study. Patients were randomized into two groups. Transition times of 7 and 11 seconds were used in group 1 and 2, respectively. In all patients, bolus triggered HAP spiral CT was obtained using a semi-automatic bolus tracking program after the injection of 120mL of non-ionic contrast media at a rate of 3mL/sec. When aortic enhancement reached 90 HU, diagnostic HAP scanning began after a given transition time. From images of group 1 and group 2, the degree of parenchymal enhancement of the liver and tumor-to-liver attenuation difference were measured. Also, for qualitative analysis, conspicuity of the hepatic artery and hypervascular tumor was scored and analyzed. Hepatic parenchymal enhancement on HAP was 12.07 + /-6.44 HU in group 1 and 16.03 + /-5.80 HU in group 2 (p .05). In the evaluation of conspicuity of hepatic artery, there was no statistically significant difference between the two groups (p > .05). The conspicuity of hypervascular tumors in group 2 was higher than in group 1 (p < .05). HAP spiral CT using a bolus triggering technique with a transition time of 11 seconds provides better HAP images than when the transition time is 7 seconds

  4. Food consumption and digestion time estimation of spotted scat, Scatophagus argus, using X-radiography technique

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Marina; Abidin, Diana Atiqah Zainal [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Das, Simon K. [Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi (Malaysia); Ghaffar, Mazlan Abd. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan M (Malaysia)

    2014-09-03

    The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (S{sub max}) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W{sup 2.93}. Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO{sub 4}) paste injected in the wet shrimp in proportion to the body weight. The BaSO{sub 4} was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.

  5. Food consumption and digestion time estimation of spotted scat, Scatophagus argus, using X-radiography technique

    Science.gov (United States)

    Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.; Ghaffar, Mazlan Abd.

    2014-09-01

    The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (Smax) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W2.93. Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO4) paste injected in the wet shrimp in proportion to the body weight. The BaSO4 was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.

  6. Food consumption and digestion time estimation of spotted scat, Scatophagus argus, using X-radiography technique

    International Nuclear Information System (INIS)

    Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.; Ghaffar, Mazlan Abd.

    2014-01-01

    The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (S max ) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W 2.93 . Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO 4 ) paste injected in the wet shrimp in proportion to the body weight. The BaSO 4 was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity

  7. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  8. Real Time Speed Measure while Automobile Braking on Soft Sensing Technique

    International Nuclear Information System (INIS)

    Zhu, W B; Li, D S; Lu, Y

    2006-01-01

    Because the braking performance of automobile has close relationship to traffic safety, it is important to detect that. Focusing on the problem that the real time speed is difficult to obtain in detection process, soft sensing technique is introduced in this paper. According to analyzing the relationship of the dynamics equation of a moving automobile, a module of real time speed of braking is set up. By using imitation method with experiment data to get the pressure function of cylinder and analyzing the relationship between the trigging moment of a wheel and the pressure function of brake cylinder, the real time speed is confirmed in good precision. The maximal measurement error of real time speed is 8.7% and the precision can satisfy engineering request

  9. Real Time Speed Measure while Automobile Braking on Soft Sensing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W B; Li, D S; Lu, Y [China Jiliang University, Hangzhou, Zhejiang province, 310018 (China)

    2006-10-15

    Because the braking performance of automobile has close relationship to traffic safety, it is important to detect that. Focusing on the problem that the real time speed is difficult to obtain in detection process, soft sensing technique is introduced in this paper. According to analyzing the relationship of the dynamics equation of a moving automobile, a module of real time speed of braking is set up. By using imitation method with experiment data to get the pressure function of cylinder and analyzing the relationship between the trigging moment of a wheel and the pressure function of brake cylinder, the real time speed is confirmed in good precision. The maximal measurement error of real time speed is 8.7% and the precision can satisfy engineering request.

  10. A point implicit time integration technique for slow transient flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y., E-mail: kadioglu@yildiz.edu.tr [Department of Mathematical Engineering, Yildiz Technical University, 34210 Davutpasa-Esenler, Istanbul (Turkey); Berry, Ray A., E-mail: ray.berry@inl.gov [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States); Martineau, Richard C. [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)

    2015-05-15

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  11. A point implicit time integration technique for slow transient flow problems

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-01-01

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  12. Complexity testing techniques for time series data: A comprehensive literature review

    International Nuclear Information System (INIS)

    Tang, Ling; Lv, Huiling; Yang, Fengmei; Yu, Lean

    2015-01-01

    Highlights: • A literature review of complexity testing techniques for time series data is provided. • Complexity measurements can generally fall into fractality, methods derived from nonlinear dynamics and entropy. • Different types investigate time series data from different perspectives. • Measures, applications and future studies for each type are presented. - Abstract: Complexity may be one of the most important measurements for analysing time series data; it covers or is at least closely related to different data characteristics within nonlinear system theory. This paper provides a comprehensive literature review examining the complexity testing techniques for time series data. According to different features, the complexity measurements for time series data can be divided into three primary groups, i.e., fractality (mono- or multi-fractality) for self-similarity (or system memorability or long-term persistence), methods derived from nonlinear dynamics (via attractor invariants or diagram descriptions) for attractor properties in phase-space, and entropy (structural or dynamical entropy) for the disorder state of a nonlinear system. These estimations analyse time series dynamics from different perspectives but are closely related to or even dependent on each other at the same time. In particular, a weaker self-similarity, a more complex structure of attractor, and a higher-level disorder state of a system consistently indicate that the observed time series data are at a higher level of complexity. Accordingly, this paper presents a historical tour of the important measures and works for each group, as well as ground-breaking and recent applications and future research directions.

  13. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  14. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  15. Numerical calculation of two phase flow in a shock tube

    International Nuclear Information System (INIS)

    Rivard, W.C.; Travis, J.R.; Torrey, M.D.

    1976-01-01

    Numerical calculations of the dynamics of initially saturated water-steam mixtures in a shock tube demonstrate the accuracy and efficiency of a new solution technique for the transient, two-dimensional, two-fluid equations. The dependence of the calculated results on time step and cell size are investigated. The effects of boiling and condensation on the flow physics suggest the merits of basic fluid dynamic measurements for the determination and evaluation of mass exchange models

  16. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  17. Chemical kinetics studies at high temperatures using shock tubes

    OpenAIRE

    Rajakumar, B; Anandraj, D; Reddy, KPJ; Arunan, E

    2002-01-01

    Shock tube is an unique facility to create temperature gradients exceeding million degrees Kelvin per second. We have established two shock tubes for measuring the kinetic reaction rates at high temperatures with two different but complementary detection techniques. The first one is a single pulse shock tube, in which the reflected shock is used to heat the molecules. The equilibrated products are analyzed by gas chromatograph and infrared spectrometer. The second one uses laser-schlieren sys...

  18. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment

    Directory of Open Access Journals (Sweden)

    Jefferson Vinicius Bozelli

    2013-12-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.

  19. Electric field measurement in the ionosphere using the time-of-flight technique

    International Nuclear Information System (INIS)

    Nakamura, Masato; Hayakawa, Hajime; Tsuruda, Koichiro

    1989-01-01

    The first successful electric field measurement in the ionosphere using the time-of-flight technique with a lithium ion beam was carried out on a S-520 sounding rocket launched from Kagoshima Space Center, Japan on January 15, 1987. The purpose of this experiment was to prove the validity of the time-of-flight technique when it is applied to the measurement of the dc electric field in the ionosphere. A time-coded ion beam was ejected from the rocket in the direction perpendicular to the Earth's magnetic field. The beam returned to the rocket twice per rocket spin when the initial beam direction was nearly perpendicular to the electric field. The electric field and the magnetic field were derived from the travel time of these return lithium ions. The accuracy of the electric field determination was ± 0.3 mV/m. The direction of the electric field was obtained from the direction of the returning ion beam after about one ion gyration. The main constituent of the measured electric field was a V x B field due to the rocket motion across the geomagnetic field. The ambient field was less than 1 mV/m. The magnetic field was measured with an accuracy of ± 2.7 nT in this experiment

  20. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  1. Application of Project Time Management Tools and Techniques to the Construction Industry in the Gaza Strip

    Directory of Open Access Journals (Sweden)

    Nabil Sawalhi

    2012-11-01

    Full Text Available The objective of this paper is to investigate the level of applying theproject time management tools and techniques by public ownersand construction contractors in the Gaza Strip. This study hasbeen conducted by means of a survey questionnaire. Seventythreequestionnaires were distributed to target constructioncontractors and twenty-five questionnaires to public owners. Sixtycompleted questionnaires from contractors and twenty-threequestionnaires from public owners were received and analysed.The survey results indicated that contemporary project timemanagement tools and techniques are not widely used amonglocal contractors and owners. Lack of subcontractor’s knowledgeand awareness of the importance of project time managementtools and techniques are still major obstacles toward the efficientutilisation of such tools. This study recommended that there is anurgent need to establish a professional industry body such as anInstitute of Building to review and evaluate existing local projectmanagement practices. This professional body may be establishedby the government through the Ministry of Housing and PublicWorks or by the local university in cooperation with a similarinternational professional industry body. Current training effortshould be tailored to encourage owners and contractors to usework breakdown structures, resource optimisation, and networkscheduling.

  2. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  3. The development of techniques for determining the residual life time prediction on NPP equipment

    International Nuclear Information System (INIS)

    Antonov, Alexander V.; Dagaev, Alexander V.; Volnikov, Ivan S.

