WorldWideScience

Sample records for shock mitigating materials

  1. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  2. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  3. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  4. 3D Printed Shock Mitigating Structures

    Science.gov (United States)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  5. Adaptive magnetorheological seat suspension for shock mitigation

    Science.gov (United States)

    Singh, Harinder Jit

    This research focuses on theoretical and experimental analysis of an adaptive seat suspension employing magnetorheological energy absorber with the objective of minimizing injury potential to seated occupant of different weights subjected to broader crash intensities. The research was segmented into three tasks: (1) development of magnetorheological energy absorber, (2) biodynamic modeling of a seated occupant, and (3) control schemes for shock mitigation. A linear stroking semi-active magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m/s. MREA design was optimized on the basis of Bingham-plastic model (BPM model) in order to maximize the energy absorption capabilities at high impact velocities. Computational fluid dynamics and magnetic FE analysis were conducted to validate MREA performance. Subsequently, low-speed cyclic testing (0-2 Hz subjected to 0-5.5 A) and high-speed drop testing (0-4.5 m/s at 0 A) were conducted for quantitative comparison with the numerical simulations. Later, a nonlinear four degrees-of-freedom biodynamic model representing a seated 50th percentile male occupant was developed on the basis of experiments conducted on Hybrid II 50th percentile male anthropomorphic test device. The response of proposed biodynamic model was compared quantitatively against two different biodynamic models from the literature that are heavily implemented for obtaining biodynamic response under impact conditions. The proposed biodynamic model accurately predicts peak magnitude, overall shape and the duration of the biodynamic transient response, with minimal phase shift. The biodynamic model was further validated against 16 impact tests conducted on horizontal accelerator facility at NAVAIR for two different shock intensities. Compliance effects of human body were also investigated on the performance of adaptive seat suspension by comparing the proposed biodynamic model

  6. Multi-layer protective armour for underwater shock wave mitigation

    OpenAIRE

    Ahmed Hawass; Hosam Mostafa; Ahmed Elbeih

    2015-01-01

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected p...

  7. Multi-layer protective armour for underwater shock wave mitigation

    Directory of Open Access Journals (Sweden)

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  8. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  9. Shock mitigation for the PFLs at the SATURN accelerator

    International Nuclear Information System (INIS)

    Craven, R.E.

    1997-06-01

    Accelerometer measurements were made on the SATURN pulse forming lines (PFL) to determine the mechanism responsible for severe metal deformation around the water switch openings and cracking of welded seams. A reason for this problem and a solution were established. A simple shock mitigating pad under the support stand for the PFL provides more than adequate protection from shock damage and will greatly extend the useful life of the power flow sections of SATURN

  10. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  11. Advanced insider threat mitigation workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2008-11-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  12. Insider Threat Mitigation Workshop Instructional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodriquez, Jose [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-01-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt theft of nuclear materials. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat.

  13. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  14. Advanced Insider Threat Mitigation Workshop Instructional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.

  15. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  16. Characterization of viscoelastic materials for low-magnitude blast mitigation

    Science.gov (United States)

    Bartyczak, S.; Mock, W.

    2014-05-01

    Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.

  17. Morphological characterization of shocked porous material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan, X F; Zhang Ping; Zhu Jianshi

    2009-01-01

    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and the topology of the pixelized map of a state variable like temperature. The relevance to thermodynamical properties of a material is revealed and various experimental conditions are simulated. Numerical results indicate that the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area A roughly gives the velocity D of a compressive-wave series. When a velocity D is mentioned, the corresponding threshold contour level of the state variable, such as temperature, should also be stated. When the threshold contour level increases, D becomes smaller. The area A increases parabolically with time t during the initial period. The A(t) curve goes back to being linear in the following three cases: (i) when the porosity δ approaches 1, (ii) when the initial shock becomes stronger and (iii) when the contour level approaches the minimum value of the state variable. The area with high temperature may continue to increase even after the early compressive waves have arrived at the downstream free surface and some rarefactive waves have come back into the target body. In the case of energetic material needing a higher temperature for initiation, a higher porosity is preferred and the material may be initiated after the precursory compressive waves have scanned the entire target body. In some cases we need scattered hot spots, but in others we need connected ones. One may desire the fabrication of a porous body and choose the appropriate shock strength according to what is needed. With the Minkowski measures, the dependence on experimental conditions is reflected simply by a few coefficients. They may be used as order parameters to classify the maps of physical variables in a similar way to thermodynamic phase transitions.

  18. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  19. Modeling the dynamic crush of impact mitigating materials

    International Nuclear Information System (INIS)

    Logan, R.W.; McMichael, L.D.

    1995-01-01

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations

  20. Shock resistance of composite material pipes

    International Nuclear Information System (INIS)

    Pays, M.F.

    1995-01-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm 3 /h and raises to higher values (300 cm 3 /h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year

  1. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  2. Paving materials for heat island mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Akbari, H.; Chen, A.; Taha, H. [Lawrence Berkeley National Lab., CA (United States); Rosenfeld, A.H. [Dept. of Energy, Washington, DC (United States)

    1997-11-01

    This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

  3. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  4. Shock wave equation of state of powder material

    OpenAIRE

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A model is proposed to predict the following quantities for powder materials compacted by shock waves: the pressure, the specific volume, the internal energy behind the shock wave, and the shock-wave velocity U-s. They are calculated as a function of flyerplate velocity u(p) and initial powder specific volume V-00. The model is tested on Cu, Al2024, and Fe. Calculated U-s vs u(p) curves agree well with experiments provided V-00 is smaller than about two times the solid specific volume. The mo...

  5. Thermal shock behaviour of mullite-cordierite refractory materials

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Leonelli, C.; Romagnoli, M.; Pellacani, G. C.; Veronesi, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 142-148 ISSN 1743-6753 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : refraktory materials * thermal shock * fracutre toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.074, year: 2007

  6. Simulation Study of Shock Reaction on Porous Material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan Xiaofei; Zhu Jianshi

    2009-01-01

    Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation. (general)

  7. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  8. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  9. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  10. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  11. Shock compression synthesis of hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Willson, C.G. [Univ. of Texas, Austin, TX (United States). Dept. of Chemistry

    1999-03-01

    The purpose of this research was to adapt the high explosives technology that was developed in conjunction with nuclear weapons programs to subjecting materials to ultra-high pressures and to explore the utility of this technique for the synthesis of hard materials. The research was conducted in collaboration with researchers at the University of Texas, Texas Tech University and Pantex (Mason and Hanger Corp.). The group designed, modeled, built, and tested a new device that allows quantitative recovery of grams of material that have been subjected to unprecedented pressures. The modeling work was done at Texas Tech and Pantex. The metal parts and material samples were made at the University of Texas, and Pantex machined the explosives, assembled the devices and conducted the detonations. Sample characterization was carried out at the University of Texas and Texas Tech.

  12. Propagation and dispersion of shock waves in magnetoelastic materials

    Science.gov (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  13. Viscoelastic Materials Study for the Mitigation of Blast-Related Brain Injury

    Science.gov (United States)

    Bartyczak, Susan; Mock, Willis, Jr.

    2011-06-01

    Recent preliminary research into the causes of blast-related brain injury indicates that exposure to blast pressures, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficient to protect the warfighter from this danger and the effects are debilitating, costly, and long-lasting. Commercially available viscoelastic materials, designed to dampen vibration caused by shock waves, might be useful as helmet liners to dampen blast waves. The objective of this research is to develop an experimental technique to test these commercially available materials when subject to blast waves and evaluate their blast mitigating behavior. A 40-mm-bore gas gun is being used as a shock tube to generate blast waves (ranging from 1 to 500 psi) in a test fixture at the gun muzzle. A fast opening valve is used to release nitrogen gas from the breech to impact instrumented targets. The targets consist of aluminum/ viscoelastic polymer/ aluminum materials. Blast attenuation is determined through the measurement of pressure and accelerometer data in front of and behind the target. The experimental technique, calibration and checkout procedures, and results will be presented.

  14. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  15. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  16. Shock enhancement of cellular materials subjected to intensive pulse loading

    Science.gov (United States)

    Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.

    2018-03-01

    Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.

  17. Material Evidence for Ocean Impact from Shock-Metamorphic Experiments

    Science.gov (United States)

    Miura, Y.; Takayama, K.; Iancu, O. G.

    1993-07-01

    Continental impact reveals an excavated crater that has few fresh fine ejecta showing major high shock metamorphism due to weathering [1]. A giant ocean impact rarely remains as an excavated crater mainly due to crushing by dynamic plate-tectonic movements on the crust [2]. However, all impact materials, including fine-grained ejecta, can be obtained with artificial impact experiments [3]. The purpose of this study is to discuss material evidence for ocean impact based on shock-metamorphic experiments. Artificial impact experiments indicate that fine shocked quartz (SQ) aggregates can be formed on several target rocks (Table 1) [1]. It is found in Table 1 that (1) the largest-density deviation of SQ grain is found not at the wall-rock or the impact crater but at fine-grained ejecta, and (2) silica-poor rocks of basalt, gabbro, and anorthosite can also make fine SQ aggregates by impact. Table 1, which appears here in the hard copy, shows formations of fine shocked quartz aggregates from ocean-floor rocks of basalt, gabbroic anorthosite, and granite [3]. An asteroid (about 10 km across) hits the Earth ~65 m.y. ago [4] to result in global catastrophe by titanic explosion and climate change. But shocked quartz grains found in the K/T boundary layer were considered to come from crystalline continental rocks [5]. The present result as listed in Table 1 indicates that fine SQ aggregates can also be formed at sea-floor basaltic and gabbroic rocks [3]. The present result of formation of the SQ grains from sea- floor target rocks is nearly consistent with the finding of a sea-impact crater at the K/T boundary near the Caribbean [6]. Impact-induced volcanism at the K/T boundary can explained by the penetration from thin ocean crust to upper mantle reservoirs, if giant impact of a 10-km- diameter asteroid hit the ocean [2,7]. The present result can explain "phreatomagmatic (magmatic vapor) explosion," which is created by abrupt boiling between high-temperature magma and cold

  18. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  19. Analysis and Mitigation of Mechanical Shock Effects on High Speed Planing Boats

    National Research Council Canada - National Science Library

    Keams, Sean

    2001-01-01

    .... Operation of these boats, particularly in rough seas, exposes the occupants to severe mechanical shock exposure that has been linked to significant increase in the rates of acute and chronic injury...

  20. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  1. Can superabsorbent polymers mitigate shrinkage in cementitious materials blended with supplementary cementitious materials?

    DEFF Research Database (Denmark)

    Snoeck, Didier; Jensen, Ole Mejlhede; De Belie, Nele

    2016-01-01

    A promising way to mitigate autogenous shrinkage in cementitious materials with a low water-to-binder ratio is internal curing by the use of superabsorbent polymers. Superabsorbent polymers are able to absorb multiple times their weight in water and can be applied as an internal water reservoir...... to induce internal curing and mitigation of self-desiccation. Their purposefulness has been demonstrated in Portland cement pastes with and without silica fume. Nowadays, fly ash and blast-furnace slag containing binders are also frequently used in the construction industry. The results on autogenous...... shrinkage in materials blended with fly ash or blast-furnace slag remain scarce, especially after one week of age. This paper focuses on the autogenous shrinkage by performing manual and automated shrinkage measurements up to one month of age. Without superabsorbent polymers, autogenous shrinkage...

  2. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  3. Criticality conditions of heterogeneous energetic materials under shock loading

    Science.gov (United States)

    Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.

  4. Shocked materials at the intersection of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzana, H. E.; Belak, J. F.; Bradley, K. S.; Bringa, E. M.; Budil, K. S.; Cazamias, J. U.; El-Dasher, B.; Hawreliak, J. A.; Hessler, J.; Kadau, K.; Kalantar, D. H.; McNaney, J. M.; Milathianaki, D.; Rosolankova, K.; Swift, D. C.; Taravillo, M.; Van Buuren, T. W.; Wark, J. S.; de la Rubia, T. Diaz

    2008-04-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena-nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  5. Shocked materials at the intersection of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kadau, Kai [Los Alamos National Laboratory

    2008-01-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena -- nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  6. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  7. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  8. Adaptive mesh refinement for shocks and material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, William Wenlong [Los Alamos National Laboratory

    2010-01-01

    There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

  9. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    Science.gov (United States)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  10. A microstructural investigation of shock-loading effects in FCC materials

    Science.gov (United States)

    Rohatgi, Aashish

    A systematic investigation of the influence of stacking fault energy (SFE) on shock loading effects in Cu and Cu-Al alloys has been conducted. Shock deformation in many materials is known to produce dislocation density in excess of that produced by quasi-static deformation to an equivalent strain. If the shock pressure is high enough and/or the SFE of the material is low enough, shock loading may also generate deformation twins. Both dislocations and deformation twins contribute to the post-shock strength of the material. Cu and a series of Cu-Al alloys with increasing Al contents were shock deformed at pressures of 10 and 35 GPa with a pulse duration of 1 mus each. The materials showed shock-strengthening which decreased with decreasing SFE. The twin component of post-shock strength was found to increase with decreasing SFE, while the dislocation component concurrently decreased. Since slip and twinning are competing phenomena, a greater propensity for twinning at lower SFE results in the shock-strain in low SFE materials being accommodated preferentially by twinning than by slip. Thus, the dislocation density in a twinned material is lower than if the deformation was accommodated entirely by slip. Additionally, as low SFE hinders cross-slip, a low SFE material shows a large Bauschinger effect and is unable to store additional dislocation line-length resulting in a lower dislocation density than in a similarly deformed high SFE material. The stored energy of materials shock-deformed to the same peak shock pressure was measured using differential scanning calorimetry (DSC) and was found to decrease with decreasing SFE. Using the stored energy data and a known value of energy per unit length of a dislocation, the stored dislocation density was found to decrease with decreasing SFE. It is suggested that the deformation twin boundaries are not as effective strengtheners, as dislocation-dislocation interactions. As a result of the lower strengthening efficiency but a

  11. Unusual behaviour of usual materials in shock waves

    International Nuclear Information System (INIS)

    Kanel, G I

    2014-01-01

    Exotic results of investigations of inelastic deformation and fracture under shock wave loading are presented and briefly discussed. Temperature effects on the flow stress at high strain rate may differ even in sign from those we observe at low and moderate strain rates. Investigations of the temperature-rate dependence of the yield stress at shock compression demonstrate intense multiplication of dislocations. At the highest strain rates, so-called ideal (ultimate) shear and tensile strength is reached in experiments with picosecond durations of shock loading. Although grain boundaries, in general, reduce resistance to fracture as compared to single crystals, the spall strength of ultra-fine-grained metals usually slightly exceeds that of coarse-grain samples. Failure wave phenomena have been observed in shock-compressed glasses.

  12. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  13. Using the Steel Vessel Material-Cost Index to Mitigate Shipbuilder Risk

    National Research Council Canada - National Science Library

    Keating, Edward G; Murphy, Robert; Schank, John F; Birkler, John

    2008-01-01

    This paper describes how the US Navy structures fixed-price and fixed-price, incentive-fee shipbuilding contracts and how labor- and material-cost indexes can mitigate shipbuilder risk in either type of contract...

  14. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  15. Shock-Induced and Shock-Assisted Reaction Synthesis of Materials

    National Research Council Canada - National Science Library

    Thadhani, N. N

    1997-01-01

    The beneficial effects of shock-compression of powders and solid-state chemical reactions were utilized to synthesize Ti-Si and Ti-A1 intermetallics, Ti-B and Ti-C ceramics, and Ti-Si:Ti-A1 composites...

  16. Development of a General Shocked-Materials-Response Description for Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Valone

    2000-07-01

    This report outlines broad modeling issues pertaining to polymeric materials behavior under detonation conditions. Models applicable system wide are necessary to cope with the broad range of polymers and complex composite forms that can appear in Laboratory weapons systems. Nine major topics are discussed to span the breadth of materials, forms, and physical phenomena encountered when shocking polymers and foams over wide ranges of temperatures, pressures, shock strengths, confinement conditions, and geometries. The recommendations for directions of more intensive investigation consider physical fidelity, computational complexity, and application over widely varying physical conditions of temperature, pressure, and shock strength.

  17. Precise optical observation of 0.5-GPa shock waves in condensed materials

    Science.gov (United States)

    Nagayama, Kunihito; Mori, Yasuhito

    1999-06-01

    Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.

  18. Analysis and testing of an inner bypass magnetorheological damper for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Hu, Wei; Wereley, Norman M.

    2013-04-01

    Aiming at fundamentally improving the performance of MR dampers, including maximizing dynamic range (i.e., ratio of field-on to field-off damping force) while simultaneously minimizing field-off damping force, this study presents the principle of an inner bypass magnetorheological damper (IBMRD). The IBMRD is composed of a pair of twin tubes, i.e., the inner tube and outer concentric tube, a movable piston-shaft arrangement, and an annular MR fluid flow gap sandwiched between the concentric tubes. In the IBMRD, the inner tube serves simultaneously as the guide for the movable piston and the bobbin for the electromagnetic coil windings, and five active rings on the inner tube, annular MR fluid flow gap, and outer tube forms five closed magnetic circuits. The annular fluid flow gap is an inner bypass annular valve where the rheology of the MR fluids, and hence the damping force of the MR damper, is controlled. Based on the structural principle of the IBMRD, the IBMRD is configured and its finite element analysis (FEA) is implemented. After theoretically constructing the hydro-mechanical model for the IBMRD, its mathematical model is established using a Bingham-plastic nonlinear fluid model. The characteristics of the IBMRD are theoretically evaluated and compared to those of a conventional piston-bobbin MR damper with an identical active length and cylinder diameter. In order to validate the theoretical results predicted by the mathematical model, the prototype IBMRD is designed, fabricated, and tested. The servo-hydraulic testing machine (type: MTS 810) and rail-guided drop tower are used to provide sinusoidal displacement excitation and shock excitation to the IBMRD, respectively.

  19. The Shock and Vibration Bulletin. Part 4. Dynamic Properties of Materials, Applications of Materials, Shock and Blast, Fragments

    Science.gov (United States)

    1980-09-01

    individual m.crophone readings using the following standard formula: SPI- AVE " ,0 LOG ( S lOSPM/lo/n) i*I ’ where: SPLAVE " Sound pressure...Godes- berg 1975 |4| NEIER-DemBERG. K.-E.i ’Reference Pa- rameters for Shock Inputs and Shock Tolerance Limits. ACARO Conference Proceedings No...occurrence In the Polsson counting process, equals v.{t), the av - erage barrier crossing rate of the response ran- dom process for a barrier with

  20. Self-consistent technique for estimating the dynamic yield strength of a shock-loaded material

    International Nuclear Information System (INIS)

    Asay, J.R.; Lipkin, J.

