WorldWideScience

Sample records for shock pressure performance

  1. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  2. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  3. Performance of low-upper-shelf material under pressurized-thermal-shock loading (PTSE-2)

    International Nuclear Information System (INIS)

    Bryan, R.H.; Corwin, W.R.; Bass, B.R.; Nanstad, R.K.; Bolt, S.E.; Merkle, J.G.; Bryson, J.W.; Robinson, G.C.

    1988-01-01

    The second pressurized-thermal-shock experiment (Pse-2) of the Heavy-Section Steel Technology Program was conceived to investigate fracture behavior of steel with low ductile-tearing resistance. The experiment was performed in the pressurized-thermal-shock test facility at the Oak Ridge National Laboratory. PTSE-2 was designed primarily to reveal the interaction of ductile and brittle modes of fracture and secondarily to investigate the effects of warm pre-stressing. A test vessel was prepared by inserting a crack-like flaw of well-defined geometry on the outside surface of the vessel. The flaw was 1 m long by ∼ 15 mm deep. The instrumented vessel was placed in the test facility in which it ws initially heated to a uniform temperature and was then concurrently cooled on the outside and pressurized on the inside. These actions produced an evolution of temperature, toughness, and stress gradients relative to the prepared flaw that was appropriate to the planned objectives. The experiment was conducted in two separate transients, each one starting with the vessel nearly isothermal. The first transient induced a warm-prestressed state, during which K I first exceeded K Ic . This was followed by re-pressurization until a cleavage fracture propagated and arrested. The final transient was designed to produce and investigate a cleavage crack propagation followed by unstable tearing. During this transient, the fracture events occurred as had been planned. (author)

  4. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  5. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  6. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  7. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  8. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  9. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  10. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  11. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  12. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  13. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  14. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  15. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  16. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  17. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  18. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  19. Electrical conductivity of hydrogen shocked to megabar pressures

    International Nuclear Information System (INIS)

    Weir, S.T.; Nellis, W.J.; Mitchell, A.C.

    1993-08-01

    The properties of ultra-high pressure hydrogen have been the subject of much experimental and theoretical study. Of particular interest is the pressure-induced insulator-to-metal transition of hydrogen which, according to recent theoretical calculations, is predicted to occur by band-overlap in the pressure range of 1.5-3.0 Mbars on the zero temperature isotherm. Extremely high pressures are required for metallization since the low-pressure band gap is about 15 eV. Recent static-pressure diamond anvil cell experiments have searched for evidence of an insulator-to-metal transition, but no conclusive evidence for such a transition has yet been supplied. Providing conclusive evidence for hydrogen metallization is difficult because no technique has yet been developed for performing static high-pressure electrical conductivity experiments at megabar pressures. The authors report here on electrical conductivity experiments performed on H 2 and D 2 multi-shocked to megabar pressures. Electrical conductivities of dense fluid hydrogen at these pressures and temperatures reached are needed for calculations of the magnetic fields of Jupiter and Saturn, the magnetic fields being generated by convective dynamos of hot, dense, semiconducting fluid hydrogen. Also, since electrical conduction at the pressure-temperature conditions being studied is due to the thermal excitation of charge carriers across the electronic band gap, these experiments yield valuable information on the width of the band gap at high densities

  20. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  1. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  2. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  3. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  4. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  5. Probabilistic structural integrity of reactor vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Myung Jo Hhung; Young Hwan Choi; Hho Jung Kim; Changheui Jang

    2005-01-01

    Performed here is a comparative assessment study for the probabilistic fracture mechanics approach of the pressurized thermal shock of the reactor pressure vessel. A round robin consisting of 1 prerequisite study and 5 cases for probabilistic approaches is proposed, and all organizations interested are invited. The problems are solved and their results are compared to issue some recommendation of best practices in this area and to assure an understanding of the key parameters of this type of approach, which will be useful in the justification through a probabilistic approach for the case of a plant over-passing the screening criteria. Six participants from 3 organizations in Korea responded to the problem and their results are compiled in this study. (authors)

  6. Tolerance of Artemia to static and shock pressure loading

    Science.gov (United States)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  7. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  8. Shock circle model for ejector performance evaluation

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong

    2007-01-01

    In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods

  9. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  10. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  11. Measurements of Pressure of Extracorporeal Shock Wave Lithotripter Using Pressure-Sensitive Papers

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    This paper describes measurements of pressures at the focal region of the extracorporeal shock wave lithotripter (ESWL) using pressure-sensitive papers. At the focal region of ESWL, ordinary hydrophones are quickly damaged, because of very high pressures. Recently, measurements of pressure at the focal region of ESWL using pressure-sensitive paper have been advised. Therefore, we have studied the effectiveness of pressure-sensitive papers in the measurement of high acoustic pressures at the focal region of ESWL.

  12. On Time Performance Pressure

    Science.gov (United States)

    Connell, Linda; Wichner, David; Jakey, Abegael

    2013-01-01

    Within many operations, the pressures for on-time performance are high. Each month, on-time statistics are reported to the Department of Transportation and made public. There is a natural tendency for employees under pressure to do their best to meet these objectives. As a result, pressure to get the job done within the allotted time may cause personnel to deviate from procedures and policies. Additionally, inadequate or unavailable resources may drive employees to work around standard processes that are seen as barriers. However, bypassing practices to enable on-time performance may affect more than the statistics. ASRS reports often highlight on-time performance pressures which may result in impact across all workgroups in an attempt to achieve on-time performance. Reporters often provide in-depth insights into their experiences which can be used by industry to identify and focus on the implementation of systemic fixes.

  13. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  14. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  15. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  16. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  17. Pressurized thermal shock. Thermo-hydraulic conditions in the CNA-I reactor pressure vessel

    International Nuclear Information System (INIS)

    Ventura, Mirta A.; Rosso, Ricardo D.

    2002-01-01

    In this paper we analyze several reports issued by the Utility (Nucleo Electrica S.A.) and related to Reactor Pressure Vessel (RPV) phenomena in the CNA-I Nuclear Power Plant. These analyses are aimed at obtaining conclusions and establishing criteria ensuring the RPV integrity. Special attention was given to the effects ECCS cold-water injection at the RPV down-comer leading to pressurized thermal shock scenarios. The results deal with hypothetical primary system pipe breaks of different sizes, the inadvertent opening of the pressurizer safety valve, the double guillotine break of a live steam line in the containment and the inadvertent actuation pressurizer heaters. Modeling conditions were setup to represent experiments performed at the UPTF, under the hypothesis that they are representative of those that, hypothetically, may occur at the CNA-I. No system scaling analysis was performed, so this assertion and the inferred conclusions are no fully justified, at least in principle. The above mentioned studies, indicate that the RPV internal wall surface temperature will be nearly 40 degree. It was concluded that they allowed a better approximation of PTS phenomena in the RPV of the CNA-I. Special emphasis was made on the influence of the ECCS systems on the attained RPV wall temperature, particularly the low-pressure TJ water injection system. Some conservative hypothesis made, are discussed in this report. (author)

  18. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Dudžák, Roman; Folpini, G.; Giuffrida, L.; Gizzi, L.A.; Kalinowska, Z.; Koester, P.; Krouský, Eduard; Krůs, Miroslav; Labate, L.; Levato, Tadzio; Maheut, Y.; Malka, G.; Margarone, Daniele; Marocchino, A.; Nejdl, Jaroslav; Nicolai, Ph.; O’Dell, T.; Pisarczyk, T.; Renner, Oldřich; Rhee, Y.-J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Sawicka, Magdalena; Schiavi, A.; Skála, Jiří; Šmíd, Michal; Spindloe, Ch.; Ullschmied, Jiří; Velyhan, Andriy; Vinci, T.

    2014-01-01

    Roč. 21, č. 3 (2014), 032710-032710 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : High-pressure shocks * shock ignition * inertial confinement fusion * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4869715

  19. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  20. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  1. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    Science.gov (United States)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase

  2. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  3. Potential effect of fracture technology on IPTS [Integrated Pressurized Thermal Shock] analysis (Fracture toughness: Kla and Klc and warm prestressing)

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1990-01-01

    A major nuclear plant life extension issue to be confronted in the 1990's is pressure vessel integrity for the pressurized thermal shock (PTS) loading condition. Governing criteria associated with PTS are included in ''The PTS Rule'' (10 CFR 50.61) and Regulatory Guide 1.154: Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors. The results of the Integrated Pressurized Water Reactors. The results of the Integrated Pressurized Thermal Shock (IPTS) Program, along with risk assessments and fracture analyses performed by the NRC and reactor system vendors, contributed to the derivation of the PTS Rule. Over the last several years, the Heavy Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) has performed a series of large-scale fracture-mechanics experiments. The Thermal Shock Experiments (TSE), Pressurized Thermal Shock Experiments (PTSE), and Wide Plate Experiments (WPE) produced K IC and K Ia data that suggest increased mean K IC and K Ia curves relative to the ones used in the IPTS study. Also, the PTSE and WPE have demonstrated that prototypical nuclear reactor pressure vessel steels are capable of arresting a propagating crack at K I values considerably above 220 MPa√m, the implicit limit of the ASME Code and the limit used in the IPTS studies. This document provides a discussion of the results of these experiments

  4. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); MacPherson, W N [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Barton, J S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, J D C [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Tyas, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Pichugin, A V [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Hindle, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Parkes, W [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Dunare, C [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Stevenson, T [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom)

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm{sup 2} in overall cross-section with rise times in the {mu}s regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.

  5. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    International Nuclear Information System (INIS)

    Watson, S; MacPherson, W N; Barton, J S; Jones, J D C; Tyas, A; Pichugin, A V; Hindle, A; Parkes, W; Dunare, C; Stevenson, T

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm 2 in overall cross-section with rise times in the μs regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front

  6. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  7. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  8. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  9. Performance data of the new free-piston shock tunnel T5 at GALCIT

    Science.gov (United States)

    Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.

    1992-01-01

    A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.

  10. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Hallouin, M.; Romain, J.P. (GRECO ILM, Laboratoire d' Enegetique et Detonique, ENSMA, 86 - Poitiers (France)); Fabbro, R.; Faral, B. (GRECO ILM, Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91 - Palaiseau (France))

    1984-11-01

    Laser-driven shock pressures up to 5 TPa at 0.26 ..mu..m wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil.

  11. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    International Nuclear Information System (INIS)

    Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.

    1984-01-01

    Laser-driven shock pressures up to 5 TPa at 0.26 μm wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil

  12. Probabilistic fracture mechanics analysis of reactor vessel for pressurized thermal shock: the effect of residual stress and fracture toughness

    International Nuclear Information System (INIS)

    Jung, Sung Gyu; Jin, Tae Eun; Jhung, Myung Jo; Choi, Young Hwan

    2003-01-01

    The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated

  13. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  14. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  15. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  16. PNL technical review of pressurized thermal-shock issues

    International Nuclear Information System (INIS)

    Pedersen, L.T.; Apley, W.J.; Bian, S.H.; Defferding, L.J.; Morgenstern, M.H.; Pelto, P.J.; Simonen, E.P.; Simonen, F.A.; Stevens, D.L.; Taylor, T.T.

    1982-07-01

    Pacific Northwest Laboratory (PNL) was asked to develop and recommend a regulatory position that the Nuclear Regulatory Commission (NRC) should adopt regarding the ability of reactor pressure vessels to withstand the effects of pressurized thermal shock (PTS). Licensees of eight pressurized water reactors provided NRC with estimates of remaining effective full power years before corrective actions would be required to prevent an unsafe operating condition. PNL reviewed these responses and the results of supporting research and concluded that none of the eight reactors would undergo vessel failure from a PTS event before several more years of operation. Operator actions, however, were often required to terminate a PTS event before it deteriorated to the point where failure could occur. Therefore, the near-term (less than one year) recommendation is to upgrade, on a site-specific basis, operational procedures, training, and control room instrumentation. Also, uniform criteria should be developed by NRC for use during future licensee analyses. Finally, it was recommended that NRC upgrade nondestructive inspection techniques used during vessel examinations and become more involved in the evaluation of annealing requirements

  17. Effects of arm elevation on radial artery pressure: a new method to distinguish hypovolemic shock and septic shock from hypotension.

    Science.gov (United States)

    Xie, Zhiyi; Zhang, Zhenyu; Xu, Yuan; Zhou, Hua; Wu, Sheng; Wang, Zhong

    2018-06-01

    In this prospective observational study, we investigated the variability in radial artery invasive blood pressure associated with arm elevation in patients with different hemodynamic types. We carried out a prospective observational study using data from 73 general anesthesia hepatobiliary postoperative adult patients admitted to an ICU over a 1-year period. A standard procedure was used for the arm elevation test. The value of invasive radial arterial pressure was recorded at baseline, and 30 and 60 s after the arm had been raised from 0° to 90°. We compared the blood pressure before versus after arm elevation, and between hemodynamically stable, hypovolemic shock, and septic shock patient groups. In all 73 patients, systolic arterial pressure (SAP) decreased, diastolic arterial pressure (DAP) increased, and pulse pressure (PP) decreased at 30 and 60 s after arm elevation (Ppressure (MAP) was unchanged (P>0.05). On comparing 30 and 60 s, there was no significant difference in SAP, DAP, PP, or MAP (P>0.05). In 40 hemodynamically stable patients, SAP and PP decreased, and DAP and MAP increased significantly at 30 and 60 s after arm elevation compared with baseline (P0.05). In 17 patients with septic shock, SAP, PP, and MAP decreased significantly versus baseline at 30 and 60 s (P0.05). Comparison of the absolute value of pressure change of septic shock patients at 30 s after raising the arm showed that SAP, DAP, and MAP changes were significantly lower compared with those in hypovolemic shock and hemodynamically stable patients (Parm elevation of SAP. The best cut-off point for the SAP change value was -5 mmHg or less, with a sensitivity of 94.12%, a specificity of 80.36%, a positive likelihood ratio of 4.79 (95% CI: 2.8-8.2), and a negative likelihood ratio of 0.073 (95% CI: 0.01-0.5). Our study shows that hypovolemic shock and septic shock patients have significantly different radial artery invasive blood pressure changes in an arm elevation test

  18. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    Vogl, D.F.

    2000-10-01

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the

  19. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  20. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    Science.gov (United States)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company

  1. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock

    International Nuclear Information System (INIS)

    Ognibene, F.P.; Parker, M.M.; Natanson, C.; Shelhamer, J.H.; Parrillo, J.E.

    1988-01-01

    Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was a strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock

  2. Spatial distribution of cavitation-shock-pressure around a jet-flow gate-valve

    International Nuclear Information System (INIS)

    Oba, Risaburo; Takayama, Kazuyoshi; Ito, Yukio; Miyakura, Hideto; Nozaki, Satoru; Ishige, Tadashi; Sonoda, Shuji; Sakamoto, Kenji.

    1987-01-01

    To make clear the mechanism of cavitation erosion, the spatial distribution of cavitation shock pressures were quantitatively measured by a pressure sensitive sheet in the 1/10 scale model of a jet-flow gate-valve, for various valve-openings and cavitation numbers. The dynamic pressure response of the sheet was corrected by the shock wave generated from detonation explosives. It is made clear that the erosive shock pressures are distributed in a limited part of the whole cavitation region, and the safety region without the fatal cavitation erosion is defined. (author)

  3. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  4. Banking System Shocks and REIT Performance

    OpenAIRE

    Olliges, Jan-Willem; Raudszus, Malte H.; Mueller, Glenn R.

    2013-01-01

    The purpose of this study is to directly contrast the REIT market’s stock return response to bank failures versus bank bailouts. The non-negativity constraints of the GARCH model measuring risk dynamics are mitigated by the use of the EGARCH model. EGARCH accounts for non-symmetrical effects of risk adjustments in response to return shocks. Previous research shows that bank failures cause a positive abnormal return effect for REITs. This confirms the expectation that during crises, market par...

  5. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  6. The effect of hydrostatic vs. shock pressure treatment of plant seeds

    International Nuclear Information System (INIS)

    Mustey, A; Leighs, J A; Appleby, G J; Wood, D C; Hazael, R; McMillan, P F; Hazell, P J

    2014-01-01

    The hydrostatic pressure and shock response of plant seeds has been investigated antecedently, primarily driven by interest in reducing bacterial contamination of crops and the theory of panspermia, respectively. However, comparisons have not previously been made between these two methods ofapplying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in collected data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder setup and shock compression via employment of a 50 mm bore, single stage gas gun using the flyer plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set. Data collected has shown that cress seeds are extremely resilient to static loading, whereas the difference in the two forms of loading is negligible for lettuce seeds. Germination time has been seen to extend dramatically following static loading of cress seeds to greater than 0.4 GPa. In addition, the cut-off pressure previously seen to cause 0% germination in dynamic experiments performed on cress seeds has now also been seen in lettuce seeds.

  7. The effect of hydrostatic vs. shock pressure treatment of plant seeds

    Science.gov (United States)

    Mustey, A.; Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.; Hazell, P. J.

    2014-05-01

    The hydrostatic pressure and shock response of plant seeds has been investigated antecedently, primarily driven by interest in reducing bacterial contamination of crops and the theory of panspermia, respectively. However, comparisons have not previously been made between these two methods ofapplying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in collected data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder setup and shock compression via employment of a 50 mm bore, single stage gas gun using the flyer plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set. Data collected has shown that cress seeds are extremely resilient to static loading, whereas the difference in the two forms of loading is negligible for lettuce seeds. Germination time has been seen to extend dramatically following static loading of cress seeds to greater than 0.4 GPa. In addition, the cut-off pressure previously seen to cause 0% germination in dynamic experiments performed on cress seeds has now also been seen in lettuce seeds.

  8. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  9. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  10. An integrity evaluation method of the pressure vessel of nuclear reactors under pressurized thermal shock

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Okamura, Hiroyuki.

    1987-01-01

    Present paper proposes a new algorithm of the integrity evaluation of the pressure vessel of nuclear reactors under pressurized thermal shock, PTS. This method enables us to do an effective evaluation by superimposing proposed ''PTS state-transient curves'' and ''toughness transient curves'', and is superior to a conventional one in the following points; (1) easy to get an overall view of the result of PTS event for the variations of several parameters, (2) possible to evaluate a safety margin for irradiation embrittlement, and (3) enable to construct an Expert-friendly evaluation system. In addition, the paper shows that we can execute a safety assurance test by using a flat plate model with the same thickness as that of real plant. (author)

  11. Overview of the Integrated Pressurized Thermal-Shock (IPTS) study

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1990-01-01

    By the early 1980s, (PTS)-related, deterministic, vessel-integrity studies sponsored by the US Nuclear Regulatory Commission (NRC) indicated a potential for failure of some PWR vessels before design end of life, in the event of a postulated severe PTS transient. In response, the NRC established screening criteria, in the form of limiting values of the reference nil-ductility transition temperature (RT NDT ), and initiated the development of a probabilistic methodology for evaluating vessel integrity. This latter effort, referred to as the Integrated Pressurized Thermal-Shock (IPTS) Program, included development of techniques for postulating PTS transients, estimating their frequencies, and calculating the probability of vessel failure for a specific transient. Summing the products of frequency of transient and conditional probability of failure for each of the many postulated transients provide a calculated value of the frequency of failure. The IPTS Program also included the application of the IPTS methodology to three US PWR plants (Oconee-1, Calvert Cliffs-1, and HBRobinson-2) and the specification of a maximum permissible value of the calculated frequency of vessel failure. Another important purpose of the IPTS study was to determine, through application of the IPTS methodology, which design and operating features, parameters, and PTS transients were dominant in affecting the calculated frequency of failure. The scope of the IPTS Program included the development of a probabilistic fracture-mechanics capability, modification of the TRAC and RELAP5 thermal/hydraulic codes, and development of the methodology for estimating the uncertainty in the calculated frequency of vessel failure

  12. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  13. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB{sub 2} samples

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Wataru [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Takenaka, Kenta [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Kondo, Tadashi [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Tamaki, Hideyuki [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan); Matsuzawa, Hidenori [Graduate School of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511 (Japan)]. E-mail: matuzawa@mx3.nns.ne.jp; Kai, Shoichiro [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Kakimoto, Etsuji [Advanced Materials and Process Development Group, Explosive Division, Asahi Kasei Chemicals Corporation, Oita 870-0392 (Japan); Takano, Yoshihiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Minehara, Eisuke [FEL Laboratory, Tokai Site, Japan Atomic Energy Research Institute, Shirakata-shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2006-09-15

    Three different cylindrical MgB{sub 2} bulk samples were prepared by the underwater shock consolidation method in which shock waves of several GPa, generated by detonation of explosives, were applied to a metallic cylinder containing commercially available MgB{sub 2} powders with no additives. Resistivity anisotropy of the samples increased with shock pressure. The highest- and medium-pressure applied samples had finite resistivities in the radial direction for the whole temperature range down to 12 K, whereas their axial and azimuthal resistivities dropped to zero at 32-35 K. By contrast, the lowest-pressure applied sample was approximately isotropic with a normal-state resistivity of {approx}40 {mu}{omega} cm, an onset temperature of {approx}38.5 K, and a transition width of {approx}4.5 K. These extremely anisotropic properties would have resulted from the distortion of grain boundaries and grain cores, caused by the shock pressures and their repeated bouncing.

  14. First all-union symposium on shock pressures, October 24-26, 1973, Moscow. Volume 2

    International Nuclear Information System (INIS)

    Batsanov, S.S.

    Twenty-two papers on the chemistry of impulsive pressures are contained in this volume. The papers deal primarily with shock wave propagation in various materials (particularly oxides) and explosive forming and sintering

  15. The effects of area contraction on the performance of UNITEN's shock tube: Numerical study

    International Nuclear Information System (INIS)

    Mohsen, A M; Yusoff, M Z; Al-Falahi, A

    2013-01-01

    Numerical study into the effects of area contraction on shock tube performance has been reported in this paper. The shock tube is an important component of high speed fluid flow test facility was designed and built at the Universiti Tenaga Nasional (UNITEN). In the above mentioned facility, a small area contraction, in form of a bush, was placed adjacent to the diaphragm section to facilitate the diaphragm rupturing process when the pressure ratio across the diaphragm increases to a certain value. To investigate the effects of the small area contraction on facility performance, numerical simulations were conducted at different operating conditions (diaphragm pressure ratios P 4 /P 1 of 10, 15, and 20). A two-dimensional time-accurate Navier-Stokes CFD solver was used to simulate the transient flow in the facility with and without area contraction. The numerical results show that the facility performance is influenced by area contraction in the diaphragm section. For instance, when operating the facility with area contraction using diaphragm pressure ratio (P 4 /P 1 ) of 10, the shock wave strength and shock wave speed decrease by 18% and 8% respectively.

  16. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  17. Application of pressure-sensitive paint in shock-boundary layer interaction experiments

    OpenAIRE

    Seivwright, Douglas L.

    1996-01-01

    Approved for public release; distribution is unlimited A new type of pressure transducer, pressure-sensitive paint, was used to obtain pressure distributions associated with shock-boundary layer interaction. Based on the principle of photoluminescence and the process of oxygen quenching, pressure-sensitive paint provides a continous mapping of a pressure field over a surface of interest. The data measurement and acquisition system developed for use with the photoluminescence sensor was eva...

  18. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  19. RETRAN applications in pressurized thermal shock analysis of turkey point units 3 and 4

    International Nuclear Information System (INIS)

    Arpa, J.; Fatemi, A.S.; Mathavan, S.K.

    1985-01-01

    A methodology to assess the impact of overcooling transients on vessel wall integrity with respect to pressurized thermal shock conditions has been developed at Florida Power and Light Company for the Turkey Point Nuclear Units. Small break loss-of-coolant and small steamline break events have been simulated with the RETRAN code. Highly conservative assumptions, such as engineered safeguards with minimum temperature and maximum flow, have been made to maximize cooldown and thermal stress in the vessel wall. Temperatures, pressures, and flows obtained with RETRAN provide input for stress and fracture mechanics analyses that evaluate reactor vessel integrity. The results of the RETRAN analyses compare well with generic calculations performed by the Westinghouse Owners Group for a similar type of plant

  20. Parametric study on the performance of automotive MR shock absorbers

    Science.gov (United States)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  1. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  2. Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    International Nuclear Information System (INIS)

    Erfani, Rasool; Zare-Behtash, Hossein; Kontis, Konstantinos

    2012-01-01

    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma. (paper)

  3. Safety in pipeline systems. Prevention of pressure shocks and cavitation shocks; Sichere Rohrleitungssysteme. Vermeidung von Druckstoessen und Kavitationsschlaegen

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.-M. [Forschungszentrum Rossendorf, Dresden (Germany); Dudlik, Andreas; Schoenfeld, Sri Budi Handajani; Apostolidis, Alexander; Schlueter, Stefan [Fraunhofer-Institut UMSICHT, Oberhausen (Germany)

    2002-06-01

    The Fraunhofer institute UMSICHT, Oberhausen, and Rossendorf research centre FZR investigated the causes and consequences of pressure shocks and cavitation shocks and ways to prevent them. The experimental set-up and software tools were made available. New methods for preventing pressure shocks and cavitation shocks were developed, and armatures were developed on this basis which are also suited for retrofitting. [German] In Rohrleitungssystemen koennen durch instationaere Stroemungsvorgaenge gefaehrliche Betriebsbedingungen entstehen, die infolge von mehrfach erhoehtem Systemdruck und von Lasteintraegen in Halterungen Mensch und Umwelt erheblich schaedigen. Je nach Industriebranche koennen unterschiedliche betriebsbedingte Ursachen zu sog. Druckstoessen, Kavitations- und Kondensationsschlaegen fuehren, z.B. Kontaktkondensation von Dampf und Wasser oder ploetzliche Aenderung der Fluessigkeitsgeschwindigkeit. Das Fraunhofer-Institut UMSICHT in Oberhausen und das Forschungszentrum Rossendorf FZR untersuchen Ursachen, Folgen und Moeglichkeiten zur Vermeidung von Druckstoessen und Kavitationsschlaegen. Hierzu stehen Versuchsanlagen unterschiedlichen Massstabs sowie Softwaretools zur Verfuegung. Aus den Forschungsergebnissen wurden neue Methoden zur Vermeidung von Druckstoessen und Kavitationsschlaegen entwickelt. Hierbei werden neue oder vorhandene Absperrarmaturen mit einem hydraulischen Bremssystem ausgeruestet und mit einer Rueckschlagklappe kombiniert angeordnet. Das System gilt auch fuer bereits existierende Anlagen als besonders geeignet, da es keine Hilfsenergie benoetigt und sich an Aenderungen der Systemparameter Druck und Fliessgeschwindigkeit selbststaendig anpasst. (orig.)