    1999-01-01

    The problem of determining the residual life prediction of NPP equipment is presently highly pressing. NPP residual life resources are 30 years, but for particular equipment it is much less. Thus, residual life resource for equipment of control and protection system of NPP unit is 5-10 years. The NPP equipment is expensive and its replacing requires much expense. Hence an urgent problem is to study residual life resources of equipment on the basis of statistic information obtained during operation. Deterministic approach of determining residual life resources for particular equipment is widely known in the literature. Physical and statistical models are also being developed for determining the residual life, e.g. the model (loading-bearing capability). The present work offers the techniques of the residual life determination reasoning from statistic information of functioning objects in the process of operation. To put the techniques into effect it is necessary to have information about the time of operation of a group of objects of the same type, the number of failures; it is desirable to know failure operating time, order of the object replacement and the reason which caused the replacement (failure or planned preventive maintenance). Metrics is based on studying the parameters for the series of failures resulted from real statistic data. Then we can proceed to distribution density of the failure working time. For this purpose the Voltarra's equation of the second order is solved f(t) = ω(t) + ∫ 0 t f(t - τ)ω(τ)dτ. Since statistics of data sampling related to failure is small due to difficulties in solution of Voltaire's equation, the authors offer moderate method of solution for the above equation. After distribution density of the failure working time is determined the calculation of equipment residual life is made by the following formula: T τ (t) 1/P(τ)∫ 0 ∞ P(t)dt. The proposed techniques are realised as the software. In the course of working

  4. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  5. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  6. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  7. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  8. Bayesian techniques for fatigue life prediction and for inference in linear time dependent PDEs

    KAUST Repository

    Scavino, Marco

    2016-01-08

    In this talk we introduce first the main characteristics of a systematic statistical approach to model calibration, model selection and model ranking when stress-life data are drawn from a collection of records of fatigue experiments. Focusing on Bayesian prediction assessment, we consider fatigue-limit models and random fatigue-limit models under different a priori assumptions. In the second part of the talk, we present a hierarchical Bayesian technique for the inference of the coefficients of time dependent linear PDEs, under the assumption that noisy measurements are available in both the interior of a domain of interest and from boundary conditions. We present a computational technique based on the marginalization of the contribution of the boundary parameters and apply it to inverse heat conduction problems.

  9. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  10. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  11. Gearbox fault diagnosis based on time-frequency domain synchronous averaging and feature extraction technique

    Science.gov (United States)

    Zhang, Shengli; Tang, Jiong

    2016-04-01

    Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.

  12. Technique for determination of the time constant for relay radioisotope instruments

    International Nuclear Information System (INIS)

    Gol'din, M.L.; Shestialtynov, V.K.

    1981-01-01

    A technique for calculating time constant of a gamma relay used in radio isotope automatics is suggested. It is shown that the time constant of a radioisotope relay device (RRD) mainly depends on parameters of the intergrating circuit ratemeter. Considering the ratemeter as a real communication channel with a limited transmission band, the equation for the active front duration at a ratemeter outlet when applying abrupt voltage to its inlet is obtained. From the complex transmission function of a ratemeter the upper boundary cyclic transmission frequency the substitution of which in the equation of the active front durationg ives the RRD time constant is determined. On the example of calculating the ratemeter for the GR-6 gamma relay a satisfactory coincidence of calculational results with the certificate data is shown [ru

  13. A FIFO based neutron arrival time collection technique for assay of plutonium

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Venkatasubramani, C.R.

    2004-01-01

    The system assays plutonium by counting the time correlated neutrons emitted by the spontaneous fissions of the even-even Pu isotopes in the presence of random neutron background, originating principally from (a,n) reactions in the material. The correlation technique discussed in this paper utilizes twofold neutron coincidence counting but the system is proposed to be enhanced for neutron multiplicity counting. A microcontroller based data acquisition system has been developed using a couple of fast FIFO 2kX9 bit memory ICs and a 16 bit counter for identifying time-correlated neutrons. Since the neutron pulses are arriving at a rapid rate, the incoming pulses are buffered in the FIFO and then transferred to PC by the microcontroller through the parallel port. The correlation analysis based on this time arrival information is done in the PC off-line. (author)

  14. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A., E-mail: mariyaferdousi@gmail.com [Department of Physics, Jahangirnagar University, Savar (Bangladesh)

    2015-10-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  15. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A.

    2015-01-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  16. Aid Supplies Over Time

    DEFF Research Database (Denmark)

    Jones, Edward Samuel

    2015-01-01

    of data spanning nearly 50 years, this paper uses panel cointegration techniques to consider these issues. The analysis provides clear evidence for heterogeneity both between donors and over time, bandwagon effects, and a growing influence of security considerations in aid provision. Domestic...... macroeconomic shocks have a moderate but delayed effect on aid disbursements....

  17. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  18. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  19. Real-time lossless data compression techniques for long-pulse operation

    International Nuclear Information System (INIS)

    Jesus Vega, J.; Sanchez, E.; Portas, A.; Pereira, A.; Ruiz, M.

    2006-01-01

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent on the data source. Control data and physics data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability for both data analysis and data visualization. On the other hand, delayed analyses require off-line data access. Due to the large data volume expected, data compression will be mandatory in order to save storage and bandwidth. On-line data distribution in a long pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply compression techniques that ensure the recovery of the initial signals without spectral distortion when compacted data are expanded (lossless techniques). Delta compression methods are independent on the analogue characteristics of waveforms and there exist a variety of implementations that have been applied to the databases of several fusion devices such as Alcator, JET and TJ-II among others. Delta compression techniques are carried out in a two step algorithm. The first step consists of a delta calculation, i.e. the computation of the differences between the digital codes of adjacent signal samples. The resultant deltas are then encoded according to constant- or variable-length bit allocation. Several encoding forms can be considered for the second step and they have to satisfy a prefix code property. However, and in order to meet the requirement of on-line data distribution, the encoding forms have to be defined prior to data capture. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different

  20. A Fast Multi-layer Subnetwork Connection Method for Time Series InSAR Technique

    Directory of Open Access Journals (Sweden)

    WU Hong'an

    2016-10-01

    Full Text Available Nowadays, times series interferometric synthetic aperture radar (InSAR technique has been widely used in ground deformation monitoring, especially in urban areas where lots of stable point targets can be detected. However, in standard time series InSAR technique, affected by atmospheric correlation distance and the threshold of linear model coherence, the Delaunay triangulation for connecting point targets can be easily separated into many discontinuous subnetworks. Thus it is difficult to retrieve ground deformation in non-urban areas. In order to monitor ground deformation in large areas efficiently, a novel multi-layer subnetwork connection (MLSC method is proposed for connecting all subnetworks. The advantage of the method is that it can quickly reduce the number of subnetworks with valid edges layer-by-layer. This method is compared with the existing complex network connecting mehod. The experimental results demonstrate that the data processing time of the proposed method is only 32.56% of the latter one.

  1. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    Science.gov (United States)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  2. A neuro-fuzzy computing technique for modeling hydrological time series

    Science.gov (United States)

    Nayak, P. C.; Sudheer, K. P.; Rangan, D. M.; Ramasastri, K. S.

    2004-05-01

    Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are proven to be efficient when applied individually to a variety of problems. Recently there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have evolved. This approach has been tested and evaluated in the field of signal processing and related areas, but researchers have only begun evaluating the potential of this neuro-fuzzy hybrid approach in hydrologic modeling studies. This paper presents the application of an adaptive neuro fuzzy inference system (ANFIS) to hydrologic time series modeling, and is illustrated by an application to model the river flow of Baitarani River in Orissa state, India. An introduction to the ANFIS modeling approach is also presented. The advantage of the method is that it does not require the model structure to be known a priori, in contrast to most of the time series modeling techniques. The results showed that the ANFIS forecasted flow series preserves the statistical properties of the original flow series. The model showed good performance in terms of various statistical indices. The results are highly promising, and a comparative analysis suggests that the proposed modeling approach outperforms ANNs and other traditional time series models in terms of computational speed, forecast errors, efficiency, peak flow estimation etc. It was observed that the ANFIS model preserves the potential of the ANN approach fully, and eases the model building process.

  3. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  4. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  5. Neutron time-of-flight techniques for investigation of the extinction effect

    International Nuclear Information System (INIS)

    Niimura, N.; Tomiyoshi, S.; Takahashi, J.; Harada, J.

    1975-01-01

    An application of the time-of-flight neutron diffraction technique to an investigation of the nature of the extinction effect in a single-crystal specimen is given. It is shown that the wavelength dependence of the extinction can be easily obtained by changing the scattering angle. An estimation of the extinction factor for a CuCl single crystal is given as an example and a comparison of the results with recent extinction theory [Becker and Coppens. Acta Cryst.(1974). A30, 129-147; 148-153] is made. (Auth.)

  6. Real-time stability in power systems techniques for early detection of the risk of blackout

    CERN Document Server

    Savulescu, Savu

    2014-01-01

    This pioneering volume has been updated and enriched to reflect the state-of-the-art in blackout prediction and prevention. It documents and explains background and algorithmic aspects of the most successful steady-state, transient and voltage stability solutions available today in real-time. It also describes new, cutting-edge stability applications of synchrophasor technology, and captures industry acceptance of metrics and visualization tools that quantify and monitor the distance to instability. Expert contributors review a broad spectrum of additionally available techniques, such as traje

  7. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  8. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period

    Science.gov (United States)

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K.