    1978-01-01

    A technique is described for estimating the dynamic yield stress in a shocked material. This method employs reloading and unloading data from a shocked state along with a general assumption of yield and hardening behavior to estimate the yield stress in the precompressed state. No other data are necessary for this evaluation, and, therefore, the method has general applicability at high shock pressures and in materials undergoing phase transitions. In some special cases, it is also possible to estimate the complete state of stress in a shocked state. Using this method, the dynamic yield strength of aluminum at 2.06 GPa has been estimated to be 0.26 GPa. This value agrees reasonably well with previous estimates

  1. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    Science.gov (United States)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  2. Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de; Roland, C. [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Prudhomme, G.; Lescoute, E.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France); Loison, D. [Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes (France)

    2016-05-14

    In a material subjected to high dynamic compression, the breakout of a shock wave at a rough free surface can lead to the ejection of high velocity debris. Anticipating the ballistic properties of such debris is a key safety issue in many applications involving shock loading, including pyrotechnics and inertial confinement fusion experiments. In this paper, we use laser driven shocks to investigate particle ejection from calibrated grooves of micrometric dimensions and approximately sinusoidal profile in tin samples, with various boundary conditions at the groove edges, including single groove and periodic patterns. Fast transverse shadowgraphy provides ejection velocities after shock breakout. They are found to depend not only on the groove depth and wavelength, as predicted theoretically and already observed in the past, but also, unexpectedly, on the edge conditions, with a jet tip velocity significantly lower in the case of a single groove than behind a periodic pattern.

  3. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  4. A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions

    Science.gov (United States)

    Radford, Darren D.; Proud, William G.; Field, John E.

    2001-06-01

    Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606

  5. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  6. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  7. Towards a smoothed particle hydrodynamics algorithm for shocks through layered materials

    NARCIS (Netherlands)

    Zisis, I.A.; Linden, van der B.J.; Giannopapa, C.G.

    2013-01-01

    Hypervelocity impacts (HVIs) are collisions at velocities greater than the target object’s speed of sound. Such impacts produce pressure waves that generate sharp and sudden changes in the density of the materials. These are propagated as shock waves. Previous computational research has given

  8. Thermodynamic model of the compaction of powder materials by shock waves

    NARCIS (Netherlands)

    Dijken, Durandus; Hosson, J.Th.M. De

    1994-01-01

    For powder materials a model is proposed to predict the mean temperature behind the shock wave, the ratio between the increase of thermal energy and increase of total internal energy, as well as the mean final temperature after release of adiabatic pressure. Further, the change of pressure, specific

  9. Characterization of shock-absorbing material for packages

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    2007-01-01

    Since 2001 Brazil has been participating in a regional effort with other Latin American countries which operate research reactors to improve its capability in the management of spent fuel elements from these reactors. One of the options considered is the long-term dry storage of the spent fuel in a dual purpose cask, i.e., a package for the transport and storage of radioactive material. In the scope of an IAEA-sponsored project, a cask was designed and a half-scale model for test was built. The cask consists of a sturdy cylindrical body provided with internal cavity to accommodate a basket holding the spent fuel elements, a double lid system, and external impact limiters. The cask is provided with top and bottom impact limiters, which are structures made of an external stainless steel skin and an energy-absorbing filling material. The filling material chosen was the wood composite denominated Oriented Strand Board (OSB), which is an engineered, mat-formed panel product made of strands, flakes or wafers sliced from small diameter, round wood logs and bonded with a binder under heat and pressure. The characterization of this material was carried in the scope of the cask project at the CDTN's laboratories. The tests conducted were the quasi-static compression, impact, shear-bending and edgewise shear tests. The compression, shear-bending and edgewise shear tests were carried out in a standard compression test machine and the impact test at a drop test tower equipped with a sturdy base and a drop weight. The main parameters of the material, like the Young and shear moduli, as well as the static and dynamic stress-strain curves and the specific energy absorbed, were determined during the test campaign. (author)

  10. Characterization of shock-absorbing material for packages

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio Pimenta [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: mouraor@cdtn.br

    2007-07-01

    Since 2001 Brazil has been participating in a regional effort with other Latin American countries which operate research reactors to improve its capability in the management of spent fuel elements from these reactors. One of the options considered is the long-term dry storage of the spent fuel in a dual purpose cask, i.e., a package for the transport and storage of radioactive material. In the scope of an IAEA-sponsored project, a cask was designed and a half-scale model for test was built. The cask consists of a sturdy cylindrical body provided with internal cavity to accommodate a basket holding the spent fuel elements, a double lid system, and external impact limiters. The cask is provided with top and bottom impact limiters, which are structures made of an external stainless steel skin and an energy-absorbing filling material. The filling material chosen was the wood composite denominated Oriented Strand Board (OSB), which is an engineered, mat-formed panel product made of strands, flakes or wafers sliced from small diameter, round wood logs and bonded with a binder under heat and pressure. The characterization of this material was carried in the scope of the cask project at the CDTN's laboratories. The tests conducted were the quasi-static compression, impact, shear-bending and edgewise shear tests. The compression, shear-bending and edgewise shear tests were carried out in a standard compression test machine and the impact test at a drop test tower equipped with a sturdy base and a drop weight. The main parameters of the material, like the Young and shear moduli, as well as the static and dynamic stress-strain curves and the specific energy absorbed, were determined during the test campaign. (author)

  11. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  12. Developing high-risk scenarios and countermeasure ideas for mitigation of hazardous materials incidents

    International Nuclear Information System (INIS)

    Russell, E.R. Sr.

    1991-01-01

    Kansas State University (KSU) conducted a comprehensive study of the development of a set of prioritized, extreme-risk scenarios, the development of a set of feasible, practical and implementable protective systems, and a report to summarize guidelines on the use of these protective systems to mitigate potential, extreme-risk situations that could occur during the transport of hazardous materials (Hazmat) on our highway system. This paper covers the methodology used to compete the first tow objectives with use of a state's panel. The research study was limited to materials (such as LNG, propane, gasoline, etc.) spilled within the highway system. It focused on potential risks which would result in severe, long-term, permanent, irreparable or catastrophic consequences, and existing technology and state-of-the-art knowledge for development of protective systems to mitigate these consequences. The protective systems within the scope of this study were systems constructed or physically incorporated into the highway system or modifications thereto

  13. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  14. Method of approximating the effects of blast mitigation materials on particulate-containing clouds formed by explosions

    International Nuclear Information System (INIS)

    Dyckes, G.W.

    1983-09-01

    A numerical model was developed for predicting the effect of blast mitigation materials on the rise and entrainment rate of explosively driven buoyant clouds containing radiotoxic particles. Model predictions for clouds from unmitigated explosions agree with published observations. More experimental data are needed to assess the validity of predictions for clouds from mitigated explosions

  15. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    Science.gov (United States)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  16. Material failure and inertial instabilities in a shocked imploded cylindrical aluminum sample

    International Nuclear Information System (INIS)

    Chandler, E.A.; Egan, P.; Stokes, J.

    1998-01-01

    The authors have used the LANL Pegasus Z-pinch facility to drive a thin cylindrically-convergent Al liner to ∼3 km/s to launch ∼30 GPa shocks in a 3-mm thick 10-mm-i.d. aluminum cylinder whose interior is filled with 1 atm Xe gas. The subsequent material motion of the metal and gas is diagnosed with both radial and axial flash x-rays and with optical framing cameras. Instabilities are seeded by implanting wires of assorted higher density metal parallel to the cylinder axis. The authors have done two shots, varying the target from Al 1100-O to Al 6061-T6 to explore the effect of changing material strength. The images show the spallation failure of the metal-gas interface on shock release and the effect of the seeded instabilities

  17. Classifying the mechanisms of electrochemical shock in ion-intercalation materials

    OpenAIRE

    Woodford, William; Carter, W. Craig; Chiang, Yet-Ming

    2014-01-01

    “Electrochemical shock” – the electrochemical cycling-induced fracture of materials – contributes to impedance growth and performance degradation in ion-intercalation batteries, such as lithium-ion. Using a combination of micromechanical models and acoustic emission experiments, the mechanisms of electrochemical shock are identified, classified, and modeled in targeted model systems with different composition and microstructure. A particular emphasis is placed on mechanical degradation occurr...

  18. Dynamic analysis to establish normal shock and vibration of radioactive material shipping packages

    International Nuclear Information System (INIS)

    Fields, S.R.

    1980-01-01

    A computer model, CARDS (Cask-Railcar Dynamic Simulator) was developed to provide input data for a broad range of radioactive material package-tiedown structural assessments. CARDS simulates the dynamic behavior of shipping packages and their transporters during normal transport conditions. The model will be used to identify parameters which significantly affect the normal shock and vibration environments which, in turn, provide the basis for determining the forces transmitted to the packages

  19. Machine learning to analyze images of shocked materials for precise and accurate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.; Meehan, B. T.; Ramos, Kyle J.; Bolme, Cindy A.; Sandberg, Richard L.; Nelson, Keith A.

    2017-09-14

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast images of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.

  20. Mechanical to electrical energy conversion by shock wave effect in a ferro-electric material

    International Nuclear Information System (INIS)

    David, Jean

    1977-01-01

    The shock wave propagation through a polarized ferroelectric ceramic changes or destroys remanent polarization and this way allows to get, in adequate electrical circuit, a volume energy of about 2 J/ cm 3 , during a time of the order of 0,4 μs; which corresponds to a peak - power of 5 MW/cm 3 . The present report has for objective to specify the optimum working conditions of this mechanical to electrical conversion from ceramic characteristics, load circuit connected to its electrodes and from the characteristics of the pressure wave which travels through the materials which constitute the converter. After a few lines about the ferroelectric materials and about the shock waves, the shock generator, the used setting and measures are described. A mathematical model which exhibits the transducer operation and a computation of the allowable electrical energy are given. For ending, the released electrical energies by industrial and laboratory ceramics are compared to the estimated computations and a thermodynamical balance is carried out. (author) [fr

  1. Relationship of material properties to seismic coupling. Part I. Shock wave studies of rock and rock-like materials

    International Nuclear Information System (INIS)

    Larson, D.B.; Rodean, H.C.

    1975-01-01

    Our research seeks an understanding of the relationship of material properties to explosive-energy coupling in various earth media by integrating experimental observations with computer calculational models to obtain a predictive capability. The procedure chosen consists of: first, selecting materials exhibiting interesting values of the properties that are believed to control coupling; second, experimentally determining material behavior under various types of loading and unloading; third, development of constitutive relationships; fourth, adapting these constitutive relationships to computer calculational models; and fifth, verifying the calculational models through comparison with small-scale and field high-strain-rate experiments. The object of this report is to present the shock-wave data and to make a preliminary evaluation of the results in terms of material properties, coupling, and their interactions. (U.S.)

  2. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  3. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  4. Shock and rarefaction waves in a hyperbolic model of incompressible materials

    Directory of Open Access Journals (Sweden)

    Tommaso Ruggeri

    2013-01-01

    Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.

  5. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  6. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  7. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  8. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  9. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  10. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  11. Numerical results from a study of LiH: the proposed standard material for the high pressure shock experiment

    International Nuclear Information System (INIS)

    Rogers, F.J.

    1975-01-01

    It is proposed to send a high pressure shock wave through a layer of LiH and then into a sample of high Z-material, resulting in a reflected shock wave back into the LiH. If the Hugoniot and some reflected Hugoniots for LiH are known the EOS of the sample can be obtained from the ''impedance matching method.'' The theory and its range of validity are described

  12. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Science.gov (United States)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  13. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Putrik, A.B. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Pitts, R.A. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Zhitlukhin, A.M. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kuprianov, I.B. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Spitsyn, A.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow 123182 (Russian Federation); Ogorodnikova, O.V. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Ivanov, B.V.; Sergeecheva, Ya.V.; Lesina, I.G. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Kovalenko, D.V.; Barsuk, V.A.; Danilina, N.A. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Bazylev, B.N. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Giniyatulin, R.N. [Efremov Institute, Doroga na Metallostroy, 3 bld., Metallostroy, Saint-Petersburg 196641 (Russian Federation)

    2015-08-15

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  14. Multiscale modeling, coarse-graining and shock wave computer simulationsin materials science

    Directory of Open Access Journals (Sweden)

    Martin O. Steinhauser

    2017-12-01

    Full Text Available My intention in this review article is to briefly discuss several major topics of presentdaycomputational materials science in order to show their importance for state-of-the-art materialsmodeling and computer simulation. The topics I discuss are multiscale modeling approaches forhierarchical systems such as biological macromolecules and related coarse-graining techniques, whichprovide an effcient means to investigate systems on the mesoscale, and shock wave physics whichhas many important and interesting multi- and interdisciplinary applications in research areas wherephysics, biology, chemistry, computer science, medicine and even engineering meet. In fact, recently,as a new emerging field, the use of coarse-grained approaches for the simulation of biologicalmacromolecules such as lipids and bilayer membranes and the investigation of their interaction withshock waves has become very popular. This emerging area of research may contribute not only toan improved understanding of the microscopic details of molecular self-assembly but may also leadto enhanced medical tumor treatments which are based on the destructive effects of High IntensityFocused Ultrasound (HIFU or shock waves when interacting with biological cells and tissue; theseare treatments which have been used in medicine for many years, but which are not well understoodfrom a fundamental physical point of view.

  15. A fresh frozen plasma to red blood cell transfusion ratio of 1:1 mitigates lung injury in a rat model of damage control resuscitation for hemorrhagic shock.

    Science.gov (United States)

    Zhao, Jingxiang; Pan, Guocheng; Wang, Bo; Zhang, Yuhua; You, Guoxing; Wang, Ying; Gao, Dawei; Zhou, Hong; Zhao, Lian

    2015-06-01

    We aimed to evaluate the effects of resuscitation with different ratios of fresh frozen plasma (FFP) to red blood cells (RBCs) on pulmonary inflammatory injury and to illuminate the beneficial effects of FFP on lung protection compared with lactated ringers (LR) using a rat model of hemorrhagic shock. Rats underwent pressure-controlled hemorrhage for 60 minutes and were then transfused with LR for initial resuscitation. Thereafter, the rats were transfused with varying ratios of FFP:RBC (1:4, 1:2, 1:1, and 2:1) or LR:RBC (1:1) to hold their mean arterial pressure (MAP) at 100 ± 3 mm Hg for 30 minutes. After 4 hours of observation, lung tissue was harvested to determine the wet/dry weight, myeloperoxidase levels, tumor necrosis factor α levels, macrophage inflammatory protein 2 (MIP-2) levels, inducible nitric oxide synthase activity, and the nuclear factor κB p65 DNA-binding activity. With an increase in the FFP:RBC ratio, the volume of required RBC to maintain the target MAP decreased. The MAP value in each group was not significantly different during the whole experiment period. The values of the wet/dry weights and MIP-2 were significantly lower in the FFP:RBC = 1:1 group than the other groups (P ratio of FFP to RBC results in decreased lung inflammation. Compared with LR, FFP could further mitigate lung inflammatory injury. Copyright © 2015. Published by Elsevier Inc.

  16. Scaling impact and shock-compression response for porous materials: Application to planetary formation

    Science.gov (United States)

    Jeanloz, R.

    2016-12-01

    A thermodynamic model based on the Mie-Grüneisen equation of state does a good job of describing the response of porous materials to impact, so can provide insights into the accretion and cohesion of planetesimals too small to be significantly held together by gravity (e.g., tens of km or less in average diameter). The model identifies an offset in Hugoniot pressure (ΔPH) due to porosity that is found to be in agreement with experimental shock-compression measurements for samples having a wide range of initial porosities. Assuming the Grüneisen parameter (γ) is proportional to volume (γ/V = constant), the relative offset in Hugoniot pressure as a function of initial porosity (φ = 1 - V0/V0por) and compression (η = 1 - V/V0) is ΔPH/PH = γ0 φ/[2(1 - φ) - γ0 (φ + η(1 - φ))] where subscripts 0 and por represent zero-pressure (non-porous) conditions and a porous sample, respectively. This additional thermal pressure at a given volume is due to the extra internal energy and corresponding temperature increase associated with collapsing pores (Fig. 1: near-identical curves for φ = 0.001 and 0.01). This result can be interpreted as indicating that upon collapse individual pores create hot spots with temperatures of order 103-104K above the background, suggesting that impact into an initially porous target can result in cohesion due to partial melting and vaporization. Moreover, the waste heat associated with pore closure far exceeds the dissipation in shock loading of non-porous material, reflecting the ability of a porous target to absorb and dissipate impact energy. The Mie-Grüneisen model along with analysis of waste heat thus provides a scaling for planetesimal impact that might explain how rock and regolith accrete into a gravitationally bound planet. Fig. 1. Porosity-induced anomaly in Hugoniot temperature per unit of porosity, shown as a function of compression for samples with initial porosity φ = 0.001 (green), 0.01 (blue) and 0.1 (gold) assuming

  17. Observation of the shock wave propagation induced by a high-power laser irradiation into an epoxy material

    International Nuclear Information System (INIS)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Mercier, Patrick; Benier, Jacky

    2013-01-01

    The propagation of laser-induced shock waves in a transparent epoxy sample is investigated by optical shadowgraphy. The shock waves are generated by a focused laser (3 ns pulse duration—1.2 to 3.4 TW cm −2 ) producing pressure from 44 to 98.9 GPa. It is observed that the shock wave and the release wave created by the shock reverberation at the rear face are both followed by a dark zone in the pictures. This corresponds to the creation of a tensile zone resulting from the crossing on the loading axis of the release waves coming from the edge of the impact area (2D effects). After the laser shock experiment, the residual stresses in the targets are identified and quantified through a photoelasticimetry analysis of the recovered samples. This work results in a new set of original data which can be directly used to validate numerical models implemented to reproduce the behaviour of epoxy under extreme strain rate loading. The residual stresses observed prove that the high-pressure shocks can modify the pure epoxy properties, which could have an influence on the use made of these materials. (paper)

  18. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  19. Laser shocks: A tool for experimental simulation of damage into materials

    Energy Technology Data Exchange (ETDEWEB)

    Boustie, M.; Cuq Lelandais, J. P.; Berthe, L.; Ecault, R. [Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France); CEA-DAM Valduc, 21120 Is-sur-Tille (France); Laboratoire Procedes et Ingenierie en Mecanique et Materiaux (CNRS), Arts et Metiers ParisTech, 151 bd de l' Hopital, 75013 PARIS (France); Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France)

    2012-07-30

    High power laser irradiation of solids results in a strong shock wave propagation, driving very high amplitude pressure loadings with very short durations. These particular characteristics offer the possibility to study the behaviour of matter under extreme dynamic conditions in continuity with what is possible with the conventional generators of shock (launchers of projectiles, explosives). An advantage of laser shocks is a possible recovery of the shocked samples presenting the metallurgical effects of the shock in most cases. We introduce the principle of the laser shock generation, the characterization of these shocks, the principal mechanisms and effects associated with their propagation in the solids. We show how laser shocks can be a laboratory tool for simulating shock effects at ultra high strain rate, providing a high in information experimental layout for validation of damage modelling on an extended strain rate range compared to conventional shock generators. New data have been obtained with ultra short femtosecond range irradiation. Experimental data gathered through post mortem observation, time resolved velocity measurement are shown along with numerical associated simulations, showing the possibility to predict the damage behaviour of metallic targets under extreme strain rate up to 10{sup 8} s{sup -1}.