  4. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  5. Pressurized-thermal-shock experiments: PTSE-1 results and PTSE-2 plans

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Wanner, R.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1985-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) was performed with a vessel with a 1-m-long flaw in a plug of specially tempered steel having the composition of SA-508 forging steel. The second experiment (PTSE-2) will have a similar arrangement, but the material in which the flaw will be implanted is being prepared to have low tearing resistance. Special tempering of a 2 1/4 Cr - 1 Mo steel plate has been shown to induce a low Charpy impact energy in the upper-shelf temperature range. The purpose of PTSE-2 is to investigate the fracture behavior of low-upper-shelf material in a vessel under the combined loading of concurrent pressure and thermal shock. The primary objective of the experimental plan is to induce a rapidly propagating cleavage fracture under conditions that are likely to induce a ductile tearing instability at the time of arrest of the cleavage fracture. The secondary objective of the test is to extend the range of the investigation of warm prestressing. 11 figs

  6. Effect of back-pressure forcing on shock train structures in rectangular channels

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  7. Pressurized thermal shock evaluation of RPV-Stade

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.; Siegele, D.; Nagel, G.; Hertlein, D.

    1997-01-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity)

  8. Pressurized thermal shock evaluation of RPV-Stade

    Energy Technology Data Exchange (ETDEWEB)

    Blauel, J G; Hodulak, L; Siegele, D [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg im Breisgau (Germany); Nagel, G [PreussenElektra AG, Hannover (Germany); Hertlein, D [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    The presentation overviews the following issues: thermal shock analysis (thermohydraulics, temperatures and stresses, crack tip field parameters, cladding influence, methodology of fracture mechanics assessment); EOL safety evaluation for RPV Stade (initial conditions and input data, fracture toughness, load path diagrams, warm prestress effect, crack arrest, remaining load carrying capacity).

  9. Analysis of crack behavior in the JRC Ispra pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The analytical work performed in the framework of the Pressurized Thermal Shock (PTS) experimental research at the JRC Ispra, Italy, is described in the paper. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been tackled. FRAP is used as a front-end for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack analysis performed by the JRC Ispra code COVASTOL. Only the preliminary results of application of FRAP, ABAQUS and COVASTOL codes in the experiment are given in this paper, in order to illustrate the applied analytical procedure. (orig.)

  10. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  11. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  12. Formation of omega phase under shock pressure, hydrostatic pressure and irradiation

    International Nuclear Information System (INIS)

    Dey, G.K.

    2016-01-01

    The omega transformation is one of the most intriguing phase transformations. The aspects which make it unique and interesting are the facts that this phase can form from two different parent phases viz. the alpha phase and the beta phase. The alpha to omega transformation has been observed under shock and static pressure and the mechanism involved has been studied in detail. Starting from the nucleation stage to the completion of the transformation, various interesting aspects of the mechanism of transformation has emerged in these studies. Although the parent and product phases are same under these conditions of transformation, a variation in the morphology and the kinetics of the product phase indicate different pathways for alpha to omega transformations. Similarly, the beta to omega transformation is also replete with several interesting features. This transformation can occur under application of pressure, thermal activation and also under irradiation. Here again the morphology of the product phase, the nucleation mechanisms and the kinetics of the phase transformation depend on the path of transformation, though the parent and product phases are same in each path. This presentation highlights the formation of the omega phase under different activations including the ones in extreme conditions in pure Zr and Zr based alloys. Theoretical aspects of the feasibility, pathways and kinetics of the transformations are also emphasized. (author)

  13. Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Chen, Mingya; Lu, Feng; Wang, Rongshan; Ren, Ai

    2014-01-01

    Highlights: • The regulation and the code are proved to be conservative in the integrity assessment. • This study is helpful to understand the complex influence of the parameters. • The most dangerous case is given for the reference transient. - Abstract: Fracture mechanics analysis of pressurized thermal shock (PTS) is the key element of the integrity evaluation of the nuclear reactor pressure vessel (RPV). While the regulation of 10 CFR 50.61 and the ASME Code provide the guidance for the structural integrity, the guidance has been prepared under conservative assumptions. In this paper, the effects of conservative assumptions involved in the PTS analysis were investigated. The influence of different parameters, such as crack size, cladding effect and neutron fluence, were reviewed based on 3-D finite element analyses. Also, the sensitivity study of elastic–plastic approach, crack type and cladding thickness were reviewed. It was shown that crack depth, crack type, plastic effect and cladding thickness change the safety margin (SM) significantly, and the SM at the deepest point of the crack is not always smaller than that of the surface point, indicating that both the deepest and surface points of the crack front should be considered. For the reference transient, deeper cracks always give more conservative prediction. So compared to the prescribed analyses of a set of postulated defects with varying depths in the ASME code, it only needs to assess the crack with maximum depth in the code for the reference transient according to the conclusions

  14. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  15. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  16. Shock pressure induced by 0.44 mu m laser radiation on aluminum targets

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Stabile, H.; Ravasio, A.; Desai, T.; Lucchini, G.; Strati, F.; Ullschmied, Jiří; Krouský, Eduard; Skála, Jiří; Králiková, Božena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Nishimura, H.; Ochi, Y.; Kilpio, A.; Shashkov, E.; Stuchebrukhov, I.; Vovchenko, V.; Krasuyk, I.

    2003-01-01

    Roč. 21, č. 4 (2003), s. 481-487 ISSN 0263-0346 R&D Projects: GA MŠk LN00A100 Grant - others:HPRI-CT(XX) 1999-00053 Institutional research plan: CEZ:AV0Z2043910 Keywords : rear target luminosity, shock pressure, shock waves Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.646, year: 2003

  17. Pressurized thermal shock analysis in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Stefan; Braun, Michael [TUEV NORD Nuclear, Hannover (Germany)

    2015-03-15

    For more than 30 years TUeV NORD is a competent consultant in nuclear safety is-sues giving expert third party opinion to our clients. According to the German regulations the safety against brittle fracture has to be proved for the reactor pressure vessel (RPV) and with a new level of knowledge the proof has to be continuously updated with the development in international codes and standards like ASME, BS and RCC-M. The load of the RPV is a very complex transient pressure and temperature situation. Today these loading conditions can be modeled by thermal hydraulic calculations and new experimental results much more detailed than in the construction phase of German Nuclear Power Plants in the 1980s. Therefore, the proof against brittle fracture from the construction phase had to be updated for all German Nuclear Power Plants with the new findings of the loading conditions especially for a postulated small leakage in the main coolant line. The RPV consists of ferritic base material (about 250 mm) and austenitic cladding (about 6 mm) at the inner side. The base material and the cladding have different physical properties which have to be considered temperature dependently in the cal-culations. Radiation-embrittlement effects on the material are to be respected in the fracture mechanics assessment. The regions of the RPV of special interest are the core weld, the inlet and outlet nozzle region and the flange connecting weld zone. The fracture mechanics assessment is performed for normal and abnormal operating conditions and for accidents like LOCA (Loss of Coolant Accident). In this paper the German approach to fracture mechanics assessment to brittle fracture will be discussed from the point of view of a third party organization.

  18. Pressurized thermal shock in nuclear power plants: Good practices for assessment. Deterministic evaluation for the integrity of reactor pressure vessel

    International Nuclear Information System (INIS)

    2010-02-01

    Starting in the early 1970s, a series of coordinated research projects (CRPs) was sponsored by the IAEA focusing on the effects of neutron radiation on reactor pressure vessel (RPV) steels and RPV integrity. In conjunction with these CRPs, many consultants meetings, specialists meetings, and international conferences, dating back to the mid-1960s, were held. Individual studies on the basic phenomena of radiation hardening and embrittlement were also performed to better understand increases in tensile strength and shifts to higher temperatures for the integrity of the RPV. The overall objective of this CRP was to perform benchmark deterministic calculations of a typical pressurized thermal shock (PTS) regime, with the aim of comparing the effects of individual parameters on the final RPV integrity assessment, and then to recommend the best practices for their implementation in PTS procedures. At present, several different procedures and approaches are used for RPV integrity assessment for both WWER 440-230 reactors and pressurized water reactors (PWRs). These differences in procedures and approaches are based, in principle, on the different codes and rules used for design and manufacturing, and the different materials used for the various types of reactor, and the different levels of implementation of recent developments in fracture mechanics. Benchmark calculations were performed to improve user qualification and to reduce the user effect on the results of the analysis. This addressed generic PWR and WWER types of RPV, as well as sensitivity analyses. The complementary sensitivity analyses showed that the following factors significantly influenced the assessment: flaw size, shape, location and orientation, thermal hydraulic assumptions and material toughness. Applying national codes and procedures to the benchmark cases produced significantly different results in terms of allowable material toughness. This was mainly related to the safety factors used and the

  19. Avoiding pressure shocks in HP blowdown lines; Vermeidung von Druckstossen in einer HD-Abschlammleitung

    Energy Technology Data Exchange (ETDEWEB)

    Stemme, R. [GESTRA AG, Bremen (Germany); Klackl, J. [EICHLER GmbH, Wien (Austria)

    2007-06-15

    Intermittent blowdown valves are installed in steam boilers as close as possible to the drum in order to avoid hydraulic pressure shocks. In the here presented case in the district heating plant Wels in Austria (gas-heated steam boiler 25 t/h 69 bar/290 C) this was not possible, and as a consequence the intermittent blowdown valves were damaged. By selecting valves suitable for this particular operating condition we have found a way to prevent pressure shocks. This example shows clearly that not only the operating data but also the right selection of the most suitable valve are of prime importance. (orig.)

  20. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  1. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  2. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  3. Performance pressure and organizational change

    DEFF Research Database (Denmark)

    Nielsen, Peter

    2016-01-01

    During the last ten years, employees in both the Danish health and the education sector have experienced political reforms, which have increased performance pressure and organizational change. Both sectors are characterized by professional organizations in which knowledge is important. This article...... sets focus on the dynamics of professional work relations approached as knowledge organization and investigate how the employees experience the organizational change and whether they are involved directly or indirectly in the change processes. It further investigates the influence of autonomy...... private and public workplaces at the employer and employee level. Data was collected in spring 2012 and resulted in a research sample of 617 private and public workplaces and 3362 employees. 543 are employed in 94 public education workplaces and 700 in 128 public health workplaces. The results...

  4. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  5. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  6. Pressurized thermal shocks: the JRC Ispra experimental test rig and analytical results

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The paper tackles some issues of particular interest for the remanent (remaining) life prediction for the pressurized components exposed to pressurized thermal shock (PTS) loads, that have been tackled in analytical work performed in the framework of the MPA - JRC collaboration for the PTS experimental research at the JRC Ispra. These issues regard in general application of damage mechanics, fracture mechanics and artificial intelligence (including the treatment of uncertainties in the PTS analysis and experiments). The considered issues are essential for further understanding and modelling of the crack behaviour and of the component response in PTS conditions. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been explained more in detail. FRAP is used as a frontend, for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack growth analysis performed by the COVASTOL code. (author)

  7. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  8. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    International Nuclear Information System (INIS)

    Rogers, F.J.; Young, D.A.

    1997-01-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. copyright 1997 The American Physical Society

  9. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Science.gov (United States)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  10. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Young, D.A. [Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. {copyright} {ital 1997} {ital The American Physical Society}

  11. Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation

    NARCIS (Netherlands)

    Sinaasappel, M.; van Iterson, M.; Ince, C.

    1999-01-01

    1. The aim of this study was to investigate the relation between microvascular and venous oxygen pressures during haemorrhagic shock and resuscitation in the pig intestine. To this end microvascular PO2 (microPO2) was measured by quenching of Pd-porphyrin phosphorescence by oxygen and validated for

  12. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    OpenAIRE

    Wei Cai; Yanyan Zhang

    2016-01-01

    We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  13. The probabilistic structural integrity assessment of reactor pressure vessels under pressurized thermal shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya, E-mail: chenmingya@cgnpc.com.cn [Suzhou Nuclear Power Research Institute, 215004 Suzhou, Jiangsu Province (China); Lu, Feng; Wang, Rongshan; Yu, Weiwei [Suzhou Nuclear Power Research Institute, 215004 Suzhou, Jiangsu Province (China); Wang, Donghui [State Nuclear Power Plant Service Company, 200237 Shanghai (China); Zhang, Guodong; Xue, Fei [Suzhou Nuclear Power Research Institute, 215004 Suzhou, Jiangsu Province (China)

    2015-12-01

    Highlights: • The methodology and the case study of the FAVOR software were shown. • The over-conservative parameters in the DFM were shown. • The differences between the PFM and the DFM were discussed. • The limits in the current FAVOR were studied. - Abstract: The pressurized thermal shock (PTS) event poses a potentially significant challenge to the structural integrity of the reactor pressure vessel (RPV) during the long time operation (LTO). In the USA, the “screening criteria” for maximum allowable embrittlement of RPV material, which forms part of the USA regulations, is based on the probabilistic fracture mechanics (PFM). The FAVOR software developed by Oak Ridge National Laboratory (ORNL) is used to establish the regulation. As the technical basis of FAVOR is not the most widely-used and codified methodologies, such as the ASME and RCC-M codes, in most countries (with exception of the USA), proving RPV integrity under the PTS load is still based on the deterministic fracture mechanics (DFM). As the maximum nil-ductility-transition temperature (RT{sub NDT}) of the beltline material for the 54 French RPVs after 40 years operation is higher than the critical values in the IAEA-TECDOC-1627 and European NEA/CSNI/R(99)3 reports (while still obviously lower than the “screening criteria” of the USA), it may conclude that the RPV will not be able to run in the LTO based on the DFM. In the FAVOR, the newest developments of fracture mechanics are applied, such as the warm pre-stress (WPS) effect, more accurate estimation of the flaw information and less conservation of the toughness (such as the three-parameter Weibull distribution of the fracture toughness). In this paper, the FAVOR software is first applied to show both the methodology and the results of the PFM, and then the limits in the current FAVOR software (Version 6.1, which represents the baseline for re-assessing the regulation of 10 CFR 50.61), lack of the impact of the constraint effect

  14. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Science.gov (United States)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  15. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  16. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  17. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    CERN Document Server

    Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  18. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J P [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Bonneau, F [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France); Dayma, G [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Boustie, M [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Resseguier, T de [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Combis, P [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France)

    2002-11-11

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm{sup -2}. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm{sup -2}, the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  19. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    International Nuclear Information System (INIS)

    Romain, J P; Bonneau, F; Dayma, G; Boustie, M; Resseguier, T de; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm -2 . The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence -2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface

  20. Central venous pressure and shock index predict lack of hemodynamic response to volume expansion in septic shock: a prospective, observational study.

    Science.gov (United States)

    Lanspa, Michael J; Brown, Samuel M; Hirshberg, Eliotte L; Jones, Jason P; Grissom, Colin K

    2012-12-01

    Volume expansion is a common therapeutic intervention in septic shock, although patient response to the intervention is difficult to predict. Central venous pressure (CVP) and shock index have been used independently to guide volume expansion, although their use is questionable. We hypothesize that a combination of these measurements will be useful. In a prospective, observational study, patients with early septic shock received 10-mL/kg volume expansion at their treating physician's discretion after brief initial resuscitation in the emergency department. Central venous pressure and shock index were measured before volume expansion interventions. Cardiac index was measured immediately before and after the volume expansion using transthoracic echocardiography. Hemodynamic response was defined as an increase in a cardiac index of 15% or greater. Thirty-four volume expansions were observed in 25 patients. A CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less individually had a good negative predictive value (83% and 88%, respectively). Of 34 volume expansions, the combination of both a high CVP and a low shock index was extremely unlikely to elicit hemodynamic response (negative predictive value, 93%; P = .02). Volume expansion in patients with early septic shock with a CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less is unlikely to lead to an increase in cardiac index. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  2. Electric gun: a new method for generating shock pressures in excess of 1 TPa

    International Nuclear Information System (INIS)

    Steinberg, D.; Chau, H.; Dittbenner, G.; Weingart, R.

    1978-01-01

    By combining the electrically-driven, flying-plate, high-explosive initiator with well-known gas-gun technology, a novel method of generating and measuring shock pressures greater than 1 TPa has been developed. Called the electric gun, this system is competitive with laser or nuclear-driven, shock-wave, equation-of-state experiments in the 1 to 5 TPa range. Compared to those other methods, it has the advantage of simplicity, high precision, and low cost. In addition, its small size and low total energy allow it to be easily contained for experiments with toxic materials

  3. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  4. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    Science.gov (United States)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  5. The effect of hydrostatic vs. shock pressure treatment on plant seeds

    Science.gov (United States)

    Mustey, Adrian; Leighs, James; Appleby-Thomas, Gareth; Wood, David; Hazael, Rachael; McMillan, Paul; Hazell, Paul

    2013-06-01

    The hydrostatic pressure and shock response of plant seeds have both been previously investigated (primarily driven by an interest in reducing bacterial contamination of crops and the theory of panspermia respectively). However, comparisons have not previously been made between these two methods of applying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in such data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder set-up and shock compression via employment of a 50-mm bore, single stage gas gun using the flyer-plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set.

  6. Free-piston driver performance characterisation using experimental shock speeds through helium

    Science.gov (United States)

    Gildfind, D. E.; James, C. M.; Morgan, R. G.

    2015-03-01

    Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.

  7. Effects of shock pressure on 40Ar-39Ar radiometric age determinations

    International Nuclear Information System (INIS)

    Davis, P.K.

    1977-01-01

    The relation of shock to the drop in the 40 *Ar/ 39 *Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 40 *Ar/ 39 *Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature. Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed. The unshocked basalt shows a good 40 *Ar/ 39 *Ar plateau at age 198 +-9 m.y. in agreement with a previous result of 186 +- 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 39 *Ar/ 40 Ar vs 36 Ar/ 40 Ar is evidence of a plateau. The ages of these samples are then 201 +- 10, 205 +- 12 and 201 +-9 m.y. It appears that the shock has had little effect on the 40 Ar- 39 Ar age spectrum, although the release patterns of the 39 *Ar are shifted downward by the order of 200 0 C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated. The Brent Crater samples do not all show good plateaus, but do indicate an age of 420 m.y. for the crater event and 795 +- 24 m.y. for the rock formation, in agreement with previous results. None of the 40 *Ar/ 39 *Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested. (author)

  8. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  9. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  10. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  11. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad

    2016-05-16

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  12. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    International Nuclear Information System (INIS)

    Fairfield, D.H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D.G.

    1990-01-01

    Magnetic field enhancements and depressions on the time scales of minutes were frequently observed simultaneously by the AMPTE CCE, GOES 5, and GOES 6 spacecraft in the subsolar magnetosphere. The source of these perturbations has been detected in the high time resolution AMPTE IRM measurements of the kinetic pressure of the solar wind upstream of the bow shock. It is argued that these upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the facts that (1) the upstream field strength and the density associated with the perturbations are highly correlated with each other whereas these quantities tend to be anticorrelated in the undisturbed solar wind, and (2) the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Also velocity decreases deep within the foreshock sometimes reach many tens of kilometers per second and may be associated with further pressure variations as a changing interplanetary field direction changes the foreshock geometry. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere

  13. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  14. Dynamics of a Pipeline under the Action of Internal Shock Pressure

    Science.gov (United States)

    Il'gamov, M. A.

    2017-11-01

    The static and dynamic bending of a pipeline in the vertical plane under the action of its own weight is considered with regard to the interaction of the internal pressure with the curvature of the axial line and the axisymmetric deformation. The pressure consists of a constant and timevarying parts and is assumed to be uniformly distributed over the entire span between the supports. The pipeline reaction to the stepwise increase in the pressure is analyzed in the case where it is possible to determine the exact solution of the problem. The initial stage of bending determined by the smallness of elastic forces as compared to the inertial forces is introduced into the consideration. At this stage, the solution is sought in the form of power series and the law of pressure variation can be arbitrary. This solution provides initial conditions for determining the further process. The duration of the inertial stage is compared with the times of sharp changes of the pressure and the shock waves in fluids. The structure parameters are determined in the case where the shock pressure is accepted only by the inertial forces in the pipeline.

  15. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2016-01-01

    Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  16. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  17. Operating performance of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Price, E.G.

    1989-04-01

    The performance of Zircaloy-2 and Zr-2.5 Nb pressure tubes in CANDU reactors is reviewed. The accelerated hydriding of Zircaloy-2 in reducing water chemistries can lower the toughness of this material and it is essential that defect-initiating phenomena, such as hydride blister formation from pressure tube to calandria tube contact, be prevented. Zr-2.5 Nb pressure tubes are performing well with low rates of hydrogen pick-up and good retention of material properties

  18. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  19. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy.

    Science.gov (United States)

    Smith, N; Zhong, P

    2012-10-11

    To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (R(h)=7 mm), close logarithmic correlations between the average peak pressure (P(+(avg))) incident on the stone (D=10 mm BegoStone) and comminution efficiency after 500 and 1000 shocks have been identified. Moreover, the correlations have demonstrated distinctive thresholds in P(+(avg)) (5.3 MPa and 7.6 MPa for soft and hard stones, respectively), that are required to initiate stone fragmentation independent of surrounding fluid medium and LSW dose. These observations, should they be confirmed using other shock wave lithotripters, may provide an important field parameter (i.e., P(+(avg))) to guide appropriate application of SWL in clinics, and facilitate device comparison and design improvements in future lithotripters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  1. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    Science.gov (United States)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  2. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  3. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    International Nuclear Information System (INIS)

    Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

    2014-01-01

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained

  4. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  5. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  6. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    Science.gov (United States)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  7. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-Ray Preheat

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Kalantar, Daniel H.

    2006-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<1013 W/cm2, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flash-coating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  8. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat

    International Nuclear Information System (INIS)

    Colvin, J D; Kalantar, D H

    2005-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, 13 W/cm 2 , compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  9. On the Existence of Shock Instabilities at Hugoniot Pressures Beyond the Minimum Volume

    Science.gov (United States)

    Heuzé, Olivier; Pain, Jean-Christophe; Salin, Gwenael

    2009-12-01

    Flow instabilities are among the main issues of ICF studies. Heterogeneities and defects of the material or the geometry are generally considered among the sources of instabilities which are strongly amplified in spherical geometries. According to the theory of D'yakov, some ranges of the Equation of State (EOS) also generate or amplify instabilities in shock waves, which can be considered among the origin of Richtmyer-Meshkov instabilities. It is well known that, on the Hugoniot curve of most materials, the volume decreases versus pressure down to a minimum and then increases with ionization towards an asymptotic value. Recent results in this range of pressure allow us to investigate now the stability conditions. The first question to raise is the possibility of existence of such instabilities. We focus here on the properties of several elements (aluminium, iron, copper) in this range of pressure to try to give a first answer to this question.

  10. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample

    International Nuclear Information System (INIS)

    Marpaung, A.M.; Kurniawan, H.; Tjia, M.O.; Kagawa, K.

    2001-01-01

    An experimental study has been carried out on the dynamical process taking place in the plasma generated by a TEA CO 2 laser (400 mJ, 100 ns) on a zinc target when surrounded by helium gas of pressure ranging from 2 Torr to 1 atm. Plasma characteristics were examined in detail on the emission lines of Zn I 481.0 nm and He I 587.6 nm by means of an unique time-resolved spatial distribution technique in addition to an ordinary time-resolved emission measurement technique. The results reveal, for the first time, persistent shock wave characteristics in all cases throughout the entire pressure range considered. Further analysis of the data has clarified the distinct characteristics of laser plasmas generated in different ranges of gas pressure. It is concluded that three types of shock wave plasma can be identified; namely, a target shock wave plasma in the pressure range from 2 Torr to around 50 Torr; a coupling shock wave plasma in the pressure range from around 50 Torr to 200 Torr and a gas breakdown shock wave plasma in the pressure range from around 200 Torr to 1 atm. These distinct characteristics are found to be ascribable to the different extents of the gas breakdown process taking place at the different gas pressures. These results, obtained for a TEA CO 2 laser, will provide a useful basis for the analyses of plasmas induced by other lasers. (author)

  11. Probabilistic approach to the analysis of reactor pressure vessel integrity during a pressurized thermal shock

    International Nuclear Information System (INIS)

    Adamec, P.

    2000-12-01

    Following a general summary of the issue, an overview of international experience (USA; Belgium, France, Germany, Russia, Spain, Sweden, The Netherlands, and the UK; and probabilistic PTS assessment for the reactor pressure vessel at Loviisa-1, Finland) is presented, and the applicable computer codes (VISA-II, OCA-P, FAVOR, ZERBERUS) are highlighted and their applicability to VVER type reactor pressure vessels is outlined. (P.A.)

  12. Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.

    Science.gov (United States)

    Baccus-Taylor, G S H; Falloon, O C; Henry, N

    2015-06-01

    (i) To study the effects of cold shock on Escherichia coli O157:H7 cells. (ii) To determine if cold-shocked E. coli O157:H7 cells at stationary and exponential phases are more pressure-resistant than their non-cold-shocked counterparts. (iii) To investigate the baro-protective role of growth media (0·1% peptone water, beef gravy and ground beef). Quantitative estimates of lethality and sublethal injury were made using the differential plating method. There were no significant differences (P > 0·05) in the number of cells killed; cold-shocked or non-cold-shocked. Cells grown in ground beef (stationary and exponential phases) experienced lowest death compared with peptone water and beef gravy. Cold-shock treatment increased the sublethal injury to cells cultured in peptone water (stationary and exponential phases) and ground beef (exponential phase), but decreased the sublethal injury to cells in beef gravy (stationary phase). Cold shock did not confer greater resistance to stationary or exponential phase cells pressurized in peptone water, beef gravy or ground beef. Ground beef had the greatest baro-protective effect. Real food systems should be used in establishing food safety parameters for high-pressure treatments; micro-organisms are less resistant in model food systems, the use of which may underestimate the organisms' resistance. © 2015 The Society for Applied Microbiology.