    2015-01-01

    Introduction: Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. Material and Methods: All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. Results: A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Conclusions: Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations. PMID:25657543

  9. Improved Image Encryption for Real-Time Application over Wireless Communication Networks using Hybrid Cryptography Technique

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2016-12-01

    Full Text Available Advances in communication networks have enabled organization to send confidential data such as digital images over wireless networks. However, the broadcast nature of wireless communication channel has made it vulnerable to attack from eavesdroppers. We have developed a hybrid cryptography technique, and we present its application to digital images as a means of improving the security of digital image for transmission over wireless communication networks. The hybrid technique uses a combination of a symmetric (Data Encryption Standard and asymmetric (Rivest Shamir Adleman cryptographic algorithms to secure data to be transmitted between different nodes of a wireless network. Three different image samples of type jpeg, png and jpg were tested using this technique. The results obtained showed that the hybrid system encrypt the images with minimal simulation time, and high throughput. More importantly, there is no relation or information between the original images and their encrypted form, according to Shannon’s definition of perfect security, thereby making the system much more secure.

  10. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  11. Simulating GPS radio signal to synchronize network--a new technique for redundant timing.

    Science.gov (United States)

    Shan, Qingxiao; Jun, Yang; Le Floch, Jean-Michel; Fan, Yaohui; Ivanov, Eugene N; Tobar, Michael E

    2014-07-01

    Currently, many distributed systems such as 3G mobile communications and power systems are time synchronized with a Global Positioning System (GPS) signal. If there is a GPS failure, it is difficult to realize redundant timing, and thus time-synchronized devices may fail. In this work, we develop time transfer by simulating GPS signals, which promises no extra modification to original GPS-synchronized devices. This is achieved by applying a simplified GPS simulator for synchronization purposes only. Navigation data are calculated based on a pre-assigned time at a fixed position. Pseudo-range data which describes the distance change between the space vehicle (SV) and users are calculated. Because real-time simulation requires heavy-duty computations, we use self-developed software optimized on a PC to generate data, and save the data onto memory disks while the simulator is operating. The radio signal generation is similar to the SV at an initial position, and the frequency synthesis of the simulator is locked to a pre-assigned time. A filtering group technique is used to simulate the signal transmission delay corresponding to the SV displacement. Each SV generates a digital baseband signal, where a unique identifying code is added to the signal and up-converted to generate the output radio signal at the centered frequency of 1575.42 MHz (L1 band). A prototype with a field-programmable gate array (FPGA) has been built and experiments have been conducted to prove that we can realize time transfer. The prototype has been applied to the CDMA network for a three-month long experiment. Its precision has been verified and can meet the requirements of most telecommunication systems.

  12. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  13. Performance enhancement of various real-time image processing techniques via speculative execution

    Science.gov (United States)

    Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.

    1996-03-01

    In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.

  14. Manufacturing Enhancement through Reduction of Cycle Time using Different Lean Techniques

    Science.gov (United States)

    Suganthini Rekha, R.; Periyasamy, P.; Nallusamy, S.

    2017-08-01

    In recent manufacturing system the most important parameters in production line are work in process, TAKT time and line balancing. In this article lean tools and techniques were implemented to reduce the cycle time. The aim is to enhance the productivity of the water pump pipe by identifying the bottleneck stations and non value added activities. From the initial time study the bottleneck processes were identified and then necessary expanding processes were also identified for the bottleneck process. Subsequently the improvement actions have been established and implemented using different lean tools like value stream mapping, 5S and line balancing. The current state value stream mapping was developed to describe the existing status and to identify various problem areas. 5S was used to implement the steps to reduce the process cycle time and unnecessary movements of man and material. The improvement activities were implemented with required suggested and the future state value stream mapping was developed. From the results it was concluded that the total cycle time was reduced about 290.41 seconds and the customer demand has been increased about 760 units.

  15. General Time-Division AltBOC Modulation Technique for GNSS Signals

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2018-04-01

    Full Text Available In this paper, a general time-division alternate binary offset carrier (GTD-AltBOC modulation method is proposed, which is an extension of TD-AltBOC and time-multiplexed offset-carrier quadrature phase shift keying (TMOC-QPSK with high design flexibility. In this method, binary complex subcarriers and a time-division technique with flexible time slot assignment are used to achieve constant envelope modulation of the signal components with a variable power allocation ratio (PAR. The underlying principle of GTD-AltBOC and the constraints related to the PAR are investigated. For the generation of GTD-AltBOC signals, a lookup table (LUT-based scheme is presented; the minimum required clock rate is half or less of that for existing non-time-division methods. The receiver processing complexities are analyzed for three typical receiving modes, and the power spectral densities (PSDs, cross-correlation functions, multiplexing efficiencies and code-tracking performance are simulated; the results show that GTD-AltBOC enables a significant decrease in receiving complexity compared with existing methods while maintaining high performance in terms of multiplexing efficiency and code tracking.

  16. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Inci Cilingir Sungu

    2015-01-01

    Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

  17. A numerical approach to the time dependent neutron flux using the Laplace transform technique

    International Nuclear Information System (INIS)

    El-Demerdash, A; Beynon, T.D.

    1979-01-01

    In this study a time dependent transport problem in which an isotopic neutron source emits a pulse of neutrons into a finite sphere has been solved by a numerical Laplace transform technique. The object has been to investigate the time behaviour of the neutron field in the moderators at times shortly after the neutron source initiation, that is in the nanosecond time period. The basis of the solution is a numercial evaluation of the Laplace transform of the flux in the linear Boltzmann equation with the use of a modified version of a steady state energy multi-group spatially dependent code. The explicit or direct inversion of the Laplace transformed flux is complicated to be solved numerically due to the ill-conditioned matrix obtained. The suggested method of solutions depends on choice of a function that satisfies the physical condition known from the neutron behaviour and that has a Laplace inversion which is analytically amenable. By employing a least square fitting procedure the function is modified in order to minimize the error in the Laplace transformed values and hence in the time dependent solution. This method has been applied satisfactorily in comparison to analytical and experimental results

  18. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  19. The forgotten effect of the finite measurement time on various noise analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-06-01

    The conventional noise analysis expressions for functions like the auto- and cross-correlation function, the variance to mean ratio, and the Rossi-{alpha} formula, diverge when the reactor is critical. This problem arises because one pole of the zero-power reactor transfer function is zero. However, in a finite measurement time, a zero frequency cannot be measured and the divergence will not be found experimentally. New expressions for the expectation values of the experimental quantities of various pulse counting techniques are derived which also take into account the dead time of the detector. These expressions do not suffer from divergence at critical. A Feynman-{alpha} experiment is simulated in two, neutronically different systems. The use of the conventional equations for the analysis of the experiments is seen to lead to a bias in the inferred reactivity value.

  20. Sampling methods for rumen microbial counts by Real-Time PCR techniques

    Directory of Open Access Journals (Sweden)

    S. Puppo

    2010-02-01

    Full Text Available Fresh rumen samples were withdrawn from 4 cannulated buffalo females fed a fibrous diets in order to quantify bacteria concentration in the rumen by Real-Time PCR techniques. To obtain DNA of a good quality from whole rumen fluid, eight (M1-M8 different pre-filtration methods (cheese cloths, glass-fibre and nylon filter in combination with various centrifugation speeds (1000, 5000 and 14,000 rpm were tested. Genomic DNA extraction was performed either on fresh or frozen samples (-20°C. The quantitative bacteria analysis was realized according to Real-Time PCR procedure for Butyrivibrio fibrisolvens reported in literature. M5 resulted the best sampling procedure allowing to obtain a suitable genomic DNA. No differences were revealed between fresh and frozen samples.

  1. Hybrid machine learning technique for forecasting Dhaka stock market timing decisions.

    Science.gov (United States)

    Banik, Shipra; Khodadad Khan, A F M; Anwer, Mohammad

    2014-01-01

    Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange.

  2. Estimation of gastric emptying time (GET) in clownfish (Amphiprion ocellaris) using X-radiography technique

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Khoo Mei; Ghaffar, Mazlan Abd. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    This study examines the movement of food item and the estimation of gastric emptying time using the X-radiography techniques, in the clownfish (Amphiprion ocellaris) fed in captivity. Fishes were voluntarily fed to satiation after being deprived of food for 72 hours, using pellets that were tampered with barium sulphate (BaSO{sub 4}). The movement of food item was monitored over different time of feeding. As a result, a total of 36 hours were needed for the food items to be evacuated completely from the stomach. Results on the modeling of meal satiation were also discussed. The size of satiation meal to body weight relationship was allometric, with the power value equal to 1.28.

  3. Versatile real-time interferometer phase-detection system using high-speed digital techniques

    International Nuclear Information System (INIS)

    Mendell, D.S.; Willett, G.W.

    1977-01-01

    This paper describes the basic design and philosophy of a versatile real-time interferometer phase-detection system to be used on the 2XIIB and TMX magnetic-fusion experiments at Lawrence Livermore Laboratory. This diagnostics system is a satellite to a host computer and uses high-speed emitter-coupled logic techniques to derive data on real-time phase relationships. The system's input signals can be derived from interferometer outputs over a wide range of reference frequencies. An LSI-11 microcomputer is the interface between the high-speed phase-detection logic, buffer memory, human interaction, and host computer. Phase data on a storage CRT is immediately displayed after each experimental fusion shot. An operator can interrogate this phase data more closely from an interactive control panel, and the host computer can be simultaneously examining the system's buffer memory or arming the system for the next shot

  4. Measurable Disturbances Compensation: Analysis and Tuning of Feedforward Techniques for Dead-Time Processes

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2016-04-01

    Full Text Available In this paper, measurable disturbance compensation techniques are analyzed, focusing the problem on the input-output and disturbance-output time delays. The feedforward compensation method is evaluated for the common structures that appear between the disturbance and process dynamics. Due to the presence of time delays, the study includes causality and instability phenomena that can arise when a classical approach for disturbance compensation is used. Different feedforward configurations are analyzed for two feedback control techniques, PID (Proportional-Integral-Derivative and MPC (Model Predictive Control that are widely used for industrial process-control applications. The specific tuning methodology for the analyzed process structure is used to obtain improved disturbance rejection performance regarding classical approaches. The evaluation of the introduced disturbance rejection schemes is performed through simulation, considering process constraints in order to highlight the advantages and drawbacks in common scenarios. The performance of the analyzed structure is expressed with different indexes that allow us direct comparisons. The obtained results show that the proper design and tuning of the feedforward action helps to significantly improve the overall control performance in process control tasks.