  20. Investigation of the dynamic behavior in materials submitted to sub-picosecond laser driven shock

    International Nuclear Information System (INIS)

    Cuq-Lelandais, Jean-Paul

    2010-01-01

    Laser driven shocks allow to investigate materials behavior at high strain rate and present a great interest for research and industrial applications. The latest laser technologies evolutions provide an access to shorter regimes in duration, below the picosecond. This work, which results from a collaboration between the P' institute, the PIMM laboratory and the CEA-DAM, is dedicated to the characterization of the metallic material behavior in this ultra-short mode (aluminium, tantalum), leading to extreme dynamic solicitation in the target (>10 7 s -1 ). The study includes the validation of experimental results obtained on the LULI 100 TW facility by comparison with numerical model. First, the study is orientated to the femtosecond (fs) laser-matter interaction, which is different from what happens in nanosecond regime. Indeed, the characteristic duration scale is comparable to several molecular phenomena like non-equilibrium electrons-ions states. The aim is to determine the equivalent pressure loading induced by the laser pulse on the target. Then, the shock wave propagation within the target has been studied and particularly its pressure decay, notably strong in this regime. In this configuration, the spalls observed are thin, a few μm order, and show a planar rupture morphology. The results obtained by post-mortem observation show that the spall thickness is thinner if the target thickness is reduced. The spalls are characterized by the VISAR measurement. Within the framework of dynamic damage modeling and rupture criteria dimensioning, particularly those which have been validated in the ns regime as Kanel, shots with different thicknesses have been carried out to determine the damage properties in function of strain rate and validate the parameters by prolongation to the ultra-shorts modes. Then, the study has been generalized to the 2D propagation waves, which can explain the spall diameter evolutions. Meanwhile, microscopic simulations of ultra-short laser

  1. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  2. Polyimide Nanocomposite Circuit Board Materials to Mitigate Internal Electrostatic Discharge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic T8.02, NASA has identified a need for improved circuit boards to mitigate the hazards of internal electrostatic discharge (IESD) on missions where high...

  3. Young’s modulus evaluation and thermal shock behavior of a porous SiC/cordierite composite material

    Directory of Open Access Journals (Sweden)

    Pošarac-Marković M.

    2015-01-01

    Full Text Available Porous SiC/Cordierite Composite Material with graphite content (10% was synthesized. Evaluation of Young modulus of elasticity and thermal shock behavior of these samples was presented. Thermal shock behavior was monitored using water quench test, and non destructive methods such are UPVT and image analysis were also used for accompaniment the level of destruction of the samples during water quench test. Based on the level of destruction graphical modeling of critical number of cycles was given. This approach was implemented on discussion of the influence of the graphite content on thermal stability behavior of the samples. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  4. Glovebox-contained forty-millimeter gun system for the study of one-dimensional shock waves in toxic materials

    International Nuclear Information System (INIS)

    Honodel, C.A.

    1975-01-01

    A new gun system is being constructed at the Lawrence Livermore Laboratory for studies of the behavior of toxic materials under shock-loaded conditions. Due to the extreme toxicity of some materials, such as plutonium, the entire gun system must be enclosed in gloveboxes. Some of the experimental requirements that affected the design of the system, various diagnostic techniques that will be employed with the system, and some details of the final design that is presently under assembly are presented

  5. Harnessing osteopontin and other natural inhibitors to mitigate ectopic calcification of bioprosthetic heart valve material

    Science.gov (United States)

    Ohri, Rachit

    Dystrophic calcification has been the long-standing major cause of bioprosthetic heart valve failure, and has been well studied in terms of the underlying causative mechanisms. Such understanding has yielded several anti-calcification strategies involving biomaterial modification at the preparation stage: chemical alteration, extraction of calcifiable components, or material modification with small-molecule anti-calcific agents. However, newer therapeutic opportunities are offered by the growing illustration of the pathology as a dynamic, actively regulated process involving several gene products, such as osteopontin (OPN), matrix-gla protein (MGP) and glycosaminoglycans (GAGs). Osteopontin, a multi-functional matricellular glycosylated phosphoprotein has emerged as a prime candidate for the role of an in vivo inhibitor of ectopic calcification with two putative mechanisms: crystal poisoning and mineral-dissolution. The full therapeutic realization of its potential necessitates a better understanding of the mechanisms of anti-calcification by osteopontin, as well as appropriate in vivo models in which to evaluate its efficacy, potency and molecular mechanisms. In this work, we pursued the development and characterization of a reliable in vivo model with the OPN-null mouse to simulate the calcification of bioprosthetic valve material, namely glutaraldehyde-fixed bovine pericardium (GFBP) tissue. Subsequently, we used the calcification model to evaluate hypotheses based on the anti-calcific potential of osteopontin. Several modes of administering exogenous OPN to the implant site in OPN-null mice were explored, including soluble injected OPN, OPN covalently immobilized on the biomaterial, and OPN adsorbed onto the biomaterial. An investigation of the structure-function aspects of the anti-calcific ability of OPN was also pursued in the in vivo model. The OPN-null mouse was also used as an in vivo test-bed to evaluate the anti-calcific potential of other biomolecules

  6. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    Science.gov (United States)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  7. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  8. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  9. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for implant prosthesis

    Directory of Open Access Journals (Sweden)

    M. Menini

    2011-01-01

    Full Text Available The aim of the present research was to measure in vitro the chewing load forces transmitted through crowns made of different prosthetic restorative materials onto the dental implant. A masticatory robot that is able to reproduce the mandibular movements and the forces exerted during mastication was used. The forces transmitted to the simulated periimplant bone during the robot mastication were analysis of variance (ANOVA was used. The zirconia and the ceramic crowns transmitted significantly greater forces (p-value < 0.0001 than the other crowns tested. Dental materials with lower elastic modulus were better able to ansorb shock from acclusal forces than more rigid materials.

  10. Theoretical study of the porosity effects on the shock response of graphitic materials

    Directory of Open Access Journals (Sweden)

    Pineau Nicolas

    2015-01-01

    Full Text Available In this paper we present a theoretical study of the shock compression of porous graphite by means of combined Monte Carlo and molecular dynamics simulations using the LCBOPII potential. The results show that the Hugoniostat methods can be used with “pole” properties calculated from porous models to reproduce the experimental Hugoniot of pure graphite and diamond with good accuracy. The computed shock temperatures show a sharp increase for weak shocks which we analyze as the heating associated with the closure of the initial porosity. After this initial phase, the temperature increases with shock intensity at a rate comparable to monocrystalline graphite and diamond. These simulations data can be exploited in view to build a full equation of state for use in hydrodynamic simulations.

  11. Laser Induced Shock Waves and Vaporization in Biological System and Material Science

    National Research Council Canada - National Science Library

    Gerstman, Bernard S

    2008-01-01

    .... We have developed a computational model that allows the calculation of damage resulting from a laser pulse of any duration or energy due to temperature rise, explosive bubble formation, and shock wave production...

  12. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density.

  13. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  14. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  15. Irradiation effects and mitigation. Proceedings of the IAEA Specialists Meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The IAEA Specialists Meeting on Irradiation Effects and Mitigation organised in co-operation with the Russian Research Centre 'Kurchatov Institute' was held at Vladimir, Russian Federation from 15 to 19 September 1997. Topics of the Meeting covered a number of problems including mechanisms of radiation damage, results of surveillance programmes and their analysis, effects of operating parameters, fracture mechanics tests and evaluation, annealing and optimisation of the process and reembrittlement after annealing. Specialists from 17 countries presented 31 paper, published in this proceedings each with a separate abstract

  16. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  17. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  18. Temperature measurements of shocked translucent materials by time-resolved infrared radiometry

    International Nuclear Information System (INIS)

    Von Holle, W.G.

    1981-01-01

    Infrared emission in the range 2 to 5.5 μm has been used to measure temperatures in shock-compressed states of nitromethane, cyclohexane and benzene and in polycrystalline KBr. Polymethylmethacrylate shows anomolous emission probably associated with some heterogeneity

  19. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  20. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  1. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  2. Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials

    Science.gov (United States)

    2011-12-07

    with nonuniform interfaces plays an essential role in the interfacial instabilities in iner- tial confinement fusion (ICF), in shock-induced...involved in interfacial instabilities at the atomic scale, providing insights on such phenomenon. Thus ReaxFF provides the possibility of realistic...on the IPDI and DOA to determine the charges and structures for the binder model. These QM results and model preparation procedure are provided as part

  3. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks

    International Nuclear Information System (INIS)

    Neumann, Martin; Wille, Frank

    2011-01-01

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  4. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    International Nuclear Information System (INIS)

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-01-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  5. Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials.

    Science.gov (United States)

    Junier, Pilar; Joseph, Edith

    2017-09-01

    Microorganisms are the main engines of elemental cycling in this planet and therefore have a profound impact on both organic and mineral substrates. As such, past and present human-made structures and cultural heritage can be negatively affected by microbial activity. Processes such as bioweathering (rocks and minerals), biodeterioration (organic substrates) or biocorrosion (metals) participate to the degradation or structural damage of construction and heritage materials. This structural damage can cause major economic losses (e.g. replacement of cast-iron pipes in water distribution networks), and in the case of heritage materials, the entire loss of invaluable objects or monuments. Even though one can regard the influence of microbial activity on construction and heritage materials as negative, remarkably, the same metabolic pathways involved in degradation can be exploited to increase the stability of these materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. International conference and workshop on modeling and mitigating the consequences of accidental releases of hazardous materials

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This conference was held September 26--29, 1995 in New Orleans, Louisiana. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the consequences of accidental releases of hazardous materials. Attention is focused on air dispersion of vapors. Individual papers have been processed separately for inclusion in the appropriate data bases

  7. Performance of low-upper-shelf material under pressurized-thermal-shock loading (PTSE-2)

    International Nuclear Information System (INIS)

    Bryan, R.H.; Corwin, W.R.; Bass, B.R.; Nanstad, R.K.; Bolt, S.E.; Merkle, J.G.; Bryson, J.W.; Robinson, G.C.

    1988-01-01

    The second pressurized-thermal-shock experiment (Pse-2) of the Heavy-Section Steel Technology Program was conceived to investigate fracture behavior of steel with low ductile-tearing resistance. The experiment was performed in the pressurized-thermal-shock test facility at the Oak Ridge National Laboratory. PTSE-2 was designed primarily to reveal the interaction of ductile and brittle modes of fracture and secondarily to investigate the effects of warm pre-stressing. A test vessel was prepared by inserting a crack-like flaw of well-defined geometry on the outside surface of the vessel. The flaw was 1 m long by ∼ 15 mm deep. The instrumented vessel was placed in the test facility in which it ws initially heated to a uniform temperature and was then concurrently cooled on the outside and pressurized on the inside. These actions produced an evolution of temperature, toughness, and stress gradients relative to the prepared flaw that was appropriate to the planned objectives. The experiment was conducted in two separate transients, each one starting with the vessel nearly isothermal. The first transient induced a warm-prestressed state, during which K I first exceeded K Ic . This was followed by re-pressurization until a cleavage fracture propagated and arrested. The final transient was designed to produce and investigate a cleavage crack propagation followed by unstable tearing. During this transient, the fracture events occurred as had been planned. (author)

  8. Cryoinsulation Material Development to Mitigate Obsolescence Risk for Global Warming Potential Foams

    Science.gov (United States)

    Protz, Alison; Bruyns, Roland; Nettles, Mindy

    2015-01-01

    Cryoinsulation foams currently being qualified for the Space Launch System (SLS) core stage are nonozone- depleting substances (ODP) and are compliant with current environmental regulations. However, these materials contain the blowing agent HFC-245fa, a hydrofluorocarbon (HFC), which is a Global Warming Potential (GWP) substance. In August 2014, the Environmental Protection Agency (EPA) proposed a policy change to reduce or eliminate certain HFCs, including HFC-245fa, in end-use categories including foam blowing agents beginning in 2017. The policy proposes a limited exception to allow continued use of HFC and HFC-blend foam blowing agents for military or space- and aeronautics-related applications, including rigid polyurethane spray foams, but only until 2022.

  9. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  10. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    Science.gov (United States)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  11. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  12. Methodology for pressurized thermal shock evaluation. Proceedings of the IAEA specialists meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The meeting was held within the scope of activities of the International Working Group, recognizing that the importance of the PTS phenomena and advances in the subject require regular information exchange in this field. The purpose of the meeting was to provide an opportunity to exchange information as well as new results in research and development, concentrating on the total PTS calculation and including PTS evaluation and application in RPV life time and integrity assessment. The papers presented at the meeting covered problems of thermohydraulics, RPV temperature-stress fields calculations, fracture mechanics approach to integrity assessment as well as discussions on PTS modeling, general procedures for RPV life assessment and mitigation methods other than RPV annealing. Refs, figs, tabs

  13. Methodology for pressurized thermal shock evaluation. Proceedings of the IAEA specialists meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The meeting was held within the scope of activities of the International Working Group, recognizing that the importance of the PTS phenomena and advances in the subject require regular information exchange in this field. The purpose of the meeting was to provide an opportunity to exchange information as well as new results in research and development, concentrating on the total PTS calculation and including PTS evaluation and application in RPV life time and integrity assessment. The papers presented at the meeting covered problems of thermohydraulics, RPV temperature-stress fields calculations, fracture mechanics approach to integrity assessment as well as discussions on PTS modeling, general procedures for RPV life assessment and mitigation methods other than RPV annealing. Refs, figs, tabs.

  14. Elastic, Frictional, Strength and Dynamic Characteristics of the Bell Shape Shock Absorbers Made of MR Wire Material

    Science.gov (United States)

    Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.

    2018-01-01

    The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.

  15. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    International Nuclear Information System (INIS)

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stölken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-01

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 × 1.3 mm square spot directly onto the surface of the sample, using irradiances between 10 12 and 10 13  W/cm 2 , which resulted in calculated peak pressures between 50 and 150 GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528 μm. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated

  16. Investigation of erosion mechanisms and erosion products in divertor armour materials under conditions relevant to elms and mitigated disruptions in ITER

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Klimov, N.S.; Kovalenko, D.V.; Moskaleva, A.A.; Podkovyrov, V.L.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.S.; Poznyak, I.M.

    2008-01-01

    Carbon fibre composite (CFC) and tungsten were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Onset condition of material erosion and properties of erosion products have been studied

  17. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  18. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  19. A fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment

    International Nuclear Information System (INIS)

    Toerroenen, K.; Rintamaa, R.; Kemppainen, M.

    1983-04-01

    This report gives the results of a fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment. The basic crack growth mechanism is shown to be by mechanical fatigue, but after some crack growth indications of environmentally assisted cyclic crack growth is seen. (author)

  20. Multi-scale modelling of thermal shock damage in refractory materials

    NARCIS (Netherlands)

    Özdemir, I.

    2009-01-01

    Refractories are high-temperature resistant materials used extensively in many engineering structures and assemblies in a wide spectrum of applications ranging from metallurgical furnace linings to thermal barrier coatings. Such structures are often exposed to severe thermal loading conditions in

  1. Equation of state and shock compression of carbon-hydrogen and other ablator materials

    Science.gov (United States)

    Zhang, S.; Militzer, B.; Whitley, H.

    2017-12-01

    Dynamic compression experiments in planetary interior studies and fusion sciences often implement carbon-hydrogen or other low-Z elements or compounds as ablators. Accurate quantum simulations of these materials enables theoretical investigation of the equation of state (EOS) over temperatures and pressures that are difficult to access experimentally, and can help guide the design of targets for future experiments. In this work, we use path integral Monte Carlo and density functional molecular dynamics to calculate the equation of state of a series of hydrocarbons and other low-Z materials (B, B4C, and BN). For the hydrocarbon with C:H=1:1, we predict the pressure-compression profile to agree remarkably with experiments at low pressures. At high pressures, we find the Hugoniot curve displays a single compression maximum of 4.7 that corresponds to K-shell ionization. This is slightly higher than that of glow-discharge polymers but both occur at the same pressure (0.47 Gbar). We study the linear mixing approximation for the EOS of hydrocarbons and demonstrate its validity at stellar core conditions. We examine the sensitivity of the fusion yield to the EOS of these candidate ablator materials in radiation-hydrodynamic simulations of a direct-drive implosion. We also make detailed comparisons of the EOS and atomic and electronic structure of C and BN, which is useful for systematic improvement of existing EOS models. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  3. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  4. Mitigation of Ground Vibration due to Collapse of a Large-Scale Cooling Tower with Novel Application of Materials as Cushions

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2017-01-01

    Full Text Available Ground vibration induced by the collapse of large-scale cooling towers in nuclear power plants (NPPs has recently been realized as a potential secondary disaster to adjacent nuclear-related facilities with demands for vibration mitigation. The previous concept to design cooling towers and nuclear-related facilities operating in a containment as isolated components in NPPs is inappropriate in a limited site which is the cases for inland NPPs in China. This paper presents a numerical study on the mitigation of ground vibration in a “cooling tower-soil-containment” system via a novel application of two materials acting as cushions underneath cooling towers, that is, foamed concrete and a “tube assembly.” Comprehensive “cooling tower-cushion-soil” models were built with reasonable cushion material models. Computational cases were performed to demonstrate the effect of vibration mitigation using seven earthquake waves. Results found that collapse-induced ground vibrations at a point with a distance of 300 m were reduced in average by 91%, 79%, and 92% in radial, tangential, and vertical directions when foamed concrete was used, and the vibrations at the same point were reduced by 53%, 32%, and 59% when the “tube assembly” was applied, respectively. Therefore, remarkable vibration mitigation was achieved in both cases to enhance the resilience of the “cooling tower-soil-containment” system against the secondary disaster.