  13. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  14. Stress intensity factors for underclad and through clad defects in a reactor pressure vessel submitted to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Menager, Y.; Chapuliot, S.

    2005-01-01

    CEA has launched important work on the development of a Stress Intensity Factors compendium for cracks in a Reactor Pressure Vessel (RPV) taking into account the cladding. The work is performed by Finite Element analysis with a parametric mesh for two types of defects (under clad defect and through clad defect) and a wide range of geometrical and material parameters. In addition, an analytical stress solution for Pressurised Thermal Shock (PTS) on the RPV is proposed to allow a complete analytical estimation of the stress intensity factor K I for the PTS problem. The results are validated by comparison with a complete 3D finite element calculation performed on a complex and realistic case study

  15. Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz - Sources of error and recommendations

    Science.gov (United States)

    Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.

    2018-01-01

    Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

  16. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Trott, W.M.; Chandler, G.A.; Holland, K.G.; Fleming, K.J.; Trucano, T.G.

    1998-01-01

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  17. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  18. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  19. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  20. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  1. Numerical results from a study of LiH: the proposed standard material for the high pressure shock experiment

    International Nuclear Information System (INIS)

    Rogers, F.J.

    1975-01-01

    It is proposed to send a high pressure shock wave through a layer of LiH and then into a sample of high Z-material, resulting in a reflected shock wave back into the LiH. If the Hugoniot and some reflected Hugoniots for LiH are known the EOS of the sample can be obtained from the ''impedance matching method.'' The theory and its range of validity are described

  2. Ductile fracture prediction of an axially cracked pressure vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki

    1991-01-01

    In this paper, the J-value of an axially cracked cylinder under several PTS conditions are evaluated using a simple estimation scheme which we proposed. Results obtained are summerized as follow: (1) Under any PTS conditions, the effect of internal pressure is so predominant upon the J-value and dJ/da that it is very important to grasp the transient of internal pressure under any imaginable accident from the viewpoint of structural integrity. (2) Under any IP, TS, and PTS conditions, J - a/W relation shows that the J-value reaches its maximum at a certain crack depth, then drops to zero at a/W ≅ 0.9. Though the effect of inertia is not taken into account, this fact may explain the phenomena of crack arrest qualitatively. (3) The compliance of a cylindrical shell plays an important role in the fracture prediction of a pressure vessel. (4) Under typical PTS conditions, the region at the crack tip dominated by the Hutchinson-Rice-Rosengren singularity is substantially large enough to apply the J-based criterion to predict unstable ductile fracture. (author)

  3. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    pressure. The precision pressure transducer – ruggedized (PPTR) manufactured by Honeywell is provided with a special “Hastelloy” material isolation-diaphragm to protect the transducer port against corrosive effects during its prolonged exposure...-scale output (an intelligent technique anufacturers to hide the non-linearity of the product at all data points below ore realistic estimate of linearity is obtained by ean of a few samples) based on the corresponding true ethod employed by performance...

  4. High density turbulent plasma processes from a shock tube. Final performance report

    International Nuclear Information System (INIS)

    Johnson, J.A. III.

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions

  5. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter

    Science.gov (United States)

    Neisius, Andreas; Smith, Nathan B.; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E.; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M.; Zhong, Pei

    2014-01-01

    The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The −6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters. PMID:24639497

  6. Effect of Pressure Gradients on the Initiation of PBX-9502 via Irregular (Mach) Reflection of Low Pressure Curved Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Lawrence Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Phillip Isaac [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moro, Erik Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.

  7. Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy

    International Nuclear Information System (INIS)

    Loginov, M.S.; Komen, E.M.J.; Hoehne, T.

    2011-01-01

    Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.

  8. Research on the relationship between viscoelasticity and shock isolation performance of warp knitted spacer fabrics

    Directory of Open Access Journals (Sweden)

    Jin JIANG

    2016-04-01

    Full Text Available Warp-knitted spacer fabric which is commonly used in impact protection is selected as test materials to study the relationship between viscoelasticity and the performance of shock isolation. A damping test platform is built to test different specifications of warp-knitted spacer fabric including compression elastic modulus, damping ratio and the residual impact load under different impact speed. Experimental results show that there is no clear correlation between the shock isolation performance and the viscidity or the elasticity. Accordingly, viscosity-to-elasticity ratio is proposed to characterize the relationship between viscoelasticity and shock isolation performance, and it is found that appropriate viscosity-to-elasticity ratio within a certain range can help to achieve better shock isolation performance.

  9. Effects of low upper shelf fracture toughness on reactor vessel integrity during pressurized thermal shock events

    International Nuclear Information System (INIS)

    Bamford, W.H.; Heinecke, C.C.; Balkey, K.R.

    1988-01-01

    For the past decade, significant attention has been focused on the subject of nuclear rector vessel integrity during pressurized thermal shock (PTS) events. The issue of low upper shelf fracture toughness at operating temperatures has been a consideration for some reactor vessel materials since the early 1970's. Deterministic and probabilistic fracture mechanics sensitivity studies have been completed to evaluate the interaction between the PTS and lower upper shelf toughness issues that result from neutron embrittlement of the critical beltline region materials. This paper presents the results of these studies to show the interdependency of these fracture considerations in certain instances and to identify parameters that need to be carefully treated in reactor vessel integrity evaluations for these subjects. This issue is of great importance to those vessels which have low upper shelf toughness, both for demonstrating safety during the original design life and in life extension assessments

  10. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  11. IPTS [Integrated Pressurized-Thermal-Shock] study for H.B. Robinson (HBR-HYPO)

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1990-01-01

    A primary purpose of the US Nuclear Regulatory Commission (NRC) Integrated Pressurized-Thermal-Shock (IPTS) Program, completed in 1985, was to develop an integrated probabilistic approach for evaluating pressurized water reactor (PWR) pressure vessel integrity; and the scope included the application of the methodology to three ''high risk'' PWR plants. The three plants selected were Oconee Unit 1, Calvert Cliffs Unit 1, and HBRobinson Unit 2 (HBR-2); and the plant studies were conducted in that order. As a result of this sequence and the developmental nature of the program, the HBR-2 study was the more complete and state-of-the-art. However, by the time the HBR-2 study was conducted, a reevaluation of vessel chemistry and reference nil-ductility transition temperature (RT NDT ) had indicated relatively low concentrations of copper and nickel and low values of initial RT NDT (RT NDT 0 ), resulting in very low probabilities of failure. Thus, for illustrative purposes, copper, nickel, and RT NDT 0 were increased so that RT NDT (2σ) = 270 degree F for the critical weld at 32 EFPY. This value of RT NDT corresponds, of course, to the NRC PTS-Rule screening criteria (10 CFR 5.61). This hypothetical ''plant'' was referred to as HBR-HYPO, and it was identical to HBR-2 in every respect except for the concentrations of copper and nickel and the value of RT NDT 0 for the welds. 3 refs

  12. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  13. Application of the French codes to the pressurized thermal shocks assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Life Management Center, Suzhou (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen (Switzerland); Shi, Jinhua [Amec Foster Wheeler, Clean Energy Department, Gloucester (United Kingdom)

    2016-12-15

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  14. Application of the French Codes to the Pressurized Thermal Shocks Assessment

    Directory of Open Access Journals (Sweden)

    Mingya Chen

    2016-12-01

    Full Text Available The integrity of a reactor pressure vessel (RPV related to pressurized thermal shocks (PTSs has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the “screening criterion” for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no “screening criterion”. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  15. Application of the French codes to the pressurized thermal shocks assessment

    International Nuclear Information System (INIS)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin; Qian, Guian; Shi, Jinhua

    2016-01-01

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed

  16. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  17. X-ray line broadening studies on aluminum nitride, titanium carbide and titanium diboride modified by high pressure shock loading

    International Nuclear Information System (INIS)

    Morosin, B.; Graham, R.A.

    1983-01-01

    Powders of AlN, TiC and TiB 2 have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10 -5 to 10 -4 for TiB 2 and to values larger than 10 -3 for TiC and AlN

  18. Limiting Performance Analysis of Underwater Shock Isolation of a System with Biodynamic Response Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Z. Zong

    2000-01-01

    Full Text Available Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.

  19. High pressure generation by laser driven shock waves: application to equation of state measurement; Generation de hautes pressions par choc laser: application a la mesure d'equations d'etat

    Energy Technology Data Exchange (ETDEWEB)

    Benuzzi, A

    1997-12-15

    This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 {mu}m. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)

  20. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-1 and TSE-2

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1976-09-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and two thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. The PWR calculations indicated that under some circumstances crack propagation could be expected and that experiments should be conducted for cracks that would have the potential for propagation at least halfway through the wall

  1. Re-evaluation of the technical basis for the regulation of pressurized thermal shock in U.S. pressurized water reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Malik, S.N.; Kirk, M.T.; Jackson, D.A.; Hackett, E.M.; Chokshi, N.C.; Siu, N.O.; Woods, H.W.; Bessette, D.E. [Office of Nuclear Regulatory Research, U.S. nuclear Regulatory Commission, Washington, D.C. (United States); Dickson, T.L. [Oak Ridge National Lab., Computational Physics and Engineering Div., Oak Ridge, TN (United States)

    2001-07-01

    The current federal regulation to insure that pressurized-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to potential pressurized thermal shock (PTS) events during the life of the plant were derived from computational models and technologies that were developed in the early-to-mid 1980's. Since that time, there have been several advancements and refinements to the relevant fracture technology, materials characterization methods, probabilistic risk assessment (PRA) and thermal-hydraulics (TH) computational methods. Preliminary studies performed in 1998 (that applied this new technology) indicated the potential that technical bases can be established to support a relaxation of the current federal regulation (10 CFR 50.61) for PTS. A revision of PTS regulation could have significant implications for plants reaching their end-of-license periods and future plant license-extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission initiated a comprehensive project, with the nuclear industry as a participant, to revisit the technical bases for the current regulations on PTS. This paper provides an overview and status of the methodology that has evolved over the last two years through interactions between experts in relevant disciplines (TH, PRA, materials and fracture mechanics, and non-destructive and destructive examination to predict distribution of fabrication induced flaws in the belt-line region of the PWR vessels) from the NRC staff, their contractors, and representatives from the nuclear industry. This updated methodology is currently being implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code for application to re-examine the adequacy of the current regulations and to determine if technical basis can be established for relaxing the current regulation. It is anticipated that the effort will be completed in 2002. (authors)

  2. Re-evaluation of the technical basis for the regulation of pressurized thermal shock in U.S. pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Malik, S.N.; Kirk, M.T.; Jackson, D.A.; Hackett, E.M.; Chokshi, N.C.; Siu, N.O.; Woods, H.W.; Bessette, D.E.; Dickson, T.L.

    2001-01-01

    The current federal regulation to insure that pressurized-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to potential pressurized thermal shock (PTS) events during the life of the plant were derived from computational models and technologies that were developed in the early-to-mid 1980's. Since that time, there have been several advancements and refinements to the relevant fracture technology, materials characterization methods, probabilistic risk assessment (PRA) and thermal-hydraulics (TH) computational methods. Preliminary studies performed in 1998 (that applied this new technology) indicated the potential that technical bases can be established to support a relaxation of the current federal regulation (10 CFR 50.61) for PTS. A revision of PTS regulation could have significant implications for plants reaching their end-of-license periods and future plant license-extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission initiated a comprehensive project, with the nuclear industry as a participant, to revisit the technical bases for the current regulations on PTS. This paper provides an overview and status of the methodology that has evolved over the last two years through interactions between experts in relevant disciplines (TH, PRA, materials and fracture mechanics, and non-destructive and destructive examination to predict distribution of fabrication induced flaws in the belt-line region of the PWR vessels) from the NRC staff, their contractors, and representatives from the nuclear industry. This updated methodology is currently being implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code for application to re-examine the adequacy of the current regulations and to determine if technical basis can be established for relaxing the current regulation. It is anticipated that the effort will be completed in 2002. (authors)

  3. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y. [Department of Industrial Design, Far East University, No. 49, Zhonghua Road, Xinshi District, Tainan City 744, Taiwan (China); Chang, M. H. [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 701, Taiwan (China)

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  4. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    Science.gov (United States)

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  5. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  6. Back-pressure Effect on Shock-Train Location in a Scramjet Engine Isolator

    Science.gov (United States)

    2010-03-01

    breathing single-stage-to-orbit ( SSTO ) reusable spacecraft, X-30. It made a great contribution towards developing a rectangular, airframe-integrated...scramjet. This program was cancelled without conducting a flight test. The goal of this program was to build a full scale operational SSTO vehicle...bomber, SSTO , or hypersonic transportation. Shock system A shock-train is a system of series of oblique or normal shocks, which is a very complex flow

  7. Investigation of pressure transients in nuclear filtration systems: construction details of a large shock tube

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1980-04-01

    This report documents the construction of a 0.914-m (36-in.)-dia. shock tube on the New Mexico State University caompus. Highly variable low-grade explosions can be simulated with the shock tube. We plan to investigate the response of nuclear facility ventilation system components to low-grade explosions. Components of particular interest are high-capacity, high efficiency paticulate air (HEPA) filters. Shock tube construction details, operating principles, firing sequence, and preliminary results are reported

  8. Final report on the reactor pressure vessel pressurized-thermal-shock. International comparative assessment study (RPV PTS ICAS)

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.

    1999-10-01

    A summary of the recently completed International Comparative Assessment Study of Pressurized-Thermal-Shock in Reactor Pressure Vessels (RPV PTS ICAS) is presented here to record the results in actual and comparative fashions. Within the DFM task, where account was taken of material properties and boundary conditions, reasonable agreement was obtained in linear-elastic and elastic-plastic analysis results. Linear elastic analyses and J-estimation schemes were shown to provide conservative estimates of peak crack driving force when compared with those obtained using complex three-dimensional (3D) finite element analyses. Predictions of RT NDT generally showed less scatter than that observed in crack driving force calculations due to the fracture toughness curve used for fracture assessment in the transition temperature region. Observed scatter in some analytical results could be traced mainly to a misinterpretation of the thermal expansion coefficient data given for the cladding and base metal. Also, differences in some results could be due to a quality assurance problem related to procedures for approximating the loading data given in the Problem Statement. For the PFM task, linear-elastic solutions were again shown to be conservative with respect to elastic-plastic solutions (by a factor of 2 to 4). Scatter in solutions obtained using the same computer code was generally attributable to differences in input parameters, e.g. standard deviations for the initial value of RT NDT , as well as for nickel and copper content. In the THM task, while there was a high degree of scatter during the early part of the transient, reasonable agreement in results was obtained during the latter part of the transient. Generally, the scatter was due to differences in analytical approaches used by participants, which included correlation-based engineering methods, system codes and three-dimensional computational fluids dynamics codes. Some of the models used to simulate condensation

  9. Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Iyer, K.; Nourbakhsh, H.P.; Gherson, P.

    1986-05-01

    The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior

  10. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  11. Evaluating piezo-electric transducer response to thermal shock from in-cilinder pressure data

    NARCIS (Netherlands)

    Baert, R.S.G.; Rosseel, E.; Sierens, R.

    1999-01-01

    One of the major effects limiting the accuracy of piezoelectric transducers for performing in-cylinder pressure measurements is their sensitivity to the cyclic thermal loading effects of the intermittent combustion process. This paper compares five different methods for evaluating the effect of this

  12. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  13. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  14. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.; Iskander, S.K.

    1977-01-01

    Studies to determine the accuracy of calculational techniques for predicting crack initiation and arrest in PWR vessels due to thermal shock from ECC injection are described. The reference calculational model is reviewed, the experimental program and facilities are described, and some thermal shock experiments and results are discussed

  15. Understanding pressurized metered dose inhaler performance.

    Science.gov (United States)

    Ivey, James W; Vehring, Reinhard; Finlay, Warren H

    2015-06-01

    Deepening the current understanding of the factors governing the performance of the pressurized metered dose inhaler (pMDI) has the potential to benefit patients by providing improved drugs for current indications as well as by enabling new areas of therapy. Although a great deal of work has been conducted to this end, our knowledge of the physical mechanisms that drive pMDI performance remains incomplete. This review focuses on research into the influence of device and formulation variables on pMDI performance metrics. Literature in the areas of dose metering, atomization and aerosol evolution and deposition is covered, with an emphasis on studies of a more fundamental nature. Simple models which may be of use to those developing pMDI products are summarized. Although researchers have had good success utilizing an empirically developed knowledge base to predict pMDI performance, such knowledge may not be applicable when pursuing innovations in device or formulation technology. Developing a better understanding of the underlying mechanisms is a worthwhile investment for those working to enable the next generation of pMDI products.

  16. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    Czech Academy of Sciences Publication Activity Database

    Moreau, J.; Kohout, Tomáš; Wünnemann, K.

    2017-01-01

    Roč. 52, č. 11 (2017), s. 2375-2390 ISSN 1086-9379 Institutional support: RVO:67985831 Keywords : chondrites * pressure-temperature conditions * astrophysics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.391, year: 2016

  17. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  18. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  19. Assessment of margins with respect to pressurized thermal shock for the 3 loop plants of the French program

    International Nuclear Information System (INIS)

    Buchalet, C.; Haussaire, P.; Houssin, B.; Vagner, J.

    1983-08-01

    Presentation of the FRAMATOME and EDF program on pressurized thermal shock which objectives are to demonstrate that present and older French reactor vessels have adequate safety margins and to provide recommendations of feasible plant specific modifications, both technically and economically. Phase I consists in a thorough analysis of pressure and temperature transients that the R.P.V. beltine could undergo during plant operations; phase II is the fracture mechanics analysis; phase III estimates the safety margins available during normal, upset, emergency and faulted conditions

  20. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  1. Effect of Initiation Time of Hydrostatic Pressure Shock on Chromosome Set Doubling of Tetraploidization in Turbot Scophthalmus maximus.

    Science.gov (United States)

    Zhu, Xiangping; Lin, Zhengmei; Wu, Zhihao; Li, Jiandong; You, Feng

    2017-10-01

    The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at

  2. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    International Nuclear Information System (INIS)

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-01-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton (∼ 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation environment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment

  3. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock.

    Science.gov (United States)

    Du, Wei; Liu, Da-Wei; Wang, Xiao-Ting; Long, Yun; Chai, Wen-Zhao; Zhou, Xiang; Rui, Xi

    2013-12-01

    Central venous oxygen saturation (Scvo2) is a useful therapeutic target when treating septic shock. We hypothesized that combining Scvo2 and central venous-to-arterial partial pressure of carbon dioxide difference (△Pco2) may provide additional information about survival. We performed a retrospective analysis of 172 patients treated for septic shock. All patients were treated using goal-directed therapy to achieve Scvo2 ≥ 70%. After 6 hours of treatment, we divided patients into 4 groups based on Scvo2 (<70% or ≥ 70%) and △Pco2 (<6 mm Hg or ≥ 6 mm Hg). Overall, 28-day mortality was 35.5%. For patients in whom the Scvo2 target was not achieved at 6 hours, mortality was 50.0%, compared with 29.5% in those in whom Scvo2 exceeded 70% (P = .009). In patients with Scvo2 ≥ 70%, mortality was lower if △Pco2 was <6 mm Hg than if △Pco2 was ≥ 6 mm Hg (56.1% vs 16.1%, respectively; P < .001) and 6-hour lactate clearance was superior (0.01 ± 0.61 vs 0.21 ± 0.31, respectively; P = .016). The combination of Scvo2 and △Pco2 appears to predict outcome in critically ill patients resuscitated from septic shock better than Scvo2 alone. Patients who meet both targets appear to clear lactate more efficiently. © 2013.

  4. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  5. Practical method for assessing pressure shock hazards in pipeline systems of the process industry; Praxisorientierte Vorgehensweise zur Beurteilung der Druckstossgefahren in Rohrleitungssystemen der Prozessindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Thiemeier, T.; Westphal, F. [Siemens AG Automation and Drives, Prozess Sicherheit, Frankfurt am Main (Germany); Schaefer, J. [Sanofi-Aventis Deutschland GmbH, USB Sicherheit, Frankfurt am Main (Germany)

    2006-11-15

    In industrial applications where long large-diameter pipelines are required, the danger of pressure shocks and cavitation shocks is well known and is taken into account in projecting. Transient flow phenomena, however, tend to be neglected even though damage and leakages are caused by the same mechanisms also in chemical engineering processes. The contribution describes a staged procedure that makes it possible to assess the potential hazards resulting from pressure shocks in process engineering without requiring too detailed an analysis of uncritical cases. (orig.)

  6. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    Science.gov (United States)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  7. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN

    International Nuclear Information System (INIS)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L.

    2002-01-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  8. Pressurized thermal shock re-evaluation studies for Korean PWR plant

    International Nuclear Information System (INIS)

    Jung, Sung Gyu; Kim, Hyun Su; Jin, Tae Eun; Jang, Chang Hee

    2001-01-01

    The PTS reference temperature of reactor pressure vessel for one of the Korean NPPs has been predicted to exceed the screening criteria before it reaches it's design life. To cope with this issue, a plant-specific PTS analysis had been performed in accordance with the Regulatory Guide 1.154 in 1999. As a result of that analysis, it was found that current methodology of RG. 1.154 was very conservative. The objective of this study is to examine the effects of changing various input parameters and to determine the amount of conservatism of the current PTS analysis method. To do this, based on the past PTS analysis experience, parametric study were performed for various models using modified VISA-II code. This paper discusses the analysis results and recommendations to reduce the conservatism of current analysis method

  9. Structure of dense shock-melted alkali halides: Evidence for a continuous pressure-induced structural transition in the melt

    International Nuclear Information System (INIS)

    Ross, M.; Rogers, F.J.

    1985-01-01

    Hypernetted-chain equation calculations have been made for the ion-ion pair distribution functions in shock-melted CsI, CsBr, KBr, KCl, NaCl, and LiF. The results show that the melt undergoes a gradual pressure-induced structural change from an open NaCl-like structure with six nearest neighbors of opposite charge to one that has a rare-gas close-packed-like arrangement containing about 12 neighbors of mixed charge. These effects are most pronounced for the larger ions in which the short-range repulsions are stronger relative to long-range Coulomb attractions

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  11. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    Science.gov (United States)

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-07

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune.

  12. The computation of pressure waves in shock tubes by a finite difference procedure

    International Nuclear Information System (INIS)

    Barbaro, M.

    1988-09-01

    A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)

  13. [The predictive value of dynamic arterial elastance in arterial pressure response after norepinephrine dosage reduction in patients with septic shock].

    Science.gov (United States)

    Liang, F M; Yang, T; Dong, L; Hui, J J; Yan, J

    2017-05-01

    Objective: To assess whether dynamic arterial elastance(Ea(dyn))can be used to predict the reduction of arterial pressure after decreasing norepinephrine (NE) dosage in patients with septic shock. Methods: A prospective observational cohort study was conducted. Thirty-two patients with septic shock and mechanical ventilationwere enrolledfrom January 2014 to December 2015 in ICU of Wuxi People's Hospital of Nanjing Medical University. Hemodynamic parameters were recorded by pulse contour cardiac output(PiCCO)monitoring technology before and after decreasing norepinephrine dosage. Ea(dyn) was defined as the ratio of pulse pressure variation (PPV) to stroke volume variation (SVV). Mean arterial pressure(MAP) variation was calculated after decreasing the dose of NE. Response was defined as a ≥15% decrease of MAP. AUC was plotted to assess the value of Ea(dyn) in predicting MAP response. Results: A total of 32 patients were enrolled in our study, with 13 responding to NE dose decrease where as the other 19 did not. Ea(dyn) was lower in responders than in nonresponders (0.77±0.13 vs 1.09±0.31, P blood pressure variation, diastolic blood pressure variation, systemic vascular resistance variation and MAP variation( r =0.621, P =0.000; r =0.735, P =0.000; r =0.756, P =0.000; r =0.568, P =0.000 respectively). However, stoke volume variation, baseline level of systemic vascular resistance and NE baseline dose were not correlated with Ea(dyn) baseline value( r =0.264, P =0.076; r =0.078, P =0.545; r =0.002, P =0.987 respectively). Ea(dyn)≤0.97 predicted a decrease of MAP when decreasing NE dose, with an area under the receiver-operating characteristic curve of 0.85.The sensitivity was 100.0% and specificity was 73.7%. Conclusions: In septic shock patients treated with NE, Ea(dyn) is an index to predict the decrease of arterial pressure in response to NE dose reduction.

  14. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma

    Directory of Open Access Journals (Sweden)

    Maciej Skotak

    2018-02-01

    Full Text Available Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2 at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly

  15. Performance data of the new free-piston shock tunnel at GALCIT

    Science.gov (United States)

    Hornung, Hans G.

    1992-01-01

    The new free-piston shock tunnel has been partially calibrated, and a range of operating conditions has been found. A large number of difficulties were encountered during the shake-down period, of which the ablation of various parts was the most severe. Solutions to these problems were found. The general principles of high-enthalpy simulation are outlined, and the parameter space covered by T5 is given. Examples of the operating data show that, with care, excellent repeatability may be obtained. The temporal uniformity of the reservoir pressure is very good, even at high enthalpy, because it is possible to operate at tailored-interface and tuned-piston conditions over the whole enthalpy range. Examples of heat transfer and Pitot-pressure measurements are also presented.

  16. Performance Characterization of Solid Oxide Cells Under High Pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2015-01-01

    on partial pressures (oxygen, steam and hydrogen) were affected by increasing the pressure. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be borne in mind that the pressurized gas contains higher molar free......In this work, recent pressurized test results of a planar Ni- YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. Measurements were performed at 800 C in both fuel cell and electrolysis mode at different pressures. A comparison of the electrochemical performance...... of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure in both fuel cell mode and electrolysis mode. Electrochemical impedance spectroscopy revealed that the serial resistance was not affected by the operation pressure; all the other processes that are dependent...