  5. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  6. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  7. A Hilbert transform method for parameter identification of time-varying structures with observer techniques

    International Nuclear Information System (INIS)

    Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da

    2012-01-01

    This paper presents a recursive Hilbert transform method for the time-varying property identification of large-scale shear-type buildings with limited sensor deployments. An observer technique is introduced to estimate the building responses from limited available measurements. For an n-story shear-type building with l measurements (l ≤ n), the responses of other stories without measurements can be estimated based on the first r mode shapes (r ≤ l) as-built conditions and l measurements. Both the measured responses and evaluated responses and their Hilbert transforms are then used to track any variation of structural parameters of a multi-story building over time. Given floor masses, both the stiffness and damping coefficients of the building are identified one-by-one from the top to the bottom story. When variations of parameters are detected, a new developed branch-and-bound technique can be used to update the first r mode shapes with the identified parameters. A 60-story shear building with abruptly varying stiffness at different floors is simulated as an example. The numerical results indicate that the proposed method can detect variations of the parameters of large-scale shear-type buildings with limited sensor deployments at appropriate locations. (paper)

  8. Applications of soft computing in time series forecasting simulation and modeling techniques

    CERN Document Server

    Singh, Pritpal

    2016-01-01

    This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and governmen...

  9. Time-resolved processes in a pulsed electrical discharge in water generated with shock wave assistance in a plate-to-plate configuration

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2014-01-01

    Roč. 47, č. 49 (2014), s. 495204-495204 ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : underwater discharge * streamers * spark * cavitation bubble * shock wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/49/495204/pdf/0022-3727_47_49_495204.pdf

  10. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Fry, C.D. [Exploration Physics International, Inc., Huntsville, AL (United States); Dryer, M. [Exploration Physics International, Inc., Huntsville, AL (United States); NOAA Space Environment Center, Boulder, CO (United States); Heynderickx, D. [D-H Consultancy, Leuven (Belgium); Kecskemety, K. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Kudela, K. [Institute of Experimental Physics, Kosice (Slovakia); Balaz, J. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Institute of Experimental Physics, Kosice (Slovakia)

    2012-07-01

    The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2) numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay) of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events) associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50 %). This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50 %, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter ''Probability of Detection, yes'' (PODy) which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed), yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The

  11. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2012-02-01

    Full Text Available The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2 numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50%. This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50%, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter "Probability of Detection, yes" (PODy which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed, yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The statistical

  12. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.; Leveque, Randall J.

    2012-01-01

    of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation

  14. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  15. Does player time-in-game affect tackle technique in elite level rugby union?

    Science.gov (United States)

    Tierney, Gregory J; Denvir, Karl; Farrell, Garreth; Simms, Ciaran K

    2018-02-01

    It has been hypothesised that fatigue may be a major factor in tackle-related injury risk in rugby union and hence more injuries occur in the later stages of a game. The aim of this study is to identify changes in ball carrier or tackler proficiency characteristics, using elite level match video data, as player time-in-game increases. Qualitative observational cohort study. Three 2014/15 European Rugby Champions Cup games were selected for ball carrier and tackler proficiency analysis. Analysis was only conducted on players who started and remained on the field for the entire game. A separate analysis was conducted on 10 randomly selected 2014/15 European Rugby Champions Cup/Pro 12 games to assess the time distribution of tackles throughout a game. A Chi-square test and one-way way ANOVA with post-hoc testing was conducted to identify significant differences (p<0.05) for proficiency characteristics and tackle counts between quarters in the game, respectively. Player time-in-game did not affect tackle proficiency for both the ball carrier and tackler. Any results that showed statistical significance did not indicate a trend of deterioration in proficiency with increased player time-in-game. The time distribution of tackles analysis indicated that more tackles occurring in the final quarter of the game than the first (p=0.04) and second (p=<0.01). It appears that player time-in-game does not affect tackler or ball carrier tackle technique proficiency at the elite level. More tackles occurring in the final quarter of a game provides an alternative explanation to more tackle-related injuries occurring at this stage. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Teaching Splinting Techniques Using a Just-in-Time Training Instructional Video.

    Science.gov (United States)

    Cheng, Yu-Tsun; Liu, Deborah R; Wang, Vincent J

    2017-03-01

    Splinting is a multistep procedure that is seldom performed by primary care physicians. Just-in-time training (JITT) is an emerging teaching modality and can be an invaluable asset for infrequently performed procedures or in locations where teaching resources and trained professionals are limited. Our objective was to determine the utility of JITT for teaching medical students the short-arm (SA) volar splinting technique. This was a prospective randomized controlled pilot study. An instructional video on SA volar splinting was produced. Students viewed the video or had access to standard medical textbooks (control group) immediately before applying an SA volar splint. The students were assessed for the quality of the splint via a standard 6-point skills checklist. The times required for presplinting preparation and for completion of the splint were also measured. Just-in-time training group students scored higher on the splint checklist (mean [SD], 5.45 [1.06]; 95% confidence interval [CI], 4.99-5.92 vs mean [SD], 1.58 [1.12]; 95% CI, 1.04-2.12; P < 0.0001), had higher pass rates (73%; 95% CI, 53%-93% vs 0%; P < 0.0001), and required less time (minutes) for presplinting preparation (mean [SD], 7.86 [2.45]; 95% CI, 6.78-8.94 vs mean [SD], 9.89 [0.46]; 95% CI, 9.67-10.12; P < 0.0001) compared with the control group. No difference was seen in the time required to complete a splint, successful or not. In comparison with reading standard textbooks, watching a brief JITT instructional video before splinting yielded faster learning times combined with more successful procedural skills. The use of a JITT instructional video may have potential applications, including globally, as an alternative resource for teaching and disseminating procedural skills, such as SA volar splinting.

  17. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  18. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  19. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  20. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  1. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  2. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  3. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  4. Performance analysis of passive time reversal communication technique for multipath interference in shallow sea acoustic channel

    Science.gov (United States)

    Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji

    2017-07-01

    In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.

  5. Real-time measurements of suspended sediment concentration and particle size using five techniques

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  6. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  7. First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques

    Science.gov (United States)

    Padeletti, G.; Ingo, G. M.; Bouquillon, A.; Pages-Camagna, S.; Aucouturier, M.; Roehrs, S.; Fermo, P.

    2006-06-01

    For the first time some excellent pieces belonging to the majolica production of the great master Giorgio Andreoli from Gubbio (Central Italy) have been characterized from a chemical and structural point of view with the aim to identify the composition of both pigments and lustres. A series of particle-induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and Raman analyses have been performed on some plates coming from Museo del Palazzo dei Consoli (Gubbio) and several French museums (Louvre, Musée National de la Céramique, Musée National de la Renaissance) lustred by Giorgio Andreoli and decorated by famous majolica painters such as Francesco Xanto Avelli. The three techniques are complementary and useful in the investigation of art objects since they are non-destructive. Furthermore, the low detection limits allow the identification of all elements and compounds present, and RBS allows concentration profiling, too. It is worth noticing that the examined objects are characterized by the presence of both gold and ruby-red lustres, a peculiarity of Mastro Giorgio’s technique. The measurements by PIXE and RBS have been carried out on the AGLAE accelerator at C2RMF, Louvre Palace.

  8. Structure analysis of bubble driven flow by time-resolved PIV and POD techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun

    2010-01-01

    In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy

  9. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    International Nuclear Information System (INIS)

    Hadas, T; Kaplon, J; Bosy, J; Sierny, J; Wilgan, K

    2013-01-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed. (paper)

  10. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    Science.gov (United States)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.

  11. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  12. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  13. RTL validation methodology on high complexity wireless microcontroller using OVM technique for fast time to market

    Directory of Open Access Journals (Sweden)

    Muhammad Nurul Zhafirah

    2017-01-01

    Full Text Available Increased demand in internet of thing (IOT application based has inadvertently forced the move towards higher complexity of integrated circuit supporting SoC. Such spontaneous increased in complexity poses unequivocal complicated validation strategies. Hence, the complexity allows researchers to come out with various exceptional methodologies in order to overcome this problem. This in essence brings about the discovery of dynamic verification, formal verification and hybrid techniques. In reserve, it is very important to discover bugs at infancy of verification process in (SoC in order to reduce time consuming and fast time to market for the system. Ergo, in this paper we are focusing on the methodology of verification that can be done at Register Transfer Level of SoC based on the AMBA bus design. On top of that, the discovery of others verification method called Open Verification Methodology (OVM brings out an easier way in RTL validation methodology neither as the replacement for the traditional method yet as an effort for fast time to market for the system. Thus, the method called OVM is proposed in this paper as the verification method for larger design to avert the disclosure of the bottleneck in validation platform.