  5. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    Science.gov (United States)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  6. Assessing mesoscale material response under shock & isentropic compression via high-resolution line-imaging VISAR.

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Clint Allen; Furnish, Michael David; Podsednik, Jason W.; Reinhart, William Dodd; Trott, Wayne Merle; Mason, Joshua

    2003-10-01

    Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared two line-imaging VISAR systems capable of spatial resolution in the 10-20 micron range, at the Z and STAR facilities. We have applied this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in copper (two variations: 70 micron diameter hole in single-crystal copper) and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint. The instrument is capable of resolving details such as the volume and collapse history of a collapsing isolated pore.

  7. Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay K. [Univ. of Cincinnati, OH (United States); Jackson, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teysseyre, Sebastien [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alexandreanu, Bogdan [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Yiren [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-07

    The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping of surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms

  8. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  9. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  10. Molecular dynamics simulations of shock compressed heterogeneous materials. II. The graphite/diamond transition case for astrophysics applications

    Science.gov (United States)

    Pineau, N.; Soulard, L.; Colombet, L.; Carrard, T.; Pellé, A.; Gillet, Ph.; Clérouin, J.

    2015-03-01

    We present a series of molecular dynamics simulations of the shock compression of copper matrices containing a single graphite inclusion: these model systems can be related to some specific carbon-rich rocks which, after a meteoritic impact, are found to contain small fractions of nanodiamonds embedded in graphite in the vicinity of high impedance minerals. We show that the graphite to diamond transformation occurs readily for nanometer-sized graphite inclusions, via a shock accumulation process, provided the pressure threshold of the bulk graphite/diamond transition is overcome, independently of the shape or size of the inclusion. Although high diamond yields (˜80%) are found after a few picoseconds in all cases, the transition is non-isotropic and depends substantially on the relative orientation of the graphite stack with respect to the shock propagation, leading to distinct nucleation processes and size-distributions of the diamond grains. A substantial regraphitization process occurs upon release and only inclusions with favorable orientations likely lead to the preservation of a fraction of this diamond phase. These results agree qualitatively well with the recent experimental observations of meteoritic impact samples.

  11. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  12. Idiosyncratic Shocks, Child Labor and School Attendance in Indonesia

    Science.gov (United States)

    Kharisma, Bayu

    2017-01-01

    This paper investigates the effect of various idiosyncratic shocks against child labor, child labor hour and school attendance. Also, the role of the assets held by households as one of the coping strategies to mitigate the effects of shocks. The results show that various idiosyncratic shocks that encourage child labor is generally caused by crop…

  13. Survey of existing literature in the field of shock-absorbing materials with a view to subsequent adaptation of plastic deformation codes. Phase 1

    International Nuclear Information System (INIS)

    Draulans, J.; Fabry, J.P.; Lafontaine, I.; Richel, H.; Guyette, M.

    1985-01-01

    Shock-absorbing materials and structures can be used as part of the transport container structure or of the truck equipment. An extensive survey of the literature has provided much information. Investigation has been made to define the required experimental procedures necessary to measure the misssing material properties. Three codes had been selected: EURDYN, MARC-CDC and SAMCEF. For code evaluation, a schematic container model has been considered to serve as a benchmark for the evaluation of plastic deformation. For the shock-calculation, the container falls from a height of 9 meters along the direction of its cylinder axis on an unyielded flat surface. The EURDYN computer code, has been selected first as it is especially designed to handle dynamic problems, preferably plastic ones. Indeed, EURDYN uses an explicit integration scheme versus time, which makes it quite efficient to run short deformation processes such as absorber collapses. The SAMCEF computer code could not readily calculate the benchmark, also a visco-plastic flow model has been added to it. The MARC computer code was supposed to be a candidate to run shock-calculation but extensive computing time and engineering efforts would be required, it was replaced by the PLEXUS code. The results obtained using the SAMCEF programme confirm those obtained with EURDYN. The PLEXUS results are in between. The proposed benchmark calculation is at the border of the capabilities of the most advanced computer codes for plastic-dynamic calculations. Indeed, a complex energy absorption process seems to take place in a narrow region, moving versus time, where very large shape inversions occur. That requires an accurate modelling of the system in the deformed regions and a skilful choice of the numerical parameters of the computer run. The three tested codes gave qualitatively consistent results and confirm some scarce experimental results

  14. Macroeconomic impacts of oil price shocks in Asian economies

    International Nuclear Information System (INIS)

    Cunado, Juncal; Jo, Soojin; Perez de Gracia, Fernando

    2015-01-01

    This paper analyzes the macroeconomic impact of structural oil shocks in four of the top oil-consuming Asian economies, using a VAR model. We identify three different structural oil shocks via sign restrictions: an oil supply shock, an oil demand shock driven by global economic activity and an oil-specific demand shock. The main results suggest that economic activity and prices respond very differently to oil price shocks depending on their types. In particular, an oil supply shock has a limited impact, while a demand shock driven by global economic activity has a significant positive effect in all four Asian countries examined. Our finding also includes that policy tools such as interest rates and exchange rates help mitigating the effects of supply shocks in Japan and Korea; however, they can be more actively used in response to demands shocks. - Highlights: • We analyze the effects of three structural oil price shocks on Asian economies. • Supply shocks have limited impact on the economic activity of Asian economies examined. • Demand shocks due to economic activity boosts GDP of all economies. • CPIs in India and Indonesia were only marginally affected by oil price shocks. • Monetary and exchange rate tools help mitigating supply shocks in Korea and Japan.

  15. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  16. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    Hassanein, Ahmed

    2015-01-01

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  17. Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals.

    Science.gov (United States)

    Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F

    2018-02-01

    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.

  18. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  19. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  20. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  1. Irradiation embrittlement mitigation

    International Nuclear Information System (INIS)

    Torronen, K.; Pelli, R.; Planman, T.; Valo, M.

    1993-01-01

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs

  2. Irradiation embrittlement mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torronen, K; Pelli, R; Planman, T; Valo, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.

    1994-12-31

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs.

  3. Gender involvement in manual material handling (mmh) tasks in agriculture and technology intervention to mitigate the resulting musculoskeletal disorders.

    Science.gov (United States)

    Singh, Suman; Sinwal, Neelima; Rathore, Hemu

    2012-01-01

    The lifting and carrying of loads in agriculture on small landholdings are unavoidable. Rural communities often lack access to appropriate technologies which may result in various health hazards. The objective was to study gender participation in agricultural activities involving manual material handling tasks, to assess MSDs experienced in various MMH tasks and to evaluate traditional method and designed technology. The study was conducted on 100 agricultural workers. Data on gender participation in MMH tasks in household, animal husbandry and agriculture and resulting MSDs was gathered. Pre and post assessment of technology intervention was done for NIOSH Lifting Index, QEC, and RPE. The results revealed greater susceptibility of females to musculoskeletal problems in most of the household and animal husbandry tasks. The hand trucks designed were pushing type with power grasp handle. The respondents were advised to carry 5 kg of weight per lift instead of lifting more weight in one lift/minute while filling the hand truck. By decreasing the weight and increasing the number of lifts per minute the respondents were seen falling in green zone indicating significant reduction in NIOSH lifting index. QEC scores concluded that for filling the hand truck 5 kg of weight should be carried to keep the exposure level low.

  4. Engaging degradation mechanisms of materials in a tourney. An investigation into the philosophy of material selection as a mitigating measure and strategy

    OpenAIRE

    Narasimhavarman, Arasilangkumari

    2014-01-01

    Master's thesis in Offshore Technology The aim of this project is to compare some important factors such as safety and environmental aspects, life cycle costing, reliability, availability and fabrication for selecting materials for flowlines for comparative study between carbon steel as a current practice with respect to various corrosion resistance alloys as an alternatives. In order to do that it is necessary to address all possible degradation mechanisms and the conditions that intensif...

  5. A novel approach to mitigating sulphur dioxide emissions and producing a mercury sorbent material using oil-sands fluid coke

    International Nuclear Information System (INIS)

    Morris, E.; Jia, C.Q.; Tong, S.

    2008-01-01

    Pyrometallurgical smelting operations are a major source of sulphur dioxide (SO 2 ) which is a precursor to acid rain and increased levels of UV-B penetration in boreal lakes. Mercury is also released in copper smelter off-gas, which can bioaccumulate and cause neurological disorders and death in humans. Fluid coke is produced in massive quantities as a by-product of bitumen upgrading at Syncrude Canada's facility in Fort McMurray, Alberta. Oilsands fluid coke can be used to reduce SO 2 and produce elemental sulphur as a co-product. This process was dubbed SOactive. The reaction physically activates the fluid coke to produce a sulphur-impregnated activated carbon (SIAC) which is known as ECOcarbon. Some studies have indicated that SIAC is well suited for the removal of vapour phase mercury, mainly due to the formation of stable mercuric sulphide species. This paper discussed the findings made to date in relation to the SOactive process and the characterization of ECOcarbons. The paper discussed the use of fluid coke for reducing SO 2 emissions while producing elemental sulphur as well as coke-SO 2 -oxygen (O 2 ) and coke-SO 2 -water (H 2 O) systems. The paper also examined the production of SIAC products for use in capturing vapour phase mercury. The paper presented the materials and methodology, including an illustration of the apparatus used in reduction of SO 2 and activation of fluid coke. It was concluded that more work is still needed to analyse the effect of O 2 and SO 2 reduction and SIAC properties under smelter flue gas conditions. 10 refs., 1 tab., 8 figs

  6. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  7. Development of method for quantification of 222Rn exhalation ratio at radioactive waste dam and soil study as mitigator material

    International Nuclear Information System (INIS)

    Macacini, Jose Flavio

    2008-01-01

    The Brazilian uranium mining company (INB) processed 2.32 10 6 tons of uranium ore in its ore treatment unit (UTM - Caldas), located in the Pocos de Caldas plateau. During 16 years of operation, this unit discarded 2.39 10 6 tons of solid waste in a tailing dam, with an average activity concentration of 226 Ra of 7311 ± 184 Bq kg -1 . Most of the atoms of 222 Rn generated from the radioactive waste of the tailing dam remain bounded to the mineral structure. However, a fraction of these atoms can be released from the mineral structure and then emanate. Reaching the porous space of the waste piles, the 222 Rn moves towards the interface waste-atmosphere, exhaling into the atmosphere. The featuring properties of the 222 Rn transport and the biological damage caused by its progeny transform this small chain of radionuclides into a scourge of nature. Because of that, the dry area of the tailing dam was the scope of this work. A methodology was developed for quantifying the exhalation rate of 222 Rn. Moreover, the soil from its surroundings was experimentally evaluated as a cover material to reduce the exhalation of 222 Rn. A collector of 222 Rn was developed, being denominated 607. This collector was proved to be exact and precise after laboratory tests, when a standard for 222 Rn exhalation was prepared with caldasite, an uranium ore with high concentration of 226 Ra (26611 ± 581 Bq kg -1 ), crushed to the granulometric interval from 1.168 mm to 0.589 mm. The results of 222 Rn exhalation rate using the collector 607 were not influenced by the adsorption of water steam, considering sampling periods lower than 5 days and mass of water steam lower than 7 g. Sampling for measuring 222 Rn exhalation rates in the dry area of the tailing dam was carried out using the collector 607, following the experimental design established by the United States Environmental Protection Agency (US EPA). The average exhalation rate in the west part of the tailing dam was 1.30 ± 1.24 Bq m

  8. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  9. The shock behaviour of a SiO2-Li2O transparent glass-ceramic armour material

    International Nuclear Information System (INIS)

    Pickup, I.M.; Millett, J.C.F.; Bourne, N.K.

    2004-01-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses

  10. The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material

    Science.gov (United States)

    Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.

  11. Dynamic shock compaction of a ZrO2-RuO2 electronic nanocomposite: toward functionally graded materials

    NARCIS (Netherlands)

    van Zyl, W.E.; Carton, Erik P.; Raming, T.P.; ten Elshof, Johan E.; Verweij, H.

    2005-01-01

    An electronic ZrO2-RuO2 nanocomposite was fabricated by dynamic compaction (DC) at 1.5 GPa resulting in a maximum relative density of 88% in the material. The DC process formed pristine elongated conical-shaped compacts 3 cm in length. The compacts retained their original nanometer-sized grains (~20

  12. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  13. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Su, Meirong

    2015-10-06

    The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.

  14. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  15. Radiography for a Shock-accelerated Liquid Layer

    International Nuclear Information System (INIS)

    P. Meekunnasombat J.G. Oakley/inst M.H. Anderson R. Bonazza

    2005-01-01

    This program supported the experimental study of the interaction of planar shock waves with both solid structures (a single cylinder or a bank of cylinders) and single and multiple liquid layers. Objectives of the study included: characterization of the shock refraction patterns; measurements of the impulsive loading of the solid structures; observation of the response of the liquid layers to shock acceleration; assessment of the shock-mitigation effects of single and multiple liquid layers. The uploaded paper is intended as a final report for the entire funding period. The poster described in the paper won the Best Poster Award at the 25 International Symposium on Shock Waves

  16. Stress wave propagation and mitigation in two polymeric foams

    Science.gov (United States)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  17. Insuring against Health Shocks: Health Insurance and Household Choices

    OpenAIRE

    Liu, Kai

    2015-01-01

    This paper provides empirical evidence on the role of public health insurance in mitigating adverse outcomes associated with health shocks. Exploiting the rollout of a universal health insurance program in rural China, I find that total household income and consumption are fully insured against health shocks even without access to health insurance. Household labor supply is an important insurance mechanism against health shocks. Access to health insurance helps households to maintain investme...

  18. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  19. Design basis for resistance to shock and vibration of radioactive material packages greater than one ton in truck transport (draft standard for trial use and comment)

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This standard specifies minimum design values for shock and vibration in highway transport, by truck or by tractor-trailer combination, for fuel and irradiation experiments when package weight exceeds one ton. Shock values correspond to normal transport over rough roads and to minor accidents such as backing into a loading dock. Vibration values correspond to normal transport; any large-amplitude vibration resulting from rough road conditions or a minor accident is treated as shock. This standard includes recommended methods of application to the design of packaging and tiedown systems

  20. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    Science.gov (United States)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  1. Flow control for oblique shock wave reflections

    NARCIS (Netherlands)

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  2. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  3. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-06-01

    A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.

  4. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  5. Undercuts by Laser Shock Forming

    International Nuclear Information System (INIS)

    Wielage, Hanna; Vollertsen, Frank

    2011-01-01

    In laser shock forming TEA-CO 2 -laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 μm were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.

  6. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  7. Insuring against health shocks: Health insurance and household choices.

    Science.gov (United States)

    Liu, Kai

    2016-03-01

    This paper provides empirical evidence on the role of public health insurance in mitigating adverse outcomes associated with health shocks. Exploiting the rollout of a universal health insurance program in rural China, I find that total household income and consumption are fully insured against health shocks even without access to health insurance. Household labor supply is an important insurance mechanism against health shocks. Access to health insurance helps households to maintain investment in children's human capital during negative health shocks, which suggests that one benefit of health insurance could arise from reducing the use of costly smoothing mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inventory of Materials to be Used in Explosive Effects Mitigating Structures (Inventarisatie van materialen te gebruiken in constructies ter afscherming van explosie-effecten)

    Science.gov (United States)

    2008-11-01

    F +31 15 284 39 91 info-DenV@tno.nl TNO-rapportnummer TNO-DV 2008 A357 Opdrachtnummer Datum november 2008 Auteur (s) ir. O.C. van der Jagt...een keramisch materiaal (ZrSiO.*). TNO-rapport | TNO-DV 2008 A357 32/44 K, 04 035 0.3 0 25 02 0 15 01 005 0 O a 0 X A • • Theory ...47] Molinari. A., et al., Modeling plastic shocks in periodic laminates with gradient plasticity theories . Journal of the Mechanics and Physics of

  9. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  10. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  11. Shock compression of simulated adobe

    Science.gov (United States)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  12. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  13. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  14. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  15. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  16. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  17. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks; Rechnerische Simulation des mechanischen Verhaltens von holzgefuellten Stossdaempfern von Transportbehaeltern fuer radioaktive Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Martin; Wille, Frank [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  18. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  19. Fundamental structure of steady plastic shock waves in metals

    International Nuclear Information System (INIS)

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  20. Fundamental structure of steady plastic shock waves in metals

    Science.gov (United States)

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  1. Banking System Shocks and REIT Performance

    OpenAIRE

    Olliges, Jan-Willem; Raudszus, Malte H.; Mueller, Glenn R.

    2013-01-01

    The purpose of this study is to directly contrast the REIT market’s stock return response to bank failures versus bank bailouts. The non-negativity constraints of the GARCH model measuring risk dynamics are mitigated by the use of the EGARCH model. EGARCH accounts for non-symmetrical effects of risk adjustments in response to return shocks. Previous research shows that bank failures cause a positive abnormal return effect for REITs. This confirms the expectation that during crises, market par...

  2. Recording of X-ray diffraction patterns for the investigation of transient changes in the crystalline structure of materials subjected to the action of shock waves

    International Nuclear Information System (INIS)

    Jamet, F.; Thomer, G.

    An arrangement including a flash X-ray tube and an image intensifier has been designed and built in order to record X-ray diffraction patterns with exposure times of the order of 100nsec. This arrangement allows Laue patterns (polychromatic radiation) as well as powder patterns (copper K(α) radiation) to be recorded. Examples for record are shown. As an application to the investigation of transient changes in crystalline structures, the Debye-Scherrer patterns of potassium chloride undergoing the dynamic action of shock waves were recorded. The first results achieved are discussed [fr

  3. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  4. Mitigation of Critical Single Point Failure (SPF) Material - Laminac 4116 Binder Replacement Program for Parachute and Cluster Stars Illuminant Compositions for Hand Held Signals

    National Research Council Canada - National Science Library

    Lakshminarayanan, G. R; Chen, Gary; Ames, Richard; Lee, Wai T; Wejsa, James L

    2006-01-01

    Laminac 4116 binder has been identified as a single point failure (SPF) material since it is being produced by only one company and there is a possibility that the company may discontinue production due to low product demand...

  5. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  6. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  7. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  8. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  9. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  10. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  11. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  12. Effect of organic additives on the mitigation of volatility of 1-nitro-3,3'-dinitroazetidine (TNAZ): Next generation powerful melt cast able high energy material

    International Nuclear Information System (INIS)

    Talawar, M.B.; Singh, Alok; Naik, N.H.; Polke, B.G.; Gore, G.M.; Asthana, S.N.; Gandhe, B.R.

    2006-01-01

    1-Nitro-3,3'-dinitroazetidine (TNAZ) was synthesized based on the lines of reported method. Thermolysis studies on synthesized and characterized TNAZ using differential scanning calorimetry (DSC) and hyphenated TG-FT-IR techniques were undertaken to generate data on decomposition pattern. FT-IR of decomposition products of TNAZ revealed the evolution of oxides of nitrogen and HCN containing species suggesting the cleavage of C/N-NO 2 bond accompanied with the collapse of ring structure. The effect of incorporation of 15% additives namely, 3-amino-1,2,4-triazole (AT), 3,5-diamino-1,2,4-triazole (DAT), carbohydrazide (CHZ), 5,7-dinitrobenzofuroxan (DNBF), bis (2,2-dinitropropyl) succinate (BNPS), triaminoguanidinium nitrate (TAGN), 2,4,6-trinitrobenzoic acid (TNBA) and nitroguanidine (NQ) on the volatility of TNAZ was investigated by undertaking thermogravimetric analysis. The TG pattern brings out the potential of BNPS and TAGN as additives to mitigate the volatility of TNAZ. The influence of additives on thermal decomposition of pattern of TNAZ was also investigated by DSC. The DSC results indicated that the additives did not have appreciable effect on the melting point of TNAZ. Scanning electron microscopic (SEM) studies were carried out to investigate the effect of additives on morphology of TNAZ. This paper also discusses the possible mechanism involved in between the TNAZ and TAGN and BNPS. It appears that the formation of charge transfer complex formation between the TNAZ and TAGN/BNPS. The effect of addition of high explosives such as CL-20, HMX and RDX on thermo-physical characteristics of TNAZ is also reported in this paper

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Thermal shock considerations for the TFCX limiter and first wall

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Resistance to thermal shock fracture of limiter and first wall surface material candidates during plasma disruption heating conditions is evaluated. A simple, figure-of-merit type thermal shock parameter which provides a mechanism to rank material candidates is derived. Combining this figure-of-merit parameter with the parameters defining specific heating conditions yields a non-dimensional thermal shock parameter. For values of this parameter below a critical value, a given material is expected to undergo thermal shock damage. Prediction of thermal shock damage with this parameter is shown to exhibit good agreement with test data. Applying this critical parameter value approach, all materials examined in this study are expected to experience thermal shock damage for nominal TFCX plasma disruption conditions. Since the extent of this damage is not clear, tests which explore the range of expected conditions for TFCX are recommended

  15. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  16. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  17. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Saum, D.; Craig, A.B.; Leovic, K.

    1990-01-01

    Since 1987, more than 40 schools in Maryland, Virginia, Tennessee and North Carolina were visited by the U.S. Environmental Protection Agency (EPA). School characteristics that potentially influence radon entry and impact mitigation system design and performance were identified. Mitigation systems that had proven successful in house mitigation were then installed in several of these schools. Many of the systems were installed by school personnel with some assistance from EPA and an experienced radon diagnostician. This article presents the diagnostic measurements made in the schools and it discusses in detail the specific mitigation systems that were installed in four Maryland schools by the EPA

  18. Composite Sandwich Structures for Shock Mitigation and Energy Absorption

    Science.gov (United States)

    2016-06-28

    MTS 831 servo -hydraulic machine was used to determine stress-strain curves of the PVC HI 00 foam using the apparatus shown in Fig. 30. The I inx I inx...Cambridge University Press , Cambridge, pp. 287- 303 , 1963. [ 11 ] Chen, L. and Hoo Fatt, M. S. , "Transversely Isotropic Mechanical Properties of PVC

  19. Deployment of Lightweight Shock Mitigating Boat Manufacturing Innovation

    Science.gov (United States)

    2012-12-21

    hull and deck of the 11M prototype with the forward hatches temporally secured. Lift hardware was installed. The craft was loaded per the figure...35.9262 25.8100- 25.8100 36.0443 34.3043 l- EAD Wf.IG G (Pi’-\\ A r IMJ<HEAO WING E (P) r !MJ<HEAOWING O(P) ul lll ld II lll rnr Il l II I llll Il l...ii ~ "’ 57 11M- Hull Drawings – Fiberglass Design / ?--/ - ~ L 10 1&116" ______..j_j DETAIL B-50 BU~ EAD WING A OET AIL C-50 BULKHEAD

  20. The Nonlinear Dynamical and Shock Mitigation Properties of Tapered Chains

    Science.gov (United States)

    2008-06-01

    How fast does a spider shrivel up when placed in liquid NO2? Fast. And in regard to the infamous all-you-can- eat student farewell party, no one...no...one I say can eat 14 slices of meat and cheese lover’s pan pizza for lunch and keep it down. Thanks are extended to Pepsi for inventing Mountain Dew...1982), 977–981. 45. Hertz, H. ’́ Uber die beŕ’urung fester elastischer ḱ’orper (on the behavior of solid elastic bodies). J. Reine Angew. Math 92 (1882

  1. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  2. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.

    1977-01-01

    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  3. Irradiation embrittlement and mitigation. V. 1. Working material. Proceedings of a specialists meeting held in Espoo, Finland 23-26 October 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility experience on radiation damage and its surveillance, annealing and re-embrittlement of PWR, WWER and BWR reactor pressure vessel materials. The scope included: mechanism of radiation damage; effects of operating parameters (flux, temperature, time, etc.); results from surveillance programmes and their analysis; fracture mechanics testing and evaluation; annealing and optimization of the process; re-embrittlement after annealing. Presentations were aimed at better understanding of radiation damage, annealing and re-irradiation behaviour of reactor pressure vessels materials, at providing guidance and recommendations for optimization of annealing and surveillance programmes and directions for further investigations. Refs, figs and tabs

  4. Irradiation embrittlement and mitigation. V. 1. Working material. Proceedings of a specialists meeting held in Espoo, Finland 23-26 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility experience on radiation damage and its surveillance, annealing and re-embrittlement of PWR, WWER and BWR reactor pressure vessel materials. The scope included: mechanism of radiation damage; effects of operating parameters (flux, temperature, time, etc.); results from surveillance programmes and their analysis; fracture mechanics testing and evaluation; annealing and optimization of the process; re-embrittlement after annealing; Presentations were aimed at better understanding of radiation damage, annealing and re-irradiation behaviour of reactor pressure vessels materials, at providing guidance and recommendations for optimization of annealing and surveillance programmes and directions for further investigations. Refs, figs and tabs.

  5. Measurement of the equation of state of porous materials through the use of shock waves generated by laser radiation; Mesure de l'equation d'etat de materiaux poreux a l'aide d'ondes de choc generees par laser

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F

    2001-12-15

    This work aims at measuring the equation of state of porous plastic materials in the view of their use in inertial confinement fusion. We have experimentally determined the shock polar curve of TMPTA (C{sub 15}H{sub 20}O{sub 6}) by the use of the impedance matching technique. This technique is based on the simultaneous measurement of the shock velocities in the 2 materials composing the target. The shock polar curve has been drawn for pressures ranging from 10 kbar to 3 Mbar and densities from 20 mg/cm{sup 3} to 1.1 g/cm{sup 3}. The use of a slit sweep camera to assess the propagation of the shock wave through the target has limited the accuracy of the technique to 10%. Experimental results match well data provided by the Sesame tables that are broadly used by hydrodynamic codes. Nevertheless the statistical distribution of experimental points seems to show a lower compressibility of the foam that might be attributed to a slight pre-heating process or to the effect of the foam micro-structure on the shock wave propagation. In order to improve the accuracy of the method, an attempt was made to use an active doppler interferometric diagnostic to measure shock wave velocities. It has been showed that the shock wave front in the foam is reflecting enough to make this method relevant if we can overcome the difficulty of a high luminous background. Despite that, we have succeeded in measuring with high accuracy, a point of the shock polar curve for 800 mg/cm{sup 3} dense TMPTA. (A.C.)

  6. Measurement of the equation of state of porous materials through the use of shock waves generated by laser radiation; Mesure de l'equation d'etat de materiaux poreux a l'aide d'ondes de choc generees par laser

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F

    2001-12-15

    This work aims at measuring the equation of state of porous plastic materials in the view of their use in inertial confinement fusion. We have experimentally determined the shock polar curve of TMPTA (C{sub 15}H{sub 20}O{sub 6}) by the use of the impedance matching technique. This technique is based on the simultaneous measurement of the shock velocities in the 2 materials composing the target. The shock polar curve has been drawn for pressures ranging from 10 kbar to 3 Mbar and densities from 20 mg/cm{sup 3} to 1.1 g/cm{sup 3}. The use of a slit sweep camera to assess the propagation of the shock wave through the target has limited the accuracy of the technique to 10%. Experimental results match well data provided by the Sesame tables that are broadly used by hydrodynamic codes. Nevertheless the statistical distribution of experimental points seems to show a lower compressibility of the foam that might be attributed to a slight pre-heating process or to the effect of the foam micro-structure on the shock wave propagation. In order to improve the accuracy of the method, an attempt was made to use an active doppler interferometric diagnostic to measure shock wave velocities. It has been showed that the shock wave front in the foam is reflecting enough to make this method relevant if we can overcome the difficulty of a high luminous background. Despite that, we have succeeded in measuring with high accuracy, a point of the shock polar curve for 800 mg/cm{sup 3} dense TMPTA. (A.C.)

  7. Delayed Failure in a Shock Loaded Alumina

    International Nuclear Information System (INIS)

    Cooper, G. A.; Millett, J. C. F.; Bourne, N. K.; Dandekar, D. P.

    2006-01-01

    Manganin stress gauges have been used to measure the lateral stress in a shock-loaded alumina. In combination with known longitudinal stresses, these have been used to determine the shear strength of this material, behind the shock front. The two-step nature of the lateral stress traces shows a slow moving front behind the main shock, behind which shear strength undergoes a significant decrease. Results also show that this front decreases markedly in velocity as the HEL is crossed, suggesting that limited plasticity occurs during inelastic deformation. Finally, comparison of measured shear strengths with other aluminas shows a high degree of agreement

  8. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    : In this technique we will use the nano tubes. We will create a mesh that will act as a touch panel of the touch screen cell phone. When any small or tiny particle will come on this mesh and touch it then the mesh will act as a touch panel and so that the corresponding processor or sensor will come to know the co-ordinates of it then further by using Destructive laser beam we can destroy that particle. B. Use of the Nano tubes and Nano Bots for the collection of the Space Debris: In this method also we will use a nano mesh which is made up of the nano tubes and the corresponding arrangement will be done so that that mesh will act as a touch panel same as that of the touch screen phones. So when tiny particles will dash on the nano mesh then the Nano Bots which will be at the specific co-ordinates collect the particles and store them into the garbage storage. C. Further the space Debris can be use for the other purposes too:- As we know that the space debris can be any tiny particle in the space. So instead of decomposing that particles or destroying it we can use those particles for the purpose of energy production by using the fuel cells, but for this the one condition is that the particle material should be capable of forming the ionize liquid or solution which can be successfully use in the fuel cell for energy production. But this is useful for only the big projects where in smallest amount of energy has also the great demand or value. D. RECYCLING OF SPACE DEBRIS The general idea of making space structures by recycling space debris is to capture the aluminum of the upper stages, melt it, and form it into new aluminum structures, perhaps by coating the inside of inflatable balloons, to make very large structures of thin aluminum shells. CONCLUSION Space debris has become the topic of great concern in recent years. Space debris creation can't be stopped completely but it can be minimized by adopting some measures. Many methods of space debris mitigation have been

  9. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  10. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  11. The electrochemistry of IGSCC mitigation

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2002-01-01

    A brief review is presented of the electrochemical mitigation of intergranular stress corrosion cracking (IGSCC) in watercooled reactor heat transport circuit structural materials. Electrochemical control and mitigation is possible because of the existence of a critical potential for intergranular stress corrosion cracking and due to the feasibility of modifying the environment to displace the corrosion potential to a value that is more negative than the critical value. However, even in cases where the corrosion potential cannot be displaced sufficiently in the negative direction to become more negative than the critical potential, considerable advantage is accrued, because of the roughly exponential dependence of the crack growth rate on potential. The most important parameters in affecting electrochemical control over the corrosion potential and crack growth rate are the kinetic parameters (exchange current densities and Tafel constants) for the redox reactions involving the principal radiolysis products of water (O 2 , H 2 H 2 O 2 ), external solution composition (concentrations of O 2 , H 2 O 2 , and H 2 ), flow velocity, and the conductivity of the bulk environment. The kinetic parameters for the redox reactions essentially determine the charge transfer impedance of the steel surface, which is shown to be one of the key parameters in affecting the magnitude of the coupling current and hence the crack growth rate. The exchange current densities, in particular, are amenable to control by catalysis or inhibition, with the result that surface modification techniques are highly effective in controlling and mitigating intergranular stress corrosion cracking in reactor coolant circuit materials. (orig.)

  12. Mitigation Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  13. Optical Probes for Laser Induced Shocks

    Science.gov (United States)

    1992-03-01

    target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions

  14. Blast mitigation experimental and numerical studies

    CERN Document Server

    2013-01-01

    Presents experimental methods of material and structural response to dynamic blast loads Includes computational analysis of material and structural response to dynamic blast loads Offers mitigation measures for structures in various environments Relates lab experiments to larger field tests Features more than 150 illustrations

  15. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  16. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  17. Mitigation Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  18. Mitigation win-win

    Science.gov (United States)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  19. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.; Saum, D.W.

    1990-01-01

    This article reports on radon mitigation in school buildings. Subslab depressurization (SSD) has been the most successful and widely used radon reduction method in houses. Thus far, it has also substantially reduced radon levels in a number of schools. Schools often have interior footings or thickened slabs that may create barriers for subslab air flow if a SSD system is the mitigation option. Review of foundation plans and subslab air flow testing will help to determine the presence and effect of such barriers. HVAC systems in schools vary considerable and tend to have a greater influence on pressure differentials (and consequently radon levels) than do heating and air-conditioning systems encountered in the radon mitigation of houses. As part of any radon mitigation method, ASHRAE Standard 62-1989 should be consulted to determine if the installed HVAC system is designed and operated to achieve minimum ventilation standards for indoor air quality

  20. Appalachian Stream Mitigation Workshop

    Science.gov (United States)

    A 5 day workshop in 2011 developed for state and federal regulatory and resource agencies, who review, comment on and/or approve compensatory mitigation plans for surface coal mining projects in Appalachia

  1. Mitigation Banking Factsheet

    Science.gov (United States)

    A mitigation bank is an aquatic resource area that has been restored, established, enhanced, or preserved for the purpose of providing compensation for unavoidable impacts to aquatic resources permitted under Section 404

  2. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  3. Multi-shocks generation and collapsing instabilities induced by competing nonlinearities

    KAUST Repository

    Crosta, Matteo; Trillo, Stefano; Fratalocchi, Andrea

    2012-01-01

    We investigate dispersive shock dynamics in materials with competing cubic-quintic nonlinearities. Whitham theory of modulation, hydrodynamic analysis and numerics demonstrate a rich physical scenario, ranging from multi-shock generation to collapse.

  4. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  5. Shock modification and chemistry and planetary geologic processes

    International Nuclear Information System (INIS)

    Boslough, M.S.

    1991-01-01

    This paper brings the rapid advances on shock processing of materials to the attention of Earth scientists, and to put these advances in the context of planetary geologic processes. Most of the recent research in this area has been directed at materials modification an synthesis, and the information gained has direct relevance to shock effects in nature. Research on various types of shock modification and chemistry in both naturally and experimentally shocked rocks and minerals is reviewed, and where appropriate their significance to planetary processes is indicated. As a case study, the surface of Mars is suggested as a place where conditions are optimal for shock processing to be a dominant factor. The various mechanisms of shock modification, activation, synthesis and decomposition are all proposed as major contributors to the evolution of chemical, mineralogical, and physical properties of the Martian regolith

  6. Experimental analysis of shock wave effects in copper

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  7. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  8. Shock-induced modification of inorganic powders

    International Nuclear Information System (INIS)

    Graham, R.A.; Morosin, B.; Venturini, E.L.; Beauchamp, E.K.; Hammetter, W.F.

    1984-01-01

    The results of studies performed to quantify the characteristics of TiO2, ZrO2 and Si3N4 powders exposed to explosive loading and post-shock analysis are reported. The shocks were produced with plane wave generators and explosive pads impinging on steel disks, a copper recovery fixture, and then the samples. Peak pressures of 13 and 17 GPa were attained, along with 40 GPz at the center of the powder cavity. Data are provided on the changes occurring during the explosive densification and X-ray and paramagnetic studies of the products. Only fractured disks were obtained in the trials. The shock-treated materials were more free flowing than the original powders, which were fluffy. Post-shock annealing was a significant feature of the treated powders

  9. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  10. Fundamental structure of steady plastic shock waves in metals

    OpenAIRE

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic–plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large de...

  11. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  12. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  13. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  14. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  15. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Direct measurement technique for shock wave velocity with irradiation drive

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  17. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  18. Disaster mitigation: initial response.

    Science.gov (United States)

    Kennedy, George; Richards, Michael; Chicarelli, Michael; Ernst, Amy; Harrell, Andrew; Stites, Danniel

    2013-01-01

    The objective of this review is to stimulate the reader's considerations for developing community disaster mitigation. Disaster mitigation begins long before impact and is defined as the actions taken by a community to eliminate or minimize the impact of a disaster. The assessment of vulnerabilities, the development of infrastructure, memoranda of understanding, and planning for a sustainable response and recovery are parts of the process. Empowering leadership and citizens with knowledge of available resources through the planning and development of a disaster response can strengthen a community's resilience, which can only add to the viability and quality of life enjoyed by the entire community.

  19. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book is the second of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. Of the four extensive chapters in this volume, the first two describe the reactive behavior of condensed phase explosives, - Condensed-Phase Explosives: Shock Initiation and Detonation Phenomena (SA Sheffield and R Engelke) - First Principles Molecular Simulations of Energetic Materials at High-Pressures (F Zhang, S Alavi, and TK Woo), and the remaining two discuss the inert, mechanical response of solid materials. - Combined Compression and Shear Plane Waves (ZP Tang and JB Aidun), and - Dynamic Fragmentation of Solids (D Grady). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomen...

  20. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  1. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  2. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  3. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  4. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Inestrosa-Izurieta, María José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago (Chile); Gutiérrez, Gonzalo [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Vergara, Julio [Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago (Chile); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina); Bruzzone, Horacio [CONICET and Universidad de Mar del Plata, Mar del Plata (Argentina); Castillo, Fermín [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  5. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    International Nuclear Information System (INIS)

    4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" data-affiliation=" (Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" >Soto, Leopoldo; 4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" data-affiliation=" (Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" >Pavez, Cristian; 4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" data-affiliation=" (Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile))" >Moreno, José; 4, Santiago-Talca (Chile))" data-affiliation=" (Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P4, Santiago-Talca (Chile))" >Inestrosa-Izurieta, María José; Veloso, Felipe; Gutiérrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermín

    2014-01-01

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10 4 (W/cm 2 )s 1/2 can be obtained with a small plasma focus operating at hundred joules

  6. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  7. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  8. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  9. Constitutive modeling of shock response of PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Reanyansky, Anatoly D [DSTO, AUSTRALIA; Bourne, Neil K [AWE, UK; Millett, Jeremy C F [AWE, UK

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.

  10. Energy shocks and detecting influential industries

    International Nuclear Information System (INIS)

    Kang, Dongsuk; Lee, Duk Hee

    2017-01-01

    An industry's relationship of supply and demand with the energy sector can be a critical factor in the stability of its economic performance. Furthermore, the patterns of industry dependence on energy industries can be a major characteristic of entire industrial structure. This research evaluates industries' impact scores for their overall influence on other industries and vulnerability to supply and demand shocks from the energy sector. The study utilizes a sample of Korea's industrial input–output tables from 2010 to 2012. Using a chain of complementary methodologies, this study finds that among four clusters, energy, services, and raw materials are key members that can spread energy shocks to other industries. Therefore, governments need to prepare effective energy efficiency policies for these target industries. - Highlights: • We analyze an industry's impact score of its vulnerability to energy shock and inter-industrial effects. • We utilize the sample of input-output tables in Korea from 2010 to 2012. • We implement simulation, PCA, TOPSIS, cluster analysis about energy shock and industrial trades. • Subsectors of energy, services, raw material are subject to energy shock and influential to others. • These bridge industries can be targets that require policies for effective energy efficiency.

  11. What factors influence mitigative capacity?

    International Nuclear Information System (INIS)

    Winkler, Harald; Baumert, Kevin; Blanchard, Odile; Burch, Sarah; Robinson, John

    2007-01-01

    This article builds on Yohe's seminal piece on mitigative capacity, which elaborates 'determinants' of mitigative capacity, also reflected in the IPCC's third assessment report. We propose a revised definition, where mitigative capacity is a country's ability to reduce anthropogenic greenhouse gas emissions or enhance natural sinks. By 'ability' we mean skills, competencies, fitness, and proficiencies that a country has attained which can contribute to GHG emissions mitigation. A conceptual framework is proposed, linking mitigative capacity to a country's sustainable development path, and grouping the factors influencing mitigative capacity into three main sets: economic factors, institutional ones, and technology. Both quantitative and qualitative analysis of factors is presented, showing how these factors vary across countries. We suggest that it is the interplay between the three economic factors-income, abatement cost and opportunity cost-that shape mitigative capacity. We find that income is an important economic factor influencing mitigative capacity, while abatement cost is important in turning mitigative capacity into actual mitigation. Technology is a critical mitigative capacity, including the ability to absorb existing climate-friendly technologies or to develop innovative ones. Institutional factors that promote mitigative capacity include the effectiveness of government regulation, clear market rules, a skilled work force and public awareness. We briefly investigate such as high abatement cost or lack of political willingness that prevent mitigative capacity from being translated into mitigation

  12. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  13. Mitigation of structureborne noise nuisance

    Science.gov (United States)

    Ko, Wing P.

    2005-09-01

    This paper presents a noise complaint case which was solved by me a few years ago in Hong Kong. A newlywed couple in the residential unit complained to the Government that the noise emitted from the pump room directly beneath their unit was very annoying, especially in the night-time period. The owner of the building was then required by the Government to mitigate the noise to the night-time statutory noise requirement within 30 days, otherwise he would be prosecuted. Ideally, the structureborne noise from the pump room could be effectively mitigated by installation of floating slab and vibration isolators under the pumps. Also, the water tanks and water pipes were required to be isolated from the walls and floor. However, this work was impossible to be completed within 30 days to stop the prosecution. Water supply to the above residents would be seriously interrupted during the construction period. As the only noise parameter of the statutory requirement was 30 minute A-weighted Leq, the most effective and practical way in this exigent situation was to reduce the pump operation time within any 30 minute period to decrease the Leq values. In addition, the water pipes and pumps were also required to be isolated from the walls and floor with resilient materials to break the vibration channels. These noise mitigation measures were successfully applied to the pump room before the end of the 30 days. Finally, the noise levels inside the complainant's unit were found to meet the statutory requirement. The noise complaint case was then closed by the Government.

  14. Smart disaster mitigation in Thailand

    Science.gov (United States)

    Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.

    2016-04-01

    Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column

  15. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  16. Counseling For Future Shock

    Science.gov (United States)

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  17. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  18. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  19. Value/impact analysis for evaluating alternative mitigation systems

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Catton, I.; Castle, J.N.; Dooley, J.L.; Hammond, R.P.

    1988-01-01

    Methods are developed for assessing the cost effectiveness of proposed systems and strategies for mitigating the consequences of severe nuclear accidents. Such mitigation systems consist mostly of devices for improving the ability of a reactor containment to survive such an accident and retain all radioactive materials. Value/impact analysis is applied to the system with and without mitigation, using the population dose averted by mitigation as the value of benefit, and the dollar cost of the containment improvements as the impact. Other considerations affecting such analyses include ways of monetizing public health risk, economic discounting, and the effect of interdiction policy and other post-accident recovery costs

  20. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  1. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  2. Introduction to Shock Waves and Shock Wave Research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  3. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent US Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in USNRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. 9 refs., 2 tabs

  4. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent U.S. Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in US-NRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. (author). 9 refs., 2 tabs

  5. Apparatus for reducing shock and overpressure

    Science.gov (United States)

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  6. Temperature measurement of tin under shock compression

    International Nuclear Information System (INIS)

    Hereil, Pierre-Louis; Mabire, Catherine

    2002-01-01

    The results of pyrometric measurements performed at the interface of a tin target with a LiF window material are presented for stresses ranging from 38 to 55 GPa. The purpose of the study is to analyze the part of the interface in the temperature measurement by a multi-channel pyrometric device. The results show that the glue used at target/window interface remains transparent under shock. The values of temperature measured at the tin/LiF interface are consistent with the behavior of tin under shock

  7. Design and testing of a shock absorber for a type I container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.; Jais, M.

    1994-01-01

    A simple method of designing a shock absorber to protect a type B cast-iron container is developed. The results of deformation tests of the structural material (steel pipes) used for the shock absorber are presented. The accelerations and strains measured during the 9m drop tests of the container with the shock absorber are compared with the theoretical results of the calculations for the shock absorber design. ((orig.))

  8. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  9. Sandia Laboratories technical capabilities: materials and processes

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1977-08-01

    Materials and process activities have emphasized the balance between research and development necessary to provide materials compatible with the extreme environments and performance requirements associated with nuclear ordnance. Specific technical areas which have continuing emphasis include metallurgy, composites, surface characterization and thin films, polymers, ceramics, and high-temperature characterization. Complete processing and fabrication facilities assure the capability for early evaluation and use of tailored materials. Efforts are focused on material applications involving structural and electronic materials, thermal and electrical insulation, radiation shields, and shock mitigation. Key elements in these efforts are functionability, reliability, and longevity. This interdisciplinary approach to scientific materials engineering results from the recognition that many disciplines are required to understand, characterize, and apply materials, and from the fact that material design is an essential element in meeting the objectives of quality, functionality, and life. In effect, the responsibility of a materials group extends beyond the development of a material into the understanding and description of its behavior in the extreme environments to which it will be subjected

  10. Mitigation by design

    International Nuclear Information System (INIS)

    Cairns, W.J.

    1992-01-01

    Mitigation or 'the act of bringing together' is not to be confused with applied architectural or landscape cosmetics to render development which has been predesigned in terms of engineering parameters to be more 'seemly' or 'attractive'. It is more profoundly an exercise in simultaneous engineering and environmental analysis in which the level of synthesis between the elements of construction and the elements of the physical environment is fundamental to the ultimate design success of projects. This text, having looked firstly at the nature of design and the characteristics of design processes and procedures, considers the linkages and interaction between design and the statutory land use planning system through which major development projects in Scotland are authorised. A case study of the development of the oil handling terminal at Flotta, Orkney, is included to demonstrate the implications of certain problems related to mitigation by design. (author)

  11. Impact mitigation in EIA

    OpenAIRE

    Bond, Alan; Cashmore, Matthew; Cobb, Dick; Tinker, Lauren

    2005-01-01

    This study analysed 40 planning applications in the East of England to investigate the practice of translating paper recommendations in the environmental statement (ES) into legal conditions and obligations. A high proportion (50%) of suggested mitigation measures were not translated into planning conditions or obligations. However, a significant number of additional conditions or obligations, not directly based on the ES, were imposed on developers. The research su...

  12. Mitigating Infectious Disease Outbreaks

    Science.gov (United States)

    Davey, Victoria

    The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.

  13. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  14. Shock loading influence on mechanical behavior of high purity iron

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe

    2004-01-01

    This paper proposes the analysis of shock wave effects for high purity iron. The method developed is based on the characterization of the mechanical behavior of as received and shocked material. Shock effect is generated through plate impact tests performed in the range of 4 GPa to 39 GPa on a single stage light gas gun or a powder gun. Therefore, as-received and impacted materials are characterized. A formalism proposed by J.R.Klepaczko and based on physical relations has been adopted to describe stress strain curves

  15. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  16. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    ] reanalyzed the calcite and anhydrite shock wave experiments of Yang [9] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite GPa which is a factor of 2 to 3 lower than reported earlier by Yang [9]. These studies are not in agreement regarding the onset of sulfate decomposition and documentation of shock effects in gypsum is incomplete.

  17. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  18. Shock timing measurements in DT ice layers

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  20. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    International Nuclear Information System (INIS)

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-01-01

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu

  1. The impacts of oil price shocks on stock market volatility: Evidence from the G7 countries

    International Nuclear Information System (INIS)

    Bastianin, Andrea; Conti, Francesca; Manera, Matteo

    2016-01-01

    We study the effects of crude oil price shocks on the stock market volatility of the G7 countries. We identify the causes underlying oil price shocks and gauge the impacts that oil supply and oil demand innovations have on financial volatility. We show that stock market volatility does not respond to oil supply shocks. On the contrary, demand shocks impact significantly on the volatility of the G7 stock markets. Our results suggest that economic policies and financial regulation activities designed to mitigate the adverse effects of unexpected oil price movements should be designed by looking at the source of the oil price shocks. - Highlights: • Effects of oil price shocks on the stock market volatility of the G7 countries. • Econometric identification of the different causes of oil shocks. • Stock market volatility does not respond to oil supply shocks. • Demand shocks impact significantly on stock market volatility. • Policy measures should be designed by considering the source of oil shocks.

  2. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  3. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  4. Maybe Next Month? Temperature Shocks, Climate Change, and Dynamic Adjustments in Birth Rates

    OpenAIRE

    Barreca, Alan I.; Deschenes, Olivier; Guldi, Melanie

    2015-01-01

    Dynamic adjustments could be a useful strategy for mitigating the costs of acute environmental shocks when timing is not a strictly binding constraint. To investigate whether such adjustments could apply to fertility, we estimate the effects of temperature shocks on birth rates in the United States between 1931 and 2010. Our innovative approach allows for presumably random variation in the distribution of daily temperatures to affect birth rates up to 24 months into the future. We find that a...

  5. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  6. Life Shocks and Homelessness

    Science.gov (United States)

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  7. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  8. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  9. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  10. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  11. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  12. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  13. Radiating shocks and condensations in flares

    International Nuclear Information System (INIS)

    Fisher, G.H.

    1985-01-01

    Rapid energy release (by either ''thick target'' (beam) or ''thermal'' models of heating) in solar flare loop models usually leads to ''chromospheric evaporation,'' the process of heating cool chromospheric material to coronal temperatures, and the resulting increase in hot soft x-ray emitting plasma. The evaporated plasma flows up into the coronal portion of the loop because of the increased pressure in the evaporated region. However, the pressure increase also leads to a number of interesting phenomena in the flare chromosphere, which will be the subject of this paper. The sudden pressure increase in the evaporated plasma initiates a downward moving ''chromospheric condensation,'' an overdense region which gradually decelerates as it accretes material and propagates into the gravitationally stratified chromosphere. Solutions to an equation of motion for this condensation shows that its motion decays after about one minute of propagation into the chromosphere. When the front of this downflowing region is supersonic relative to the atmosphere ahead of it, a radiating shock will form. If the downflow is rapid enough, the shock strength should be sufficient to excite uv radiation normally associated with the transition region, and furthermore, the radiating shock will be brighter than the transition region. These results lead to a number of observationally testable relationships between the optical and ultraviolet spectra from the condensation and radiating shock

  14. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  15. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  16. Simulations and measurements on muzzle blast mitigation with sound absorbing barriers

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F.H.A. van den

    2012-01-01

    Environmental research is ongoing to predict and to mitigate the noise impact of heavy weapons or explosives. In the densely populated area of the Netherlands this is of particular interest for the Ministry of Defence as the shock waves can propagate over large distances. In this research program

  17. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  18. Emerging Radiation Health-Risk Mitigation Technologies

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-01-01

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods

  19. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  20. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  1. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    Science.gov (United States)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  2. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  3. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  4. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  5. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  6. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    International Nuclear Information System (INIS)

    Bekhet, Hussain A; Yusoff, Nora Yusma Mohamed

    2013-01-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  7. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    Science.gov (United States)

    Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed

    2013-06-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  8. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  9. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  10. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities

  11. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  12. Planar shock focusing through perfect gas lens: First experimental demonstration

    International Nuclear Information System (INIS)

    Biamino, Laurent; Mariani, Christian; Jourdan, Georges; Houas, Lazhar; Vandenboomgaerde, Marc; Souffland, Denis

    2014-01-01

    When a shock wave crosses an interface between two materials, this interface becomes unstable and the Richtmyer-Meshkov instability develops. Such instability has been extensively studied in the planar case, and numerous results were presented during the previous workshops. But the Richtmyer-Meshkov (Richtmyer, 1960, 'Taylor Instability in Shock Acceleration of Compressible Fluids,' Commun. Pure Appl. Math., 13(2), pp. 297-319; Meshkov, 1969, 'Interface of Two Gases Accelerated by a Shock Wave,' Fluid Dyn., 4(5), pp. 101-104) instability also occurs in a spherical case where the convergence effects must be taken into account. As far as we know, no conventional (straight section) shock tube facility has been used to experimentally study the Richtmyer-Meshkov instability in spherical geometry. The idea originally proposed by Dimotakis and Samtaney (2006, 'Planar Shock Cylindrical Focusing by a Perfect-Gas Lens,' Phys. Fluid., 18(3), pp. 031705-031708) and later generalized by Vandenboomgaerde and Aymard (2011, 'Analytical Theory for Planar Shock Focusing Through Perfect Gas Lens and Shock Tube Experiment Designs,' Phys. Fluid., 23(1), pp. 016101-016113) was to retain the flexibility of a conventional shock tube to convert a planar shock wave into a cylindrical one through a perfect gas lens. This can be done when a planar shock wave passes through a shaped interface between two gases. By coupling the shape with the impedance mismatch at the interface, it is possible to generate a circular transmitted shock wave. In order to experimentally check the feasibility of this approach, we have implemented the gas lens technique on a conventional shock tube with the help of a convergent test section, an elliptic stereo lithographed grid, and a nitrocellulose membrane. First experimental sequences of Schlieren images have been obtained for an incident shock wave Mach number equal to 1.15 and an air/SF_6-shaped interface. Experimental results indicate that the shock that moves

  13. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  14. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  15. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  16. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  17. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  18. Evaluation of Coagulation Profiles in Dogs with Septic Shock

    OpenAIRE

    YILMAZ, Zeki; YALÇIN, Ebru

    2002-01-01

    The aim of the this study was to observe possible changes in coagulation profiles in dogs with septic shock. A total of 30 dogs (control group n=10, test group n=20) were used as materials in this study. Although different diseases leading to septic shock were diagnosed in dogs in the test group, dogs were selected on the basis of septic shock criteria such as fever or hypothermia, hypotension, leukopenia or leukocytosis and thrombocytopenia. In addition to the results of rutine clinical and...

  19. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  20. Radon mitigation experience in difficult-to-mitigate schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.

    1990-01-01

    Initial radon mitigation experience in schools has shown sub-slab depressurization (SSD) to be generally effective in reducing elevated levels of radon in schools that have a continuous layer of clean, coarse aggregate underneath the slab. However, mitigation experience is limited in schools without sub-slab aggregate and in schools with characteristics such as return-air ductwork underneath the slab or unducted return-air plenums in the drop ceiling that are open to the sub-slab area (via open tops of block walls). Mitigation of schools with utility tunnels and of schools constructed over crawl spaces is also limited. Three Maryland schools exhibiting some of the above characteristics are being researched to help understand the mechanisms that control radon entry and mitigation in schools where standard SSD systems are not effective. This paper discusses specific characteristics of potentially difficult-to-mitigate schools and, where applicable, details examples from the three Maryland schools

  1. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  2. Monte Carlo study of neutrino acceleration in supernova shocks

    International Nuclear Information System (INIS)

    Kazanas, Demosthenes; Ellison, D.C.; National Aeronautics and Space Administration, Greenbelt, MD

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities rho>10 13 g cm -3 at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse

  3. A nova outburst powered by shocks

    Science.gov (United States)

    Li, Kwan-Lok; Metzger, Brian D.; Chomiuk, Laura; Vurm, Indrek; Strader, Jay; Finzell, Thomas; Beloborodov, Andrei M.; Nelson, Thomas; Shappee, Benjamin J.; Kochanek, Christopher S.; Prieto, José L.; Kafka, Stella; Holoien, Thomas W.-S.; Thompson, Todd A.; Luckas, Paul J.; Itoh, Hiroshi

    2017-10-01

    Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky1. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf, which is reprocessed through the ejected material2-5. Recent studies using the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt γ-ray emission6,7. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories for the study of the unknown efficiency of particle acceleration in shocks. Here, we report γ-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in γ-rays. The γ-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf8. The ratio of γ-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be around 0.005, favouring hadronic models for the γ-ray emission9. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.

  4. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  5. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  6. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  7. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  8. Microjetting from a grooved Al surface under supported and unsupported shocks

    Science.gov (United States)

    Shao, Jian-Li; Wang, Pei; He, An-Min

    2014-08-01

    Using molecular dynamics methods, we simulate and compare the microjetting from a grooved Al surface induced by supported and unsupported shocks at different breakout pressures. Via the analysis on the microjetting morphologies and mass distributions, we find that the threshold of shock breakout pressure for the microjetting formation is almost same, but the variation of microjet mass with shock pressure shows a great difference for the two loading patterns. Under supported shock loading, the microjet mass keeps a continuous increase with increasing shock pressure, and release melting can enhance it markedly. By contrast, the microjet mass under unsupported shocks is smaller and seems no remarkable increase with shock pressure in our simulations (at extremely short pulses), implying the shock decaying can weaken the microjetting. Of course, a large area of fragments near the surface may form in this case. The microjet source distributions corresponding to supported and unsupported shocks are presented. It is found that the former becomes apparently broader than the latter with increasing shock pressure. Besides, the microjet tip velocity under supported shocks may appear a reduction because of the material strength effect below release melting. While under unsupported shocks, all the microjets in solid and melted states will experience the reduction of tip velocity. These decrements of tip velocity can be fitted by an exponential function.

  9. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Apparatus and Methods for Mitigating Electromagnetic Emissions

    Science.gov (United States)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2016-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  11. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  12. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  13. The Shock Doctrine

    OpenAIRE

    Dionysios K. Solomos; Dimitrios N. Koumparoulis

    2011-01-01

    Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...

  14. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  15. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  16. Shock Response of Lightweight Adobe Masonry

    Science.gov (United States)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  17. Simulation on the shock attenuation behavior of coupled RHA and ...

    African Journals Online (AJOL)

    This paper presents the shock attenuation behavior of engineering materials namely Rolled Homogenous Armor (RHA) and sandwich composite when subject to blast loadings. Blast loading on sandwich composite structure and monolithic material are investigated using LSDYNA 3D with Arbitrary LagrangianEulerian ...

  18. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  19. Laser shock peening of titanium 6-4 alloy

    International Nuclear Information System (INIS)

    Brar, N.S.; Hopkins, A.; Laber, M.W.

    2000-01-01

    Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Titanium disks, 20-mm in diameter, and ranging in thicknesses from zero (bare LiF) to 3-mm were subjected to laser shock to monitor amplitude and temporal stress profiles of the pulsed laser. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.7 GPa while propagating through 3-mm thick disk of titanium 6-4

  20. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  1. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  2. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  3. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  5. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  6. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  7. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    Rowlands, Ian H.

    1998-01-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  8. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    National Research Council Canada - National Science Library

    Dandekar, D. P; McCauley, J. W; Green, W. H; Bourne, N. K; Chen, M. W

    2008-01-01

    ... maps relating the experimentally measured global mechanical response of a material through matured shock wave diagnostics to the nature of concurrent deformation and damage generated at varying length scales under shock wave loading.

  9. The Effects of Prior Cold Work on the Shock Response of Copper

    Science.gov (United States)

    Millett, J. C. F.; Higgins, D. L.; Chapman, D. J.; Whiteman, G.; Jones, I. P.; Chiu, Y.-L.

    2018-04-01

    A series of experiments have been performed to probe the effects of dislocation density on the shock response of copper. The shear strength immediately behind the shock front has been measured using embedded manganin stress gauges, whilst the post shock microstructural and mechanical response has been monitored via one-dimensional recovery experiments. Material in the half hard (high dislocation density) condition was shown to have both a higher shear strength and higher rate of change of shear strength with impact stress than its annealed (low dislocation density) counterpart. Microstructural analysis showed a much higher dislocation density in the half hard material compared to the annealed after shock loading, whilst post shock mechanical examination showed a significant degree of hardening in the annealed state with reduced, but still significant amount in the half hard state, thus showing a correlation between temporally resolved stress gauge measurements and post shock microstructural and mechanical properties.

  10. Myths of "shock therapy".

    Science.gov (United States)

    Fink, M

    1977-09-01

    The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.

  11. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  12. Model-based mitigation of availability risks

    NARCIS (Netherlands)

    Zambon, E.; Bolzoni, D.; Etalle, S.; Salvato, M.

    2007-01-01

    The assessment and mitigation of risks related to the availability of the IT infrastructure is becoming increasingly important in modern organizations. Unfortunately, present standards for risk assessment and mitigation show limitations when evaluating and mitigating availability risks. This is due

  13. Model-Based Mitigation of Availability Risks

    NARCIS (Netherlands)

    Zambon, Emmanuele; Bolzoni, D.; Etalle, Sandro; Salvato, Marco

    2007-01-01

    The assessment and mitigation of risks related to the availability of the IT infrastructure is becoming increasingly important in modern organizations. Unfortunately, present standards for Risk Assessment and Mitigation show limitations when evaluating and mitigating availability risks. This is due

  14. Simulations of embedded lateral stress gauge profiles in shocked targets

    International Nuclear Information System (INIS)

    Winter, R E; Harris, E J

    2008-01-01

    In principle, stress gauges mounted to measure lateral stresses in a shocked matrix allow the shear strength of the material to be determined. However, interpreting the resistance profiles from lateral stress gauges is hindered by the fact that the stress field in the vicinity of the insulating layer in which the gauges are embedded can differ significantly from the stress field that would be generated in the sample if no gauge were present. A series of high resolution Eulerian hydrocode simulations have been run which suggest that the stresses in the insulating layer vary with distance and time in a way that depends on the thickness of the layer, the shock strength and the elastic and plastic properties of both the layer and the matrix. In particular, if the shock velocity in the matrix material is high the stress at a typical gauge position initially rises to a sharp peak then falls with time, but when the shock velocity in the matrix is low the stress rises relatively gradually throughout the time of interest. The shapes of the stress versus time profiles predicted by the hydrocode compare well with the results of lateral gauge experiments on several different materials. It is concluded that lateral gauges can be used to measure the dynamic strength of materials provided high resolution computer simulation is used to take account of the perturbation of the stress field in the shocked sample caused by the gauges

  15. Shock wave overtake measurements on cesium iodide

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1986-01-01

    The luminosity of the shock front for CsI makes it an ideal material for which to measure directly sound velocities along the Hugoniot using shock wave overtake methods. In these measurements, the occurrence of melting along the Hugoniot is marked by a discontinuous decrease in the measured sound velocity. In addition, CsI is isoelectronic with xenon and is expected to begin to show metallic behavior along the Hugoniot near 0.9 Mbar. The directly-determined sound velocities and corresponding elastic moduli would be expected to be more sensitive to this transition than either Hugoniot equations of state or optical pyrometry experiments. This paper presents a brief description of the present experiments and results

  16. Thermal shock problems in a plate

    International Nuclear Information System (INIS)

    Takeuti, Y.; Furukawa, T.

    1981-01-01

    The problems considered are coupled dynamic thermoelastic analysis in a plate. First we try to examine a problem of the coupled dynamic thermal stress problem with small time approximation for the finite region. Next, we treatise both effects individually by pursuing rigorous anaylsis without small time approximation. Finally we consider thermal shock problems in a plate against different values of heat transfer coefficient (Biot's number) for the time. In conclusion, for usual materials, the inertia effect may be disregarded in the pure thermal problems in contrast to the coupling effect which brings small lags in the temperature and thermal stress distributions. For the consideration of the maximum thermal stress problems, Manson's uncoupled quasi-static results give enough approximation to the thermal shock problems without significant error from our numerical results. The analysis is developed by the use of Laplace transforms and several useful graphical illustrations are given. (orig./HP)

  17. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  18. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  19. Mitigation: Decarbonization unique to cities

    Science.gov (United States)

    Ibrahim, Nadine

    2017-10-01

    Strategies that reduce fossil-fuel use can achieve both global carbon mitigation and local health-protection goals. Now research shows the dual benefits of compact urban design and circular economy policies in Chinese cities.

  20. Tarague Interpretive Trail Mitigation Plan

    National Research Council Canada - National Science Library

    Welch, David

    2001-01-01

    ...), International Archaeological Research Institute, Inc. (lARfI) has prepared a mitigation plan for development of an interpretive trail at Tarague Beach, located on the north coast of the island of Guam (Fig. 1...

  1. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  2. Methods of Mitigating Double Taxation

    OpenAIRE

    Lindhe, Tobias

    2002-01-01

    This paper presents a comprehensive overview of existing methods of mitigating double taxation of corporate income within a standard cost of capital model. Two of the most well-known and most utilized methods, the imputation and the split rate systems, do not mitigate double taxation in corporations where the marginal investment is financed with retained earnings. However, all methods are effective when the marginal investment is financed with new share issues. The corporate tax rate, fiscal ...

  3. Mitigating amphibian chytridiomycosis in nature

    Science.gov (United States)

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  4. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  5. Molecular diagnostics of interstellar shocks

    International Nuclear Information System (INIS)

    Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds

  6. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  7. How Culture Shock Affects Communication.

    Science.gov (United States)

    Barna, LaRay M.

    The paper defines the term "culture shock" and discusses the changes that this state can make in a person's behavior. Culture shock refers to the emotional and physiological reaction of high activation that is brought about by sudden immersion in a new culture. Because one's own culture shields one from the unknown and reduces the need to make…

  8. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  9. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...

  10. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  11. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  12. Dynamic shock wave: hammer blow

    International Nuclear Information System (INIS)

    Lackme, Claude

    1978-01-01

    The general properties of shocks, their generation and the conditions of reflexion to an interface are dealt with in turn. By then applying these concepts to a liquid column and its environment (wall, free area, closing devices) the hammer blow is presented as being a relatively weak shock [fr

  13. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  14. Shock behaviour of 3D carbon-carbon composite

    International Nuclear Information System (INIS)

    Hereil, P.-L.; Allix, O.; Gratton, M.

    1997-01-01

    The compressive response of a 3D carbon-carbon composite under shock wave was studied in a plate-impact configuration. Two directions of impact were achieved until a nominal value of longitudinal stress of 2.5 GPa. The measured wave profiles are consistent with previous results on 3D composites and confirm the behaviour of such materials under impact. It is shown that the initial loading is decomposed in two waves. The first one is transmitted by the longitudinal fibres, the second one corresponds to the propagation of a shock wave in the 'matrix'. Macroscopic characteristics of this material are provided. (orig.)

  15. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  16. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  17. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  18. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  19. Albeni Falls wildlife mitigation project: annual report of mitigation activities

    International Nuclear Information System (INIS)

    Terra-Burns, Mary

    2002-01-01

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres (∼4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002

  20. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  1. Analysis of shock implosion

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, E.A.; Alejaldre, C. (Polytechnic Inst. of New York, Brooklyn (USA))

    1984-06-01

    An imploding shock wave, coming from infinity, moves through an ideal gas with the adiabatic constant ..gamma... To define a single-valued self-similar coefficient over the whole classical interval 1<..gamma..

  2. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  3. Shock fabrics in fine-grained micrometeorites

    Science.gov (United States)

    Suttle, M. D.; Genge, M. J.; Russell, S. S.

    2017-10-01

    The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.

  4. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  5. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  6. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  7. Distributional impacts of climate change mitigation in Indian electricity: The influence of governance

    International Nuclear Information System (INIS)

    Rao, Narasimha D.

    2013-01-01

    Studies that examine the distributional impacts of climate change mitigation policies often neglect the influence of institutions that implement these policies. This study examines the short-term consumption-side distributional impacts of expanding low-carbon electric supply in the state of Maharashtra, India with a focus on the influence of regulatory discretion in pricing. Households' welfare impacts from economy-wide electricity price shocks are simulated against a baseline that is calibrated to actual household economic and electricity service conditions, including actual electricity budgets, block tier prices and supply rationing. Industrial price impacts are propagated to households using a Leontief input–output analysis. Regulatory pricing decisions are evaluated based on social welfare metrics for economic efficiency and income inequality. The analysis reveals new linkages between climate change mitigation, electricity policy and income distribution. Low-income households can be shielded from mitigation impacts without losses in aggregate welfare to the extent that regulators can recover mitigation costs through industrial price increases. Regulators' flexibility to distribute costs across households is constrained by industrial customers' migration off the grid. Reduced supply interruptions to the rural poor from the resulting demand contraction are a potential co-benefit of mitigation. Distributional impacts, therefore, depend on other electricity policies that are driven by the political economy of the sector. - Highlights: • Indirect price increases harm most households less than residential price increases. • Regulators have flexibility to distribute mitigation costs across income groups. • Reduced supply interruptions are a potential co-benefit of mitigation

  8. Experimental Shock Damage Risk Assessment for New Generation TAS-B Plasmic Propulsion Unit

    Science.gov (United States)

    Garnier, J.; De Fruytier, C.

    2014-06-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-B to qualify the PPU Mk2 unit in regards of increased shock levels.This unit supplies and controls two Plasma Thrusters used for satellite orbit keeping and attitude control. The PPU Mk2 unit mechanical design is based on a modular architecture. The different modules are mounted on a baseplate insuring thermal spreading and improved equipment flatness. The unit dimensions are 390 x 190 x 190 mm3 for a total mass of 11.5 kg.The PPU Mk2 contains several components sensitive to shock like specific inductors, transformers and relays. Due to an increasing of the shock specification in regards of the previous generation of PPU, it has been proposed to assess the good withstanding of these components and in order to mitigate the risks on the Qualification Model, a preliminary shock test has been performed on a Structural Model. This model is fully representative of the flight equipment in terms of mechanical interfaces and has been designed to have the same mechanical behaviour (same mass and main modes). Critical components have been embedded in this structural model in order to test their shock withstanding. Preliminary to this Structural Model, qualification at sensitive components levels has been performed through vibrations, shocks (half-sine) and thermal cycling. Evolution of the electrical main parameters has been followed to detect any degradation of the performance during this test campaigns.Then, the structural model has been instrumented to acquire the global behaviour of the equipment. Success criteria have been defined concerning mechanical behaviour before and after shocks, admissible electrical variations, visual inspections.After calibration phasis of the test bench, the shock test of the PPU Mk2 SM has been successfully conducted. The good test results allowed applying these shock levels confidently on the PPU Mk2 EQM model.

  9. A review of recent developments in the understanding of transonic shock buffet

    Science.gov (United States)

    Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg

    2017-07-01

    Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.

  10. Industry initiatives in impact mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.C.

    1982-08-01

    The author concludes that mitigation is the focus of conflicting opinions regarding responsibility, strategy, and effort. There are no hard, fast, or tried and true rules for company involvement in mitigation efforts. Each mitigation effort must be tailored and negotiated to match the unique characteristics of individual projects and circumstances of specific locales. Companies must assume financial responsibility for the temporary impacts and area needs created by their projects. They must also offer financial and technical assistance to impact areas, not just the host political jurisdiction, when local, state, federal, and special fund sources of revenue or technical assistance are not available or insufficient. But, local, state, and federal governments must also recognize their responsibilities and make adjustments in tax jurisdiction boundaries and disbursement formulas so that impacted areas are properly defined and receive an adequate share of lease, royalty, severance tax, permit fee, special use and service charges, and sales tax payments. Laws need to allow innovative uses of tax pre-payments, housing mortgage bonds, changeable debt and bounding limits, industrial loans with delayed prepayment, and revised revenue assistance formulas. Enabling legislation is required in most states to allow impact areas to negotiate the mitigation efforts. A review of 7 types of mitigation effort is presented: transportation; housing; public utilities; health, public safety and recreation; miscellaneous; and company-community interaction. (PBS)

  11. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    NARCIS (Netherlands)

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  12. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  13. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  14. Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.

    1988-11-01

    The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition.

  15. Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets

    International Nuclear Information System (INIS)

    Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.

    1988-01-01

    The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition

  16. Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry

    International Nuclear Information System (INIS)

    Zhang, Q.; Graham, M.J.; Graham, M.J.

    1997-01-01

    The Richtmyer-Meshkov (RM) instability is an interfacial interface between two fluids of different densities driven by shock waves and plays an important role in the studies of inertial confinement fusion and of supernovas. So far, most of the studies are for RM unstable interfaces driven by weak or intermediate shocks in planar geometry. For experiments conducted at the Nova laser, the unstable material interface is accelerated by very strong shocks. In this Letter, we present scaling laws for the RM unstable interface driven by strong imploding and exploding shocks. copyright 1997 The American Physical Society

  17. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  18. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  19. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  20. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  1. On the stability of bow shocks generated by red supergiants: the case of IRC -10414

    Science.gov (United States)

    Meyer, D. M.-A.; Gvaramadze, V. V.; Langer, N.; Mackey, J.; Boumis, P.; Mohamed, S.

    2014-03-01

    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC -10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of 2, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best-fitting model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC -10414 are ≈50 km s-1 and ≈10-6 M⊙ yr-1, respectively, and that the number density of the local interstellar medium is ≈3 cm-3. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC -10414 must be photoionized.

  2. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  3. Costs of radon diagnostics and mitigation in school building

    International Nuclear Information System (INIS)

    Leovic, K.W.; Rector, H.; Nagda, N.

    1992-01-01

    To determine the costs of radon diagnostics and active soil depressurization (ASD) system installation in schools, seven radon mitigators with extensive experience in school buildings were surveyed. The cost data were determined by providing the mitigators with two scenarios of open-quotes typicalclose quotes school buildings with elevated radon levels. The questionnaire in schools: (1) Review Construction Plans, (2) Conduct Diagnostic Measurements, (3) Design Mitigation System, (4) Purchase ASD Material, and (5) Install and Checkout ASD System. Based on the results of this survey, it is estimated that the average cost of ASD diagnostics and mitigation in a typical school would be roughly $0.50 per ft 2 . However, these costs would be higher in schools with extensive subslab walls, very poor PFE, and lower in simple schools with very good PFE and no subslab barriers to communication. The variations in costs provided by the mitigators are primarily due to the influences of (1) experience and practices of the mitigation companies, (2) ASD system requirements as perceived by the respondents, and (3) the degree of involvement by the school system in the process

  4. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response.

  5. The failure of aluminium nitride under shock

    International Nuclear Information System (INIS)

    Pickup, I.M.; Bourne, N.K.

    2002-01-01

    The shear strength of aluminium nitride has been measured over a range of impact stresses by measuring lateral stresses in plate impact experiments. The range of impact stress spanned several key shock thresholds for the material, pre and post Hugoniot elastic limit and up to values where the hexagonal to cubic phase transition starts. The shear strength measurements indicate significant inelastic damage at stress levels in excess of the HEL, but a significant recovery of strength at the highest impact stress was observed. This stress equates to the phase transition stress. The shear strength behaviour is compared to that of silicon carbide, which does not exhibit a phase change at these impact velocities

  6. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  7. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  8. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  9. Particle acceleration in modified shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  10. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  11. Bioenergy as a Mitigation Measure

    Science.gov (United States)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  12. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  13. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  14. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  15. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    The analysis determines that lower scaled, spatially economical structures using low embodied energy materials will positively contribute to reduced carbon footprints and thus climate change mitigation strategies. The outcomes of the article also set a benchmark for prospective life-cycle assessments (LCA) and establish ...

  16. Studies on Arsenic Release and its Mitigation from Tailings Dam ...

    African Journals Online (AJOL)

    Studies on Arsenic Release and its Mitigation from Tailings Dam Using Nanomagnetite Particles. ... Ghana Mining Journal ... Abstract. Knowledge of the geochemistry of As in tailings material after beneficiation of gold-bearing sulphidic ores is necessary to comprehend the nature, stability and mobilization of As into the ...

  17. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  18. Nonlinearity, Conservation Law and Shocks

    Indian Academy of Sciences (India)

    Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.

  19. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  20. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  1. Electric Shock Injuries in Children

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Electric Shock Injuries in Children Page Content ​When the ... comes into direct contact with a source of electricity, the current passes through it, producing what's called ...

  2. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  3. Lightweight aluminum shock absorbers; Leichtbau-Stossdaempfer aus Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Kusche, R. [Serienentwicklung, ThyssenKrupp Bilstein GmbH, Ennepetal (Germany)

    2004-12-01

    One way in which the automotive industry is striving to reduce costs and environmental impact is by continuously lowering the fuel consumption of vehicles. To achieve this objective, lightweight materials are increasingly being used in automotive design. Increasing demands are also being made on shock absorber suppliers to reduce weight. (orig.)

  4. Double shock dynamics induced by the saturation of defocusing nonlinearities

    KAUST Repository

    Crosta, Matteo

    2012-01-01

    We show that the saturation of defocusing nonlinearities leads to qualitative changes in the onset of wave breaking, determining double shock formation whose regularization occurs in terms of antidark solitons. In a given material, the crossover between different regimes can be controlled by changing the input intensity. © 2012 Optical Society of America.

  5. The Efficacy of Cognitive Shock

    Science.gov (United States)

    2015-05-21

    way, causing dissonance or cognitive conflict, so that the mental model has to be ‘accommodated’ to the new data. Categories and knowledge have to...The Efficacy of Cognitive Shock A Monograph by MAJ Anthony L. Marston United States Army School of Advanced Military Studies...DATES COVERED (From - To) JUN 2014 – MAY 2015 4. TITLE AND SUBTITLE The Efficacy of Cognitive Shock 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  6. Sepsis and septic shock

    Science.gov (United States)

    Hotchkiss, Richard S.; Moldawer, Lyle L.; Opal, Steven M.; Reinhart, Konrad; Turnbull, Isaiah R.; Vincent, Jean-Louis

    2017-01-01

    For more than two decades, sepsis was defined as a microbial infection that produces fever (or hypothermia), tachycardia, tachypnoea and blood leukocyte changes. Sepsis is now increasingly being considered a dysregulated systemic inflammatory and immune response to microbial invasion that produces organ injury for which mortality rates are declining to 15–25%. Septic shock remains defined as sepsis with hyperlactataemia and concurrent hypotension requiring vasopressor therapy, with in-hospital mortality rates approaching 30–50%. With earlier recognition and more compliance to best practices, sepsis has become less of an immediate life-threatening disorder and more of a long-term chronic critical illness, often associated with prolonged inflammation, immune suppression, organ injury and lean tissue wasting. Furthermore, patients who survive sepsis have continuing risk of mortality after discharge, as well as long-term cognitive and functional deficits. Earlier recognition and improved implementation of best practices have reduced in-hospital mortality, but results from the use of immunomodulatory agents to date have been disappointing. Similarly, no biomarker can definitely diagnose sepsis or predict its clinical outcome. Because of its complexity, improvements in sepsis outcomes are likely to continue to be slow and incremental. PMID:28117397

  7. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  8. Mitigation - how to buy time

    International Nuclear Information System (INIS)

    Gunasekera, D.

    2007-01-01

    Full text: Full text: There is growing consensus in the global scientific community that human induced greenhouse gas emissions have increased the atmospheric concentration of these gases which has led, and will continue to lead to changes in regional and global climate. Climate change is projected to impact on Australian and global economic, biophysical, social and environmental systems. The impacts of climate change can be reduced by implementing a range of mitigation and adaptation strategies. The optimal policy response will depend on the relative costs and benefits of climate change impacts, and mitigation and adaptation responses. The focus in this presentation is to identify the key determinants that can reduce the cost of international mitigation responses. It is important to recognise that since cumulative emissions are the primary driver of atmospheric concentrations, mitigation policies should be assessed against their capacity to reduce cumulative emissions overtime, rather than at given time points only. If global greenhouse gas abatement costs are to be minimised, it is desirable that the coverage of countries, emission sources and technologies that are a part of any multilateral effort be as wide as possible. In this context the development and diffusion of clean technologies globally can play a key role in the future reduction of greenhouse gas emissions, according to scenarios analysed by ABARE. Furthermore, technology 'push' (for example, research and development policies) and 'pull' (for example, emission trading) policies will be required to achieve such an outcome

  9. Mitigating Higher Ed Cyber Attacks

    Science.gov (United States)

    Rogers, Gary; Ashford, Tina

    2015-01-01

    In this presentation we will discuss the many and varied cyber attacks that have recently occurred in the higher ed community. We will discuss the perpetrators, the victims, the impact and how these institutions have evolved to meet this threat. Mitigation techniques and defense strategies will be covered as will a discussion of effective security…

  10. Comparison of turbulence mitigation algorithms

    Science.gov (United States)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  11. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  12. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  13. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  14. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  16. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  17. Molecular dynamics simulation of shock-wave loading of copper and titanium

    Science.gov (United States)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  18. EU mitigation potential of harvested wood products.

    Science.gov (United States)

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  19. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  20. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.

    Science.gov (United States)

    Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A

    1993-01-01

    The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.

  1. First all-union symposium on shock pressures, October 24-26, 1973, Moscow. Volume 2

    International Nuclear Information System (INIS)

    Batsanov, S.S.

    Twenty-two papers on the chemistry of impulsive pressures are contained in this volume. The papers deal primarily with shock wave propagation in various materials (particularly oxides) and explosive forming and sintering

  2. Parametric study on the performance of automotive MR shock absorbers

    Science.gov (United States)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  3. The Shock and Vibration Digest. Volume 13, Number 3

    Science.gov (United States)

    1981-03-01

    Matehal Structural ElemenU with Material Damping M.M. Wallace and C.W. Bert The Univ. of Oklahoma, Norman , OK, Shock Vib. Bull., U.S. Naval Res...Vibration Kxtremal Control Strategy D.O. Smallwood and D.L. Gregory Sandid Labs., Albuquerque, NM, Shock Vib. Bull., U.S. Ndvdl Res. Lab.. Proc., No...Smailey.AJ 656,700 Smallwood , D.0 683 Smith, D.R 517 Smith, I.M 655 Smith, S 534 Smith,! 622 Smolka.S.A 714 Solo.V 711 Sonnonburg, P.N 576

  4. A primary standard for low-g shock calibration by laser interferometry

    Science.gov (United States)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-07-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He-Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s-2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1.

  5. Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V

    International Nuclear Information System (INIS)

    Lainé, Steven J.; Knowles, Kevin M.; Doorbar, Phillip J.; Cutts, Richard D.; Rugg, David

    2017-01-01

    A detailed analysis has been conducted of Ti–6Al–4V processed by metallic shot peening and laser shock peening. Analysis by incremental hole drilling, electron backscattered diffraction microscopy, transmission electron microscopy and transmission Kikuchi diffraction microscopy is evaluated and discussed. The results of this analysis highlight the very different dislocation structures in surfaces processed by these two techniques. Transmission Kikuchi diffraction also has been used to evaluate sub-grains generated by laser shock peening. A notable feature of material processed by laser shock peening is the almost complete absence of deformation twinning, contrasting with the frequent observation of extensive deformation twinning observed in the material processed by metallic shot peening.

  6. Plane shock wave studies of geologic media

    International Nuclear Information System (INIS)

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  7. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  8. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  9. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  10. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    Science.gov (United States)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock

  11. Regional transport sector mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Peter [EECG Consultants, Gaborone (Botswana)

    1998-10-01

    The rationale for conducting climate change mitigation studies in the transport sector is on the premise that: The transport sector is the second largest consumer of fossil fuels in the region; The regional transport sector is an area with high opportunity for infrastructural development under UNFCCC financial mechanism; The regional transport sector is crucial in the SADC region for trade and coupled with the Trade Protocol will play a major role in development hence the need to make it efficient in terms of energy demand and provision of services; The sector offers many mitigation options but with a challenge to evaluate their energy saving and GHG saving potential and yet there is need to quantify possible emission reduction for possible future emission trading. This is also a sector with potential to qualify for financing through Clean Development Mechanism (CDM) recently stipulated in the Kyoto Protocol. (au)

  12. Regional transport sector mitigation options

    International Nuclear Information System (INIS)

    Zhou, Peter

    1998-01-01

    The rationale for conducting climate change mitigation studies in the transport sector is on the premise that: The transport sector is the second largest consumer of fossil fuels in the region; The regional transport sector is an area with high opportunity for infrastructural development under UNFCCC financial mechanism; The regional transport sector is crucial in the SADC region for trade and coupled with the Trade Protocol will play a major role in development hence the need to make it efficient in terms of energy demand and provision of services; The sector offers many mitigation options but with a challenge to evaluate their energy saving and GHG saving potential and yet there is need to quantify possible emission reduction for possible future emission trading. This is also a sector with potential to qualify for financing through Clean Development Mechanism (CDM) recently stipulated in the Kyoto Protocol. (au)

  13. FEMA Hazard Mitigation Grants Program Summary - API

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  14. FEMA Hazard Mitigation Grants Program Summary

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  15. IMS Mitigation Target Areas - 2010 [ds673

    Data.gov (United States)

    California Natural Resource Agency — Mitigation Target Areas (MTA) were developed by the California Department of Fish and Game for the Interim Mitigation Strategy (IMS). The MTAs are an identification...

  16. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation

    International Nuclear Information System (INIS)

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.

    2017-01-01

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

  17. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  18. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. Identifying and Mitigating Insider Threats

    DEFF Research Database (Denmark)

    Probst, Christian W.

    2011-01-01

    Organisations face many threats that coarsely can be separated in inside threats and outside threats. Threats from insiders are especially hard to counter since insiders have special knowledge and privileges. Therefore, malicious insider actions are hard to distinguish from benign actions. After ...... discussing new definitions of insiders and insider threats, this article gives an overview of how to mitigate insider threats and discusses conflicting goals when dealing with insider threats....

  20. Mitigating hyperventilation during cardiopulmonary resuscitation.

    Science.gov (United States)

    Nikolla, Dhimitri; Lewandowski, Tyler; Carlson, Jestin

    2016-03-01

    Although multiple airway management and ventilation strategies have been proposed during cardiac arrest, the ideal strategy is unknown. Current strategies call for advanced airways, such as endotracheal intubation and supraglottic airways. These may facilitate hyperventilation which is known to adversely affect cardiopulmonary physiology. We provide a summary of conceptual models linking hyperventilation to patient outcomes and identify methods for mitigating hyperventilation during cardiac arrest. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  2. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  3. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G A; Turkson, J K; Davidson, O R [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  4. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  5. Enteral tranexamic acid attenuates vasopressor resistance and changes in α1-adrenergic receptor expression in hemorrhagic shock.

    Science.gov (United States)

    Santamaria, Marco Henry; Aletti, Federico; Li, Joyce B; Tan, Aaron; Chang, Monica; Leon, Jessica; Schmid-Schönbein, Geert W; Kistler, Erik B

    2017-08-01

    Irreversible hemorrhagic shock is characterized by hyporesponsiveness to vasopressor and fluid therapy. Little is known, however, about the mechanisms that contribute to this phenomenon. Previous studies have shown that decreased intestinal perfusion in hemorrhagic shock leads to proteolytically mediated increases in gut permeability, with subsequent egress of vasoactive substances systemically. Maintenance of blood pressure is achieved in part by α1 receptor modulation, which may be affected by vasoactive factors; we thus hypothesized that decreases in hemodynamic stability and vasopressor response in shock can be prevented by enteral protease inhibition. Rats were exposed to experimental hemorrhagic shock (35 mm Hg mean arterial blood pressure for 2 hours, followed by reperfusion for 2 hours) and challenged with phenylephrine (2 μg/kg) at discrete intervals to measure vasopressor responsiveness. A second group of animals received enteral injections with the protease inhibitor tranexamic acid (TXA) (127 mM) along the small intestine and cecum 1 hour after induction of hemorrhagic shock. Blood pressure response (duration and amplitude) to phenylephrine after reperfusion was significantly attenuated in animals subjected to hemorrhagic shock compared with baseline and control nonshocked animals and was restored to near baseline by enteral TXA. Arteries from shocked animals also displayed decreased α1 receptor density with restoration to baseline after enteral TXA treatment. In vitro, rat shock plasma decreased α1 receptor density in smooth muscle cells, which was also abrogated by enteral TXA treatment. Results from this study demonstrate that experimental hemorrhagic shock leads to decreased response to the α1-selective agonist phenylephrine and decreased α1 receptor density via circulating shock factors. These changes are mitigated by enteral TXA with correspondingly improved hemodynamics. Proteolytic inhibition in the lumen of the small intestine improves

  6. 49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?

    Science.gov (United States)

    2010-10-01

    ... Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.935 What additional preventive and mitigative...

  7. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  8. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  9. Why the Nature of Oil Shocks Matters

    International Nuclear Information System (INIS)

    Archanskaia, Elizaveta; Hubert, Paul; Creel, Jerome

    2009-03-01

    This article studies the impact of oil shocks on the macro-economy in two ways insofar unexploited in the literature. The analysis is conducted at the global level, and it explicitly accounts for the potentially changing nature of oil shocks. Based on an original world GDP series and a grouping of oil shocks according to their nature, we find that oil supply shocks negatively impact world growth, contrary to oil demand shocks, pro-cyclical in their nature. This result is robust at the national level for the US. Furthermore, endogenous monetary policy is shown to have no counter-cyclical effects in the context of an oil demand shock. (authors)

  10. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  11. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  12. Mitigation of wildfire risk by homeowners

    Science.gov (United States)

    Hannah Brenkert; Patricia Champ; Nicholas Flores

    2005-01-01

    In-depth interviews conducted with homeowners in Larimer County's Wildland-Urban Interface revealed that homeowners face difficult decisions regarding the implementation of wildfire mitigation measures. Perceptions of wildfire mitigation options may be as important as perceptions of wildfire risk in determining likelihood of implementation. These mitigation...

  13. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles

    International Nuclear Information System (INIS)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S.; Rodrigues, J.A.

    2011-01-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  14. Shock, diaschisis and von Monakow

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    2013-07-01

    Full Text Available The concept of shock apparently emerged in the middle of the 18th century (Whyett as an occurrence observed experimentally after spinal cord transection, and identified as "shock" phenomenon one century later (Hall. The concept was extended (Brown-Séquard and it was suggested that brain lesions caused functional rupture in regions distant from the injured one ("action à distance". The term "diaschisis" (von Monakow, proposed as a new modality of shock, had its concept broadened, underpinned by observations of patients, aiming at distinguishing between symptoms of focal brain lesions and transitory effects they produced, attributable to depression of distant parts of the brain connected to the injured area. Presently, diaschisis is related mainly to cerebrovascular lesions and classified according to the connection fibers involved, as proposed by von Monakow. Depression of metabolism and blood flow in regions anatomically separated, but related by connections with the lesion, allows observing diaschisis with neuroimaging.

  15. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  16. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  17. On the shock response of the magnesium alloy Elektron 675

    Science.gov (United States)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  18. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    Science.gov (United States)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  19. Spall wave-profile and shock-recovery experiments on depleted uranium

    International Nuclear Information System (INIS)

    Hixson, R.S.; Vorthman, J.E.; Gustavsen, R.L.; Zurek, A.K.; Thissell, W.R.; Tonks, D.L.

    1998-01-01

    Depleted Uranium of two different purity levels has been studied to determine spall strength under shock wave loading. A high purity material with approximately 30 ppm of carbon impurities was shock compressed to two different stress levels, 37 and 53 kbar. The second material studied was uranium with about 300 ppm of carbon impurities. This material was shock loaded to three different final stress level, 37, 53, and 81 kbar. Two experimental techniques were used in this work. First, time-resolved free surface particle velocity measurements were done using a VISAR velocity interferometer. The second experimental technique used was soft recovery of samples after shock loading. These two experimental techniques will be briefly described here and VISAR results will be shown. Results of the spall recovery experiments and subsequent metallurgical analyses are described in another paper in these proceedings. copyright 1998 American Institute of Physics

  20. Shock compaction of molybdenum powder

    Science.gov (United States)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.