  17. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  18. Pressure Ulcer Prevention : Performance and Implementation in Hospital Settings

    OpenAIRE

    Sving, Eva

    2014-01-01

    Background: Pressure ulcers are related to reduced quality of life for patients and high costs for health care. Guidelines for pressure ulcer prevention have been available for many years but the problem remains. Aim: The overall aim of this thesis was to investigate hospital setting factors that are important to the performance of pressure ulcer prevention and to evaluate an intervention focused on implementing evidence-based pressure ulcer prevention. Methods: Four studies with a qualitativ...

  19. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  20. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  1. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  2. Validation of the Large Interface Method of NEPTUNE{sub C}FD 1.0.8 for Pressurized Thermal Shock (PTS) applications

    Energy Technology Data Exchange (ETDEWEB)

    Coste, P., E-mail: pierre.coste@cea.fr [CEA, DEN, DER/SSTH, F-38054 Grenoble (France); Lavieville, J. [Electricite de France, Chatou (France); Pouvreau, J. [CEA, DEN, DER/SSTH, F-38054 Grenoble (France); Baudry, C.; Guingo, M.; Douce, A. [Electricite de France, Chatou (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The two-phase Pressurized Thermal Shock (PTS) is a key thermohydraulics issue for PWR safety. Black-Right-Pointing-Pointer The dynamic and condensation models are firstly validated separately. Black-Right-Pointing-Pointer Then the global validation is done with the COSI experiment. Black-Right-Pointing-Pointer All the calculations performed with the same set of models both in the Large Interface Method and in the k-{epsilon} approach for turbulence substantiate the application of the tool to PTS. - Abstract: NEPTUNE{sub C}FD is a code based on a 3D transient Eulerian two-fluid model. One of the main application targets is the two-phase Pressurized Thermal Shock (PTS), which is related to PWR Reactor Pressure Vessel (RPV) lifetime safety studies, when sub-cooled water from Emergency Core Cooling (ECC) system is injected into the possibly uncovered cold leg and penetrates into the RPV downcomer. Five experiments were selected for the validation, a selection reviewed by a panel of European experts. The dynamic models are validated with a co-current smooth and wavy air-water stratified flow in a rectangular channel with detailed measurements of turbulence and velocities. The condensation models are validated with a co-current smooth and wavy steam-water stratified flow in a rectangular channel with measurements of the steam flow rates. The dynamic models are validated in the situation of a jet impinging a pool free surface with two experiments dealing with a water jet impingement on a water pool free surface in air environment. Finally, all the models involved in the reactor conditions are validated with the COSI experiment. The calculations are done with the same set of Large Interface Method models and a RANS (k-{epsilon}) approach for turbulence. They substantiate the application of the tool to PTS studies.

  3. Pressurized thermal shock. CNA-I behavior when a hot leg breaks of 50 cm2 is produced

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2002-01-01

    Pressurized thermal shock (PTS) phenomena in the CNA-I pressurize heavy water reactor is analyzed in this paper. The initiating event is a hypothetical 50 cm 2 break of the line connecting the pressurizer and the primary system. The calculation procedure for obtaining the local thermal-hydraulic parameters in the reactor pressure vessel downcomer is described firstly. Results obtained lead to conclusions in different subjects. The first conclusion is that a simple tool of easy application is available to analyze PTS phenomena in cases of breaks in the primary system in cold and hot legs. This methodology is fully independent of the methodology utilized by the Utility. Another important conclusion comes from the analysis of the temperature evolution of the fluid below the cold leg level in the RPV downcomer, as a function of the T HPI temperature of the TJ system injected water from. It is also concluded that the results obtained with the methodology adopted agree with the ones obtained with the methodologies validated against experiments in the UPTF facility. It is possible to observe that when T HPI increase, the conditions suitable for PTS occurrence in a LOCA accident tend to diminish. The maximum value to the T HPI may be fixed from the maximum temperature allowed to preserve the structural integrity of the fuel cladding. (author)

  4. Hypertonic/Hyperoncotic Resuscitation from Shock: Reduced Volume Requirement and Lower Intracranial Pressure

    Science.gov (United States)

    1989-10-01

    Fig. I A-I). Cerebro ~.iscular 4. and svsternic hcmodsnarmc to!- ’. -lowing resuscitation ’from hem- orrhagic shock in the presence S2- / 4 of a...intratranial mass in dogs Cerebro - %uscular effects of resuscitation fluid choices Ancsth Analg 6’ 259 763 2tW ?%5..Cg -- ’ 384 CRITICAL CARE MEDICINE...184, 1967 8. Prior PF, Maynard DE, Brierley JB: E.E.G. monitoring for the control of anaesthesia produced by the infusion of althesin in primates . Br

  5. The effects of ionizing radiation on the performance of signaled and unsignalled bar-press shock postponement in the rat

    International Nuclear Information System (INIS)

    Burghardt, W.F. Jr.

    1988-01-01

    Forty-eight rats in four conditions were used to determine the efficacy of preshock warning tones in maintaining bar-press shock postponement performance after irradiation. The SIDMAN group performed without external cues. The SIGNAL group received a 5 sec warning tone preceding shock. The COSAV group had preshock warning tones available for 60 sec following a response on another lever, and was used to assess the ability to maintain performance on two levers simultaneously. In VISIG, warning tones always preceded shocks, but followed shock postponement responses unpredictably. Sham-irradiated control groups were used to compare baseline performance on each task, and for comparison with irradiated subjects. Irradiated subjects could perform the movements necessary to successfully avoid shock. They were able to detect and respond appropriately to preshock warning tones when present, although COSAV subjects did not continue to respond to produce them. Irradiated subjects experienced a significant and lasting increase in the number of shocks received, except when no external cues were available

  6. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2014-01-01

    in both fuel cell mode and electrolysis mode. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be born in mind that the pressurised gas contains higher molar free energy. Operating at high current density...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  7. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  8. Performance evaluation of nuclear grade filters for the Trupact-I pressure equalization system

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Joseph, B.J.

    1987-01-01

    The performance of high-efficiency-particulate-air and ultra-low- penetration-air filters subjected to extreme environments of temperature, shock, pressure, and particulate loading was evaluated in a test program at the Sandia National Laboratories. The test program was initiated to evaluate the feasibility of using commercially available nuclear-grade filters in the filtered pressure equalization system of a contact-handled transuranic waste transport system, called TRUPACT-I. The filtered pressure equalization system of TRUPACT-I assures containment of the activity within the limits permitted by federal regulations and simultaneously equalizes the pressure between the cavity of the packaging and the environment, and minimizes the buildup of radiolytically generated gases. The filters were exposed to temperatures, pressures and stresses that exceed expected environments in normal and accident conditions of transport. The performance of the test filters was determined by measuring and quantifying filter efficiency and the Darcy constant. In addition, the integrity of the filter housing was evaluated using non-destructive helium leak testing. The details of the test program and results obtained from the tests are presented in this paper

  9. Executive Gender, Competitive Pressures, and Corporate Performance

    DEFF Research Database (Denmark)

    Amore, Mario Daniele; Garofalo, Orsola

    2016-01-01

    significantly higher financial performance under low competition, they tend to underperform when competition increases. At the same time, we find that the presence of female leaders improves the capital stability of banks subject to greater competition. Overall, our study highlights strong interactions between...

  10. Comparison of the thermal shock performance of different tungsten grades and the influence of microstructure on the damage behaviour

    International Nuclear Information System (INIS)

    Wirtz, M; Linke, J; Pintsuk, G; Singheiser, L; Uytdenhouwen, I

    2011-01-01

    The thermal shock performances of two new tungsten grades with 1 and 5 wt% of tantalum were characterized with the electron beam facility JUDITH 1. As a reference material, ultra-high-purity tungsten (W-UHP) with a purity of 99.9999 wt% was used. The induced thermal shock crack networks and surface modifications were analysed by a scanning electron microscope, light microscopy and laser profilometry. Damage and cracking thresholds were defined for all materials as a function of absorbed power density and base temperature. The materials showed significantly different thermal shock behaviour, which is, among others, expressed by differences in cracking patterns, i.e. crack distance and depth. These results allow us to quantify the influence of the materials' mechanical and thermal properties on the thermal shock performance. Furthermore, the specific grain structure of the materials has a significant influence on crack propagation towards the bulk material.

  11. The influence of pressure ratio on the regenerator performance

    Science.gov (United States)

    Lin, Y.; Zhu, S.

    2017-12-01

    For a multi-stage pulse tube refrigerator with displacer, improving the regenerator efficiency is important. A displacer can get higher operating pressure ratio compared with inertance tube. The pressure ratio and porosity influence on the regenerator performance with is discussed, and CFD simulation is done on a two-stage pulse tube refrigerator with displacer to show that mass flow rate and pressure wave relation in the regenerator can be realized by a step-displacer.

  12. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  13. X-ray absorption radiography for high pressure shock wave studies

    Science.gov (United States)

    Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.

    2018-01-01

    The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.

  14. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  15. Influence of loading distribution on the performance of high pressure turbine blades

    Science.gov (United States)

    Corriveau, Daniel

    Midspan measurements were made in a transonic wind tunnel for three High Pressure (HP) turbine blade cascades at both design and off-design incidences. Comparisons with two-dimensional numerical simulations of the cascade flow were also made. The baseline profile is the midspan section of a HP turbine blade of fairly recent design. It is considered mid-loaded. To gain a better understanding of blade loading limits and the influence of loading distributions, the profile of the baseline airfoil was modified to create two new airfoils having aft-loaded and front-loaded pressure distributions. Tests were performed for exit Mach numbers between 0.6 and 1.2. In addition, measurements were made for an extended range of Reynolds numbers for constant Mach numbers of 0.6, 0.85, 0.95 and 1.05. At the design exit Mach number of 1.05 and at design incidence, the aft-loaded airfoil showed a reduction of almost 20% in the total pressure losses compared with the baseline airfoil. Based on the analysis of wake traverse data and base pressure measurements combined with numerical results, it was found that the poorer loss performance of the baseline mid-loaded profile compared to the aft-loaded blade could be attributed to the former's higher rear suction side curvature, which resulted in higher flow velocity in that region, which, in turn, contributed to reducing the base pressure. The lower base pressure at the trailing edge resulted in a stronger trailing edge shock system for the mid-loaded blade. This shock system increased the losses for the mid-loaded baseline profile when compared to the aft-loaded profile. On the negative side, it was also found that as Mach numbers were increased beyond the design value the performance of the aft-loaded blade deteriorated rapidly. Under such conditions, the front-loaded airfoil showed generally inferior performance compared with the baseline airfoil. At off-design incidence, the aft-loaded blade maintained a superior loss performance over a

  16. Performance Analysis of Waste Heat Driven Pressurized Adsorption Chiller

    KAUST Repository

    LOH, Wai Soong; SAHA, Bidyut Baran; CHAKRABORTY, Anutosh; NG, Kim Choon; CHUN, Won Gee

    2010-01-01

    This article presents the transient modeling and performance of waste heat driven pressurized adsorption chillers for refrigeration at subzero applications. This innovative adsorption chiller employs pitch-based activated carbon of type Maxsorb III

  17. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms.

    Science.gov (United States)

    Boere, Julia J; Fellinger, Lizz; Huizinga, Duncan J H; Wong, Sebastiaan F; Bijleveld, Erik

    2016-02-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a modular arithmetic task. Performance pressure and caffeine intake were orthogonally manipulated. Findings indicated that pressure and caffeine both negatively impacted performance. However, (a) pressure vs. caffeine affected performance on different trial types, and (b) there was no hint of an interactive effect. So, though the evidence is indirect, findings suggest that pressure and caffeine shape performance via distinct mechanisms, rather than a shared one. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms

    NARCIS (Netherlands)

    Boere, J.J.; Fellinger, L.; Huizinga, D.J.H.; Wong, S.F.; Bijleveld, E.H.

    2016-01-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a

  19. Development of in-situ laser based cutting technique for shock absorber rear nut in pressurized heavy water reactors. CP-2.1

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Jain, R.K.; Upadhyaya, B.N.; Choubey, Ambar; Agrawal, D.K.; Oak, S.M.

    2007-01-01

    We have developed a laser based cutting technique for shock absorber rear nuts in pressurized heavy water reactors (PHWRs). This technique has been successfully used for in-situ laser cutting at RAPS-3 reactor. The technique consists of a motorized compact fixture, which holds a fiber optic beam delivery cutting nozzle and can be operated remotely

  20. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  1. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  2. Expert monitoring and verbal feedback as sources of performance pressure.

    Science.gov (United States)

    Buchanan, John J; Park, Inchon; Chen, Jing; Mehta, Ranjana K; McCulloch, Austin; Rhee, Joohyun; Wright, David L

    2018-05-01

    The influence of monitoring-pressure and verbal feedback on the performance of the intrinsically stable bimanual coordination patterns of in-phase and anti-phase was examined. The two bimanual patterns were produced under three conditions: 1) no-monitoring, 2) monitoring-pressure (viewed by experts), and 3) monitoring-pressure (viewed by experts) combined with verbal feedback emphasizing poor performance. The bimanual patterns were produced at self-paced movement frequencies. Anti-phase coordination was always less stable than in-phase coordination across all three conditions. When performed under conditions 2 and 3, both bimanual patterns were performed with less variability in relative phase across a wide range of self-paced movement frequencies compared to the no-monitoring condition. Thus, monitoring-pressure resulted in performance stabilization rather than degradation and the presence of verbal feedback had no impact on the influence of monitoring pressure. The current findings are inconsistent with the predictions of explicit monitoring theory; however, the findings are consistent with studies that have revealed increased stability for the system's intrinsic dynamics as a result of attentional focus and intentional control. The results are discussed within the contexts of the dynamic pattern theory of coordination, explicit monitoring theory, and action-focused theories as explanations for choking under pressure. Copyright © 2018. Published by Elsevier B.V.

  3. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  4. 10 CFR 50.61 - Fracture toughness requirements for protection against pressurized thermal shock events.

    Science.gov (United States)

    2010-01-01

    ... Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division I, “Rules for the Construction of...: ΔRTNDT = (CF)f(0.28−0.10 log f) (A) CF (°F) is the chemistry factor, which is a function of copper and... differences in copper and nickel content by multiplying them by the ratio of the chemistry factor for the...

  5. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  6. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  7. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  8. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  9. Peers, Pressure, and Performance at the National Spelling Bee

    Science.gov (United States)

    Smith, Jonathan

    2013-01-01

    This paper investigates how individuals' performances of a cognitive task in a high-pressure competition are affected by their peers' performances. To do so, I use novel data from the National Spelling Bee, in which students attempt to spell words correctly in a tournament setting. Across OLS and instrumental variables approaches, I…

  10. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  11. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-3 and TSE-4 and update of TSE-1 and TSE-2 analysis

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.

    1977-01-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and four thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. In the first experiment, initiation was not expected and did not occur, although there was a small amount of subcritical crack growth. In the second experiment, initiation of a semicircular flaw took place as expected; the final length along the surface was about four times the initial length, but there was no radial growth. The third and fourth experiments were similar, and the long axial flaw initiated in good agreement with predictions

  12. Assessment of selected TRAC and RELAP5 calculations for Oconee-1 pressurized thermal shock study

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Pu, J.; Saha, P.; Jo, J.

    1984-11-01

    Several Oconee-1 overcooling transients that were computed by LANL and INEL using the latest versions of TRAC-PF1 and RELAPS/MOD1.5 codes have been reviewed by BNL. Three of these transients were selected for detailed review as they either had the potential of challenging the integrity of the pressure vessel or highlighted the effect of code differences. These are: (1) Main Steam Line Break (MSLB); (2) All Turbine Bypass Valves Stuck Open; and (3) 2-Inch Small Break LOCA. Both codes were reasonably successful in modeling these transients. However, there were differences in the code results even though the specified scenarios were exactly the same for two transients (MSLB and Small Break LOCA). This report compares the code results and explains the possible reasons for these differences. Recommendations have been made regarding which result seems more reasonable for a specific transient

  13. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    Science.gov (United States)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  14. Possible pressurized thermal shock events during large primary to secondary leakage. The Hungarian AGNES project and PRISE accident scenarios in VVER-440/V213 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perneczky, L. [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1997-12-31

    Nuclear power plants of WWER-440/213-type have several special features. Consequently, the transient behaviour of such a reactor system should be different from the behaviour of the PWRs of western design. The opening of the steam generator (SG) collector cover, as a specific primary to secondary circuit leakage (PRISE) occurring in WWER-type reactors happened first time in Rovno NPP Unit I on January 22, 1982. Similar accident was studied in the framework of IAEA project RER/9/004 in 1987-88 using the RELAP4/mod6 code. The Hungarian AGNES (Advanced General and New Evaluation of Safety) project was performed in the period 1991-94 with the aim to reassess the safety of the Paks NPP using state-of-the-art techniques. The project comprised three type of analyses for the primary to secondary circuit leakages: Design Basis Accident (DBA) analyses, Pressurized Thermal Shock (PTS) study and deterministic analyses for Probabilistic Safety Analysis (PSA). Major part of the thermohydraulic analyses has been performed by the RELAP5/mod2.5/V251 code version with two input models. 32 refs.

  15. Possible pressurized thermal shock events during large primary to secondary leakage. The Hungarian AGNES project and PRISE accident scenarios in VVER-440/V213 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perneczky, L [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1998-12-31

    Nuclear power plants of WWER-440/213-type have several special features. Consequently, the transient behaviour of such a reactor system should be different from the behaviour of the PWRs of western design. The opening of the steam generator (SG) collector cover, as a specific primary to secondary circuit leakage (PRISE) occurring in WWER-type reactors happened first time in Rovno NPP Unit I on January 22, 1982. Similar accident was studied in the framework of IAEA project RER/9/004 in 1987-88 using the RELAP4/mod6 code. The Hungarian AGNES (Advanced General and New Evaluation of Safety) project was performed in the period 1991-94 with the aim to reassess the safety of the Paks NPP using state-of-the-art techniques. The project comprised three type of analyses for the primary to secondary circuit leakages: Design Basis Accident (DBA) analyses, Pressurized Thermal Shock (PTS) study and deterministic analyses for Probabilistic Safety Analysis (PSA). Major part of the thermohydraulic analyses has been performed by the RELAP5/mod2.5/V251 code version with two input models. 32 refs.

  16. The effects of stereotypes and observer pressure on athletic performance.

    Science.gov (United States)

    Krendl, Anne; Gainsburg, Izzy; Ambady, Nalini

    2012-02-01

    Although the effects of negative stereotypes and observer pressure on athletic performance have been well researched, the effects of positive stereotypes on performance, particularly in the presence of observers, is not known. In the current study, White males watched a video either depicting Whites basketball players as the best free throwers in the NBA (positive stereotype), Black basketball players as the best free throwers in the NBA (negative stereotype), or a neutral sports video (control). Participants then shot a set of free throws, during which half the participants were also videotaped (observer condition), whereas the other half were not (no observer condition). Results demonstrated that positive stereotypes improved free throw performance, but only in the no observer condition. Interestingly, observer pressure interacted with the positive stereotype to lead to performance decrements. In the negative stereotype condition, performance decrements were observed both in the observer and no observer conditions.

  17. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  18. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  19. Shock Analysis Method for Systematic Performance Evaluation of Component Embedded in Handheld Electronic Devices

    Directory of Open Access Journals (Sweden)

    C.S. Chin

    2006-01-01

    Full Text Available It is important to identify the robustness of product (or embedded component inside the product against shock due to free drop. With the increasing mobile and fast-paced lifestyle of the average consumer, much is required of the products; such as consumers expect mobile products to continue to operate after drop impact. Since free drop test is commonly used to evaluate the robustness of small component embedded in MP3 player, it is difficult to produce a repeatable shock reading due to highly uncontrolled orientation during the impact on ground. Hence attention has been focus on shock table testing, which produces a higher repeatable result. But it failed to demonstrate the actual shock with the presence of rotational movement due to free drop and also it suffers from a similar limitation of repeatability. From drop to drop, shock tables can vary about ± 5% in velocity change but suitable for making a consistent tracking the product improvement.

  20. Radiosonde pressure sensor performance - Evaluation using tracking radars

    Science.gov (United States)

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  1. Time pressure undermines performance more under avoidance than approach motivation

    NARCIS (Netherlands)

    Roskes, M.; Elliot, A.J.; Nijstad, B.A.; de Dreu, C.K.W.

    2013-01-01

    Four experiments were designed to test the hypothesis that performance is particularly undermined by time pressure when people are avoidance motivated. The results supported this hypothesis across three different types of tasks, including those well suited and those ill suited to the type of

  2. Time Pressure Undermines Performance More Under Avoidance Than Approach Motivation

    NARCIS (Netherlands)

    Roskes, Marieke; Elliot, Andrew J.; Nijstad, Bernard A.; De Dreu, Carsten K. W.

    Four experiments were designed to test the hypothesis that performance is particularly undermined by time pressure when people are avoidance motivated. The results supported this hypothesis across three different types of tasks, including those well suited and those ill suited to the type of

  3. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  4. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    the critical stress was developed. The results of this analytical model is in good agreement with the empirical criterion identified. In order to test the validity of the identified criterion, the prediction of the crack propagation and arrest by the criterion was first performed for isothermal tests. It was performed both on CT25 specimens (crack was solicited in mode I) and on ring specimens in mixed mode loading which were carried out at three different temperatures. The numerical results of prediction were in good agreement with experiments. They showed the validity of the criterion for experiments under isothermal loading for two different specimen geometries. In order to test the validity of criterion for the situation of thermal shock, experiments were carried out on ring specimens. At first, one ring specimen was cooled down to -150 C, and then hot water (∼90 C) was injected through the inner side of the ring specimen. At the same time of thermal shock, this specimen was submitted to a mechanical compressive loading (-750 kN). The prediction of crack propagation and arrest by the criterion for this situation was calculated in both 2D and 3D. The predicted results were in good agreement with experiments for both crack speed and crack length. This confirmed that the criterion is relevant to predict the crack propagation and arrest for thermal shock. In parallel, some experiments were performed on extended CT25 specimens (same height but double the width of the CT25 specimen). The crack path on this kind of specimen was curved. A statistical effect by a random selection in the propagation direction was introduced to take into account the instability during the crack propagation. The numerical results correctly reproduce the curvature and the dispersion of the crack paths. (author) [fr

  5. Choking vs. clutch performance: a study of sport performance under pressure.

    Science.gov (United States)

    Otten, Mark

    2009-10-01

    Choking research in sport has suggested that an athlete's tendency to choke, versus give a better than usual (i.e., "clutch") performance depends on his or her personality, as well as on situational influences, such as a reliance on explicit (versus implicit) knowledge when pressured. The current study integrated these hypotheses and tested a structural equation model (SEM) to predict sport performance under pressure. Two hundred and one participants attempted two sets of 15 basketball free throws, and were videotaped during their second set of shots as a manipulation of pressure. Results of the model suggest that "reinvesting" attention in the task leads to greater anxiety (cognitive and somatic), which then predicts a higher level of self-focus; self-focus, then, did not lead to improved performance under pressure, whereas feelings of self-reported "perceived control" did help performance. Implications for measurement of these constructs, and their relationships with performance, are discussed.

  6. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  7. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  8. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  9. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Science.gov (United States)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  10. Enhanced performance of ferroelectric materials under hydrostatic pressure

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Wang, Shuai; Novak, Nikola; Xu, Bai-Xiang; Lv, Peng; Vaish, Rahul; Lynch, Christopher S.

    2017-12-01

    Mechanical confinement or restricted degrees of freedom have been explored for its potential to enhance the performance of ferroelectric devices. It presents an easy and reversible method to tune the response for specific applications. However, such studies have been mainly limited to uni- or bi-axial stress. This study investigates the effect of hydrostatic pressure on the ferroelectric behavior of bulk polycrystalline Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3. Polarization versus electric field hysteresis plots were generated as a function of hydrostatic pressure for a range of operating temperatures (298-398 K). The application of hydrostatic pressure was observed to induce anti-ferroelectric like double hysteresis loops. This in turn enhances the piezoelectric, energy storage, energy harvesting, and electrocaloric effects. The hydrostatic piezoelectric coefficient (dh) was increased from 50 pCN-1 (0 MPa) to ˜900 pC N-1 (265 MPa) and ˜3200 pCN-1 (330 MPa) at 298 K. Energy storage density was observed to improve by more than 4 times under pressure, in the whole temperature range. The relative change in entropy was also observed to shift from ˜0 to 4.8 J kg-1 K-1 under an applied pressure of 325 MPa. This behavior can be attributed to the evolution of pinched hysteresis loops that have been explained using a phenomenological model. All values represent an improvement of several hundred percent compared to unbiased performance, indicating the potential benefits of the proposed methodology.

  11. Formation and decay of laser-generated shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  12. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  13. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  14. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  15. High Pressure In Situ X-ray Diffraction Study of MnO to 120 GPa and Comparison with Shock Compression Experiment

    Science.gov (United States)

    Yagi, Takehiko; Kondo, Tadashi; Syono, Yasuhiko

    1997-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment (Syono et al., this symposium), high pressure in situ x-ray experiments were carried out up to 120 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil and x-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase into hexagonal unit cell was observed from 25-40 GPa, which continues to increase up to 90 GPa. At around 90 GPa, discontinuous change of the diffraction was observed. This new phase cannot be explained by a simple B2 structure and the analysis of this phase is in progress. This high pressure phase has metallic appearance, which reverses to transparent MnO on release of pressure.

  16. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  17. Phase transition in a shock loaded 304 stainless steel

    International Nuclear Information System (INIS)

    Naulin, G.