  14. RTL validation methodology on high complexity wireless microcontroller using OVM technique for fast time to market

    Science.gov (United States)

    Zhafirah Muhammad, Nurul; Harun, A.; Hambali, N. A. M. A.; Murad, S. A. Z.; Mohyar, S. N.; Isa, M. N.; Jambek, AB

    2017-11-01

    Increased demand in internet of thing (IOT) application based has inadvertently forced the move towards higher complexity of integrated circuit supporting SoC. Such spontaneous increased in complexity poses unequivocal complicated validation strategies. Hence, the complexity allows researchers to come out with various exceptional methodologies in order to overcome this problem. This in essence brings about the discovery of dynamic verification, formal verification and hybrid techniques. In reserve, it is very important to discover bugs at infancy of verification process in (SoC) in order to reduce time consuming and fast time to market for the system. Ergo, in this paper we are focusing on the methodology of verification that can be done at Register Transfer Level of SoC based on the AMBA bus design. On top of that, the discovery of others verification method called Open Verification Methodology (OVM) brings out an easier way in RTL validation methodology neither as the replacement for the traditional method yet as an effort for fast time to market for the system. Thus, the method called OVM is proposed in this paper as the verification method for larger design to avert the disclosure of the bottleneck in validation platform.

  15. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  16. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  17. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  18. Possible signatures of dissipation from time-series analysis techniques using a turbulent laboratory magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Schaffner, D. A.; Brown, M. R.; Rock, A. B.

    2016-01-01

    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum.

  19. A review of the surgical management of breast cancer: plastic reconstructive techniques and timing implications.

    Science.gov (United States)

    Rosson, Gedge D; Magarakis, Michael; Shridharani, Sachin M; Stapleton, Sahael M; Jacobs, Lisa K; Manahan, Michele A; Flores, Jaime I

    2010-07-01

    The oncologic management of breast cancer has evolved over the past several decades from radical mastectomy to modern-day preservation of chest and breast structures. The increased rate of mastectomies over recent years made breast reconstruction an integral part of the breast cancer management. Plastic surgery now offers patients a wide variety of reconstruction options from primary closure of the skin flaps to performance of microvascular and autologous tissue transplantation. Well-coordinated partnerships between surgical oncologists, plastic surgeons, and patients address concerns of tumor control, cosmesis, and patients' wishes. The gamut of breast reconstruction options is reviewed, particularly noting state-of-the-art techniques, as well as the advantages and disadvantages of various timing modalities.

  20. Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectrometric technique.

    Science.gov (United States)

    Bajpai, Vikas; Sharma, Deepty; Kumar, Brijesh; Madhusudanan, K P

    2010-12-01

    Piper betle Linn. is a traditional plant associated with the Asian and southeast Asian cultures. Its use is also recorded in folk medicines in these regions. Several of its medicinal properties have recently been proven. Phytochemical analysis showed the presence of mainly terpenes and phenols in betel leaves. These constituents vary in the different cultivars of Piper betle. In this paper we have attempted to profile eight locally available betel cultivars using the recently developed mass spectral ionization technique of direct analysis in real time (DART). Principal component analysis has also been employed to analyze the DART MS data of these betel cultivars. The results show that the cultivars of Piper betle could be differentiated using DART MS data. Copyright © 2010 John Wiley & Sons, Ltd.

  1. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    International Nuclear Information System (INIS)

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming

    2008-01-01

    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD 4 molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD 3 product. Preliminary results were also reported on the F+SiH 4 reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  2. A measurement technique of time-dependent dielectric breakdown in MOS capacitors

    Science.gov (United States)

    Li, S. P.

    1974-01-01

    The statistical nature of time-dependent dielectric breakdown characteristics in MOS capacitors was evidenced by testing large numbers of capacitors fabricated on single wafers. A multipoint probe and automatic electronic visual display technique are introduced that will yield statistical results which are necessary for the investigation of temperature, electric field, thermal annealing, and radiation effects in the breakdown characteristics, and an interpretation of the physical mechanisms involved. It is shown that capacitors of area greater than 0.002 sq cm may yield worst-case results, and that a multipoint probe of capacitors of smaller sizes can be used to obtain a profile of nonuniformities in the SiO2 films.

  3. A VLSI Implementation of Rank-Order Searching Circuit Employing a Time-Domain Technique

    Directory of Open Access Journals (Sweden)

    Trong-Tu Bui

    2013-01-01

    Full Text Available We present a compact and low-power rank-order searching (ROS circuit that can be used for building associative memories and rank-order filters (ROFs by employing time-domain computation and floating-gate MOS techniques. The architecture inherits the accuracy and programmability of digital implementations as well as the compactness and low-power consumption of analog ones. We aim to implement identification function as the first priority objective. Filtering function would be implemented once the location identification function has been carried out. The prototype circuit was designed and fabricated in a 0.18 μm CMOS technology. It consumes only 132.3 μW for an eight-input demonstration case.

  4. Imaging techniques used for the real-time assessment of angiogenesis in digestive cancers

    DEFF Research Database (Denmark)

    Săftoiu, Adrian; Vilmann, Peter

    2011-01-01

    Angiogenesis has a critical role in primary tumor growth and the development of metastases. Several angiogenesis inhibitors were recently developed, being a very attractive target for digestive tumor therapy. However, individualized therapy should not only be based on the pre-treatment imaging...... evaluation, but also on sensitive monitoring of microvascular changes during treatment. State-of-the-art imaging techniques have the potential to visualize and characterize angiogenesis, although the technology and methodologies employed are recent and need further validation. The aim of this series...... of reviews was to analyze and enhance current knowledge and future perspectives about the real-time assessment of angiogenesis in digestive cancers, used for the longitudinal monitoring of the effects of chemo-radiotherapy (including anti-angiogenic therapies), as well as for the precise targeting of drugs...

  5. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.; Borland, M.

    1997-01-01

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the open-quotes top-viewclose quotes of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf

  6. TAEKWONDO TECHNIQUES AND COMPETITION CHARACTERISTICS INVOLVED IN TIME-LOSS INJURIES

    Directory of Open Access Journals (Sweden)

    Konstantinos Beis

    2007-10-01

    Full Text Available The purpose of this study was to assess time-loss injuries in young and adult taekwondo athletes. Participants were 2739 children (11-13 years, Junior (14-17 years and adult males and females (18 years and older competing in the national Greek championships. Injury data were collected by project staff with all diagnoses made by the tournament physician. Odds ratios were computed as well as 95% confidence intervals around the injury rates. The female Juniors had a higher time-loss injury rate (Fisher's Exact Test p = 0.033 than their adult counterparts. However, they were not at a higher risk of incurring a time-loss injury: OR = 0.143, 95% CI: 0.018-1.124. Collapsed over age, the females as a group recorded more time-loss injuries [11.36/1,000 A-E (95% CI: 6.25-16.47 versus 7.40/1,000 A-E (95% CI: 4.44-10.36], but this was not significant (OR = 0.703, 95% CI: 0.383-1.293. In the Juniors, the boys only incurred time-loss injuries to the head and neck. There was no difference in the Junior girls in the distribution of time-loss injuries across body region, although they were at higher risk of sustaining an injury to the head and neck (OR = 1.510, 95% CI: 0.422-5.402 but this was not statistically significant. Although there were no statistical differences among age groups within gender, the Junior boys and girls (11-13 years sustained more cerebral concussions. The Junior boys were at a higher risk of incurring a cerebral concussion than the boys (OR = 7.871, 95% CI: 0.917-67.583, Fisher's Exact Test p = 0.036. In the males, there was no difference between the men and Junior boys in injury rate for swing kicks compared to other techniques (OR = 2.000, 95% CI = 0.397-28.416. There also was no difference between the men and boys (OR = 4.800, 95% CI: 0.141-58.013. To help reduce the incidence of time-loss injuries in taekwondo, especially cerebral concussions, it is suggested for coaches to emphasize blocking skills. Educating referees, coaches and

  7. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing.

    Science.gov (United States)

    Beck, Bert; Spanoghe, Pieter; Moens, Maurice; Brusselman, Eva; Temmerman, Femke; Pollet, Sabien; Nuyttens, David

    2014-05-01

    The potential of the entomopathogenic nematode (EPN) Steinernema feltiae Filipjev as a biocontrol agent against the cabbage maggot Delia radicum (L.), was assessed in three field tests, focusing on EPN dosage, application technique and timing. Spraying cabbage plant trays with different doses of infective juveniles (IJs) (50,000, 100,000 and 200,000 per plant) generated a similar reduction of plant mortality. Spraying plant trays with 200,000 IJs of Steinernema feltiae per plant temporarily reduced the number of maggots around the plants' roots, while neither spraying a lower dose (50,000 IJs/plant) nor soil drenching with 200,000 or 50,000 IJs/plant) reduced maggot numbers. When applied as a plant tray spray, IJs of S. feltiae took 1-2 weeks to spread through the soil surrounding the roots. The pathogenicity of the EPNs, as evaluated by a Galleria mellonella bait test, was highest (up to 100% mortality) until up to five weeks after application, and declined to control levels after 4-7 weeks. Follow-up drench applications with EPNs, applied one and/or two weeks after the first EPN application, did not influence control of Delia radicum. Plant tray spraying provides better placement of Steinernema feltiae than soil drench treatments for control of Delia radicum. Plant mortality was not dose-dependent in the presented trials, unlike the reduction of maggot numbers. Further research into timing and application technique of follow-up treatments with S. feltiae is required to increase efficacy to commercial standards. © 2013 Society of Chemical Industry.

  8. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  9. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  10. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  11. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  12. Sepsis and Septic Shock Strategies.