    1989-11-01

    Systematic shock recovery experiments have been performed on a Z2 CN 18-10 stainless steel (304 AISI), shocked in a pressure range of 5-13 GPa. The pulse durations lay between 0.1 μs and 2 μs. The phases transformation γ (fcc) to α' (bcc) is studied. The evolution of microstructures, the nucleation and the coalescence of α' phase embryos have been observed by TEM examinations. Quantitative measurements of the α' phase allow to plot diagrams of transformed phase versus shock pressure and pulse duration. Manganin gages allow to know the pressure evolution during the impact. The Olson and Cohen model describes the development of the α' phase versus the plastic deformation. An adaptation of this model has been developed, which describes the development of the α' phase versus shock pressure and pulse duration. Theoretical laws give a good correlation with experimental results [fr

  18. Performance Analysis of Waste Heat Driven Pressurized Adsorption Chiller

    KAUST Repository

    LOH, Wai Soong

    2010-01-01

    This article presents the transient modeling and performance of waste heat driven pressurized adsorption chillers for refrigeration at subzero applications. This innovative adsorption chiller employs pitch-based activated carbon of type Maxsorb III (adsorbent) with refrigerant R134a as the adsorbent-adsorbate pair. It consists of an evaporator, a condenser and two adsorber/desorber beds, and it utilizes a low-grade heat source to power the batch-operated cycle. The ranges of heat source temperatures are between 55 to 90°C whilst the cooling water temperature needed to reject heat is at 30°C. A parametric analysis is presented in the study where the effects of inlet temperature, adsorption/desorption cycle time and switching time on the system performance are reported in terms of cooling capacity and coefficient of performance. © 2010 by JSME.

  19. [Predictive value of central venous-to-arterial carbon dioxide partial pressure difference for fluid responsiveness in septic shock patients: a prospective clinical study].

    Science.gov (United States)

    Liu, Guangyun; Huang, Huibin; Qin, Hanyu; Du, Bin

    2018-05-01

    -aCO 2 showed no change after fluid challenge. Pcv-aCO 2 was comparable in responders and non-responders. In 40 patients, CI and Pcv-aCO 2 was inversely correlated before fluid challenge (r = -0.391, P = 0.012) and the correlation between them weakened after fluid challenge (r = -0.301, P = 0.059). There was no significant correlation between the changes in CI and Pcv-aCO 2 after fluid challenge (r = -0.164, P = 0.312). The baseline Pcv-aCO 2 and ΔPcv-aCO 2 could not discriminate between responders and non-responders, with the area under ROC curve (AUC) of 0.50 [95% confidence interval (95%CI) = 0.32-0.69] and 0.51 (95%CI = 0.33-0.70), respectively. HR and blood pressure before fluid challenge and their changes after fluid challenge showed very poor discriminative performances. Before fluid challenge, 16 patients had a Pcv-aCO 2 > 6 mmHg. Their mean CI was significantly lower and Pcv-aCO 2 was significantly higher than that in 24 patients whose Pcv-aCO 2 ≤ 6 mmHg [n = 24; CI (mL×s -1 ×m -2 ): 48.3±11.7 vs. 65.0±18.3, P 6 mmHg and their ΔPcv-aCO 2 was notably different as compared with the patients whose baseline Pcv-aCO 2 ≤ 6 mmHg (mmHg: -3.8±3.4 vs. 0.9±2.9, P 6 mmHg. The AUC of the baseline Pcv-aCO 2 and ΔPcv-aCO 2 to define fluid responsiveness was 0.85 (95%CI = 0.66-1.00) and 0.84 (95%CI = 0.63-1.00), respectively, and the positive predictive value was 1 when the cut-off value was 8.0 mmHg and -4.2 mmHg, respectively. 45.8% (11/24) patients responded to the fluid challenge in patients whose baseline Pcv-aCO 2 ≤ 6 mmHg. There was no predictive value of baseline Pcv-aCO 2 and ΔPcv-aCO 2 on fluid responsiveness. Pcv-aCO 2 and its change cannot serve as a surrogate of the change in cardiac output to define the response to fluid challenge in septic shock patients whose baseline Pcv-aCO 2 ≤ 6 mmHg, while the predictive values of baseline Pcv-aCO 2 and the change in Pcv-aCO 2 are presented in patients with the initial value of Pcv-aCO 2 > 6 mmHg. Clinical

  20. Association between Pressure Pain Sensitivity, Performance stability and Overall Performance in Olympic Sailors

    DEFF Research Database (Denmark)

    Faber, Jens Oscar; Ballegaard, Søren

    2016-01-01

    Background: During sports competitions, the performance of athletes may be negatively affected by persistent stress and autonomic nervous system (ANS) dysfunction, both of which can be assessed by pressure pain sensitivity (PPS) at the chest bone. Objectives: To test the association between PPS......: r > 0.70; p stress and ANS dysfunction as assessed by PPS on one side and performance stability and overall performance on the other side. Keywords Autonomic nervous system dysfunction; Pressure pain sensitivity; Sports...... guide for persistent stress and ANS dysfunction. Performance stability, overall performance and PPS measure were assessed at three intervals. Results: At baseline, the median PPS was 83, the performance stability was inferior to the mean top 10 competitors, and the overall performance was rank eight...

  1. Multi-shock Shield Performance at 16.5 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Davis, B. A.

    2014-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multi-shock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multi-shock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multi-shock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multi-shock system will be discussed along with considerations for deployment and improvement.

  2. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    Science.gov (United States)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  3. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  4. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    Science.gov (United States)

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  5. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  6. Multi-Shock Shield Performance at 15 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Davis, B. A.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, the assessment of the feasibility of protecting a spacecraft from this catalogued debris is described using numerical simulations and a test of a multi-shock shield system against a cylindrical projectile impacting normal to the surface with approximately 15 MJ of kinetic energy. The hypervelocity impact test has been conducted at the Arnold Engineering Development Complex (AEDC) with a 598 g projectile at 6.905 km/s on a NASA supplied multi-shock shield. The projectile used is a hollow aluminum and nylon cylinder with an outside diameter of 8.6 cm and length of 10.3 cm. Figure 1 illustrates the multi-shock shield test article, which consisted of five separate bumpers, four of which are fiberglass fabric and one of steel mesh, and two rear walls, each consisting of Kevlar fabric. The overall length of the test article was 2.65 m. The test article was a 5X scaled-up version of a smaller multi-shock shield previously tested using a 1.4 cm diameter aluminum projectile for an inflatable module project. The distances represented by S1 and S1/2 in the figure are 61 cm and 30.5 cm, respectively. Prior to the impact test, hydrodynamic simulations indicated that some enhancement to the standard multi-shock system is needed to address the effects of the cylindrical shape of the projectile. Based on the simulations, a steel mesh bumper has been added to the shield configuration to enhance the fragmentation of the projectile. The AEDC test occurred as planned, and the modified NASA multi-shock shield successfully stopped 598 g projectile using 85.6 kg/m(exp 2). The fifth bumper

  7. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  8. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  9. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  10. Expansion of the cathode spot and generation of shock waves in the plasma of a volume discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Omarov, O. A.; Kurbanismailov, V. S.; Arslanbekov, M. A.; Gadzhiev, M. Kh.; Ragimkhanov, G. B.; Al-Shatravi, Ali J. G.

    2012-01-01

    The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.

  11. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  12. Shock-induced modification of inorganic powders

    International Nuclear Information System (INIS)

    Graham, R.A.; Morosin, B.; Venturini, E.L.; Beauchamp, E.K.; Hammetter, W.F.

    1984-01-01

    The results of studies performed to quantify the characteristics of TiO2, ZrO2 and Si3N4 powders exposed to explosive loading and post-shock analysis are reported. The shocks were produced with plane wave generators and explosive pads impinging on steel disks, a copper recovery fixture, and then the samples. Peak pressures of 13 and 17 GPa were attained, along with 40 GPz at the center of the powder cavity. Data are provided on the changes occurring during the explosive densification and X-ray and paramagnetic studies of the products. Only fractured disks were obtained in the trials. The shock-treated materials were more free flowing than the original powders, which were fluffy. Post-shock annealing was a significant feature of the treated powders

  13. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    International Nuclear Information System (INIS)

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.

    2009-01-01

    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 μm. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  14. Development of methods and means to improve a performance of microprocessor shock sensors for car alarms

    Directory of Open Access Journals (Sweden)

    S. A. Vasyukov

    2014-01-01

    Full Text Available Existing shock sensors for car protection using the sensitive elements (SE of piezoelectric, microphone and electromagnetic types and the analogue circuitry of signal processing, have a number of essential shortcomings:- piezoelectric sensitive elements have no characteristics repeatability that complicates their use in mass production;- microphone sensors are structurally complicated and demand difficult information signal processing;- sensitive elements of electromagnetic sensors demand individual control (a specified clearance to be set between a magnet and the coil.Use of analogue elements (resistors, capacitors in the amplifier and filter circuits reduces temporary and temperature stability of characteristics. An adjustment of the sensor operating zones via variable resistors on a printed circuit is extremely inconvenient and doesn't allow to change quickly the sensor sensitivity depending on an external situation (for example, to increase quickly an operating zone of the sensor with an alarm system of a key fob when securing a car in the country or in the woods, or to reduce it in the street with heavy traffic streams.An analogue circuit–based sensor design disables its automatic adaptation to such external impacts as a rain, a stream passing by cars, etc.The article considers how to solve some of above problems while designing the two-zone digital shock sensors with a SE of electromagnetic type. It shows the SE design developed by the authors as a module containing the coil and a magnet, secured on the coil axis in a silicone extension. The circuitry solution and algorithms of signals processing allowed authors to realize a remote control of the prevention and alarm zones (with 16 gradation of sensitivity. The algorithm of self-adaptation to the repeating external impacts is proposed. The developed method to form the basic levels of digital comparators for each gradation of sensitivity enables the sensor to have the straight

  15. Association between Pressure Pain Sensitivity, Performance stability and Overall Performance in Olympic Sailors

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille Bjørn; Harboe, Gitte Sommer

    2016-01-01

    Background: During sports competitions, the performance of athletes may be negatively affected by persistent stress and autonomic nervous system (ANS) dysfunction, both of which can be assessed by pressure pain sensitivity (PPS) at the chest bone. Objectives: To test the association between PPS...... guide for persistent stress and ANS dysfunction. Performance stability, overall performance and PPS measure were assessed at three intervals. Results: At baseline, the median PPS was 83, the performance stability was inferior to the mean top 10 competitors, and the overall performance was rank eight......: r > 0.70; p stress and ANS dysfunction as assessed by PPS on one side and performance stability and overall performance on the other side....

  16. Boundary element analysis of stress due to thermal shock loading or reactor pressure vessel nozzle; Napetostna analiza pri nestacionarni termicni obremenitvi cevnega prikljucka reaktorske tlacne posode z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)

  17. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-01

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  18. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  19. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    Science.gov (United States)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  20. Compact streak camera for the shock study of solids by using the high-pressure gas gun

    Science.gov (United States)

    Nagayama, Kunihito; Mori, Yasuhito

    1993-01-01

    For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.

  1. The Use of Limited Fluid Resuscitation and Blood Pressure-Controlling Drugs in the Treatment of Acute Upper Gastrointestinal Hemorrhage Concomitant with Hemorrhagic Shock.

    Science.gov (United States)

    Lu, Bo; Li, Mao-Qin; Li, Jia-Qiong

    2015-06-01

    The aim of this study was to evaluate the usefulness of the limited fluid resuscitation regimen combined with blood pressure-controlling drugs in treating acute upper gastrointestinal hemorrhage concomitant with hemorrhagic shock. A total of 51 patients were enrolled and divided into a group that received traditional fluid resuscitation group (conventional group, 24 patients) and a limited fluid resuscitation group (study group, 27 patients). Before and after resuscitation, the blood lactate, base excess, and hemoglobin values, as well as the volume of fluid resuscitation and resuscitation time were examined. Compared with conventional group, study group had significantly better values of blood lactate, base excess, and hemoglobin (all p controlling drugs effectivelyxxx maintains blood perfusion of vital organs, improves whole body perfusion indicators, reduces the volume of fluid resuscitation, and achieves better bleeding control and resuscitation effectiveness.

  2. The Influence of Time Pressure and Case Complexity on Physicians׳ Diagnostic Performance

    Directory of Open Access Journals (Sweden)

    Dalal A. ALQahtani

    2016-12-01

    Conclusions: Time pressure did not impact the diagnostic performance, whereas the complexity of the clinical case negatively influenced the diagnostic accuracy. Further studies with the enhanced experimental manipulation of time pressure are needed to reveal the effect of time pressure, if any, on a physician׳s diagnostic performance.

  3. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  4. Analysis of oligomeric transition of silkworm small heat shock protein sHSP20.8 using high hydrostatic pressure native PAGE

    Science.gov (United States)

    Fujisawa, Tetsuro; Ueda, Toshifumi; Kameyama, Keiichi; Aso, Yoichi; Ishiguro, Ryo

    2013-06-01

    The small heat shock proteins (sHSPs) solubilize thermo-denatured proteins without adenosine triphosphate energy consumption to facilitate protein refolding. sHSP20.8 is one of the silkworm (Bombyx mori) sHSPs having only one cystein in the N-terminal domain: Cys43. We report a simple measurement of oligomeric transition of sHSP20.8 using high hydrostatic pressure native polyacrylamide gel electrophoresis (high hydrostatic pressure (HP) native polyacrylamide gel electrophoresis (PAGE)). At ambient pressure under oxydative condition, the native PAGE of thermal transition of sHSP20.8 oligomer displayed a cooperative association. In contrast, HP native PAGE clearly demonstrated that sHSP20.8 dissociated at 80 MPa and 25°C, and the resultant molecular species gradually reassociated with time under that condition. In addition, the reassociation process was suppressed in the presence of the reductant. These results are consistent with the idea that sHSP20.8 oligomer temporally dissociates at the first thermo-sensing step and reassociates with the oxidation of Cys43.

  5. High-Pressure Shock Compression of Solids VIII The Science and Technology of High-Velocity Impact

    CERN Document Server

    Chhabildas, Lalit C; Horie, Yasuyuki

    2005-01-01

    Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically-oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.

  6. Experimental analysis of shock wave effects in copper

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  7. Effects of the imposed pressure differential conditions on duoplasmatron performance

    International Nuclear Information System (INIS)

    Oztarhan, A.

    1988-01-01

    The duoplasmatron plasma source (D.P.T.) was modified to allow access to the arc discharge (to measure the discharge properties) and to vary independently the pressures in different volumes of the arc with the aim of seeing if this freedom would help in optimising the output. The duoplasmatron plasma source was operated under normal running condition (N.R.C.), positive imposed pressure differential condition (P.I.P.D.C.) and negative imposed pressure differential condition (N.I.P.D.C.) and the corresponding properties of the plasma output were measured. Running the duoplasmatron under P.I.P.D. condition did not seem to improve the output as compared to that under N.R.C. However, running the duoplasmatron under N.I.P.D. condition seemed to be advantageous as the output increased by about 30%. It was observed that the back pressure was critical in maintaining the arc and the gap pressure could be lowered much below the normal minimum (while the arc was on) if back pressure was kept above a critical value. The results showed that the effects of varying the dimensions of the intermediate electrode nozzle on the output could be understood in terms of the effect of changes in these dimensions on the relative pressures. An empirical expression for the effect of the pressure ratio was developed from the observations and compared with the experimental results. The reasons for various results can be related to the plasma emission mechanism. (author). 8 refs, 6 figs, 1 tab

  8. Diagnosing and alleviating the impact of performance pressure on mathematical problem solving.

    Science.gov (United States)

    DeCaro, Marci S; Rotar, Kristin E; Kendra, Matthew S; Beilock, Sian L

    2010-08-01

    High-pressure academic testing situations can lead people to perform below their actual ability levels by co-opting working memory (WM) resources needed for the task at hand (Beilock, 2008). In the current work we examine how performance pressure impacts WM and design an intervention to alleviate pressure's negative impact. Specifically, we explore the hypothesis that high-pressure situations trigger distracting thoughts and worries that rely heavily on verbal WM. Individuals performed verbally based and spatially based mathematics problems in a low-pressure or high-pressure testing situation. Results demonstrated that performance on problems that rely heavily on verbal WM resources was less accurate under high-pressure than under low-pressure tests. Performance on spatially based problems that do not rely heavily on verbal WM was not affected by pressure. Moreover, the more people reported worrying during test performance, the worse they performed on the verbally based (but not spatially based) maths problems. Asking some individuals to focus on the problem steps by talking aloud helped to keep pressure-induced worries at bay and eliminated pressure's negative impact on performance.

  9. Effects of competitive pressure on expert performance: underlying psychological, physiological, and kinematic mechanisms.

    Science.gov (United States)

    Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Boardley, Ian D; Ring, Christopher

    2011-08-01

    Although it is well established that performance is influenced by competitive pressure, our understanding of the mechanisms which underlie the pressure-performance relationship is limited. The current experiment examined mediators of the relationship between competitive pressure and motor skill performance of experts. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 50 expert golfers, during a golf putting task. Elevated competitive pressure increased putting accuracy, anxiety, effort, and heart rate, but decreased grip force. Quadratic effects of pressure were noted for self-reported conscious processing and impact velocity. Mediation analyses revealed that effort and heart rate partially mediated improved performance. The findings indicate that competitive pressure elicits effects on expert performance through both psychological and physiological pathways. Copyright © 2011 Society for Psychophysiological Research.

  10. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  11. Improvement of the calculation of the stress intensity factors for underclad and through-clad defects in a reactor pressure vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2008-01-01

    The analysis of the stability of a defect in a cladded reactor pressure vessel (RPV) of a nuclear pressure water reactor (PWR) subjected to pressurised thermal shock (PTS) is one main elements of the general safety demonstration. Recently, CEA proposed several improved analytical tools for the analysis of the PTS. First, an analytical solution for the vessel through-thickness temperature variation has been developed to deal with any fluid temperature, taking into account the possible presence of a cladding, in the case of an internal PTS. The associated thermal stress expression has been simplified and a complete linearised solution is given for the thermal loading and also for internal pressure, depending on the main vessel material and on the cladding properties. Finally, a complete compendium is also given for the elastic stresses intensity factor calculation. This paper proposes several improvements of the proposed analytical method to deal with a PTS in a PWR cladded vessel. A variable heat transfer coefficient is now taken into account based on an equivalent fluid temperature variation determination, associated with a constant heat transfer coefficient, to keep the same thermal exchange between the fluid and the inner skin of the vessel obtained with the initial data. A more accurate expression for the linearised stresses due to the internal pressure is given, and a possible effect of residual stresses due to the difference between the operating temperature and the stress-free temperature is also taken into account. Finally, an extension of the domain of definition of the influence functions for the elastic stress intensity factor calculation is given

  12. Fiber-optic coupled pressure transducer

    International Nuclear Information System (INIS)

    Tallman, C.R.; Wingate, F.P.; Ballard, E.O.

    1979-01-01

    A fiber-optic coupled pressure transducer was developed for measurement of pressure transients produced by fast electrical discharges in laser cavities. A detailed description of the design and performance will be given. Shock tube performance and measurements in direct electrical discharge regions will be presented

  13. Association of different electrocardiographic patterns with shock index, right ventricle systolic pressure and diameter, and embolic burden score in pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Krća Bojana

    2016-01-01

    Full Text Available Background/Aim. Some electrocardiographic (ECG patterns are characteristic for pulmonary embolism but exact meaning of the different ECG signs are not well known. The aim of this study was to determine the association between four common ECG signs in pulmonary embolism [complete or incomplete right bundle branch block (RBBB, S-waves in the aVL lead, S1Q3T3 sign and negative T-waves in the precordial leads] with shock index (SI, right ventricle diastolic diameter (RVDD and peak systolic pressure (RVSP and embolic burden score (EBS. Methods. The presence of complete or incomplete RBBB, S waves in aVL lead, S1Q3T3 sign and negative T-waves in the precordial leads were determined at admission ECG in 130 consecutive patients admitted to the intensive care unit of a single tertiary medical center in a 5-year period. Echocardiography examination with measurement of RVDD and RVSP, multidetector computed tomography pulmonary angiography (MDCT-PA with the calculation of EBS and SI was determined during the admission process. Multivariable regression models were calculated with ECG parameters as independent variables and the mentioned ultrasound, MDCT-PA parameters and SI as dependent variables. Results. The presence of S-waves in the aVL was the only independent predictor of RVDD (F = 39.430, p < 0.001; adjusted R2 = 0.231 and systolic peak right ventricle pressure (F = 29.903, p < 0.001; adjusted R2 = 0.185. Negative T-waves in precordial leads were the only independent predictor for EBS (F = 24.177, p < 0.001; R2 = 0.160. Complete or incomplete RBBB was the independent predictor of SI (F = 20.980, p < 0.001; adjusted R2 = 0.134. Conclusion. In patients with pulmonary embolism different ECG patterns at admission correlate with different clinical, ultrasound and MDCT-PA parameters. RBBB is associated with shock, Swave in the aVL is associated with right ventricle pressure and negative T-waves with the thrombus burden in the pulmonary tree.

  14. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  15. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  16. Double Shock Experiments Performed at -55°C on LX-17 with Reactive Flow Modeling to Understand the Reacted Equation of State

    Science.gov (United States)

    Dehaven, Martin R.; Vandersall, Kevin S.; Strickland, Shawn L.; Fried, Laurence E.; Tarver, Craig M.

    2017-06-01

    Experiments were performed at -55°C to measure the reacted state of LX-17 (92.5% TATB and 7.5% Kel-F by weight) using a double shock technique using two flyer materials (with known properties) mounted on a projectile that send an initial shock through the material close to the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. Information on the reacted state is obtained by measuring the relative timing and magnitude of the first and second shock waves. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include a comparison to prior work at ambient temperature, the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Creative performance under pressure: an integrative conceptual framework

    NARCIS (Netherlands)

    Gutnik, D.; Walter, F.; Nijstad, B.A.; de Dreu, C.K.W.

    2012-01-01

    Creativity is the cornerstone of organizational success in today’s economy. At the same time, employees face considerable work pressure, which might undermine their creativity. This article integrates theoretical perspectives from the stress and creativity literatures to develop a new model that

  18. Farmer Performance under Competitive Pressure in Agro-cluster Regions

    NARCIS (Netherlands)

    Wardhana, D.; Ihle, R.; Heijman, W.J.M.

    2017-01-01

    Agro-clusters would allow farmers to acquire positive and negative externalities. On one hand, smallholder farmers in spatial proximity are likely to benefit from this concentration; on the other hand, they incur high competitive pressure from other neighboring farmers. We examine the link between

  19. Reality-based practice under pressure improves handgun shooting performance of police officers.

    NARCIS (Netherlands)

    Oudejans, R.R.D.

    2008-01-01

    The current study examined whether reality-based practice under pressure may help in preventing degradation of handgun shooting performance under pressure for police officers. Using a pre-post-test design, one group of nine police officers practised handgun shooting under pressure evoked by an

  20. Performing under pressure: Exploring the psychological state underlying clutch performance in sport.

    Science.gov (United States)

    Swann, Christian; Crust, Lee; Jackman, Patricia; Vella, Stewart A; Allen, Mark S; Keegan, Richard

    2017-12-01

    Clutch performance is improved performance under pressure. However, little research has examined the psychological state experienced by athletes in these situations. Therefore, this study qualitatively examined the subjective experience underlying clutch performance across a range of sports (e.g., team, individual) and standards (Olympic to recreational athletes). Sixteen athletes (M age  = 27.08 years; SD = 6.48) took part in in-depth, semi-structured interviews primarily after an exceptional performance (M = 4.38 days later; SD = 3.14). Data were analysed inductively and thematically. Clutch states involved 12 characteristics, including heightened and deliberate concentration, intense effort, and heightened awareness, which distinguished the experience of clutch from other optimal psychological states such as flow. Other characteristics, such as perceptions of control, were also reported and supported previous experimental research on clutch. These findings present in-depth qualitative insights into the psychological state underlying clutch performance, and are discussed in relation to the existing literature on optimal psychological states in sport.

  1. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Science.gov (United States)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  2. Assessment of wheel propeller contact pressure upon soil with use of tire universal performance

    Directory of Open Access Journals (Sweden)

    Z. A. Godzhaev

    2016-01-01

    Full Text Available A maximum contact pressure is a key parameter characterizing a level of ecological impact of tractor propellers on the soil. The maximum pressure upon the soil varies with internal pressure in tires and vertical load of a wheel. An universal tire performance can be used at an assessment of change of contact pressure of a wheel propeller upon the soil. The authors offered a technique of definition and regulation of the maximum contact pressure of the wheel propeller upon the basic basis. This technique allows to set parameters for monitoring systems and regulation of the maximum pressure upon the soil by measurement of a tire deflection and change of pressure in tires. At statistical tests for determination of the maximum contact pressure it is necessary to consider the universal performance of the tire nomographically. This nomogram allows to consider visually influence of loading and internal pressure in the tire on a size of the maximum contact pressure. An internal pressure decrease in the tire makes it possible to reduce the maximum pressure upon the soil at constant loading. The authors investigated universal performances of the tires in the range of change of internal air pressure from 160 to 90 kPas. Change of internal pressure from 150 to 100 kPas reduce for the tire 15,5R38 the maximum contact pressure upon 13 kPas (9,6 percent: from 135 to 122 kPas. That corresponds to the admissible level of pressure upon the soil at its humidity in a layer of 0-30 cm: 0,5-0,6 minimum moisture-holding capacity during the spring period and 0,6-0,7 minimum moisture-holding capacity during the autumn period. In case of use of the tire 16,9R38 the maximum pressure upon the soil decreases from 84 to 75 kPas, that is by 10,4 percent.

  3. Pressure shock triploidization of Salmo trutta f. lacustris and Salvelinus umbla eggs and its impact on fish development.

    Science.gov (United States)

    Lahnsteiner, Franz; Kletzl, Manfred

    2018-07-15

    The study tested the efficiency of hydrostatic pressure triploidization methods for Salmo trutta f. lacustris and Salvelinus umbla and investigated the effects on survival rate, skeletal malformation, and on morphometrics and cellular composition of gills, spleen, liver, kidney, intestine, and blood. In Salmo trutta f. lacustris a 100% triploidy rate in combination with high larvae survival rate (80% in comparison to control) was obtained when treating eggs with a pressure of 66 × 10 3  kPa 360 °C temperature minutes (CTM) post fertilization for 5 min, in Salvelinus umbla with a similar pressure after 270 CTM. Juvenile triploid Salmo trutta f. lacustris and Salvelinus umbla (145 days post hatch) had neither an increased rate of mortality, nor an increased rate of malformations. In triploid Salmo trutta f. lacustris and Salvelinus umbla the erythrocyte volume was 50% higher and the erythrocyte concentration in peripheral blood 25-35% lower relative to diploids. In triploids also the erythrocytes surface area: volume ratio was reduced. Gills of triploid Salmo trutta f. lacustris and Salvelinus umbla had increased width of primary lamellae and increased length of secondary lamellae which might compensate for unfavorable erythrocytes surface area: volume ratio. Length of the digestive tract and histology of kidney, liver, spleen, and gills were only investigated in Salmo trutta f. lacustris. In triploids the hematopoietic tissue of the kidney was decreased by 12%, the spleen index by 53%, and the erythroblast concentrations of the spleen by 42% relative to diploids, possibly indicating reduced erythropoiesis. Length of the digestive tract and cellular arrangement of intestine, liver, and gills were not affected. In summary, the used triploidization procedure seems a reliable method not counteracting the principles of animal welfare. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Performance of microstrip and microgap gas detectors at high pressure

    International Nuclear Information System (INIS)

    Fraga, F.A.F.; Fraga, M.M.F.R.; Marques, R.F.; Margato, L.M.S.; Goncalo, J.R.; Policarpo, A.J.P.L.

    1997-01-01

    A study of the operation of microstrip and microgap detectors at various gas pressures up to 6 bar with Kr-CO 2 , Xe-CO 2 and Xe-CH 4 is presented. The data were collected with a microstrip (1000 μm pitch) and a microgap (200 μm pitch) detector using a clean chamber and gas system. It is shown that maximum gain is strongly dependent on pressure and gains as high as 9 x 10 3 were obtained with Kr-CO 2 at 6 bar with a MSGC. With the smaller-pitch MGC we could get a gain of 180 with Xe-CH 4 at 6 bar; the typical energy resolution at 22 keV being about 15%. From the present work one can conclude that microstructures can operate at high pressure and that their application in high-efficiency, low-granularity X-ray detectors with an energy range up to a few tens of keV can be seriously considered. (orig.)

  5. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1979-01-01

    Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.

  6. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.

    Science.gov (United States)

    Johansen, Kristoffer; Song, Jae Hee; Prentice, Paul

    2018-05-01

    We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Minimum containment pressure and its effect on ECCS performance of APR-1400

    International Nuclear Information System (INIS)

    Kim, In Goo; Bang, Young S.; Kim, Hho Jung

    2004-01-01

    The containment pressure has a strong effect on the late reheat behavior for a large break LOCA, associated with the DVI issue. The downcomer boiling, which occurs during the post-reflood phase, has a negative effect on core cooling for a LBLOCA. Because the downcomer boiling is enhanced as the containment pressure decreases, how to determine containment pressure is important to the evaluation of ECCS performance. In spite of its importance of containment pressure, there are few studies on the containment pressure and the interaction between RCS and containment thermal hydraulics. To have a better knowledge of the effect of containment pressure on APR-1400 ECCS performance, a parametric study for containment pressure has been carried out. Also, the interaction between RCS and containment behavior has been also investigated

  8. Simulation of shock-induced bubble collapse using a four-equation model

    Science.gov (United States)

    Goncalves, E.; Hoarau, Y.; Zeidan, D.

    2018-02-01

    This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.

  9. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Science.gov (United States)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  10. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  11. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    Science.gov (United States)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  12. Geosynthetic wall performance : facing pressure and deformation : final report.

    Science.gov (United States)

    2017-02-01

    The objective of the study was to validate the performance of blocked-faced Geosynthetic Reinforced Soil (GRS) wall and to validate the Colorado Department of Transportations (CDOT) decision to waive the positive block connection for closely-space...

  13. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    Science.gov (United States)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  14. Towards Modernizing the Characterization of Shock and Detonation Physics Performance via Novel Diagnostics and Tests

    Science.gov (United States)

    Salyer, Terry

    2017-06-01

    For the bulk of detonation performance experiments, a fairly basic set of diagnostic techniques has evolved as the standard for acquiring the necessary measurements. Gold standard techniques such as pin switches and streak cameras still produce the high-quality data required, yet much room remains for improvement with regard to ease of use, cost of fielding, breadth of data, and diagnostic versatility. Over the past several years, an alternate set of diagnostics has been under development to replace many of these traditional techniques. Pulse Correlation Reflectometry (PCR) is a capable substitute for pin switches with the advantage of obtaining orders of magnitude more data at a small fraction of the cost and fielding time. Spectrally Encoded Imaging (SEI) can replace most applications of streak camera with the advantage of imaging surfaces through a single optical fiber that are otherwise optically inaccessible. Such diagnostics advance the measurement state of the art, but even further improvements may come through revamping the standardized tests themselves such as the copper cylinder expansion test. At the core of this modernization, the aforementioned diagnostics play a significant role in revamping and improving the standard test suite for the present era. This research was performed under the auspices of the United States Department of Energy.

  15. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  16. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  17. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  18. Gender gap in admission performance under competitive pressure

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Štěpán; Münich, Daniel

    -, č. 371 (2008), s. 1-22 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : gender gap in performance * test anxiety * competition Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp371.pdf

  19. The Effect of Peer Pressure on Performance in Crowdsourcing Contests

    DEFF Research Database (Denmark)

    Heite, Jonas; Hoisl, Karin

    We investigate whether and why performance differences exist between contestants with the same abilities but who compete against more skilled or less skilled contestants. We analyze 1,677 unique coders competing in 38 software algorithm competitions with random assignment. Part of these coders co...

  20. Experimental Investigation of Diffuser Pressure-ratio Control with Shock-positioning Limit on 28-inch Ram-jet Engine

    Science.gov (United States)

    Dunbar, William R; Wentworth, Carl B; Crowl, Robert J

    1957-01-01

    The performance of a control system designed for variable thrust applications was determined in an altitude free-jet facility at various Mach numbers, altitudes and angles of attack for a wide range of engine operation. The results are presented as transient response characteristics for step disturbances in fuel flow and stability characteristics as a function of control constants and engine operating conditions. The results indicate that the control is capable of successful operation over the range of conditions tested, although variations in engine gains preclude optimum response characteristics at all conditions with fixed control constants.

  1. Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop landing performance.

    Science.gov (United States)

    Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F

    1998-12-01

    The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.

  2. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  3. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  4. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    Science.gov (United States)

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  5. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  6. Entropy jump across an inviscid shock wave

    Science.gov (United States)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  7. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  8. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  9. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  10. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  11. Performance of Fragema fuel in pressurized water reactors

    International Nuclear Information System (INIS)

    Dumont, A.; Ravier, G.; Ballot, B.

    1986-06-01

    FRAGEMA fuel operating experience in power reactors is very extensive. Performance over a range of power and burnup levels for various operating conditions is quite satisfactory. However significant development programs are presently in progress to further extend our knowledge under increasingly severe operating conditions. In particular, upcoming data acquisition programs (1985-1988) will cover site and hot cell measurements on Gd poison rods, 4.5 % overenriched fuel rods over four operating cycles, 17 x 17 AFA fuel assemblies. For these products the same surveillance strategy as the one used for the standard assembly has been adopted, in order to continuously provide more data which can be used to upgrade design models and pave the way for the development of future products

  12. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  13. Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis

    KAUST Repository

    Yip, Ngai Yin; Elimelech, Menachem

    2011-01-01

    Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena

  14. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  15. Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, Imdat; Benli, Merthan [Department of Mechanical Engineering, University of Sakarya, 54187 Adapazari (Turkey)

    2010-05-15

    The performance of the fuel cell is affected by many parameters. One of these parameters is assembly pressure that changes the mechanical properties and dimensions of the fuel cell components. Its first duty, however, is to prevent gas or liquid leakage from the cell and it is important for the contact behaviors of fuel cell components. Some leakage and contact problems can occur on the low assembly pressures whereas at high pressures, components of the fuel cell, such as bipolar plates (BPP), gas diffusion layers (GDL), catalyst layers, and membranes, can be damaged. A finite element analysis (FEA) model is developed to predict the deformation effect of assembly pressure on the single channel PEM fuel cell in this study. Deformed fuel cell single channel model is imported to three-dimensional, computational fluid dynamics (CFD) model which is developed for simulating proton exchange membrane (PEM) fuel cells. Using this model, the effect of assembly pressure on fuel cell performance can be calculated. It is found that, when the assembly pressure increases, contact resistance, porosity and thickness of the gas diffusion layer (GDL) decreases. Too much assembly pressure causes GDL to destroy; therefore, the optimal assembly pressure is significant to obtain the highest performance from fuel cell. By using the results of this study, optimum fuel cell design and operating condition parameters can be predicted accordingly. (author)

  16. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang; Kong Hainan

    2007-01-01

    Natural zeolite and expanded clay were used as filter media for biological aerated filter (BAF) to treat municipal wastewater in parallel in whole three test stages. The stage one test results revealed that zeolite BAF and expanded clay BAF have COD and NH 3 -N removals in the range of 84.63-93.11%, 85.74-96.26%, 82.34-93.71%, and 85.06-93.2%, respectively, under the conditions of water temperature of 20-25 deg. C and hydraulic load of 2-3 m 3 /(m 2 h). At the following stage two, the influent NH 3 -N concentration was increased to about double value of the stage one, and it was investigated that the effluent NH 3 -N of expanded clay BAF increased significantly and then gradually restored to normal condition in 2 weeks, while the effluent NH 3 -N of zeolite BAF kept stable. At stage three, the low reactor temperature has also different effects on these two BAFs, under conditions of water temperature of 7-10 deg. C, hydraulic load of 2-3 m 3 /(m 2 h), zeolite BAF and expanded clay BAF have COD and NH 3 -N removals in the range of 74.5-88.47% (average of 81.57%), 71.73-88.49% (average of 81.06%), 71.91-87.76% (average of 80.49%), and 38.41-77.17% (average of 65.42%), respectively. Three stages test results indicated that the zeolite BAF has a stronger adaptability to NH 3 -N shock load and low temperature compared to expanded clay BAF. In addition, the detection of the amounts of heterobacteria and nitrobacteria of two biological aerated filters in three stages also showed the zeolite filter media was more suitable to the attached growth of nitrobacteria, which is helpful to the improvement of nitrification performance in zeolite BAF

  17. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  18. The impact of personality traits and professional experience on police officers' shooting performance under pressure.

    Science.gov (United States)

    Landman, Annemarie; Nieuwenhuys, Arne; Oudejans, Raôul R D

    2016-07-01

    We explored the impact of professional experience and personality on police officers' shooting performance under pressure. We recruited: (1) regular officers, (2) officers wanting to join a specialised arrest unit (AU) (expected to possess more stress-resistant traits; pre-AU) and (3) officers from this unit (expected to also possess more professional experience; AU) (all male). In Phase 1, we determined personality traits and experience. In Phase 2, state anxiety, shot accuracy, decision-making (shoot/don't shoot), movement speed and gaze behaviour were measured while officers performed a shooting test under low and high pressure. Results indicate minimal differences in personality among groups and superior performance of AU officers. Regression analyses showed that state anxiety and shooting performance under high pressure were first predicted by AU experience and second by certain personality traits. Results suggest that although personality traits attenuate the impact of high pressure, it is relevant experience that secures effective performance under pressure. Practitioner Summary: To obtain information for police selection and training purposes, we let officers who differed in personality and experience execute a shooting test under low and high pressure. Outcomes indicate that experience affected anxiety and performance most strongly, while personality traits of thrill- and adventure-seeking and self-control also had an effect.

  19. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    Science.gov (United States)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  20. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  1. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance.

    Science.gov (United States)

    Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga

    2017-10-20

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  2. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  3. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives.

    Science.gov (United States)

    Feitosa, V P; Gotti, V B; Grohmann, C V; Abuná, G; Correr-Sobrinho, L; Sinhoreti, M A C; Correr, A B

    2014-09-01

    To evaluate the effects of two methods to simulate physiological pulpal pressure on the dentine bonding performance of two all-in-one adhesives and a two-step self-etch silorane-based adhesive by means of microtensile bond strength (μTBS) and nanoleakage surveys. The self-etch adhesives [G-Bond Plus (GB), Adper Easy Bond (EB) and silorane adhesive (SIL)] were applied to flat deep dentine surfaces from extracted human molars. The restorations were constructed using resin composites Filtek Silorane or Filtek Z350 (3M ESPE). After 24 h using the two methods of simulated pulpal pressure or no pulpal pressure (control groups), the bonded teeth were cut into specimens and submitted to μTBS and silver uptake examination. Results were analysed with two-way anova and Tukey's test (P adhesives. No difference between control and pulpal pressure groups was found for SIL and GB. EB led significant drop (P = 0.002) in bond strength under pulpal pressure. Silver impregnation was increased after both methods of simulated pulpal pressure for all adhesives, and it was similar between the simulated pulpal pressure methods. The innovative method to simulate pulpal pressure behaved similarly to the classic one and could be used as an alternative. The HEMA-free one-step and the two-step self-etch adhesives had acceptable resistance against pulpal pressure, unlike the HEMA-rich adhesive. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Dynamic pressure sensitivity determination with Mach number method

    Science.gov (United States)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference

  5. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  6. Shock and vibration effects on performance reliability and mechanical integrity of proton exchange membrane fuel cells: A critical review and discussion

    Science.gov (United States)

    Haji Hosseinloo, Ashkan; Ehteshami, Mohsen Mousavi

    2017-10-01

    Performance reliability and mechanical integrity are the main bottlenecks in mass commercialization of PEMFCs for applications with inherent harsh environment such as automotive and aerospace applications. Imparted shock and vibration to the fuel cell in such applications could bring about numerous issues including clamping torque loosening, gas leakage, increased electrical resistance, and structural damage and breakage. Here, we provide a comprehensive review and critique of the literature focusing on the effects of mechanically harsh environment on PEMFCs, and at the end, we suggest two main future directions in FC technology research that need immediate attention: (i) developing a generic and adequately accurate dynamic model of PEMFCs to assess the dynamic response of FC devices, and (ii) designing effective and robust shock and vibration protection systems based on the developed models in (i).

  7. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  8. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  9. Time to achieve target mean arterial pressure during resuscitation from experimental anaphylactic shock in an animal model. A comparison of adrenaline alone or in combination with different volume expanders.

    Science.gov (United States)

    Tajima, K; Zheng, F; Collange, O; Barthel, G; Thornton, S N; Longrois, D; Levy, B; Audibert, G; Malinovsky, J M; Mertes, P M

    2013-11-01

    Anaphylactic shock is a rare, but potentially lethal complication, combining life-threatening circulatory failure and massive fluid shifts. Treatment guidelines rely on adrenaline and volume expansion by intravenous fluids, but there is no solid evidence for the choice of one specific type of fluid over another. Our purpose was to compare the time to achieve target mean arterial pressure upon resuscitation using adrenaline alone versus adrenaline with different resuscitation fluids in an animal model and to compare the tissue oxygen pressures (PtiO2) with the various strategies. Twenty-five ovalbumin-sensitised Brown Norway rats were allocated to five groups after anaphylactic shock induction: vehicle (CON), adrenaline alone (AD), or adrenaline with isotonic saline (AD+IS), hydroxyethyl starch (AD+HES) or hypertonic saline (AD+HS). Time to reach a target mean arterial pressure value of 75 mmHg, cardiac output, skeletal muscle PtiO2, lactate/pyruvate ratio and cumulative doses of adrenaline were recorded. Non-treated rats died within 15 minutes. The target mean arterial pressure value was reached faster with AD+HES (median: 10 minutes, range: 7.5 to 12.5 minutes) and AD+IS (median: 17.5 minutes, range: 5 to 25 minutes) versus adrenaline alone (median: 25 minutes, range: 20-30 minutes). There were also reduced adrenaline requirements in these groups. The skeletal muscle PtiO2 was restored only in the AD+HES group. Although direct extrapolation to humans should be made with caution, our results support the combined use of adrenaline and volume expansion for resuscitation from anaphylactic shock. When used with adrenaline the most effective fluid was hydroxyethyl starch, whereas hypertonic saline was the least effective.

  10. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  11. Replacement of low pressure reheater and performance evaluation on domestic NPP moisture separator reheater

    International Nuclear Information System (INIS)

    Choi, Y. S.; Jeong, W. T.; Shon, S. Y.; Kim, M. H.

    2003-01-01

    Moisture Separator Reheater is one of the most important equipment for the integrity of low pressure turbine and the total efficiency of the nuclear power plant, It supplies the dry steam to low pressure turbine after separation of moisture and reheating the wet steam out of high pressure turbine. This equipment is always operated under severe conditions, therefore it should be carefully maintained for safe operation and operating confidence. After replacement low pressure reheater of moister separator reheater on domestic nuclear power plant, there was MSR performance degradation and vibration of condensate drain line. So I found out root cause and commented a solution, site people modified the equipment. Finally I concluded the performanc of MSR was good condition, after I inspected the equipment and evaluated the performance of MSR

  12. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  13. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  14. Prehospital shock index and pulse pressure/heart rate ratio to predict massive transfusion after severe trauma: Retrospective analysis of a large regional trauma database.

    Science.gov (United States)

    Pottecher, Julien; Ageron, François-Xavier; Fauché, Clémence; Chemla, Denis; Noll, Eric; Duranteau, Jacques; Chapiteau, Laurent; Payen, Jean-François; Bouzat, Pierre

    2016-10-01

    Early and accurate detection of severe hemorrhage is critical for a timely trigger of massive transfusion (MT). Hemodynamic indices combining heart rate (HR) and either systolic (shock index [SI]) or pulse pressure (PP) (PP/HR ratio) have been shown to track blood loss during hemorrhage. The present study assessed the accuracy of prehospital SI and PP/HR ratio to predict subsequent MT, using the gray-zone approach. This was a retrospective analysis (January 1, 2009, to December 31, 2011) of a prospectively developed trauma registry (TRENAU), in which the triage scheme combines patient severity and hospital facilities. Thresholds for MT were defined as either classic (≥10 red blood cell units within the first 24 hours [MT1]) or critical (≥3 red blood cells within the first hour [MT2]). The receiver operating characteristic curves and gray zones were defined for SI and PP/HR ratio to predict MT1 and MT2 and faced with initial triage scheme. The TRENAU registry included 3,689 trauma patients, of which 2,557 had complete chart recovery and 176 (6.9%) required MT. In the whole population, PP/HR ratio and SI moderately and similarly predicted MT1 (area under the receiver operating characteristic curve, 0.77 [95% confidence interval {CI}, 0.70-0.84] and 0.80 [95% CI, 0.74-0.87], respectively, p = 0.064) and MT2 (0.71 [95% CI, 0.67-0.76] and 0.72 [95% CI, 0.68-0.77], respectively, p = 0.48). The proportions of patients in the gray zone for PP/HR ratio and SI were 61% versus 40%, respectively, to predict MT1 (p ratio outperformed SI to predict MT2 (0.72 [95% CI, 0.59-0.84] vs. 0.54 [95% CI, 0.33-0.74]; p ratio were moderately accurate in predicting MT. In the seemingly least severe patients, an improvement of prehospital undertriage for MT may be gained by using the PP/HR ratio. Epidemiolgic study, level III.

  15. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    Science.gov (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  16. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    International Nuclear Information System (INIS)

    Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P

    2010-01-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without

  17. Pressure mapping and performance of the compression bandage/garment for venous leg ulcer treatment.

    Science.gov (United States)

    Ghosh, S; Mukhopadhyay, A; Sikka, M; Nagla, K S

    2008-08-01

    A study has been conducted on the commercially available compression bandages as regards their performance with time. Pressure mapping of these bandages has been done using a fabricated pressure-measuring device on a mannequin leg to see the effect on pressure due to creep, fabric friction and angle of bandaging. The results show that the creep behavior, frictional behavior and the angle of bandaging have a significant effect on the pressure profile generated by the bandages during application. The regression analysis shows that the surface friction restricts the slippage in a multilayer system. Also the diameters of the limb and the amount of stretch given to the bandage during application have definite impact on the bandage pressure. In case of compression garments, washing improves the pressure generated but not to the extent of the pressure of a virgin garment. Comparing the two compression materials i.e. bandage and garment, it is found that the presence of higher percentage of elastomeric material and a highly close construction in case of garment provides better holding power and a more homogeneous pressure distribution.

  18. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...... to 700 sec-1. The results are compared with the CEB Model Code and the Spilt Hopkinson Pressure Bar technique is briefly de-scribed....

  19. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  20. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN; Avaliacao termo-hidraulica da montagem experimental de choque termico pressurizado do CDTN/CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2002-07-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  1. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  2. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  3. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    Science.gov (United States)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  4. Static and cyclic performance evaluation of sensors for human interface pressure measurement.

    Science.gov (United States)

    Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W

    2012-01-01

    Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.

  5. Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yong Ju; Ko, Jun Seok; Kim, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Changwon (Korea, Republic of)

    2016-09-15

    An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

  6. Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Ko, Jun Seok; Kim, Hyo Bong; Park, Seong Je

    2016-01-01

    An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space

  7. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  8. Resistance exercise performed with repetitions until failure affects nocturnal blood pressure decreases in hypertensive women

    Directory of Open Access Journals (Sweden)

    Marilia de Almeida Correia

    2015-12-01

    Full Text Available Studies have shown that resistance exercise reduces 24-hour blood pressure to levels below resting values, although this is not a universal finding. The number of repetitions has been shown to influence this response. Thus, the aim of the study was to analyze the effects of resistance exercise performed until failure (UF on 24-hour blood pressure in hypertensive women. Thirteen hypertensive women underwent three experimental sessions in random order: UF, resistance exercise with repetitions before concentric failure (BF and control (C. Prior to and up to 24 hours after the sessions, cardiovascular variables, as well as the nocturnal fall in blood pressure, the morning surge, and the presence or absence of a blood pressure dip pattern were established using an ambulatory blood pressure monitor. In both wakefulness and sleep there was no significant difference among the three groups. However, after UF and C fewer patients presented a dip in blood pressure (46% and 38%, respectively compared BF (77%, p=0.047. In conclusion, the UF attenuated blood pressure dips at night in hypertensive patients.

  9. Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure.

    Science.gov (United States)

    Mitchell, E S; Slettenaar, M; vd Meer, N; Transler, C; Jans, L; Quadt, F; Berry, M

    2011-10-24

    The combination of theobromine and caffeine, methylxanthines found in chocolate, has previously been shown to improve mood and cognition. However, it is unknown whether these molecules act synergistically. This study tested the hypothesis that a combination of caffeine and theobromine has synergistic effects on cognition, mood and blood pressure in 24 healthy female subjects. The effects of theobromine (700 mg), caffeine (120 mg) or the combination of both, or placebo were tested on mood (the Bond-Lader visual analog scale), psychomotor performance (the Digit Symbol Substitution Test (DSST)) and blood pressure before and at 1, 2 and 3 h after administration. Theobromine alone decreased self-reported calmness 3h after ingestion and lowered blood pressure relative to placebo 1 h after ingestion. Caffeine increased self-reported alertness 1, 2 and 3h after ingestion and contentedness 1 and 2 h after ingestion, and increased blood pressure relative to placebo (at 1 h). The combination of caffeine+theobromine had similar effects as caffeine alone on mood, but with no effect on blood pressure. There was no treatment effect on DSST performance. Together these results suggest that theobromine and caffeine could have differential effects on mood and blood pressure. It was tentatively concluded that caffeine may have more CNS-mediated effects on alertness, while theobromine may be acting primarily via peripheral physiological changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Elastic-plastic fracture mechanics study of thermal shock cracking

    International Nuclear Information System (INIS)

    Hirano, K.; Kobayashi, H.; Nakazawa, H.

    1980-01-01

    This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)

  11. Low upper-shelf toughness, high transition temperature test insert in HSST [Heavy Section Steel Technology] PTSE-2 [Pressurized Thermal Shock Experiment-2] vessel and wide plate test specimens: Final report

    International Nuclear Information System (INIS)

    Domian, H.A.

    1987-02-01

    A piece of A387, Grade 22 Class 2 (2-1/4 Cr - 1 Mo) steel plate specially heat treated to produce low upper-shelf (LUS) toughness and high transition temperature was installed in the side wall of Heavy Section Steel Technology (HHST) vessel V-8. This vessel is to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized Thermal Shock Experiment-2 (PTSE-2) project of the HSST program. Comparable pieces of the plate were made into six wide plate specimens and other samples. These samples underwent tensile tests, Charpy tests, and J-integral tests. The results of these tests are given in this report

  12. Gunslingers, poker players, and chickens 3: Decision making under mental performance pressure in junior elite athletes.

    Science.gov (United States)

    Parkin, Beth L; Walsh, Vincent

    2017-01-01

    Having investigated the decision making of world class elite and subelite athletes (see Parkin and Walsh, 2017; Parkin et al., 2017), here the abilities of those at the earliest stage of entry to elite sport are examined. Junior elite athletes have undergone initial national selection and are younger than athletes examined previously (mean age 13 years). Decision making under mental pressure is explored in this sample. During performance an athlete encounters a wide array of mental pressures; these include the psychological impact of errors, negative feedback, and requirements for sustained attention in a dynamic environment (Anshel and Wells, 2000; Mellalieu et al., 2009). Such factors increase the cognitive demands of the athletes, inducing distracting anxiety-related thoughts known as rumination (Beilock and Gray, 2007). Mental pressure has been shown to reduce performance of decision-making tasks where reward and loss contingencies are explicit, with a shift toward increased risk taking (Pabst et al., 2013; Starcke et al., 2011). Mental pressure has been shown to be detrimental to decision-making speed in comparison to physical stress, highlighting the importance of considering a range of different pressures encountered by athletes (Hepler, 2015). To investigate the influence of mental pressure on key indicators of decision making in junior elite athletes. This chapter concludes a wider project examining decision making across developmental stages in elite sport. The work further explores how psychological insights can be applied in an elite sporting environment and in particular tailored to the requirements of junior athletes. Seventeen junior elite athletes (10 males, mean age: 13.80 years) enrolled on a national youth athletic development program participated in the study. Performance across three categories of decision making was assessed under conditions of low and high mental pressure. Decision making under risk was measured via the Cambridge Gambling

  13. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  14. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976

    Science.gov (United States)

    Gordon, S.; Mcbride, B. J.

    1976-01-01

    A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.