    Science.gov (United States)

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Field Evaluation of Two Geophysical Techniques for Real-Time Mapping of Smouldering Remediation (STAR)

    Science.gov (United States)

    Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.

    2016-12-01

    Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.

  14. Pacing Strategy, Muscle Fatigue, and Technique in 1500-m Speed-Skating and Cycling Time Trials.

    Science.gov (United States)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-04-01

    To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500-m speed-skating and cycling time trials when a faster or slower start is instructed. Nine speed skaters and 9 cyclists, all competing at regional or national level, performed two 1500-m time trials in their sport. Athletes were instructed to start faster than usual in 1 trial and slower in the other. Mean velocity was measured per 100 m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), voluntary activation (VA), and potentiated twitch (PT) of the quadriceps muscles were measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, knee, hip, and trunk angles were measured to evaluate technique. Cyclists showed a more explosive start than speed skaters in the fast-start time trial (cyclists performed first 300 m in 24.70 ± 1.73 s, speed skaters in 26.18 ± 0.79 s). Both trials resulted in reduced MVC (12.0% ± 14.5%), VA (2.4% ± 5.0%), and PT (25.4% ± 15.2%). Blood lactate concentrations after the time trial and the decrease in PT were greater in the fast-start than in the slow-start trial. Speed skaters showed higher trunk angles in the fast-start than in the slow-start trial, while knee angles remained similar. Despite similar instructions, behavioral adaptations in pacing differed between the 2 sports, resulting in equal central and peripheral contributions to muscle fatigue in both sports. This provides evidence for the importance of neurophysiological aspects in the regulation of pacing. It also stresses the notion that optimal pacing needs to be studied sport specifically, and coaches should be aware of this.

  15. 3D CT cerebral angiography technique using a 320-detector machine with a time–density curve and low contrast medium volume: Comparison with fixed time delay technique

    International Nuclear Information System (INIS)

    Das, K.; Biswas, S.; Roughley, S.; Bhojak, M.; Niven, S.

    2014-01-01

    Aim: To describe a cerebral computed tomography angiography (CTA) technique using a 320-detector CT machine and a small contrast medium volume (35 ml, 15 ml for test bolus). Also, to compare the quality of these images with that of the images acquired using a larger contrast medium volume (90 or 120 ml) and a fixed time delay (FTD) of 18 s using a 16-detector CT machine. Materials and methods: Cerebral CTA images were acquired using a 320-detector machine by synchronizing the scanning time with the time of peak enhancement as determined from the time–density curve (TDC) using a test bolus dose. The quality of CTA images acquired using this technique was compared with that obtained using a FTD of 18 s (by 16-detector CT), retrospectively. Average densities in four different intracranial arteries, overall opacification of arteries, and the degree of venous contamination were graded and compared. Results: Thirty-eight patients were scanned using the TDC technique and 40 patients using the FTD technique. The arterial densities achieved by the TDC technique were higher (significant for supraclinoid and basilar arteries, p < 0.05). The proportion of images deemed as having “good” arterial opacification was 95% for TDC and 90% for FTD. The degree of venous contamination was significantly higher in images produced by the FTD technique (p < 0.001%). Conclusion: Good diagnostic quality CTA images with significant reduction of venous contamination can be achieved with a low contrast medium dose using a 320-detector machine by coupling the time of data acquisition with the time of peak enhancement

  16. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  17. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  18. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  19. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  20. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  1. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  2. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  3. Surrogate marker analysis in cancer clinical trials through time-to-event mediation techniques.

    Science.gov (United States)

    Vandenberghe, Sjouke; Duchateau, Luc; Slaets, Leen; Bogaerts, Jan; Vansteelandt, Stijn

    2017-01-01

    The meta-analytic approach is the gold standard for validation of surrogate markers, but has the drawback of requiring data from several trials. We refine modern mediation analysis techniques for time-to-event endpoints and apply them to investigate whether pathological complete response can be used as a surrogate marker for disease-free survival in the EORTC 10994/BIG 1-00 randomised phase 3 trial in which locally advanced breast cancer patients were randomised to either taxane or anthracycline based neoadjuvant chemotherapy. In the mediation analysis, the treatment effect is decomposed into an indirect effect via pathological complete response and the remaining direct effect. It shows that only 4.2% of the treatment effect on disease-free survival after five years is mediated by the treatment effect on pathological complete response. There is thus no evidence from our analysis that pathological complete response is a valuable surrogate marker to evaluate the effect of taxane versus anthracycline based chemotherapies on progression free survival of locally advanced breast cancer patients. The proposed analysis strategy is broadly applicable to mediation analyses of time-to-event endpoints, is easy to apply and outperforms existing strategies in terms of precision as well as robustness against model misspecification.

  4. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  5. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  6. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  7. Time-Domain Techniques for Computation and Reconstruction of One-Dimensional Profiles

    Directory of Open Access Journals (Sweden)

    M. Rahman

    2005-01-01

    Full Text Available This paper presents a time-domain technique to compute the electromagnetic fields and to reconstruct the permittivity profile within a one-dimensional medium of finite length. The medium is characterized by a permittivity as well as conductivity profile which vary only with depth. The discussed scattering problem is thus one-dimensional. The modeling tool is divided into two different schemes which are named as the forward solver and the inverse solver. The task of the forward solver is to compute the internal fields of the specimen which is performed by Green’s function approach. When a known electromagnetic wave is incident normally on the media, the resulting electromagnetic field within the media can be calculated by constructing a Green’s operator. This operator maps the incident field on either side of the medium to the field at an arbitrary observation point. It is nothing but a matrix of integral operators with kernels satisfying known partial differential equations. The reflection and transmission behavior of the medium is also determined from the boundary values of the Green's operator. The inverse solver is responsible for solving an inverse scattering problem by reconstructing the permittivity profile of the medium. Though it is possible to use several algorithms to solve this problem, the invariant embedding method, also known as the layer-stripping method, has been implemented here due to the advantage that it requires a finite time trace of reflection data. Here only one round trip of reflection data is used, where one round trip is defined by the time required by the pulse to propagate through the medium and back again. The inversion process begins by retrieving the reflection kernel from the reflected wave data by simply using a deconvolution technique. The rest of the task can easily be performed by applying a numerical approach to determine different profile parameters. Both the solvers have been found to have the

  8. Dynamic testing of airplane shock-absorbing struts

    Science.gov (United States)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  9. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  10. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Shortening treatment time in robotic radiosurgery using a novel node reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de; Hoogeman, Mischa S.; Breedveld, Sebastiaan; Heijmen, Ben J. M. [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2011-03-15

    Purpose: The fraction duration of robotic radiosurgery treatments can be reduced by generating more time-efficient treatment plans with a reduced number of node positions, beams, and monitor units (MUs). Node positions are preprogramed locations where the robot can position the focal spot of the x-ray beam. As the time needed for the robot to travel between node positions takes up a large part of the treatment time, the aim of this study was to develop and evaluate a node reduction technique in order to reduce the treatment time per fraction for robotic radiosurgery. Methods: Node reduction was integrated into the inverse planning algorithm, developed in-house for the robotic radiosurgery modality. It involved repeated inverse optimization, each iteration excluding low-contribution node positions from the planning and resampling new candidate beams from the remaining node positions. Node reduction was performed until the exclusion of a single node position caused a constraint violation, after which the shortest treatment plan was selected retrospectively. Treatment plans were generated with and without node reduction for two lung cases of different complexity, one oropharyngeal case and one prostate case. Plan quality was assessed using the number of node positions, beams and MUs, and the estimated treatment time per fraction. All treatment plans had to fulfill all clinical dose constraints. Extra constraints were added to maintain the low-dose conformality and restrict skin doses during node reduction. Results: Node reduction resulted in 12 residual node positions, on average (reduction by 77%), at the cost of an increase in the number of beams and total MUs of 28% and 9%, respectively. Overall fraction durations (excluding patient setup) were shortened by 25% (range of 18%-40%), on average. Dose distributions changed only little and dose in low-dose regions was effectively restricted by the additional constraints. Conclusions: The fraction duration of robotic

  12. Shortening treatment time in robotic radiosurgery using a novel node reduction technique

    International Nuclear Information System (INIS)

    Water, Steven van de; Hoogeman, Mischa S.; Breedveld, Sebastiaan; Heijmen, Ben J. M.

    2011-01-01

    Purpose: The fraction duration of robotic radiosurgery treatments can be reduced by generating more time-efficient treatment plans with a reduced number of node positions, beams, and monitor units (MUs). Node positions are preprogramed locations where the robot can position the focal spot of the x-ray beam. As the time needed for the robot to travel between node positions takes up a large part of the treatment time, the aim of this study was to develop and evaluate a node reduction technique in order to reduce the treatment time per fraction for robotic radiosurgery. Methods: Node reduction was integrated into the inverse planning algorithm, developed in-house for the robotic radiosurgery modality. It involved repeated inverse optimization, each iteration excluding low-contribution node positions from the planning and resampling new candidate beams from the remaining node positions. Node reduction was performed until the exclusion of a single node position caused a constraint violation, after which the shortest treatment plan was selected retrospectively. Treatment plans were generated with and without node reduction for two lung cases of different complexity, one oropharyngeal case and one prostate case. Plan quality was assessed using the number of node positions, beams and MUs, and the estimated treatment time per fraction. All treatment plans had to fulfill all clinical dose constraints. Extra constraints were added to maintain the low-dose conformality and restrict skin doses during node reduction. Results: Node reduction resulted in 12 residual node positions, on average (reduction by 77%), at the cost of an increase in the number of beams and total MUs of 28% and 9%, respectively. Overall fraction durations (excluding patient setup) were shortened by 25% (range of 18%-40%), on average. Dose distributions changed only little and dose in low-dose regions was effectively restricted by the additional constraints. Conclusions: The fraction duration of robotic

  13. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  14. General Physical Problems Related to MHD. Shock Tubes. Introduction to Papers in Section 1-b

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-10-15

    The papers which will be considered here are Nos. SM-74/26, 134, 172, 182 and 219. Each of the five papers will be discussed in turn, but before beginning this discussion, some general comments concerning shock tube studies of MHD generator plasmas seem in order. There is little doubt that the shock tube is an excellent facility-for the study of the basic processes which occur in the bulk of the plasma. It provides a large flow of uniform plasma with well-controlled properties. Because of the very short operating times, the materials problems, which plague continuously operating facilities, are eliminated. Depending upon the mode of operation of the shock tube, the gas dynamic conditions of an MHD generator may also be simulated more or less well. Three different modes have been used by the authors of the present papers. Abbas and Howatson have carried out their measurements in the driver plasma of an electrical shock tube. Both Zauderer and Mori, Kawada, Yamamoto and Imani have used the more conventional technique of experimenting in the plasma produced by the incident shock. Louis uses the plasma produced by reflection of the shock wave from the tube-end as a plasma source for the MHD channel.

  15. Verification of the production of peptide leukotrienes (LT) in traumatic shock

    International Nuclear Information System (INIS)

    Hock, C.E.; Craft, D.V.; Lefer, D.J.; Lefer, A.M.

    1986-01-01

    Both lipoxygenase inhibition and leukotriene receptor antagonism have been demonstrated to provide significant protection in traumatic shock. Despite these findings, leukotrienes have not been found in circulating blood in Noble-Collip drum induced traumatic shock using radioimmunoassay techniques. Anesthetized rats subjected to Noble-Collip drum trauma developed a shock state characterized by a significant reduction in mean arterial blood pressure, a 4.5 fold increase in plasma cathepsin D activity, a 3-fold increase in myocardial depressant factor activity and a mean survival time of 1.9 +/- 0.3 hours. Plasma and bile samples were analyzed by reverse phase high pressure liquid chromatography to determine LT production in this shock model. No detectable peptide leukotrienes or their metabolites were found in plasma. The major peptide leukotriene from bile eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 . This metabolite increased from 6 +/- 3 to 41 +/- 4 units in traumatic shock when compared to sham trauma (p 4 , LTD 4 and LTE 4 (10 μg/kg/h) also resulted in the metabolism of > 90% of the parent LT to this metabolite in bile. Therefore, plasma LTs accumulate in the bile following trauma in rats. Moreover, LTC 4 , LTD 4 and LTE 4 apparently are rapidly metabolized to N-acetyl LTE 4 . These findings further support a role for leukotrienes in the pathogenesis of traumatic shock in rats

  16. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem

  17. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  18. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  19. Time series analysis of reference crop evapotranspiration using soft computing techniques for Ganjam District, Odisha, India

    Science.gov (United States)

    Patra, S. R.

    2017-12-01

    Evapotranspiration (ET0) influences water resources and it is considered as a vital process in aridic hydrologic frameworks. It is one of the most important measure in finding the drought condition. Therefore, time series forecasting of evapotranspiration is very important in order to help the decision makers and water system mangers build up proper systems to sustain and manage water resources. Time series considers that -history repeats itself, hence by analysing the past values, better choices, or forecasts, can be carried out for the future. Ten years of ET0 data was used as a part of this study to make sure a satisfactory forecast of monthly values. In this study, three models: (ARIMA) mathematical model, artificial neural network model, support vector machine model are presented. These three models are used for forecasting monthly reference crop evapotranspiration based on ten years of past historical records (1991-2001) of measured evaporation at Ganjam region, Odisha, India without considering the climate data. The developed models will allow water resource managers to predict up to 12 months, making these predictions very useful to optimize the resources needed for effective water resources management. In this study multistep-ahead prediction is performed which is more complex and troublesome than onestep ahead. Our investigation proposed that nonlinear relationships may exist among the monthly indices, so that the ARIMA model might not be able to effectively extract the full relationship hidden in the historical data. Support vector machines are potentially helpful time series forecasting strategies on account of their strong nonlinear mapping capability and resistance to complexity in forecasting data. SVMs have great learning capability in time series modelling compared to ANN. For instance, the SVMs execute the structural risk minimization principle, which allows in better generalization as compared to neural networks that use the empirical risk

  20. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  1. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  2. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Energy Technology Data Exchange (ETDEWEB)

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)

    2010-04-21

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  3. Fluid flow profile in a packed bead column using residence time curves and radiotracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana Paula F. de; Gonçalves, Eduardo Ramos; Brandão, Luis Eduardo B.; Salgado, Cesar M., E-mail: anacamiqui@gmail.com, E-mail: egoncalves@con.ufrj.br, E-mail: brandao@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Filling columns are extremely important in the chemical industry and are used for purification, separation and treatment processes of gas or liquid mixtures. The objective of this work is to study the hydrodynamics of the fluid for a characterization of aqueous phase flow patterns in the filling column, associating with the methodology of the Curves of Residence Time Distribution (RTD) to analyze and associate theoretical models that put as conditions column operating. RTD can be obtained by using the pulse-stimulus response technique which is characterized by the instantaneous injection of a radiotracer into the system input. In this work, 68Ga was used as radiotracer. Five shielded and collimated NaI (Tl) 1 x 1″ scintillator detectors were suitably positioned to record the movement of the radiotracer's path in the conveying line and filling column. Making possible the analysis of the RTD curve in the regions of interest. With the data generated by the NaI (Tl) detectors with the passage of the radiotracer in the transport line and inside the column, it was possible to evaluate the flow profile of the aqueous phase and to identify operational failures, such as internal conduit and the existence of a retention zone in the inside the column. Theoretical models were used for different flow flows: the piston flow and perfect mixing. (author)

  4. Research on automatic inspection technique of real-time radiography for turbine-blade

    International Nuclear Information System (INIS)

    Zhou, Z.G.; Zhao, S.; An, Z.G.

    2004-01-01

    To inspect turbine blade automatically, with a real-time radiographic system based on X-ray flat panel detector, computerized defect extraction technique is studied on the basis of characteristics of turbine blade's digital radiographic images. At first, in the light of a variety of gray-level in a turbine blade's digital radiographic image, it is divided into six subareas. An adaptive median filter is used to smooth defects in each subarea. Then, the filtrated image is subtracted from the raw image and a difference image with flat background and outstanding defects is obtained. After that, thresholding is applied to the difference image and defects in the turbine blade become obvious. Later on, a morphological opening is used to realize noise reduction. In order to ensure the accuracy of defects, a region growing method is adopted to reconstruct the defects. Finally, the feature data of defects are extracted. The comparison between computerized feature extraction results and human interpretation results indicates that the method mentioned above is effective and efficient, which will lay a good foundation for automatic inspection of turbine-blade with X-ray. (author)

  5. Fluid flow profile in a packed bead column using residence time curves and radiotracer techniques

    International Nuclear Information System (INIS)

    Almeida, Ana Paula F. de; Gonçalves, Eduardo Ramos; Brandão, Luis Eduardo B.; Salgado, Cesar M.

    2017-01-01

    Filling columns are extremely important in the chemical industry and are used for purification, separation and treatment processes of gas or liquid mixtures. The objective of this work is to study the hydrodynamics of the fluid for a characterization of aqueous phase flow patterns in the filling column, associating with the methodology of the Curves of Residence Time Distribution (RTD) to analyze and associate theoretical models that put as conditions column operating. RTD can be obtained by using the pulse-stimulus response technique which is characterized by the instantaneous injection of a radiotracer into the system input. In this work, 68Ga was used as radiotracer. Five shielded and collimated NaI (Tl) 1 x 1″ scintillator detectors were suitably positioned to record the movement of the radiotracer's path in the conveying line and filling column. Making possible the analysis of the RTD curve in the regions of interest. With the data generated by the NaI (Tl) detectors with the passage of the radiotracer in the transport line and inside the column, it was possible to evaluate the flow profile of the aqueous phase and to identify operational failures, such as internal conduit and the existence of a retention zone in the inside the column. Theoretical models were used for different flow flows: the piston flow and perfect mixing. (author)

  6. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  7. Determining integral density distribution in the mach reflection of shock waves

    Science.gov (United States)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  8. Applying data mining techniques to medical time series: an empirical case study in electroencephalography and stabilometry

    Directory of Open Access Journals (Sweden)

    A. Anguera

    2016-01-01

    This paper illustrates the application of different knowledge discovery techniques for the purposes of classification within the above domains. The accuracy of this application for the two classes considered in each case is 99.86% and 98.11% for epilepsy diagnosis in the electroencephalography (EEG domain and 99.4% and 99.1% for early-age sports talent classification in the stabilometry domain. The KDD techniques achieve better results than other traditional neural network-based classification techniques.

  9. Shock Tube Measurements for Liquid Fuels Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald K

    2006-01-01

    ...) fundamental studies of fuel spray evaporation rates and ignition times of low-vapor pressure fuels such as JP-8, diesel fuel and normal alkane surrogates in a new aerosol shock tube using state...

  10. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  11. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    Science.gov (United States)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of

  12. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  13. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  14. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  15. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  16. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  17. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  18. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  19. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  20. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  1. Using the Delphi technique in economic evaluation: time to revisit the oracle?

    Science.gov (United States)

    Simoens, S

    2006-12-01

    Although the Delphi technique has been commonly used as a data source in medical and health services research, its application in economic evaluation of medicines has been more limited. The aim of this study was to describe the methodology of the Delphi technique, to present a case for using the technique in economic evaluation, and to provide recommendations to improve such use. The literature was accessed through MEDLINE focusing on studies discussing the methodology of the Delphi technique and economic evaluations of medicines using the Delphi technique. The Delphi technique can be used to provide estimates of health care resources required and to modify such estimates when making inter-country comparisons. The Delphi technique can also contribute to mapping the treatment process under investigation, to identifying the appropriate comparator to be used, and to ensuring that the economic evaluation estimates cost-effectiveness rather than cost-efficacy. Ideally, economic evaluations of medicines should be based on real-patient data. In the absence of such data, evaluations need to incorporate the best evidence available by employing approaches such as the Delphi technique. Evaluations based on this approach should state the limitations, and explore the impact of the associated uncertainty in the results.

  2. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET?

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Gang [Philadelphia VA Medical Center, Department of Radiology, Philadelphia, PA (United States); Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Torigian, Drew A.; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Zhuang, Hongming [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2013-05-15

    FDG PET and PET/CT are now widely used in oncological imaging for tumor characterization, staging, restaging, and response evaluation. However, numerous benign etiologies may cause increased FDG uptake indistinguishable from that of malignancy. Multiple studies have shown that dual time-point imaging (DTPI) of FDG PET may be helpful in differentiating malignancy from benign processes. However, exceptions exist, and some studies have demonstrated significant overlap of FDG uptake patterns between benign and malignant lesions on delayed time-point images. In this review, we summarize our experience and opinions on the value of DTPI and delayed time-point imaging in oncology, with a review of the relevant literature. We believe that the major value of DTPI and delayed time-point imaging is the increased sensitivity due to continued clearance of background activity and continued FDG accumulation in malignant lesions, if the same diagnostic criteria (as in the initial standard single time-point imaging) are used. The specificity of DTPI and delayed time-point imaging depends on multiple factors, including the prevalence of malignancies, the patient population, and the cut-off values (either SUV or retention index) used to define a malignancy. Thus, DTPI and delayed time-point imaging would be more useful if performed for evaluation of lesions in regions with significant background activity clearance over time (such as the liver, the spleen, the mediastinum), and if used in the evaluation of the extent of tumor involvement rather than in the characterization of the nature of any specific lesion. Acute infectious and non-infectious inflammatory lesions remain as the major culprit for diminished diagnostic performance of these approaches (especially in tuberculosis-endemic regions). Tumor heterogeneity may also contribute to inconsistent performance of DTPI. The authors believe that selective use of DTPI and delayed time-point imaging will improve diagnostic accuracy and

  3. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.

  4. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  5. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  6. Workflow and intervention times of MR-guided focused ultrasound - Predicting the impact of new techniques.

    Science.gov (United States)

    Loeve, Arjo J; Al-Issawi, Jumana; Fernandez-Gutiérrez, Fabiola; Langø, Thomas; Strehlow, Jan; Haase, Sabrina; Matzko, Matthias; Napoli, Alessandro; Melzer, Andreas; Dankelman, Jenny

    2016-04-01

    Magnetic resonance guided focused ultrasound surgery (MRgFUS) has become an attractive, non-invasive treatment for benign and malignant tumours, and offers specific benefits for poorly accessible locations in the liver. However, the presence of the ribcage and the occurrence of liver motion due to respiration limit the applicability MRgFUS. Several techniques are being developed to address these issues or to decrease treatment times in other ways. However, the potential benefit of such improvements has not been quantified. In this research, the detailed workflow of current MRgFUS procedures was determined qualitatively and quantitatively by using observation studies on uterine MRgFUS interventions, and the bottlenecks in MRgFUS were identified. A validated simulation model based on discrete events simulation was developed to quantitatively predict the effect of new technological developments on the intervention duration of MRgFUS on the liver. During the observation studies, the duration and occurrence frequencies of all actions and decisions in the MRgFUS workflow were registered, as were the occurrence frequencies of motion detections and intervention halts. The observation results show that current MRgFUS uterine interventions take on average 213min. Organ motion was detected on average 2.9 times per intervention, of which on average 1.0 actually caused a need for rework. Nevertheless, these motion occurrences and the actions required to continue after their detection consumed on average 11% and up to 29% of the total intervention duration. The simulation results suggest that, depending on the motion occurrence frequency, the addition of new technology to automate currently manual MRgFUS tasks and motion compensation could potentially reduce the intervention durations by 98.4% (from 256h 5min to 4h 4min) in the case of 90% motion occurrence, and with 24% (from 5h 19min to 4h 2min) in the case of no motion. In conclusion, new tools were developed to predict how

  7. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  8. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-01-01

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  9. Analysis of techniques for estimating evacuation times for emergency planning zones

    Energy Technology Data Exchange (ETDEWEB)

    Urbanik, T [Texas Transportation Institute (United States); Battelle Human Affairs Research Centers, Seattle, WA (United States); Desrosiers, A [Pacific Northwest Laboratory, Richland, WA (United States); Lindell, M K; Schuller, C R [Battelle Human Affairs Research Centers, Seattle, WA (United States)

    1980-11-01

    Limitations of current methodologies and some alternatives are discussed that point out that evacuation time is a combination of the time required for four separate actions. These are decision, notification, preparation, and response (travel) time. Times for these actions will overlap to some degree with some people receiving notification, some preparing to leave, and others traveling. Notification and preparation times significantly affect the evacuation time and must be known before time to clear an area can be calculated accurately. (author)

  10. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  11. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  12. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  13. Simulation and experimental tests of a real-time DPWM technique ...

    African Journals Online (AJOL)

    This control strategy is a simple and an easy technique generating the same switching ..... Inverter”, Energy Conversion Congress and Exposition (ECCE ), IEEE, ... Minimize the Switching Loss”, Innovative Smart Grid Technologies (ISGT Asia), ...

  14. Time to achieve target mean arterial pressure during resuscitation from experimental anaphylactic shock in an animal model. A comparison of adrenaline alone or in combination with different volume expanders.

    Science.gov (United States)

    Tajima, K; Zheng, F; Collange, O; Barthel, G; Thornton, S N; Longrois, D; Levy, B; Audibert, G; Malinovsky, J M; Mertes, P M

    2013-11-01

    Anaphylactic shock is a rare, but potentially lethal complication, combining life-threatening circulatory failure and massive fluid shifts. Treatment guidelines rely on adrenaline and volume expansion by intravenous fluids, but there is no solid evidence for the choice of one specific type of fluid over another. Our purpose was to compare the time to achieve target mean arterial pressure upon resuscitation using adrenaline alone versus adrenaline with different resuscitation fluids in an animal model and to compare the tissue oxygen pressures (PtiO2) with the various strategies. Twenty-five ovalbumin-sensitised Brown Norway rats were allocated to five groups after anaphylactic shock induction: vehicle (CON), adrenaline alone (AD), or adrenaline with isotonic saline (AD+IS), hydroxyethyl starch (AD+HES) or hypertonic saline (AD+HS). Time to reach a target mean arterial pressure value of 75 mmHg, cardiac output, skeletal muscle PtiO2, lactate/pyruvate ratio and cumulative doses of adrenaline were recorded. Non-treated rats died within 15 minutes. The target mean arterial pressure value was reached faster with AD+HES (median: 10 minutes, range: 7.5 to 12.5 minutes) and AD+IS (median: 17.5 minutes, range: 5 to 25 minutes) versus adrenaline alone (median: 25 minutes, range: 20-30 minutes). There were also reduced adrenaline requirements in these groups. The skeletal muscle PtiO2 was restored only in the AD+HES group. Although direct extrapolation to humans should be made with caution, our results support the combined use of adrenaline and volume expansion for resuscitation from anaphylactic shock. When used with adrenaline the most effective fluid was hydroxyethyl starch, whereas hypertonic saline was the least effective.

  15. USE OF IMAGE ENHANCEMENT TECHNIQUES FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY ON WEARABLE GADGETS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD EHSAN RANA

    2017-01-01

    Full Text Available The objective of this research is to study the effects of image enhancement techniques on face recognition performance of wearable gadgets with an emphasis on recognition rate.In this research, a number of image enhancement techniques are selected that include brightness normalization, contrast normalization, sharpening, smoothing, and various combinations of these. Subsequently test images are obtained from AT&T database and Yale Face Database B to investigate the effect of these image enhancement techniques under various conditions such as change of illumination and face orientation and expression.The evaluation of data, collected during this research, revealed that the effect of image pre-processing techniques on face recognition highly depends on the illumination condition under which these images are taken. It is revealed that the benefit of applying image enhancement techniques on face images is best seen when there is high variation of illumination among images. Results also indicate that highest recognition rate is achieved when images are taken under low light condition and image contrast is enhanced using histogram equalization technique and then image noise is reduced using median smoothing filter. Additionally combination of contrast normalization and mean smoothing filter shows good result in all scenarios. Results obtained from test cases illustrate up to 75% improvement in face recognition rate when image enhancement is applied to images in given scenarios.

  16. A software-based technique enabling composable hierarchical preemptive scheduling for time-triggered applications

    NARCIS (Netherlands)

    Nejad, A.B.; Molnos, A.; Goossens, K.G.W.

    2013-01-01

    Many embedded real-time applications are typically time-triggered and preemptive schedulers are used to execute tasks of such applications. Orthogonally, composable partitioned embedded platforms use preemptive time-division multiplexing mechanism to isolate applications. Existing composable systems

  17. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  18. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  19. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  20. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.