  15. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  16. Calibration of PCB-132 Sensors in a Shock Tube

    Science.gov (United States)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  17. Toward an understanding of the impact of production pressure on safety performance in construction operations.

    Science.gov (United States)

    Han, Sanguk; Saba, Farzaneh; Lee, Sanghyun; Mohamed, Yasser; Peña-Mora, Feniosky

    2014-07-01

    It is not unusual to observe that actual schedule and quality performances are different from planned performances (e.g., schedule delay and rework) during a construction project. Such differences often result in production pressure (e.g., being pressed to work faster). Previous studies demonstrated that such production pressure negatively affects safety performance. However, the process by which production pressure influences safety performance, and to what extent, has not been fully investigated. As a result, the impact of production pressure has not been incorporated much into safety management in practice. In an effort to address this issue, this paper examines how production pressure relates to safety performance over time by identifying their feedback processes. A conceptual causal loop diagram is created to identify the relationship between schedule and quality performances (e.g., schedule delays and rework) and the components related to a safety program (e.g., workers' perceptions of safety, safety training, safety supervision, and crew size). A case study is then experimentally undertaken to investigate this relationship with accident occurrence with the use of data collected from a construction site; the case study is used to build a System Dynamics (SD) model. The SD model, then, is validated through inequality statistics analysis. Sensitivity analysis and statistical screening techniques further permit an evaluation of the impact of the managerial components on accident occurrence. The results of the case study indicate that schedule delays and rework are the critical factors affecting accident occurrence for the monitored project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis

    KAUST Repository

    Yip, Ngai Yin

    2011-12-01

    Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis-external concentration polarization, internal concentration polarization, and reverse draw salt flux-and offer insights on the design criteria of a high performance pressure retarded osmosis power generation system. Thin-film composite polyamide membranes were chemically modified to produce a range of membrane transport properties, and the water and salt permeabilities were characterized to determine the underlying permeability-selectivity trade-off relationship. We show that power density is constrained by the trade-off between permeability and selectivity of the membrane active layer. This behavior is attributed to the opposing influence of the beneficial effect of membrane water permeability and the detrimental impact of reverse salt flux coupled with internal concentration polarization. Our analysis reveals the intricate influence of active and support layer properties on power density and demonstrates that membrane performance is maximized by tailoring the water and salt permeabilities to the structural parameters. An analytical parameter that quantifies the relative influence of each performance limiting phenomena is employed to identify the dominant effect restricting productivity. External concentration polarization is shown to be the main factor limiting performance at high power densities. Enhancement of the hydrodynamic flow conditions in the membrane feed channel reduces external concentration polarization and thus, yields improved power density. However, doing so will also incur additional operating costs due to the accompanying hydraulic pressure loss. This study demonstrates that by thoughtful selection of the membrane properties and hydrodynamic conditions, the detrimental

  19. Performance of current intensive care unit ventilators during pressure and volume ventilation.

    Science.gov (United States)

    Marchese, Andrew D; Sulemanji, Demet; Chipman, Daniel; Villar, Jesús; Kacmarek, Robert M

    2011-07-01

    Intensive-care mechanical ventilators regularly enter the market, but the gas-delivery capabilities of many have never been assessed. We evaluated 6 intensive-care ventilators in the pressure support (PS), pressure assist/control (PA/C), and volume assist/control (VA/C) modes, with lung-model mechanics combinations of compliance and resistance of 60 mL/cm H(2)O and 10 cm H(2)O/L/s, 60 mL/cm H(2)O and 5 cm H(2)O/L/s, and 30 mL/cm H(2)O and 10 cm H(2)O/L/s, and inspiratory muscle effort of 5 and 10 cm H(2)O. PS and PA/C were set to 15 cm H(2)O, and PEEP to 5 and 15 cm H(2)O in all modes. During VA/C, tidal volume was set at 500 mL and inspiratory time was set at 0.8 second. Rise time and termination criteria were set at the manufacturers' defaults, and to an optimal level during PS and PA/C. There were marked differences in ventilator performance in all 3 modes. VA/C had the greatest difficulty meeting lung model demand and the greatest variability across all tested scenarios and ventilators. From high to low inspiratory muscle effort, pressure-to-trigger, time for pressure to return to baseline, and triggering pressure-time product decreased in all modes. With increasing resistance and decreasing compliance, tidal volume, pressure-to-trigger, time-to-trigger, time for pressure to return to baseline, time to 90% of peak pressure, and pressure-time product decreased. There were large differences between the default and optimal settings for all the variables in PS and PA/C. Performance was not affected by PEEP. Most of the tested ventilators performed at an acceptable level during the majority of evaluations, but some ventilators performed inadequately during specific settings. Bedside clinical evaluation is needed.

  20. Balancing Model Performance and Simplicity to Predict Postoperative Primary Care Blood Pressure Elevation.

    Science.gov (United States)

    Schonberger, Robert B; Dai, Feng; Brandt, Cynthia A; Burg, Matthew M

    2015-09-01

    Because of uncertainty regarding the reliability of perioperative blood pressures and traditional notions downplaying the role of anesthesiologists in longitudinal patient care, there is no consensus for anesthesiologists to recommend postoperative primary care blood pressure follow-up for patients presenting for surgery with an increased blood pressure. The decision of whom to refer should ideally be based on a predictive model that balances performance with ease-of-use. If an acceptable decision rule was developed, a new practice paradigm integrating the surgical encounter into broader public health efforts could be tested, with the goal of reducing long-term morbidity from hypertension among surgical patients. Using national data from US veterans receiving surgical care, we determined the prevalence of poorly controlled outpatient clinic blood pressures ≥140/90 mm Hg, based on the mean of up to 4 readings in the year after surgery. Four increasingly complex logistic regression models were assessed to predict this outcome. The first included the mean of 2 preoperative blood pressure readings; other models progressively added a broad array of demographic and clinical data. After internal validation, the C-statistics and the Net Reclassification Index between the simplest and most complex models were assessed. The performance characteristics of several simple blood pressure referral thresholds were then calculated. Among 215,621 patients, poorly controlled outpatient clinic blood pressure was present postoperatively in 25.7% (95% confidence interval [CI], 25.5%-25.9%) including 14.2% (95% CI, 13.9%-14.6%) of patients lacking a hypertension history. The most complex prediction model demonstrated statistically significant, but clinically marginal, improvement in discrimination over a model based on preoperative blood pressure alone (C-statistic, 0.736 [95% CI, 0.734-0.739] vs 0.721 [95% CI, 0.718-0.723]; P for difference 1 of 4 patients (95% CI, 25

  1. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  2. Reconsidering the relevance of social license pressure and government regulation for environmental performance of European SMEs

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    Whereas social license pressure is held as a strong motive for the corporate social performance (CSP) of large enterprises, it is argued in literature that it will not sufficiently motivate small and medium-sized enterprises (SMEs). In this view, government regulation is the most effective way to

  3. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Science.gov (United States)

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Value, Impact, and the Transcendent Library: Progress and Pressures in Performance Measurement and Evaluation

    Science.gov (United States)

    Town, J. Stephen

    2011-01-01

    Libraries are under pressure to prove their worth and may not have achieved this fully successfully. There is a resultant growing requirement for value and impact measurement in academic and research libraries. This essay reviews the natural history of library performance measurement and suggests that proof of worth will be measured by the…

  5. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  6. Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor

    Science.gov (United States)

    McKain, Ted F.; Holbrook, Greg J.

    1997-01-01

    The objective of this program was to define the aerodynamic design and manufacturing coordinates for an advanced 4:1 pressure ratio, single stage centrifugal compressor at a 10 lbm/sec flow size. The approach taken was to perform an exact scale of an existing DDA compressor originally designed at a flow size of 3.655 lbm/sec.

  7. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  8. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  9. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  10. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  11. The Basic Research for Pulverization of Rice Using Underwater Shock Wave by Electric Discharge

    Directory of Open Access Journals (Sweden)

    M Ide

    2016-09-01

    Full Text Available In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level in major developed countries. This reason includes decreasing of diverting rice consumption in Japan and increasing abandonment of cultivation. Therefore, these problems are solved by using rice powder instead of expensive flour, and we manage to increase the food selfsupport rate. Previously, the rice powder is manufactured by two methods. One is dry type, and the other is wet type. The former is the method getting rice powder by running dried rice to rotating metal, and has a problem which that starch is damaged by heat when processing was performed. The latter is performed same method against wet rice, and has a problem which a large quantity of water is used. As a method to solve these problems, an underwater shock wave is used. Shock wave is the pressure wave which is over speed of sound by discharging high energy in short time. Propagating shock wave in water is underwater shock wave. The characters of underwater shock wave are long duration of shock wave because water density is uniform, water is low price and easy to get and not heat processing. Thinking of industrialization, the electric discharge is used as the generating source of underwater shock wave in the experiment. As the results, the efficiency of obtaining enough grain size, 100ìm, of rice powder was too bad only using the simple processing using underwater shock wave. Therefore, in Okinawa National College of Technology collaborating with us, obtaining rice powder with higher efficiency by using converged underwater shock wave is the goal of this research. In this research, the underwater shock wave with equal energy of the experimental device of underwater shock wave is measured by the optical observation. In addition, the appearance converging underwater shock wave is simulated by numerical analysis, and the pressure appreciation rate between the first wave and converged

  12. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  13. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  14. Influence of breast compression pressure on the performance of population-based mammography screening.

    Science.gov (United States)

    Holland, Katharina; Sechopoulos, Ioannis; Mann, Ritse M; den Heeten, Gerard J; van Gils, Carla H; Karssemeijer, Nico

    2017-11-28

    In mammography, breast compression is applied to reduce the thickness of the breast. While it is widely accepted that firm breast compression is needed to ensure acceptable image quality, guidelines remain vague about how much compression should be applied during mammogram acquisition. A quantitative parameter indicating the desirable amount of compression is not available. Consequently, little is known about the relationship between the amount of breast compression and breast cancer detectability. The purpose of this study is to determine the effect of breast compression pressure in mammography on breast cancer screening outcomes. We used digital image analysis methods to determine breast volume, percent dense volume, and pressure from 132,776 examinations of 57,179 women participating in the Dutch population-based biennial breast cancer screening program. Pressure was estimated by dividing the compression force by the area of the contact surface between breast and compression paddle. The data was subdivided into quintiles of pressure and the number of screen-detected cancers, interval cancers, false positives, and true negatives were determined for each group. Generalized estimating equations were used to account for correlation between examinations of the same woman and for the effect of breast density and volume when estimating sensitivity, specificity, and other performance measures. Sensitivity was computed using interval cancers occurring between two screening rounds and using interval cancers within 12 months after screening. Pair-wise testing for significant differences was performed. Percent dense volume increased with increasing pressure, while breast volume decreased. Sensitivity in quintiles with increasing pressure was 82.0%, 77.1%, 79.8%, 71.1%, and 70.8%. Sensitivity based on interval cancers within 12 months was significantly lower in the highest pressure quintile compared to the third (84.3% vs 93.9%, p = 0.034). Specificity was lower in the

  15. Development and implementation of a pressure propagation code applicable in spherical geometry to euler/isentropic/acoustic modelling. Comparative treatment of shock-up and refection on simplified rigid or elastic obstacles

    International Nuclear Information System (INIS)

    Essers, J.A.

    1987-01-01

    A sophisticated computer code for the calculation of plane or spherical pressure waves and their reflection on a simplified rigid or flexible obstacle has been constructed. Different options: choice of explicit or implicit scheme, use of eulerian, isentropic or acoustic flow models, introduction of different artificial viscosities, use of uniform or non-uniform adaptive grids have been made available and validated by simple shock waves computations. The results from different numerical experiments are presented. They have been used to evaluate the values of artificial viscosity coefficients leading to acceptable pressure pulses. In particular, the following important conclusions have been confirmed: - the linear acoustic model leads to important errors except for extremely weak overpressures; - an excellent accuracy can be obtained with the non-linear isentropic model in a wide overpressure range; - as opposed to the eulerian and to the non-linear isentropic models, the acoustic model is completely uncapable of predicting the shock-up phenomenon, and can therefore lead to important errors in the prediction of the pulse shape even for very weak overpressures

  16. Performance analysis of a refrigeration system with parallel control of evaporation pressure

    International Nuclear Information System (INIS)

    Lee, Jong Suk

    2008-01-01

    The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an Evaporation Pressure Regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted

  17. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.M.; Vaidyanathan, H.

    1996-02-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  18. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    1996-01-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  19. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  1. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  2. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  3. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  4. Blood pressure interacts with APOE ε4 to predict memory performance in a midlife sample.

    Science.gov (United States)

    Oberlin, Lauren E; Manuck, Stephen B; Gianaros, Peter J; Ferrell, Robert E; Muldoon, Matthew F; Jennings, J Richard; Flory, Janine D; Erickson, Kirk I

    2015-09-01

    Elevated blood pressure and the Apolipoprotein ε4 allele (APOE ε4) are independent risk factors for Alzheimer's disease. We sought to determine whether the combined presence of the APOE ε4 allele and elevated blood pressure is associated with lower cognitive performance in cognitively healthy middle-aged adults. A total of 975 participants aged 30-54 (mean age = 44.47) were genotyped for APOE. Cardiometabolic risk factors including blood pressure, lipids, and glucose were assessed and cognitive function was measured using the Trail Making Test and the Visual Reproduction and Logical Memory subtests from the Wechsler Memory Scale. Multivariable regression analysis showed that the association between APOE ε4 and episodic memory performance varied as a function of systolic blood pressure (SBP), such that elevated SBP was predictive of poorer episodic memory performance only in APOE ε4 carriers (β = -.092; t = -2.614; p = .009). Notably, this association was apparent at prehypertensive levels (≥130 mmHg), even after adjusting for physical activity, depression, smoking, and other cardiometabolic risk factors. The joint presence of APOE ε4 and elevated SBP, even at prehypertensive levels, is associated with lower cognitive performance in healthy, middle-aged adults. Results of this study suggest that the combination of APOE ε4 and elevated SBP may synergistically compromise memory function well before the appearance of clinically significant impairments. Interventions targeting blood pressure control in APOE ε4 carriers during midlife should be studied as a possible means to reduce the risk of cognitive decline in genetically susceptible samples. (c) 2015 APA, all rights reserved).

  5. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  6. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bhatnagar, Nitu; Sangeeta, Jha; Bhowmik, Shantanu; Gupta, Govind; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric p ressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surface energy, resulting in improving the adhesion characteristics of the PEEK/Epoxy adhesive system. Also, the roughness of the treated surfaces is largely increased as confirmed by AFM observation. These results can be explained by the fact that the atmospheric pressure plasma treatment of PEEK surface yields several oxygen functionalities on hydrophobic surface, which play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the PEEK/Epoxy adhesive system. (authors)

  7. Gunslingers, poker players, and chickens 1: Decision making under physical performance pressure in elite athletes.

    Science.gov (United States)

    Parkin, Beth L; Warriner, Katie; Walsh, Vincent

    2017-01-01

    The cognitive skills required during sport are highly demanding; accurate decisions based on the processing of dynamic environments are made in a fraction of a second (Walsh, 2014). Optimal decision-making abilities are crucial for success in sporting competition (Bar-Eli et al., 2011; Kaya, 2014). Moreover, for the elite athlete, decision making is required under conditions of intense mental and physical pressure (Anshel and Wells, 2000), yet much of the work in this area has largely ignored the highly stressful context in which athletes operate. A number of studies have shown that conditions of elevated pressure influence athletes' decision quality (Kinrade et al., 2015; Smith et al., 2016), response times (Hepler, 2015; Smith et al., 2016) and risk taking (Pighin et al., 2015). However, almost all of this work has been undertaken in nonelite athletes and participants who do not routinely operate under conditions of high stress. Thus, there is very little known about the influence of pressure on decision making in elite athletes. This study investigated the influence of physical performance pressure on decision making in a sample of world-class elite athletes. This allowed an examination of whether findings from the previous work in nonelite athletes extend to those who routinely operate under conditions of high stress. How this work could be applied to improve insight and understanding of decision making among sport professionals is examined. We sought to introduce a categorization of decision making useful to practitioners in sport: gunslingers, poker players, and chickens. Twenty-three elite athletes who compete and have frequent success at an international level (including six Olympic medal winners) performed tasks relating to three categories of decision making under conditions of low and high physical pressure. Decision making under risk was measured with performance on the Cambridge Gambling Task (CGT; Rogers et al., 1999), decision making under

  8. Choque de gestão ou choque de racionalidades? O desempenho da administração pública em questão Management shock or rationality shock? The performance of public administration put into question

    Directory of Open Access Journals (Sweden)

    Vanessa Brulon

    2013-04-01

    preocupação com a qualidade de vida ou com o atendimento das demandas sociais e, por isso, guia-se por uma visão de futuro que representa um Estado em que estão presentes as duas categorias aqui trabalhadas. Entretanto, o conceito de desempenho em que está pautado, engloba aspectos predominantemente instrumentais, já que se acredita que para que a administração pública mineira melhore seu desempenho basta que ela adote medidas como a redução de custos ou o foco em resultados. Portanto, conclui-se que o conceito de desempenho em que se pauta o programa Choque de Gestão não compreende as diferentes dimensões de desempenho de forma equilibrada, apesar de se guiar por um conceito de desenvolvimento que envolve elementos substantivos e instrumentais.Since the management reform process spread worldwide, other reform proposals following the same logic were put into practice, most of them at the state level. The Management Shock program, implemented in the State of Minas Gerais, Brazil, is one example of such a proposal and deserves to be highlighted due to the very positively evaluations it received in specialized literature. Therefore, the objective of this study is to analyze to what extent the program Management Shock, implemented by the Government of Minas Gerais, incorporates the different dimensions inherent to the concept of performance. For the analysis of this program, we propose a theoretical model that relates the concepts of instrumental rationality and substantive rationality, as analyzed by Ramos (1989, with the multidimensional paradigm, proposed by Sander (1995. For the latter, the notion of performance should be broadened, incorporating the criteria of efficiency, effectiveness, responsiveness and relevance. The concepts of efficiency and effectiveness are related to instrumental rationality or the utilitarian calculation of consequences; while effectiveness and relevance are related to substantive rationality, based on values. The relationship

  9. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  10. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  11. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  12. Performance characterization of the FLEX low pressure helium facility for fusion technology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schlindwein, Georg, E-mail: schlindwein@kit.edu; Arbeiter, Frederik

    2014-10-15

    Highlights: • A gas loop for fusion R and D has been built and tested. • Facility requirements and their implementation are given. • The loop's functions and instrumentation are explained. • The loops performance has been characterized. - Abstract: FLEX (Fluid Dynamics Experimental Facility) is a multi-purpose small scale gas loop for research on fluid and thermodynamic investigations, especially heat transfer, flow field measurements and gas purification. Initially it was built for investigation on mini-channel gas-flow to design the HFTM module of IFMIF. Because of its versatility it offers a wide range of further applications, e.g. the research of pressure drops in mockups of breeder units of the helium cooled pebble bed (HCPB) test blanket module for ITER. The main parameters of the loop, which can be operated with inert gases and air are: (i) operation gas pressure 0.02–0.38 MPa abs., (ii) test section pressure head up to 0.12 MPa, (iii) tolerable gas temperature RT – 200 °C and (iv) mass flow rate 0.2–12 × 10{sup −3} kg/s for Helium. This paper gives a detailed view of the loop assembly with the components that generate and regulate the mass flow and loop pressure. The measurement instrumentation will be presented as well as a representative mass flow-pressure drop characteristic. Furthermore, the achievable gas purity will be discussed.

  13. Sealing performance test for main flange of pressure vessel of T2 test section in HENDEL

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Inagaki, Yoshiyuki; Matsumoto, Kiminori; Kondou, Yasuo; Suzuki, Kunihiko; Miyamoto, Yoshiaki; Asami, Masanobu.

    1990-12-01

    A pressure vessel of T 2 test section in helium engineering demonstration loop (HENDEL) was fabricated to the same scale of the reactor pressure vessel made of 2(1/4)Cr-1Mo steel in high temperature engineering test reactor (HTTR). Also, the sealing structure of a main flange of pressure vessel in T 2 test section was composed of the double metal O-rings and Ω-seal which would be used in the sealing structure of HTTR. The sealing performance test for the main flange of the pressure vessel in T 2 test section was carried out to confirm the integrity of sealing structure of a main flange in HTTR. T 2 test section has been operated about 7700 hours in previous 18 cycles. The leakage of helium gas from inner metal O-ring was measured by the static pressurized process under the operating condition of HTTR (helium gas: 400degC, 40kg/cm 2 G, 4gk/s). The calculated leakage of helium gas was less than 9.6x10 -7 atm·cm 3 /sec. From the result, it is expected that the sealing structure of main flange in HTTR would maintain the leak tightness in the life. (author)

  14. High performance electrodes for low pressure H{sub 2}-air PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Besse, S; Bronoel, G; Fauvarque, J F [Laboratoires SORAPEC (France)

    1998-12-31

    Proton exchange membrane fuel cells (PEMFCs) were first developed for space applications in the 1960s. Currently, they are being manufactured for terrestrial portable power applications. One of the challenges is to develop a low pressure H{sub 2}/Air PEMFC in order to minimize the cathodic mass transport overpotentials. The hydrogen oxidation reaction is considered to be sufficiently rapid. Hydrogen transport limitations are very low even at high current densities. The different applications considered for hydrogen/air PEMFC need to work at atmospheric pressure. An optimization of the structure of the oxygen electrode and the membrane electrode assembly (MEA) are essential in order to decrease mass transport limitations and to obtain good water management even at low pressures. Efforts have been made to produce electrodes and MEA for PEMFC with low platinum loading. The electrode structure was developed to ensure a good diffusion of reactants and an effective charge collection. It has also been optimized for low pressure restrictions. It was concluded that high performances can be achieved even at low pressures by improving the electrode gas diffusion layer (PTFE content) and by improving the catalyst. 12 refs., 7 figs.

  15. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  16. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance.

    Science.gov (United States)

    Al-Dashti, Yousef A; Holt, Roberta R; Stebbins, Charles L; Keen, Carl L; Hackman, Robert M

    2018-05-02

    An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors.

  17. Simulation of hypersonic shock wave - laminar boundary layer interactions

    Science.gov (United States)

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  18. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    Science.gov (United States)

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  19. Development and Realization of a Shock Wave Test on Expert Flap Qualification Model

    Science.gov (United States)

    De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.

    2012-07-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.

  20. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Directory of Open Access Journals (Sweden)

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  1. Application of the constant rate of pressure change method to improve jet pump performance

    International Nuclear Information System (INIS)

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  2. Development and performance of inspection equipment for pressure tubes in Fugen

    International Nuclear Information System (INIS)

    Naruo, Kazuteru; Tanimoto, Ken-ichi; Ohta, Takeo; Nakamura, Takahisa; Imaizumi, Kiyoshi.

    1984-01-01

    The pressure tubes of Fugen are the important equipment as the many tubes compose the core, and since they are made of Zr-2.5% Nb alloy which has been used for the first time in Japan, they have become the object of monitoring (the follow-up investigation of the change of inside diameter, the presence of defects and so on) in addition to the in-service inspection. In this paper, on the inspection equipment for pressure tubes, that has been developed independently by the Power Reactor and Nuclear Fuel Development Corp. in order to carry out the ISI and monitoring, the course of development and the construction and the performance are reported, and the results of having used it for the fourth regular inspection of Fugen are described. The 10-year plan of the ISI and monitoring of pressure tubes is shown. The core of Fugen is composed of 224 pressure tubes, therefore, the inspection is carried out by sampling inspection. The monitoring is carried out on four tubes for the follow-up investigation and one tube that shows the severest operation history at the time of inspection. The equipment performs ultrasonic flaw detection, the measurement of inside diameter and the visual inspection of internal surface. (Kako, I.)

  3. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  4. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  5. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    Science.gov (United States)

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  6. High Pressure Water Jet System Performance Assessment Project A-2A

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    1999-01-01

    Performance assessment for canister cleaning system in the KE Basin. Information obtained from this assessment will be used to design any additional equipment used to clean canisters. After thorough review of the design, maintenance history and operational characteristics of the 105 K East (KE) canister cleaning system, Bartlett recommends that the high pressure water jet system (HPWJS) be modified as outlined in section 5.0, and retained for future use. Further, it is recommended that Spent Nuclear Fuel (SNF) Project consider use of a graded approach for canister cleaning, based on individual canister type and characteristics. This approach would allow a simple method to be used on canisters not needing the more rigorous, high-pressure method. Justification is provided in section 5.0. Although Bartlett has provided some preliminary cost estimates, it is recommended that SNF Project perform a detailed cost-benefit analysis to weigh the alternatives presented

  7. Expert Performance and Time Pressure: Implications for Automation Failures in Aviation

    Science.gov (United States)

    2016-09-30

    settled by these two studies. To help resolve the disagreement between the previous research findings, the present work used a computerized chess...communication between the automation and the pilots should also be helpful , but it is doubtful that the system designer or the real-time automation can...Performance and Time Pressure: Implications for Automation Failures in Aviation 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  8. Shock physics with the nova laser for ICF applications. Revision 1

    International Nuclear Information System (INIS)

    Hammel, B.A.; Cauble, R.; Celliers, P.

    1995-01-01

    The physics of high pressure shocks plays a central role in Inertial Confinement Fusion (ICF). In indirect drive ICF, x-rays from a gold cavity (hohlraum) are used to ablatively drive a series of high pressure shocks into a spherical target (capsule). These shocks converge at the center, compressing the fuel and forming a hot dense core. The target performance, such as peak fuel density and temperature and neutron yield, depends critically on hock timing, and material compressibility. Accurate predictions of NIF target performance depends critically on shock timing and material compressibility. Current measurement techniques enable us to accurately determine shock timing in planar samples of abator material as a function of laser drive. Although this technique does not separately address uncertainties in material EOS and opacity, it does allow us to tune the laser drive until the desired shock timing is achieved. Experiments to directly address the EOS of D 2 ice are planned to further increase the margin for ignition in current target designs

  9. Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Perreault, François; Straub, Anthony P; Elimelech, Menachem

    2015-11-03

    Next-generation pressure-retarded osmosis (PRO) approaches aim to harness the energy potential of streams with high salinity differences, such as wastewater effluent and seawater desalination plant brine. In this study, we evaluated biofouling propensity in PRO. Bench-scale experiments were carried out for 24 h using a model wastewater effluent feed solution and simulated seawater desalination brine pressurized to 24 bar. For biofouling tests, wastewater effluent was inoculated with Pseudomonas aeruginosa and artificial seawater desalination plant brine draw solution was seeded with Pseudoalteromonas atlantica. Our results indicate that biological growth in the feed wastewater stream channel severely fouled both the membrane support layer and feed spacer, resulting in ∼50% water flux decline. We also observed an increase in the pumping pressure required to force water through the spacer-filled feed channel, with pressure drop increasing from 6.4±0.8 bar m(-1) to 15.1±2.6 bar m(-1) due to spacer blockage from the developing biofilm. Neither the water flux decline nor the increased pressure drop in the feed channel could be reversed using a pressure-aided osmotic backwash. In contrast, biofouling in the seawater brine draw channel was negligible. Overall, the reduced performance due to water flux decline and increased pumping energy requirements from spacer blockage highlight the serious challenges of using high fouling potential feed sources in PRO, such as secondary wastewater effluent. We conclude that PRO power generation using wastewater effluent and seawater desalination plant brine may become possible only with rigorous pretreatment or new spacer and membrane designs.

  10. Comments on ''Analysis of spherical imploding shocks''

    International Nuclear Information System (INIS)

    Lazarus, R.B.

    1980-01-01

    It is asserted that Fujimoto and Mishkin's article is incorrect in its claim for a pressure extremum at or behind the shock for all values of γ and in its claim for an analytical form for the similarity exponent

  11. Shock Tube Measurements for Liquid Fuels Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald K

    2006-01-01

    ...) fundamental studies of fuel spray evaporation rates and ignition times of low-vapor pressure fuels such as JP-8, diesel fuel and normal alkane surrogates in a new aerosol shock tube using state...

  12. Optical Spectroscopy Measurements of Shock Waves Driven by Intense Z-Pinch Radiation

    International Nuclear Information System (INIS)

    Asay, J.; Bernard, M.; Bailey, J.E.; Carlson, A.L.; Chandler, G.A.; Hall, C.A.; Hanson, D.; Johnston, R.; Lake, P.; Lawrence, J.

    1999-01-01

    Z-pinches created using the Z accelerator generate approximately220 TW, 1.7 MJ radiation pulses that heat large (approximately10 cm 3 ) hohlraums to 100-150 eV temperatures for times of order 10 nsec. We are performing experiments exploiting this intense radiation to drive shock waves for equation of state studies. The shock pressures are typically 1-10 Mbar with 10 nsec duration in 6-mm-diameter samples. In this paper we demonstrate the ability to perform optical spectroscopy measurements on shocked samples located in close proximity to the z-pinch. These experiments are particularly well suited to optical spectroscopy measurements because of the relatively large sample size and long duration. The optical emission is collected using fiber optics and recorded with a streaked spectrograph. Other diagnostics include VISAR and active shock breakout measurements of the shocked sample and a suite of diagnostics that characterize the radiation drive. Our near term goal is to use the spectral emission to obtain the temperature of the shocked material. Longer term objectives include the examination of deviations of the spectrum from blackbody, line emission from lower density regions, determination of kinetic processes in molecular systems, evaluation of phase transitions such as the onset of metalization in transparent materials, and characterization of the plasma formed when the shock exits the rear surface. An initial set of data illustrating both the potential and the challenge of these measurements is described

  13. A study on the sealing performance of metallic C-rings in reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaohong, E-mail: jiaxh@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Chen, Huaming [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Li, Xinggen [Ningbo Tiansheng Sealing Packing Co., Ltd, Ningbo 315302 (China); Wang, Yuming [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Wang, Longke [Eaton Corporation, MN (United States)

    2014-10-15

    Highlights: • FE analysis on compression–resilience of metallic C-ring is performed and validated by experiments. • Model of RPV sealing system including the C-rings is developed. • Deformation data from factory hydraulic test of the RPV are used to verify the model. • C-rings’ behavior under designing condition is analyzed. • The model provides a reliable evaluation on the sealing performance of RPV. - Abstract: Double metallic C-rings are used in pressure vessel of pressurized water reactor (PWR) to seal the bolt-connected flanges. To evaluate the sealing performance, it is necessary to study both the C-rings’ intrinsic properties and their behavior in reactor pressure vessel (RPV) under various loading conditions. The compression–resilience property and linear load are the basic information to evaluate the performance of a well-designed C-ring's. An equivalent model of C-ring is constructed by means of ANSYS to analyze its intrinsic properties, and is also validated by experiments on scaled samples. This model is applied to develop a 2D-axisymmetric FE model of sealing system including RPV and C-rings with the consideration of nonlinear material, contacting problem and multiple coupled effects. The simulation results of RPV deformation under the hydraulic test condition agree well with the data of factory hydraulic test. With the verified model, an analysis under the designing condition is performed to study C-rings’ behavior in the RPV, and then provides a reliable evaluation on the sealing performance of RPV.

  14. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-01

    Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ˜190 and 570 GPa along the Principal Hugoniot—the locus of end states achievable through compression by large amplitude shock waves—as well as pressure and density of reshock states up to ˜920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

  15. Shock and Release Response of Unreacted Epon 828: Shot 2s-905

    Energy Technology Data Exchange (ETDEWEB)

    Pisa, Matthew Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Donald Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-16

    This document summarizes the shock and release response of Epon 828 measured in the dynamic impact experiment 2s-905. Experimentally, a thin Kel-F impactor backed by a low impedance foam impacted an Epon 828 target with embedded electromagnetic gauges. Computationally, a one dimensional simulation of the impact event was performed, and tracer particles were located at the corresponding electromagnetic gauge locations. The experimental configuration was such that the Epon 828 target was initially shocked, and then allowed to release from the high-pressure state. Comparisons of the experimental gauge and computational tracer data were made to assess the performance of equation of state (EOS) 7603, a SESAME EOS for Epon 828, on and off the principal shock Hugoniot. Results indicate that while EOS 7603 can capture the Hugoniot response to better that 1%, while the sound speeds at pressure are under-predicted by 6 - 7%.

  16. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage

    Science.gov (United States)

    Luo, Sihai; Nie, Xiangfan; Zhou, Liucheng; Li, Yiming; He, Weifeng

    2018-03-01

    During their service, titanium alloys are likely to suffer from the foreign object damage (FOD), resulting in a decrease in their fatigue strength. Laser shock peening (LSP) has been proved to effectively increase the damage tolerance of military engine components by introducing a magnitude compressive residual stress in the near-surface layer of alloys. In this paper, smooth specimens of a TC4 titanium alloy were used and treated by LSP and subsequently exposed to FOD, which was simulated by firing a steel sphere with a nominal velocity of 300 m/s, at 90° with the leading edge of the LSP-treated region using a light gas gun. All impacted specimens were then subjected to fatigue loading. The results showed that LSP could effectively improve the fatigue strength of the damaged specimens. The effect of LSP on the fatigue strength was assessed through fracture observations, microhardness tests and residual stress analyses. The residual stresses due to the plastic deformation caused by LSP and the FOD impact, which were found to play a crucial role on the fatigue strength, were determined using the commercial software ABAQUS.

  17. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres

    Science.gov (United States)

    Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae

    2016-02-01

    The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.

  18. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    Science.gov (United States)

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optical Probes for Laser Induced Shocks

    Science.gov (United States)

    1992-03-01

    target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions

  20. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  1. Evaluation of heat exchange performance for primary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Nakagawa, Shigeaki

    2006-01-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30 MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the primary pressurized water cooler (PPWC) and the intermediate heat exchanger (IHX). The heat exchangers in the primary cooling system are required the heat exchange performance to remove reactor generated heat 30 MW under the condition of reactor coolant outlet temperature 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the PPWC in the main cooling system was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that PPWC has the required heat exchange performance in the design. (author)

  2. Evaluation of heat exchange performance for secondary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Syuji; Saikusa, Akio; Oyama, Sunao; Nemoto, Takahiro; Hamamoto, Shinpei; Shinohara, Masanori; Isozaki, Minoru; Nakagawa, Shigeaki

    2006-02-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the intermediate heat exchanger (IHX) and the secondary pressurized water cooler (SPWC). The heat exchangers in the main cooling system are required the heat exchange performance to remove the reactor-generated-heat of 30MW under the condition of reactor coolant outlet temperature of 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance of the SPWC in the main cooling system was evaluated with the rise-to-power-up test and the in-service operation data. Moreover, evaluated value is compared with designed one, it is confirmed that the SPWC has required heat exchange performance. (author)

  3. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  4. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism

    OpenAIRE

    Fritz,Jorg; Greshake,Ansgar; Stoffler,Dieter

    2005-01-01

    We present the first systematic Micro-Raman spectroscopic investigation of plagioclase of different degree of shock metamorphism in Martian meteorites. The equilibrium shock pressure of all plagioclase phases of seventeen unpaired Martian meteorites was determined by measuring the shock-induced reduction of the refractive index. Systematic variations in the recorded Raman spectra of the plagioclase phases correlate with increasing shock pressure. In general, the shock induced deformation of t...

  5. Choking under pressure: The neuropsychological mechanisms for incentives induced performance decrements

    Directory of Open Access Journals (Sweden)

    Rongjun eYu

    2015-02-01

    Full Text Available In contrast to the assumption of efficiency wage models, which state that wage incentives should be positively correlated with productivity, high incentives may produce performance decrements in real life scenarios. Such a choking under pressure phenomenon exemplifies how psychological stress can profoundly shape human behavior, for good or for bad. Previous theories suggest that individual choking under pressure because that high pressure may distract individuals’ attention away from the task (the distraction account, raise the attention paid to step-by-step skill processes (the explicit monitoring account, or elevate the arousal in general (the over-arousal account. Recent neuroimaging studies have shown that several brain regions implicated in motivation and top-down control of attention also play a key role in stress-induced choking, supporting for the over-arousal and distraction theories of choking. This review aims to identify psychological factors that determine choking and the neural underpinnings of these processes. Insights into how incentives influence performance may aid engineering training regimens and interventions that equip individuals to better handle high-stakes-induced psychological stress, and to thrive under stress.

  6. Selected plantar pressure characteristics associated with the skating performance of national in-line speed skaters.

    Science.gov (United States)

    Wu, Wen-Lan; Hsu, Hsiu-Tao; Chu, I-Hua; Tsai, Feng-Hua; Liang, Jing-Min

    2017-06-01

    In order to help coaches analyse the techniques of professional in-line speed skaters for making the required fine adjustments and corrections in their push-off work, this study analysed the specific plantar pressure characteristics during a 300-m time-trial test. Fourteen elite in-line speed skaters from the national team were recruited in this study. The total completion time of the 300-m time-trial test, duration of each skating phase, and plantar pressure distribution were measured. The correlation between plantar pressure distribution and skating performance was assessed using Pearson correlation analyses. The results showed that the contact time of the total foot and force-time integral (FTI) in the medial forefoot were significantly correlated with the duration of the start phase, and the FTIs in the medial forefoot of the gliding (left) leg and lateral forefoot of the pushing (right) leg were significantly correlated with the duration of the turning phase. The maximum force in the medial heel, medial forefoot, and median forefoot and the FTI in the medial heel and medial forefoot were significantly correlated with the duration of the linear acceleration phase. The results suggest that a correct plantar loading area and push-off strategy can enhance the skating performance.

  7. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  8. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  9. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  10. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  11. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  12. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    Science.gov (United States)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  13. Blade number impact on pressure and performance of archimedes screw turbine using CFD

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad

    2018-02-01

    Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.

  14. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    Science.gov (United States)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  15. Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance.

    Science.gov (United States)

    Slobounov, S M; Fukada, K; Simon, R; Rearick, M; Ray, W

    2000-06-01

    Using a video game format, this study examined the effects of time pressure (TP) on behavioral and electrocortical indices. The behavioral results were consistent with previous time pressure research in that TP reduced time to perform a task and increases behavioral errors. In addition, electroencephalogram (EEG) measures showed distinctive patterns associated with TP in the theta, mu, and gamma bands along the midline. Site specific changes in the success vs. failure trials were also seen in midline theta at Fz, gamma at Fz, and mu at Cz. Right parietal alpha also differentiated TP and success vs. failure trials. In specific TP (1) increased frontal midline theta activity and (2) increased gamma at midline (frontal, central, and partietal) and in right frontal areas. The results of these findings are discussed in terms of the formation of specific neurocognitive strategies as evidenced by the topographic distribution of task-related modulation of the EEG within certain frequency bands. It is suggested that the effect of TP on visuomotor performance is mediated by adopting either task-relevant or task-irrelevant neurocognitive strategies as evidenced by successful or failed trials, respectively. Whether these strategies are formulated prior to performance or appear spontaneously during task performance remains unclear and is awaiting further experimentation.

  16. Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil

    Directory of Open Access Journals (Sweden)

    Yun TIAN

    2017-10-01

    Full Text Available Current research shows that the traditional shock control bump (SCB can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it can decrease the adverse pressure gradient. This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance. Based on RAE2822 airfoil, two types of SCB are designed according to the two different mechanisms. By using Reynolds-averaged Navier-Stokes (RANS and unsteady Reynolds-averaged Navier-Stokes (URANS methods to analyze the properties of RAE2822 airfoil with and without SCB, the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil. The traditional SCB can only weaken the intensity of the shock under the design condition. Under the off-design conditions, the SCB does not do much to or even worsen the buffet performance. Indeed, the use of backward bump can flatten the leeward side of the airfoil, and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.

  17. Performance, Calibration and Stability of the Mars InSight Mission Pressure Sensor

    Science.gov (United States)

    Banfield, Don; Banerdt, Bruce; Hurst, Ken; Grinblat, Jonny; murray, alex; Carpenter, Scott

    2017-10-01

    The NASA Mars InSight Discovery Mission is primarily aimed at understanding the seismic environment at Mars and in turn the interior structure of the planet. To this end, it carries a set of very sensitive seismometers to characterize fine ground movements from quakes, impacts and tides. However, to remove atmospheric perturbations that would otherwise corrupt the seismic signals, InSight also carries a pressure sensor of unprecedented sensitivity and frequency response for a Mars mission.The instrument is based on a commercial spacecraft pressure sensor built by the Tavis Corporation. Tavis heritage transducers have provided pressure measurements on several interplanetary missions, starting with a similar application on the Viking Landers. The sensor developed for the Insight mission is their most sensitive device. That same sensitivity was the root of the challenges faced in the design and development for Insight. It uses inductive sensing of a deformable membrane, and includes an internal temperature sensor to compensate for temperature effects in its overall response.The technical requirement on the pressure sensor performance is 0.01(f/0.1)^(-2/3) Pa/sqrt(Hz) between 0.01 and 0.1 Hz, and 0.01 Pa/sqrt(Hz) between 0.1 and 1 Hz. The actual noise spectrum is about 0.01(f/0.3)^(-2/3) Pa/sqrt(Hz) between 0.01 and 1 Hz, and its frequency response (including inlet plumbing) has good response up to about 10 Hz Nyquist (it will be sampled at 20 Hz).Achieving the required sensitivity proved to be a difficult engineering challenge, which necessitated extensive experimentation and prototyping of the electronics design. In addition, a late discovery of the introduction of noise by the signal processing chain into the measurement stream forced a last-minute change in the instrument’s firmware.The flight unit has been calibrated twice, separated by a time span of about 2 years due to the delay in launching the InSight mission. This has the benefit of allowing a direct

  18. A high performance micro-pressure sensor based on a double-ended quartz tuning fork and silicon diaphragm in atmospheric packaging

    International Nuclear Information System (INIS)

    Cheng, Rongjun; Li, Cun; Zhao, Yulong; Li, Bo; Tian, Bian

    2015-01-01

    A resonant micro-pressure sensor based on a double-ended quartz tuning fork (DEQTF) and bossed silicon diaphragm in atmospheric packaging is presented. To achieve vacuum-free packaging with a high quality factor, the DEQTF is designed to resonate in an anti-phase vibration mode in a plane that is under the effect of slide-film damping. The feasibility is demonstrated by theoretical analysis and a finite element simulation. The dimensions of the DEQTF and diaphragm are optimized in accordance with the principles of improving sensitivity and minimizing energy dissipation. The sensor chip is fabricated using quartz and silicon micromachining technologies, and simply packaged in a stainless steel shell with standard atmosphere. The experimental setup is established for the calibration, where an additional sensor prototype without a pressure port is introduced as a frequency reference. By detecting the frequency difference of the tested sensor and reference sensor, the influences of environmental factors such as temperature and shocks on measuring accuracy are eliminated effectively. Under the action of a self-excitation circuit, static performance is obtained. The sensitivity of the sensor is 299 kHz kPa −1 in the operating range of 0–10 kPa at room temperature. Testing results shows a nonlinearity of 0.0278%FS, a hysteresis of 0.0207%FS and a repeatability of 0.0375%FS. The results indicate that the proposed sensor has favorable features, which provides a cost-effective and high-performance approach for low pressure measurement. (paper)

  19. The curvilinear relationship between work pressure and momentary task performance: the role of state and trait core self-evaluations.

    Science.gov (United States)

    Hofmans, Joeri; Debusscher, Jonas; Dóci, Edina; Spanouli, Andromachi; De Fruyt, Filip

    2015-01-01

    Whereas several studies have demonstrated that core self-evaluations (CSE)-or one's appraisals about one's own self-worth, capabilities, and competences-relate to job outcomes, less is known about the mechanisms underlying these relationships. In the present study, we address this issue by examining the role of within- and between-person variation in CSE in the relationship between work pressure and task performance. We hypothesized that (a) work pressure relates to task performance in a curvilinear way, (b) state CSE mediates the curvilinear relationship between work pressure and task performance, and (c) the relationship between work pressure and state CSE is moderated by trait CSE. Our hypotheses were tested via a 10-day daily diary study with 55 employees in which trait CSE was measured at baseline, while work pressure, task performance, and state CSE were assessed on a daily basis. Bayesian multilevel path analysis showed that work pressure affects task performance via state CSE, with state CSE increasing as long as the employee feels that (s)he is able to handle the work pressure, while it decreases when the level of work pressure exceeds the employees' coping abilities. Moreover, we found that for people low on trait CSE, the depleting effect of work pressure via state CSE happens for low levels of work pressure, while for people high in trait CSE the depleting effect is located at high levels of work pressure. Together, our findings suggest that the impact of work pressure on task performance is driven by a complex interplay of between- and within-person differences in CSE.

  20. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  1. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  2. Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave

    International Nuclear Information System (INIS)

    BP Puranik; JG Oakley; MH Anderson; R Bonaazza

    2003-01-01

    OAK-B135 An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M=3.08) while its shape is still sinusoidal and before the Kelvin-Helmhotz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability

  3. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  4. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  5. Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations

    International Nuclear Information System (INIS)

    Perriot, Romain; Zhakhovsky, Vasily V; Oleynik, Ivan I; Inogamov, Nail A

    2014-01-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate shock propagation in single crystal copper. It is shown that the P-V plastic Hugoniot is unique regardless of the sample's orientation, its microstructure, or its length. However, the P-V pathway to the final state is not, and depends on many factors. Specifically, it is shown that the pressure in the elastic precursor (the Hugoniot elastic limit (HEL)) decreases as the shock wave propagates in a micron-sized sample. The attenuation of the HEL in sufficiently-long samples is the main source of disagreement between previous MD simulations and experiment: while single crystal experiments showed that the plastic shock speed is orientation-independent, the simulated plastic shock speed was observed to be orientation-dependent in relatively short single-crystal samples. Such orientation dependence gradually disappears for relatively long, micrometer-sized, samples for all three low-index crystallographic directions (100), (110), and (111), and the plastic shock velocities for all three directions approach the one measured in experiment. The MD simulations also demonstrate the existence of subsonic plastic shock waves generated by relatively weak supporting pressures.

  6. Performance of self-powered neutron detectors in pressurized water reactors

    International Nuclear Information System (INIS)

    Warren, H.D.; Bozarch, D.P.

    1977-01-01

    A typical Babcock and Wilcox pressurized water reactor (PWR) contains 364 rhodium self-powered neutron detectors (SPNDs) and 52 background detectors. The detectors are inserted into the reactor core in 52 dry, multidetector assemblies. Each assembly contains seven SPNDs and one background detector. By mid-1977, eight B and W PWRs, each fitted with SPNDs, were in operation. Many of the SPNDs have operated successfully for more than four years. This paper describes the operational performance of the SPNDs and special tests conducted to improve that performance. Topics included are (1) insulation performance versus neutron dose to the SPND, (2) background signals in the leadwire region of the SPND, and (3) depletion of the SPND emitter versus absorbed neutron dose

  7. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens

    Science.gov (United States)

    Najafi, Pardis; Zulkifli, Idrus; Amat Jajuli, Nurfarahin; Farjam, Abdoreza Soleimani; Ramiah, Suriya Kumari; Amir, Anna Aryani; O'Reily, Emily; Eckersall, David

    2015-11-01

    An experiment was conducted to determine the effect of different stocking densities on serum corticosterone (CORT), ovotransferrin (OVT), α1-acid glycoprotein (AGP) and ceruloplasmin (CP) concentrations, brain heat shock protein (HSP) 70 expression and performance in broiler chickens exposed to unheated and heated conditions. Day-old chicks were stocked at 0.100 m2/bird (low density (LD)) or 0.063 m2/bird (high density (HD)), in battery cages and housed in environmentally controlled rooms. From 21 to 35 days of age, birds from each stocking density group were exposed to either 24 or 32 °C. Growth performance was recorded during the heat treatment period, and blood and brain samples were collected to determine CORT, OVT, AGP, CP and HSP 70 levels on day 35. Heat treatment but not stocking density was detrimental to growth performance. There were significant temperature × density interactions for CORT, CP and OVT on day 35. Although HD elevated CORT, CP and OVT when compared to LD, the effects of the former were more obvious under heated condition. Both temperature and density had significant effect on AGP and HSP 70. In conclusion, irrespective of temperature, high stocking density was physiologically stressful to broiler chickens, as indicated by CORT, AGP, CP, OVT and HSP 70, but not detrimental to growth performance and survivability. As it was shown in the present study, AGP, CP and OVT could be useful biomarkers to determine the effect of overcrowding and high temperature on the welfare of broiler chickens.

  8. Shock compaction of molybdenum powder

    Science.gov (United States)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  9. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  10. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  11. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  12. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  13. Transient performance analysis of pressurized safety injection tank with a partition

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of safety injection tanks with a partition is evaluated. • Effects of key design parameters are scrutinized. • Distinctive features of the flow in multi-unit safety injection tanks are explored. - Abstract: A parametric study has been performed to evaluate the functional performance of a pressurized multi-unit safety injection tank, which would be considered as one of the candidates for a passive safety injection system in a nuclear power plant. The influences of key design parameters including the orifice size, initial gas fraction, and resistance coefficients and operating condition on the injection flow rate are scrutinized with a discussion of the relevant flow features such as the choked flow of gas through an orifice and two interconnected regions of differing gaseous pressure. The obtained results indicate that a multi-unit safety injection tank can passively control the injection flow rate and provide a stable safety injection over a relatively long period even in the case of drastic depressurization of a reactor coolant system

  14. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  15. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  16. EFFECT OF INJECTOR OPENING PRESSURE ON PERFORMANCE AND EMISSION OF LPG - METHYL ESTER OF MAHUA OIL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2017-11-01

    Full Text Available One of variables, which affect the performance and emission of dual fuel engine is injection pressure. Hence in the present work, effect of Injector opening pressure on the performance of the engine was studied.  A four stroke single cylinder engine was modified to work in dual fuel mode. Three injector opening pressures (180 bar, 200 bar and 220 bar were considered for the present work. Methyl ester of mahua oil was used as pilot fuel and LPG was used as primary fuel.    From the test results, it was observed that the injector opening pressure of 200 bar results in higher brake thermal efficiency. The higher injector opening pressure results in better atomization and peneatration of methyl ester of mahua oil. The exhaust emissions such as Smoke, unburnt hydro carbon and carbon monoxide of 200 bar is lower than other pressures.

  17. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  18. Pressure Wire Compared to Microcatheter Sensing for Coronary Fractional Flow Reserve: The PERFORM Study.

    Science.gov (United States)

    Ali, Ziad A; Parviz, Yasir; Brinkman, Matthew; Matsumura, Mitsuaki; Redfors, Björn; Brogno, David A; Corral, Maria D; Fall, Khady N; Mintz, Gary S; Stone, Gregg W; Maehara, Akiko; Jeremias, Allen; Kirtane, Ajay J

    2018-05-15

    Among technologies used to assess FFR, a monorail, sensor-tipped micro pressure catheter (PC) may be advantageous for delivery and re-assessment. We sought to determine whether the larger cross-sectional area of the PC influences FFR measurements compared to the pressure wire. PERFORM was a single-center, prospective study designed to determine the precision and accuracy of the PC compared with the pressure wire (PW) for measurement of FFR. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 40-90%. The independently adjudicated primary endpoint was the difference in hyperemic PW-determined minimal FFR with and without the PC distal to the stenosis. Seventy-four patients (95 lesions) were prospectively analyzed between December 2015 and December 2016. Median hyperemic FFR was 0.84 [IQR 0.78, 0.89] with the PW and 0.79 [IQR 0.73, 0.85] with the PC distal to the stenosis (p0.80 to ≤0.80 in 17 of 95 measurements (19%). Median resting Pd/Pa was lower following introduction of the PC compared with the PW alone (0.93 [IQR 0.90, 0.97] versus 0.90 [IQR 0.86, 0.95], p<0.001). Median pressure drift was not different between the PW and the PC (0.01 [IQR -0.01, 0.05] versus 0.01 [IQR 0.00, 0.02], p=0.38). Introduction of the PC reduced device success and both hyperemic FFR and resting Pd/Pa compared with the PW alone, leading to re-classifying physiological significance to below ischemic threshold in one out of five assessments.

  19. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    Science.gov (United States)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance