WorldWideScience

Sample records for shock isolation systems

  1. Pre-Acting Control for Shock and Impact Isolation Systems

    Directory of Open Access Journals (Sweden)

    D.V. Balandin

    2005-01-01

    Full Text Available Pre-acting control in shock/impact isolation systems is studied. With pre-acting control, the isolation system begins to respond to an impact before this impact has been applied to the base. The limiting performance of the isolator with pre-acting control is investigated for a single-degree-of-freedom system subject to an instantaneous impact. The isolation performance index is defined as the maximum of the absolute value of the displacement of the object to be isolated relative to the base, provided that the magnitude of the control force transmitted to the object does not exceed a prescribed value. It is shown that there is a substantial advantage in the use of pre-acting isolators over isolators without pre-action. Particular attention is given to a pre-acting isolator based on a passive elastic element (a spring separating the object to be protected from the base. An example illustrates the calculation of the design parameters of such an isolator.

  2. Limiting Performance Analysis of Underwater Shock Isolation of a System with Biodynamic Response Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Z. Zong

    2000-01-01

    Full Text Available Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.

  3. Shock and vibration technology with applications to electrical systems

    Science.gov (United States)

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  4. Design and Analysis of Shock and Random Vibration Isolation of Operating Hard Disk Drive in Harsh Environment

    Directory of Open Access Journals (Sweden)

    Hendri Harmoko

    2009-01-01

    Full Text Available An effective vibration isolation system is important for hard disk drives (HDD used in a harsh mechanical environment. This paper describes how to design, simulate, test and evaluate vibration isolation systems for operating HDD subjected to severe shock and random vibrations based on military specifications MIL-STD-810E. The well-defined evaluation criteria proposed in this paper can be used to effectively assess the performance of HDD vibration isolation system. Design concepts on how to achieve satisfactory shock and vibration isolation for HDD are described. The concepts are tested and further enhanced by the two design case studies presented here. It is shown that an effective vibration isolation system, that will allow a HDD to operate well when subjected to severe shock and random vibration, is feasible.

  5. CFD transient simulation of an isolator shock train in a scramjet engine

    Science.gov (United States)

    Hoeger, Troy Christopher

    For hypersonic flight, the scramjet engine uses an isolator to contain the pre-combustion shock train formed by the pressure difference between the inlet and the combustion chamber. If this shock train were to reach the inlet, it would cause an engine unstart, disrupting the flow through the engine and leading to a loss of thrust and potential loss of the vehicle. Prior to this work, a Computational Fluid Dynamics (CFD) simulation of the isolator was needed for simulating and characterizing the isolator flow and for finding the relationship between back pressure and changes in the location of the leading edge of the shock train. In this work, the VULCAN code was employed with back pressure as an input to obtain the time history of the shock train leading location. Results were obtained for both transient and steady-state conditions. The simulation showed a relationship between back-to-inlet pressure ratios and final locations of the shock train. For the 2-D runs, locations were within one isolator duct height of experimental results while for 3-D runs, the results were within two isolator duct heights.

  6. On problems to be solved for utilizing shock isolation systems to NPP

    International Nuclear Information System (INIS)

    Shibata, H.; Shigeta, T.; Komine, H.

    1989-01-01

    This paper discusses the development of difficulties with light water fast breeder reactors (LFBR). The authors focus their discussion on thin wall reactor vessels, thin wall sodium loops, and large sodium pools with free surfaces. Conclusions considered are to lower the center of gravity and the use of shock isolation system. Since the success of Super-phenix, the interest to develop a large fast reactor, so called LFBR, has become more realistic one in Japan. However, the anti-earthquake design of a pool-type large fast reactor is more difficult than that of light water reactors for high seismicity areas like Japan. The reason of difficulties come from the difference of the structural requirement for LFBR. Three major points are as follows: thin wall reactor vessel, thin wall sodium loops, large sodium pool with free surface

  7. Woodpecker-inspired shock isolation by microgranular bed

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-Hee [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Roh, Jin-Eep; Kim, Ki Lyug, E-mail: shyoon@me.berkeley.ed [Agency for Defense Development, Yuseong PO Box 35, Daejeon 305-600 (Korea, Republic of)

    2009-02-07

    This paper presents a woodpecker-inspired shock isolation (SI) using a microgranular bed to protect micromachined electronic devices (MEDs) for high-g military applications where mechanical excitations reach up to tens of thousands of gs and several hundreds of kHz. The shock isolating phenomenon in the microgranular bed within a metal housing, biomimetically inspired from a spongy bone within a skull of the woodpecker, controls unwanted high-frequency mechanical excitations so that their adverse effects on the embedded MEDs are kept within acceptable limit. The microgranular bed composed of close-packed microglass beads reduces the mechanical excitations transmitted to the MEDs through kinetic energy absorption. Two kinds of tests, a laboratory test and a 60 mm air-gun test, have been made. The laboratory test using a vibration exciter up to 25 kHz has demonstrated that the cut-off frequency (2.2-15.8 kHz) and roll-off steepness (-155.0 to -78.7 dB decade{sup -1}) are inversely proportional to the diameter of the close-packed microglass beads (68-875 {mu}m), whereas the vibration absorptivity (0.23-0.87) is proportional. The 60 mm air-gun test under high-g environments of up to 60 000 g has verified that the woodpecker-inspired SI is superior in improving the shock survivability of the MEDs to the conventional one using hard resin.

  8. Isolation of I and C cabinets against shocks, vibrations and seismic movements

    International Nuclear Information System (INIS)

    Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

    2007-01-01

    This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

  9. Research on the relationship between viscoelasticity and shock isolation performance of warp knitted spacer fabrics

    Directory of Open Access Journals (Sweden)

    Jin JIANG

    2016-04-01

    Full Text Available Warp-knitted spacer fabric which is commonly used in impact protection is selected as test materials to study the relationship between viscoelasticity and the performance of shock isolation. A damping test platform is built to test different specifications of warp-knitted spacer fabric including compression elastic modulus, damping ratio and the residual impact load under different impact speed. Experimental results show that there is no clear correlation between the shock isolation performance and the viscidity or the elasticity. Accordingly, viscosity-to-elasticity ratio is proposed to characterize the relationship between viscoelasticity and shock isolation performance, and it is found that appropriate viscosity-to-elasticity ratio within a certain range can help to achieve better shock isolation performance.

  10. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  11. Detection of toxic shock toxin (tst gene in Staphylococcus aureus isolated from bovine milk samples

    Directory of Open Access Journals (Sweden)

    S. Baniardalan

    2017-09-01

    Full Text Available Staphylococcus aureus is a major causative pathogen of clinical and subclinical mastitis in dairy cattle all over the world. This agent produces a variety of extracellular toxins and virulence factors in-cluding toxic shock syndrome toxin-1 (TSST-1 which is the major cause of toxic shock syndrome (TSS. In the present study, 76 S. aureus isolates have been obtained from milk samples collected from 7 dairy herds in Hamedan province of Iran. The isolates were identified based on the biochemical and molecular methods using PCR amplification of the femA gene. The staphylococcal isolates were also examined for the presence of TSST-1 (tst encoding gene. This gene was detected in only one S. aureus isolate (1.3%. The results revealed that S. aureus strains causing bovine mastitis may potentially produce staphylococcal toxic shock syndrome toxin-1, indicating that it is very important to follow the presence of TSST-1 producing S. aureus isolates in foodstuffs to protect consumers against the risk of toxic shock syndrome

  12. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  13. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  14. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  15. The Use of Shock Isolation mounts in Small High-Speed Craft to Protect Equipment from Wave Slam Effects

    Science.gov (United States)

    2017-07-01

    hardware, but caution is advised because effective solutions will likely only be achieved by experienced shock isolation designers who pursue unique...provide tractable isolation solutions for craft, but caution is advised because effective solutions will likely only be achieved by experienced...very short duration of local vibration oscillations (e.g., nominal 25 to 50 msec or less) rather than rigid body shock pulse durations (e.g., 100

  16. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  17. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  18. Prognostic impact of isolated right ventricular dysfunction in sepsis and septic shock: an 8-year historical cohort study.

    Science.gov (United States)

    Vallabhajosyula, Saraschandra; Kumar, Mukesh; Pandompatam, Govind; Sakhuja, Ankit; Kashyap, Rahul; Kashani, Kianoush; Gajic, Ognjen; Geske, Jeffrey B; Jentzer, Jacob C

    2017-09-07

    Echocardiographic myocardial dysfunction is reported commonly in sepsis and septic shock, but there are limited data on sepsis-related right ventricular dysfunction. This study sought to evaluate the association of right ventricular dysfunction with clinical outcomes in patients with severe sepsis and septic shock. Historical cohort study of adult patients admitted to all intensive care units at the Mayo Clinic from January 1, 2007 through December 31, 2014 for severe sepsis and septic shock, who had an echocardiogram performed within 72 h of admission. Patients with prior heart failure, cor-pulmonale, pulmonary hypertension and valvular disease were excluded. Right ventricular dysfunction was defined by the American Society of Echocardiography criteria. Outcomes included 1-year survival, in-hospital mortality and length of stay. Right ventricular dysfunction was present in 214 (55%) of 388 patients who met the inclusion criteria-isolated right ventricular dysfunction was seen in 100 (47%) and combined right and left ventricular dysfunction in 114 (53%). The baseline characteristics were similar between cohorts except for the higher mechanical ventilation use in patients with isolated right ventricular dysfunction. Echocardiographic findings demonstrated lower right ventricular and tricuspid valve velocities in patients with right ventricular dysfunction and lower left ventricular ejection fraction and increased mitral E/e' ratios in patients with combined right and left ventricular dysfunction. After adjustment for age, comorbidity, illness severity, septic shock and use of mechanical ventilation, isolated right ventricular dysfunction was independently associated with worse 1-year survival-hazard ratio 1.6 [95% confidence interval 1.2-2.1; p = 0.002) in patients with sepsis and septic shock. Isolated right ventricular dysfunction is seen commonly in sepsis and septic shock and is associated with worse long-term survival.

  19. Back-pressure Effect on Shock-Train Location in a Scramjet Engine Isolator

    Science.gov (United States)

    2010-03-01

    breathing single-stage-to-orbit ( SSTO ) reusable spacecraft, X-30. It made a great contribution towards developing a rectangular, airframe-integrated...scramjet. This program was cancelled without conducting a flight test. The goal of this program was to build a full scale operational SSTO vehicle...bomber, SSTO , or hypersonic transportation. Shock system A shock-train is a system of series of oblique or normal shocks, which is a very complex flow

  20. Shock disturbance of the I-Xe system

    International Nuclear Information System (INIS)

    Caffee, M.W.; Hohenberg, C.M.; Podosek, F.A.; Swindle, T.D.

    1982-01-01

    Three separate samples of the meteorite Bjurbole were artificially shocked at pressures of 70 kb, 200 kb, and 400 kb. Analysis of xenon released in stepwise heating shows that the I-Xe system of the 400 kb sample is substantially altered by the shock loading, and it is no longer possible to infer an age or trapped xenon composition for that sample. The 200-kb and 70-kb samples display isotopic structures progressively less altered demonstrating the gradations in shock disturbance likely to be found in natural systems. Interpretations of the I-Xe and Ar-40-Ar-39 systems for several naturally shocked meteorites are also presented. New data for Arapahoe do not confirm the previously reported age and trapped xenon composition, demonstrating instead that its I-Xe structure has been strongly disturbed by shock

  1. Supports for shock, vibration and seismic isolation for tube networks

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

    2005-01-01

    The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

  2. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  3. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  4. CFD Transient Simulation of an Isolator Shock Train in a Scramjet Engine

    Science.gov (United States)

    2012-09-01

    rough but useful rule of thumb is that the dividing line between normal and oblique shock trains is in the range 2 < Mi < 3 ( Heiser , et al., 1994...Propulsion Conference & Exhibit. AIAA 2007-5371, Cincinnati OH, 8-12 July, 2007. Heiser , William H., and David T. Pratt. Hypersonic Airbreathing...Inc., Gridgen User Manual, Version 15, Volume 1, 2003. Pratt, David T. and William H. Heiser . “Isolator-Combustor Interaction in a Dual-Mode

  5. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  6. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    Science.gov (United States)

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  7. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load.

    Directory of Open Access Journals (Sweden)

    Cuijie Feng

    Full Text Available Microorganisms capable of generating electricity in microbial fuel cells (MFCs have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu shock load by Hungate roll-tube technique with solid ferric (III oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load and B4B2 (after Cu shock load were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.

  8. out-of-n systems with shock model

    African Journals Online (AJOL)

    distributed. Sarhan, A.M. and Abouammoh (2000) used the shock model to derive the re- liability function of k-out-of-n systems with nonindependent and nonidentical components. They assumed that a system is subjected to n + m independent types of shocks. Liu et al. (2008) proposed a model to evaluate the reliability ...

  9. Pseudo-shock waves and their interactions in high-speed intakes

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  10. Reliability for systems of degrading components with distinct component shock sets

    International Nuclear Information System (INIS)

    Song, Sanling; Coit, David W.; Feng, Qianmei

    2014-01-01

    This paper studies reliability for multi-component systems subject to dependent competing risks of degradation wear and random shocks, with distinct shock sets. In practice, many systems are exposed to distinct and different types of shocks that can be categorized according to their sizes, function, affected components, etc. Previous research primarily focuses on simple systems with independent failure processes, systems with independent component time-to-failure, or components that share the same shock set or type of shocks. In our new model, we classify random shocks into different sets based on their sizes or function. Shocks with specific sizes or function can selectively affect one or more components in the system but not necessarily all components. Additionally the shocks from the different shock sets can arrive at different rates and have different relative magnitudes. Preventive maintenance (PM) optimization is conducted for the system with different component shock sets. Decision variables for two different maintenance scheduling problems, the PM replacement time interval, and the PM inspection time interval, are determined by minimizing a defined system cost rate. Sensitivity analysis is performed to provide insight into the behavior of the proposed maintenance policies. These models can be applied directly or customized for many complex systems that experience dependent competing failure processes with different component shock sets. A MEMS (Micro-electro mechanical systems) oscillator is a typical system subject to dependent and competing failure processes, and it is used as a numerical example to illustrate our new reliability and maintenance models

  11. Optimum Shock Isolation

    National Research Council Canada - National Science Library

    Bolotnik, Nikolai

    2001-01-01

    .... Several types of performance criteria for isolation are considered, the most important of which are the peak force transmitted to the body to be isolated and the maximum displacement of the body relative to the base...

  12. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  13. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5

    Science.gov (United States)

    Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang

    2017-11-01

    A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.

  14. Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation.

    Science.gov (United States)

    Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J

    2015-07-01

    Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sequence characterization of heat shock protein gene of Cyclospora cayetanensis isolates from Nepal, Mexico, and Peru.

    Science.gov (United States)

    Sulaiman, Irshad M; Torres, Patricia; Simpson, Steven; Kerdahi, Khalil; Ortega, Ynes

    2013-04-01

    We have described the development of a 2-step nested PCR protocol based on the characterization of the 70-kDa heat shock protein (HSP70) gene for rapid detection of the human-pathogenic Cyclospora cayetanensis parasite. We tested and validated these newly designed primer sets by PCR amplification followed by nucleotide sequencing of PCR-amplified HSP70 fragments belonging to 16 human C. cayetanensis isolates from 3 different endemic regions that include Nepal, Mexico, and Peru. No genetic polymorphism was observed among the isolates at the characterized regions of the HSP70 locus. This newly developed HSP70 gene-based nested PCR protocol provides another useful genetic marker for the rapid detection of C. cayetanensis in the future.

  16. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    2018-05-01

    Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

  17. Wire rope isolators for vibration isolation of equipment and structures – A review

    International Nuclear Information System (INIS)

    Balaji, P S; Rahman, M E; Lau, H H; Moussa, Leblouba

    2015-01-01

    Vibrations and shocks are studied using various techniques and analyzed to predict their detrimental effect on the equipment and structures. In cases, where the effects of vibration become unacceptable, it may cause structural damage and affect the operation of the equipment. Hence, adding a discrete system to isolate the vibration from source becomes necessary. The Wire Rope Isolator (WRI) can be used to effectively isolate the system from disturbing vibrations. The WRI is a type of passive isolator that exhibits nonlinear behavior. It consists of stranded wire rope held between two metal retainer bars and the metal wire rope is made up of individual wire strands that are in frictional contact with each other, hence, it is a kind of friction-type isolator. This paper compiles the research work on wire rope isolators. This paper presents the research work under two categories, namely monotonic and cyclic loading behaviors of WRI. The review also discusses the different terminologies associated with vibration isolation system and highlights the comparison between various isolation systems. (paper)

  18. Shock waves in collective field theories for many particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-10-01

    We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.

  19. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  20. Towards an understanding of resilience: responding to health systems shocks.

    Science.gov (United States)

    Hanefeld, Johanna; Mayhew, Susannah; Legido-Quigley, Helena; Martineau, Frederick; Karanikolos, Marina; Blanchet, Karl; Liverani, Marco; Yei Mokuwa, Esther; McKay, Gillian; Balabanova, Dina

    2018-04-01

    The recent outbreak of Ebola Virus Disease (EVD) in West Africa has drawn attention to the role and responsiveness of health systems in the face of shock. It brought into sharp focus the idea that health systems need not only to be stronger but also more 'resilient'. In this article, we argue that responding to shocks is an important aspect of resilience, examining the health system behaviour in the face of four types of contemporary shocks: the financial crisis in Europe from 2008 onwards; climate change disasters; the EVD outbreak in West Africa 2013-16; and the recent refugee and migration crisis in Europe. Based on this analysis, we identify '3 plus 2' critical dimensions of particular relevance to health systems' ability to adapt and respond to shocks; actions in all of these will determine the extent to which a response is successful. These are three core dimensions corresponding to three health systems functions: 'health information systems' (having the information and the knowledge to make a decision on what needs to be done); 'funding/financing mechanisms' (investing or mobilising resources to fund a response); and 'health workforce' (who should plan and implement it and how). These intersect with two cross-cutting aspects: 'governance', as a fundamental function affecting all other system dimensions; and predominant 'values' shaping the response, and how it is experienced at individual and community levels. Moreover, across the crises examined here, integration within the health system contributed to resilience, as does connecting with local communities, evidenced by successful community responses to Ebola and social movements responding to the financial crisis. In all crises, inequalities grew, yet our evidence also highlights that the impact of shocks is amenable to government action. All these factors are shaped by context. We argue that the '3 plus 2' dimensions can inform pragmatic policies seeking to increase health systems resilience.

  1. Replacement policy in a system under shocks following a Markovian arrival process

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Perez-Ocon, Rafael; Carmen Segovia, Maria del

    2009-01-01

    We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime

  2. Replacement policy in a system under shocks following a Markovian arrival process

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Department of Statistics and Operational Research, University of Jaen (Spain); Perez-Ocon, Rafael [Department of Statistics and Operational Research, University of Granada, Granada (Spain)], E-mail: rperezo@ugr.es; Carmen Segovia, Maria del [Departamento de Estadistica e I.O., University of Granada, Granada (Spain)

    2009-02-15

    We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime.

  3. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  4. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  5. Development of a Novel Shock Wave Catheter Ablation System

    Science.gov (United States)

    Yamamoto, H.; Hasebe, Yuhi; Kondo, Masateru; Fukuda, Koji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    Although radio-frequency catheter ablation (RFCA) is quite effective for the treatment tachyarrhythmias, it possesses two fundamental limitations, including limited efficacy for the treatment of ventricular tachyarrhythmias of epicardial origin and the risk of thromboembolism. Consequently, new method is required, which can eradicate arrhythmia source in deep part of cardiac muscle without heating. On the other hand, for a medical application of shock waves, extracorporeal shock wave lithotripter (ESWL) has been established [1]. It was demonstrated that the underwater shock focusing is one of most efficient method to generate a controlled high pressure in a small region [2]. In order to overcome limitations of existing methods, we aimed to develop a new catheter ablation system with underwater shock waves that can treat myocardium at arbitrary depth without causing heat.

  6. Microgravity Experiment: The Fate of Confined Shock Waves

    Science.gov (United States)

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  7. A Multi-wavelength Study of an Isolated MSP Bow Shock

    Science.gov (United States)

    Romani, Roger W.; Slane, Patrick; Green, Andrew

    2017-08-01

    PSR J2124-3358 is the only single MSP known to sport an Halpha bow shock. This shock, now also seen in the UV, encloses an unusual X-ray pulsar wind nebula (PWN) with a long off-axis trail. Combining the X-ray and UV images with AAT/KOALA integral field spectroscopy of the Halpha emission, we have an unusually complete picture of the pulsar's (101 km/s transverse) motion and the latitudinal distribution of its wind flux. These images reveal the 3-D orientation of a hard-spectrum PWN jet and a softer equatorial outflow. Within the context of a thin shock model, we can constrain the total energy output of the pulsar and the neutron star moment of inertia. The IFU spectra show extreme Balmer dominance, which also constrains the nature of the UV shock emission.

  8. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  9. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  10. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  11. Shock therapy: Gris Gun's shock absorber can take the punch

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-04-01

    A newly developed shock impedance tool that isolates downhole tools that measure the effects of well stimulation techniques from being damaged by the violent shaking caused by various well stimulation techniques which combine perforating and propellant technology in a single tool, is discussed. The shock exerted by a perforating gun can exceed 25,000 G forces within 100 to 300 milliseconds, may damage or even destroy the sensitive electronics housed in the various recorders that record data about fracture gradients, permeability and temperature. The shock absorber developed by Tesco Gris Gun and Computalog, incorporates the mechanics of a piston style shock absorber in combination with a progressive spring stack and energy-dampening silicone oil chambers. The end results is an EUE 'slim line' assembly that is adaptable between the gun perforating string and the electronic equipment. It is typically attached below, reducing the shock load by as much as 90 per cent. The shock absorber is now available commercially through Gris Gun's exclusive distributorship. An improved version, currently under development, will be used for wireline perforating and tubing-conveyed perforating applications. 2 figs.

  12. Plumbing system shock absorbers as a source of Legionella pneumophila.

    Science.gov (United States)

    Memish, Z A; Oxley, C; Contant, J; Garber, G E

    1992-12-01

    Water distribution systems have been demonstrated to be a major source of nosocomial legionellosis. We describe an outbreak in our institution in which a novel source of Legionella pneumophila was identified in the plumbing system. After an outbreak of 10 cases of legionellosis in our hospital, recommended measures including superheating of the hot water to 80 degrees C, hyperchlorination to 2 ppm, and flushing resulted in no new cases in the following 5 years. Recently, despite these control measures, three new cases occurred. Surveillance cultures of shower heads and water tanks were negative; cultures of tap water samples remained positive. This prompted a search for another reservoir. Shock absorbers installed within water pipes to decrease noise were suspected. One hundred twenty-five shock absorbers were removed and cultured. A total of 13 (10%) yielded heavy growth of L. pneumophila (serogroup 1). Since their removal, no new cases have been found and the percentage of positive results of random tap water culture has dropped from 20% to 5%. This is the first report that identifies shock absorbers as a possible reservoir for L. pneumophila. We recommend that institutions with endemic legionellosis assess the water system for possible removal of shock absorbers.

  13. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  14. Endogenous versus exogenous shocks in systems with memory

    Science.gov (United States)

    Sornette, D.; Helmstetter, A.

    2003-02-01

    Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogenous shock is in general slower at early times and can be at long times either slower or faster than after an exogenous perturbation. This offers the tantalizing possibility of distinguishing between an endogenous versus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in investigating the exogenous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette et al., Volatility fingerprints of large stocks: endogenous versus exogenous, cond-mat/0204626 has already shown how this concept can be applied concretely to differentiate the effects on financial markets of the 11 September 2001 attack or of the coup against Gorbachev on 19 August 1991 (exogenous) from financial crashes such as October 1987 (endogenous).

  15. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  16. Protective effect of porphyran isolated from discolored nori (Porphyra yezoensis) on lipopolysaccharide-induced endotoxin shock in mice.

    Science.gov (United States)

    Nishiguchi, Tomoki; Cho, Kichul; Isaka, Shogo; Ueno, Mikinori; Jin, Jun-O; Yamaguchi, Kenichi; Kim, Daekyung; Oda, Tatsuya

    2016-12-01

    Porphyran, a sulfated polysaccharide, isolated from discolored nori (Porphyra yezoensis) (dc-porphyran) and one fraction (F1) purified from dc-porphyran by DEAE-chromatography showed the protective effects on LPS-induced endotoxin shock in mice. Intraperitoneal (i.p.) treatment with dc-porphyran or F1 (100mg/kg) 60min prior to i.p. injection of LPS (30mg/kg) completely protected mice from LPS lethality. At 10mg/kg concentration, F1 demonstrated more protection than dc-porphyran. Intravenous (i.v.) challenge of LPS, even at 20mg/kg, was more lethal than i.p. administration; i.v. injection of F1 (100mg/kg) with LPS significantly improved the survival rate. However, i.v. dc-porphyran (100mg/kg) produced an even lower survival rate than that of LPS alone. We examined pro-inflammatory mediators such as NO and TNF-α in serum. F1 significantly reduced the levels of these markers. Additionally, F1 significantly decreased the malondialdehyde level in the liver, a marker of oxidative stress, while dc-porphyran had almost no effect. Furthermore, F1 significantly decreased the production of TNF-α and NO in peritoneal exudate cells harvested from LPS-challenged mice, while dc-porphyran treatment showed a lesser decrease. Our results suggest that porphyran isolated from discolored nori, especially F1, is capable of suppressing LPS-induced endotoxin shock in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  18. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems

    International Nuclear Information System (INIS)

    Yoon, Sang-Hee; Park, Sungmin

    2011-01-01

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  19. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  20. Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.P.; Niu, C.Y.; Zhao, Z.G.; Zhang, L.M.; Si, Y.H. [Institute of Microcirculation, Hebei North University, Hebei (China)

    2013-08-10

    Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca{sup 2+} were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca{sup 2+} at various concentrations. Maximum contractility (E{sub max}) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca{sup 2+} (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca{sup 2+} at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in E{sub max} for NE and from 0.729±0.037 to 0.645±0.056 g/mg in E{sub max} for Ca{sup 2+}, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.

  1. Reliability Analysis of a Cold Standby System with Imperfect Repair and under Poisson Shocks

    Directory of Open Access Journals (Sweden)

    Yutian Chen

    2014-01-01

    Full Text Available This paper considers the reliability analysis of a two-component cold standby system with a repairman who may have vacation. The system may fail due to intrinsic factors like aging or deteriorating, or external factors such as Poisson shocks. The arrival time of the shocks follows a Poisson process with the intensity λ>0. Whenever the magnitude of a shock is larger than the prespecified threshold of the operating component, the operating component will fail. The paper assumes that the intrinsic lifetime and the repair time on the component are an extended Poisson process, the magnitude of the shock and the threshold of the operating component are nonnegative random variables, and the vacation time of the repairman obeys the general continuous probability distribution. By using the vector Markov process theory, the supplementary variable method, Laplace transform, and Tauberian theory, the paper derives a number of reliability indices: system availability, system reliability, the rate of occurrence of the system failure, and the mean time to the first failure of the system. Finally, a numerical example is given to validate the derived indices.

  2. Module-based analysis of robustness tradeoffs in the heat shock response system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kurata

    2006-07-01

    Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

  3. Underwater hydraulic shock shovel control system

    Science.gov (United States)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  4. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  5. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection.

    Science.gov (United States)

    Pierzchalski, P; Jastrzebska, M; Link-Lenczowski, P; Leja-Szpak, A; Bonior, J; Jaworek, J; Okon, K; Wojcik, P

    2014-12-01

    Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.

  6. Preview control of vehicle suspension system featuring MR shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seong, M S; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Cho, M W [Precision Manufacturing and Inspection Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, H G [Department of Automotive Engineering, Daeduk College, Daejeon, 305-715 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  7. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    Seong, M S; Choi, S B; Cho, M W; Lee, H G

    2009-01-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  8. Role of the renin-angiotensin system, renal sympathetic nerve system, and oxidative stress in chronic foot shock-induced hypertension in rats.

    Science.gov (United States)

    Dong, Tao; Chen, Jing-Wei; Tian, Li-Li; Wang, Lin-Hui; Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Zhao, Xiao-Dong; Zhu, Wei; Wang, Guo-Qing; Sun, Wan-Ping; Zhang, Guo-Xing

    2015-01-01

    The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension.

  9. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  10. Consideration of Optimal Input on Semi-Active Shock Control System

    Science.gov (United States)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  11. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  12. New safety systems for better impact shock protection of pedestrians; Neue Sicherheitssysteme fuer besseren Fussgaengerschutz

    Energy Technology Data Exchange (ETDEWEB)

    Buechling, J.

    2005-06-01

    From October 2005, new vehicles in the European Union must be equipped successively with impact shock protection systems for pedestrians. There are many different concepts and solutions, from optimised front ends and flexible hoods to outside airbags, flexible shock absorbers and systems to prevent rolling over pedestrians. (orig.)

  13. Vibration isolation of a building against earthquake, airplane crash and blast

    International Nuclear Information System (INIS)

    Mischke, J.; Hilpert, H.J.; Henkel, F.O.

    1986-01-01

    The influence of three different support concepts on the vibration responses of a building to the load cases earthquake, airplane crash and blast is numerically investigated. Compared are the three concepts: the standard version of a double shell structure with a combined base for inner and outer building without isolation system; the same building with isolation system between foundation slab and soil, as vibration isolation known so far; and as a third concept a double shell structure with completely separated inner and outer building, where the isolation system is placed between the two parts of the building. The results show that, compared to the standard concept, the third concept leads to a nearly complete isolation of shock-induced vibrations, and to a reduction of the vibrations caused by an earthquake, comparable to the reduction in the isolation concept known so far. (orig.)

  14. Safety in pipeline systems. Prevention of pressure shocks and cavitation shocks; Sichere Rohrleitungssysteme. Vermeidung von Druckstoessen und Kavitationsschlaegen

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.-M. [Forschungszentrum Rossendorf, Dresden (Germany); Dudlik, Andreas; Schoenfeld, Sri Budi Handajani; Apostolidis, Alexander; Schlueter, Stefan [Fraunhofer-Institut UMSICHT, Oberhausen (Germany)

    2002-06-01

    The Fraunhofer institute UMSICHT, Oberhausen, and Rossendorf research centre FZR investigated the causes and consequences of pressure shocks and cavitation shocks and ways to prevent them. The experimental set-up and software tools were made available. New methods for preventing pressure shocks and cavitation shocks were developed, and armatures were developed on this basis which are also suited for retrofitting. [German] In Rohrleitungssystemen koennen durch instationaere Stroemungsvorgaenge gefaehrliche Betriebsbedingungen entstehen, die infolge von mehrfach erhoehtem Systemdruck und von Lasteintraegen in Halterungen Mensch und Umwelt erheblich schaedigen. Je nach Industriebranche koennen unterschiedliche betriebsbedingte Ursachen zu sog. Druckstoessen, Kavitations- und Kondensationsschlaegen fuehren, z.B. Kontaktkondensation von Dampf und Wasser oder ploetzliche Aenderung der Fluessigkeitsgeschwindigkeit. Das Fraunhofer-Institut UMSICHT in Oberhausen und das Forschungszentrum Rossendorf FZR untersuchen Ursachen, Folgen und Moeglichkeiten zur Vermeidung von Druckstoessen und Kavitationsschlaegen. Hierzu stehen Versuchsanlagen unterschiedlichen Massstabs sowie Softwaretools zur Verfuegung. Aus den Forschungsergebnissen wurden neue Methoden zur Vermeidung von Druckstoessen und Kavitationsschlaegen entwickelt. Hierbei werden neue oder vorhandene Absperrarmaturen mit einem hydraulischen Bremssystem ausgeruestet und mit einer Rueckschlagklappe kombiniert angeordnet. Das System gilt auch fuer bereits existierende Anlagen als besonders geeignet, da es keine Hilfsenergie benoetigt und sich an Aenderungen der Systemparameter Druck und Fliessgeschwindigkeit selbststaendig anpasst. (orig.)

  15. Raoultella planticola bacteremia-induced fatal septic shock following burn injury.

    Science.gov (United States)

    Yumoto, Tetsuya; Naito, Hiromichi; Ihoriya, Hiromi; Tsukahara, Kohei; Ota, Tomoyuki; Watanabe, Toshiyuki; Nakao, Atsunori

    2018-05-04

    Raoultella planticola, a Gram-negative, aerobic bacillus commonly isolated from soil and water, rarely causes invasive infections in humans. Septic shock from R. planticola after burn injury has not been previously reported. A 79-year-old male was admitted to the emergency intensive care unit after extensive flame burn injury. He accidently caught fire while burning trash and plunged into a nearby tank filled with contaminated rainwater to extinguish the fire. The patient developed septic shock on day 10. The blood culture detected R. planticola, which was identified using the VITEK-2 biochemical identification system. Although appropriate antibiotic treatment was continued, the patient died on day 12. Clinicians should be aware of fatal infections in patients with burn injury complicated by exposure to contaminated water.

  16. Bow Shock Generator Current Systems: MMS Observations of Possible Current Closure

    Science.gov (United States)

    Hamrin, M.; Gunell, H.; Lindkvist, J.; Lindqvist, P.-A.; Ergun, R. E.; Giles, B. L.

    2018-01-01

    We use data from the first two dayside seasons of the Magnetospheric Multiscale (MMS) mission to study current systems associated with quasi-perpendicular bow shocks of generator type. We have analyzed 154 MMS bow shock crossings near the equatorial plane. We compute the current density during the crossings and conclude that the component perpendicular to the shock normal (J⊥) is consistent with a pileup of the interplanetary magnetic field (IMF) inside the magnetosheath. For predominantly southward IMF, we observe a component Jn parallel (antiparallel) to the normal for GSM Y > 0 (MMS probing region. For IMF clock angles near 90∘, we find indications of the current system being tilted toward the north-south direction, obtaining a significant Jz component, and we suggest that the current closes off the equatorial plane at higher latitudes where the spacecraft are not probing. The observations are complicated for several reasons. For example, variations in the solar wind and the magnetospheric currents and loads affect the closure, and Jn is distributed over large regions, making it difficult to resolve inside the magnetosheath proper.

  17. Interfacial instability induced by a shock wave in a gas-liquid horizontal stratified system

    International Nuclear Information System (INIS)

    Sutradhar, S.C.; Chang, J.S.; Yoshida, H.

    1987-01-01

    The experiments are performed in a rectangular lucite duct equipped with the facility of generating shock waves. Piezo-type pressure transducers are used to monitor the strength and propagation velocity of the shock wave. As the liquid phase has high sound velocity, a prepulse wave system of flow amplitude travels in this phase at a speed faster than the principal shock wave. The magnitude of the transmitted wave in the liquid phase is estimated using a transmission coefficient for gas-liquid system. From the initial pressure ratio of the shock wave, the amplitude of the prepulse as well as the induced interfacial fluid velocity are calculated. The wave length and height of the ripples during the passage of the shock wave are estimated for a specific strength of shock wave moving through the phases. From the high speed photographs, the wave length of the ripples can be assessed. The interfacial friction factor is calculated using colebrook's equation for high speed flow. At least five distinct phenomena are observed to exist during the propagation of a shock wave. These are - (1) the energy carried by the pre-pulse is utilized in perturbing the interface; (2) shock wave induces a mass velocity at the interface; (3) the wavelength of the ripples at the interface is the product of induced interfacial mass velocity and the time period of the prepulse; (4) a portion of the liquid mass of the perturbed interface is entrained in the gas phase may be due to the hydrodynamic lift in that phase; and finally (5) waves with long wavelength are established at the interface

  18. Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield

    Science.gov (United States)

    Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.

    2012-01-01

    The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely

  19. The Shock and Vibration Bulletin. Part 1. Opening Session, Panel Session, Shock Analysis Shock Testing, Isolation and Damping.

    Science.gov (United States)

    1977-09-01

    ORTHOTROPIC PLATES WITH VARIOUS ,I PLANFORMS AND EDGE CONDITIONS C.W. Bert, The University of Oklahoma, Norman , OK - -’ DYNAMIC RESPONSE OF LAMINATED...EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory, Sandia Laboratories, Albuquerque, NM TOTAL MISSION ENVIRONMENTAL...June 1967. ration Bulletin No. 40, Part 2, 1969. 6. J. P. Barthmaier, "Shock Testing Under 2. D. 0. Smallwood , "Time History Synthesis Minicomputer

  20. Noninvasive optoacoustic system for rapid diagnosis and management of circulatory shock

    Science.gov (United States)

    Petrov, Irene Y.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. N.; Seeton, Roger; Esenaliev, Rinat O.; Prough, Donald S.

    2013-03-01

    Circulatory shock can lead to death or severe complications, if not promptly diagnosed and effectively treated. Typically, diagnosis and management of circulatory shock are guided by blood pressure and heart rate. However, these variables have poor specificity, sensitivity, and predictive value. Early goal-directed therapy in septic shock patients, using central venous catheterization (CVC), reduced mortality from 46.5% to 30%. However, CVC is invasive and complication-prone. We proposed to use an optoacoustic technique for noninvasive, rapid assessment of peripheral and central venous oxygenation. In this work we used a medical grade optoacoustic system for noninvasive, ultrasound image-guided measurement of central and peripheral venous oxygenation. Venous oxygenation during shock declines more rapidly in the periphery than centrally. Ultrasound imaging of the axillary [peripheral] and internal jugular vein [central] was performed using the Vivid e (GE Healthcare). We built an optoacoustic interface incorporating an optoacoustic transducer and a standard ultrasound imaging probe. Central and peripheral venous oxygenations were measured continuously in healthy volunteers. To simulate shock-induced changes in central and peripheral oxygenation, we induced peripheral vasoconstriction in the upper extremity by using a cooling blanket. Central and peripheral venous oxygenations were measured before (baseline) and after cooling and after rewarming. During the entire experiment, central venous oxygenation was relatively stable, while peripheral venous oxygenation decreased by 5-10% due to cooling and recovered after rewarming. The obtained data indicate that noninvasive, optoacoustic measurements of central and peripheral venous oxygenation may be used for diagnosis and management of circulatory shock with high sensitivity and specificity.

  1. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  2. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  3. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  4. Seismic isolation systems designed with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  5. Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases

    Directory of Open Access Journals (Sweden)

    Dushyant Nadar

    2000-01-01

    Full Text Available Objective: Use of extracorporeal shock waves in the treatment of tendinopathy and other orthopedic diseases. Patients and methods: 35 patients received shock wave therapy using Econolith 2000 lithotripter 19 patients had isolated lateral epicondylitis, 12 medical epicondylitis and 4 plantar fascitis. A total of 120 shock waves were given in the first sitting. Each patient received a total of three sittings with a gap of one week between each of them. Results: Based on the patients′ self-assessment, about 75% pain relief was observed in 60% of the patients. Fur-ther, in patients having isolated tendinopathies, the pain relief was better. Conclusion: The study indicated that the application of shock waves is not restricted to the fragmentation of urinary calculi. The shock waves can be effectively used for the pain relief in the common orthopedic diseases. Thus, the urologists can widen the application of lithotripters, in a cost-effective manner, to the other medical speciali-ties.

  6. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  7. Investigation of pressure transients in nuclear filtration systems: construction details of a large shock tube

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1980-04-01

    This report documents the construction of a 0.914-m (36-in.)-dia. shock tube on the New Mexico State University caompus. Highly variable low-grade explosions can be simulated with the shock tube. We plan to investigate the response of nuclear facility ventilation system components to low-grade explosions. Components of particular interest are high-capacity, high efficiency paticulate air (HEPA) filters. Shock tube construction details, operating principles, firing sequence, and preliminary results are reported

  8. Predicting traffic volumes and estimating the effects of shocks in massive transportation systems.

    Science.gov (United States)

    Silva, Ricardo; Kang, Soong Moon; Airoldi, Edoardo M

    2015-05-05

    Public transportation systems are an essential component of major cities. The widespread use of smart cards for automated fare collection in these systems offers a unique opportunity to understand passenger behavior at a massive scale. In this study, we use network-wide data obtained from smart cards in the London transport system to predict future traffic volumes, and to estimate the effects of disruptions due to unplanned closures of stations or lines. Disruptions, or shocks, force passengers to make different decisions concerning which stations to enter or exit. We describe how these changes in passenger behavior lead to possible overcrowding and model how stations will be affected by given disruptions. This information can then be used to mitigate the effects of these shocks because transport authorities may prepare in advance alternative solutions such as additional buses near the most affected stations. We describe statistical methods that leverage the large amount of smart-card data collected under the natural state of the system, where no shocks take place, as variables that are indicative of behavior under disruptions. We find that features extracted from the natural regime data can be successfully exploited to describe different disruption regimes, and that our framework can be used as a general tool for any similar complex transportation system.

  9. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Eckey-Kaltenbach, H.; Kiefer, E.; Grosskopf, E.; Ernst, D.; Sandermann, H. Jr

    1997-01-01

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  10. 21 CFR 870.2600 - Signal isolation system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A signal isolation system is a device that electrically isolates the patient... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  11. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  12. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  13. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  14. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  15. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG'S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG'S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria

  16. Control of adverse effects of explosive blasting in mines by using shock tube (non-electric) initiation systems and its future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.D. [Maharashtra Explosives Ltd., Nagpur (India)

    2000-04-01

    Every kind of blasting in mines produces some adverse effects on environment, such as ground vibration, noise, fly rock etc. Presently, for restricting these adverse effects, use of shock tube (non-electric) initiation systems are gaining momentum. There are some inherent shortcomings of this initiation system regarding chances of misfires. This paper discusses the various adverse effects of blasting, advantages of shock tube initiation system and the shortcomings of shock tube initiation system regarding chances of misfire and how misfire arises out of failure of shock tube initiation system is different and more dangerous than the misfire occurring due to failure of conventional system (with detonating fuse and cord relays). 1 tab.

  17. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    Science.gov (United States)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  18. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  19. Towards a proper assignment of systemic risk: the combined roles of network topology and shock characteristics.

    Science.gov (United States)

    Loepfe, Lasse; Cabrales, Antonio; Sánchez, Angel

    2013-01-01

    The 2007-2008 financial crisis solidified the consensus among policymakers that a macro-prudential approach to regulation and supervision should be adopted. The currently preferred policy option is the regulation of capital requirements, with the main focus on combating procyclicality and on identifying the banks that have a high systemic importance, those that are "too big to fail". Here we argue that the concept of systemic risk should include the analysis of the system as a whole and we explore systematically the most important properties for policy purposes of networks topology on resistance to shocks. In a thorough study going from analytical models to empirical data, we show two sharp transitions from safe to risky regimes: 1) diversification becomes harmful with just a small fraction (~2%) of the shocks sampled from a fat tailed shock distributions and 2) when large shocks are present a critical link density exists where an effective giant cluster forms and most firms become vulnerable. This threshold depends on the network topology, especially on modularity. Firm size heterogeneity has important but diverse effects that are heavily dependent on shock characteristics. Similarly, degree heterogeneity increases vulnerability only when shocks are directed at the most connected firms. Furthermore, by studying the structure of the core of the transnational corporation network from real data, we show that its stability could be clearly increased by removing some of the links with highest centrality betweenness. Our results provide a novel insight and arguments for policy makers to focus surveillance on the connections between firms, in addition to capital requirements directed at the nodes.

  20. A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes

    International Nuclear Information System (INIS)

    Caballé, N.C.; Castro, I.T.; Pérez, C.J.; Lanza-Gutiérrez, J.M.

    2015-01-01

    This paper proposes a condition-based maintenance strategy for a system subject to two dependent causes of failure: degradation and sudden shocks. The internal degradation is reflected by the presence of multiple degradation processes in the system. Degradation processes start at random times following a Non-homogeneous Poisson process and their growths are modelled by using a gamma process. When the deterioration level of a degradation process exceeds a predetermined value, we assume that a degradation failure occurs. Furthermore, the system is subject to sudden shocks that arrive at the system following a Doubly Stochastic Poisson Process. A sudden shock provokes the total breakdown of the system. Thus, the state of the system is evaluated at inspection times and different maintenance tasks can be carried out. If the system is still working at an inspection time, a preventive maintenance task is performed if the deterioration level of a degradation process exceeds a certain threshold. A corrective maintenance task is performed if the system is down at an inspection time. A preventive (corrective) maintenance task implies the replacement of the system by a new one. Under this maintenance strategy, the expected cost rate function is obtained. A numerical example illustrates the analytical results. - Highlights: • A condition-based maintenance model is proposed. • Two dependent causes of failure are considered: deterioration and external shocks. • Deterioration is given by multiple degradation processes growing by a gamma process. • The initiation of degradation processes follows a Non-homogeneous Poisson process. • External shocks arrive at the system by using a Doubly Stochastic Poisson Process

  1. ENIDINE: Vibration and seismic isolation technologies for power generation station applications

    International Nuclear Information System (INIS)

    Zemanek, T.A.

    1994-01-01

    ENIDINE Inc. is a world leader in the design and manufacture of shock and vibration mounts. Founded in 1966, the company has two manufacturing facilities, employs over 300 people and supports a worldwide network of distributors and representatives. ENIDINE Inc. is part of the ENIDINE Corporate Group which owns a number of companies that design and manufacture Hydraulic/Pneumatic cylinders, Electromechanical devices, Hydraulic Control Valves and a number of Industrial Distribution companies throughout Europe. In total, the ENIDINE Corporate Group has over 900 employees with annual sales of over $100 million. ENIDINE shock and vibration mounts are used to isolate the vibration of missiles from their guidance systems, pumps from hospital operating equipment and off shore oil rigs, from the shock energy of waves in the North Sea. ENIDINE products can be found on all Boeing and McDonnell Douglas aircraft, as well as many electronic and weapons systems on board Navy ships

  2. ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER

    Energy Technology Data Exchange (ETDEWEB)

    Yalinewich, Almog; Sari, Re’em [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)

    2016-08-01

    The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.

  3. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  4. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  5. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Science.gov (United States)

    2010-04-01

    ..., control console, imaging/localization system, and patient table. Prior to treatment, the urinary stone is targeted using either an integral or stand-alone localization/imaging system. Shock waves are typically... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that...

  6. Utilities/industries joint study on seismic isolation systems for LWR: Part I. Experimental and analytical studies on seismic isolation systems

    International Nuclear Information System (INIS)

    Kato, Muneaki; Sato, Shoji; Shimomura, Issei

    1989-01-01

    This paper describes a joint study program on seismic isolation systems for light-water reactors (LWRs) performed by ten electric power companies, three manufacturers, and five construction companies. The fundamental response characteristics of base-isolated structures and base-isolation devices are described. Applications of a base-isolation system to LWR buildings are given. Finally, three-dimensional shaking table experiments are described

  7. Isolated systems with wind power. Main report

    DEFF Research Database (Denmark)

    Lundsager, P.; Bindner, Henrik W.; Clausen, Niels-Erik

    2001-01-01

    The overall objective of this research project is to study the development of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present amore unified and generally applicable...... approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, fieldmeasurements in Egypt, development of an inventory of small isolated systems, overview of end...... for Isolated Systems with Wind Power, applicable for international organisations such as donoragencies and development banks....

  8. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    International Nuclear Information System (INIS)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-01

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined

  9. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-15

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined.

  10. Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2011-01-01

    Objective To define systemic release kinetics of a panel of cytokines and heat shock proteins (HSP) in porcine polytrauma/hemorrhage models and to evaluate whether they could be useful as early trauma biomarkers. Design and Setting Prospective study in a research laboratory. Subjects Twenty-one Yorkshire pigs. Measurements and Main Results Pigs underwent polytrauma (femur fractures/lung contusion, P), hemorrhage (mean arterial pressure 25-30mmHg, H), polytrauma plus hemorrhage (P/H) or sham procedure (S). Plasma was obtained at baseline, in 5-15min intervals during a 60min shock period without intervention and in 60-120min intervals during fluid resuscitation for up to 300min. Plasma was assayed for IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-13, IL-17, IL-18, IFNγ, TGFβ, TNFα, HSP40, HSP70 and HSP90 by ELISA. All animals after S, P and H survived (n=5/group). Three of six animals after P/H died. IL-10 increased during shock after P and this increase was attenuated after H. TNFα increased during the shock period after P, H and also after S. P/H abolished the systemic IL-10 and TNFα release and resulted in 20-30% increased levels of IL-6 during shock. As fluid resuscitation was initiated TNFα and IL-10 levels decreased after P, H and P/H, HSP 70 increased after P, IL-6 levels remained elevated after P/H and also increased after P and S. Conclusions Differential regulation of the systemic cytokine release after polytrauma and/or hemorrhage, in combination with the effects of resuscitation, can explain the variability and inconsistent association of systemic cytokine/HSP levels with clinical variables in trauma patients. Insults of major severity (P/H) partially suppress the systemic inflammatory response. The plasma concentrations of the measured cytokines/HSPs do not reflect injury severity or physiological changes in porcine trauma models and are unlikely to be able to serve as useful trauma biomarkers in patients. PMID:21983369

  11. Frequency of enterotoxins, toxic shock syndrome toxin-1, and biofilm formation genes in Staphylococcus aureus isolates from cows with mastitis in the Northeast of Brazil.

    Science.gov (United States)

    Costa, F N; Belo, N O; Costa, E A; Andrade, G I; Pereira, L S; Carvalho, I A; Santos, R L

    2018-06-01

    Staphylococcus aureus is among the microorganisms more frequently associated with subclinical bovine mastitis. S. aureus may produce several virulence factors. This study aimed at determining the frequency of virulence factors such as enterotoxins, toxic shock syndrome toxin 1, and ica adhesion genes. In addition, we assessed antimicrobial drug resistance in S. aureus isolated from clinical and subclinical cases of mastitis. A total of 88 cows with clinical or subclinical mastitis were sampled, resulting in 38 S. aureus isolates, from which 25 (65.78%) carried toxin genes, including seb, sec, sed, tst, and icaD adhesion gene. These S. aureus isolates belong to 21 ribotypes and three S. aureus strains belonged to the same ribotype producing ica adhesion gene. Approximately 90% of S. aureus strains obtained in our study demonstrated multiple resistance to different antimicrobial agents. The most efficacious antimicrobial agents against the isolates were gentamicin, amoxicillin, and norfloxacin. Gentamicin was the most efficacious agent inhibiting 78.95% of the S. aureus isolates. The least efficacious were penicillin, streptomycin, and ampicillin. Our results can help in understanding the relationship between virulence factors and subclinical mastitis caused by S. aureus. Further research about diversity of S. aureus isolates and genes responsible for the pathogenicity of subclinical mastitis is essential.

  12. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model

    Directory of Open Access Journals (Sweden)

    Zhenghui Li

    2017-04-01

    Full Text Available The effects of financial factors on real business cycle is rising to one of the most popular discussions in the field of macro business cycle theory. The objective of this paper is to discuss the features of business cycle under financial shocks by quantitative technology. More precisely, we introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics of the model. The shocks include external shock and internal shock, both of which are expressed as noises. The dynamics of the model can help us understand the effects of financial shocks on business cycle and improve our knowledge about financial business cycle. In the case of external shock, if the intensity of shock is less than some threshold value, the economic system behaves randomly periodically. If the intensity of shock is beyond the threshold value, the economic system will converge to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value, the economic system behaves periodically as the case without shock. If the intensity of shock exceeds the threshold value, the economic system either behaves periodically or converges to a normalcy. It is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the intensities of shocks under which the economic system behaves randomly periodically or disorderly, or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are presented.

  13. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  14. Clinical factors associated with shock in bacteremic UTI.

    Science.gov (United States)

    Shigemura, Katsumi; Tanaka, Kazushi; Osawa, Kayo; Arakawa, Sochi; Miyake, Hideaki; Fujisawa, Masato

    2013-06-01

    Urinary tract infection (UTI) often causes bacteremia, resulting in shock. The purpose of this study is to investigate urological bacteremia and bacteremia shock cases and seek for the clinical factors associated with urological bacteremic shock. Seventy consecutive cases with bacteremia caused by UTI from the Department of Urology, Kobe University Hospital were studied. These cases were diagnosed from 2000 to 2010 and had full data available for analysis. We investigated the potential clinical factors associated with bacteremic shock (systolic blood pressure ≤ 90 mmHg with UTI), including: (1) the number of basal general diseases (such as diabetes, malignancy, immune diseases, heart diseases, liver diseases, and kidney diseases), (2) causative bacteria, (3) antibiotics and therapeutic intervention, (4) gram-negative bacteria, (5) resistance to imipenem (which is often used in this infection), and (6) serum white blood cell counts and C-reactive protein (CRP) at the time of diagnosis of bacteremic UTI. A total of 81 causative bacteria were isolated: 42 cases were gram-negative and 39 were gram-positive bacteria. In detail, Escherichia coli was the most common, followed by Methicillin-resistant Staphylococcus aureus. The comparison data revealed that urological bacteremic shock cases had significantly increased CRP (p UTI was a significant clinical factor associated with urological bacteremic shock (p = 0.04). Indwelling urinary catheters before UTI and high CRP were clinical factors associated with urological bacteremic shock. This result should be considered during decision-making for UTI treatments in high risk cases or urological bacteremia cases.

  15. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    Directory of Open Access Journals (Sweden)

    I. M. Robinson

    2005-07-01

    Full Text Available We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003 and Li et al. (2003 which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons.

    Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections – Space plasma physics (Transport processes

  16. Riemann solvers and undercompressive shocks of convex FPU chains

    International Nuclear Information System (INIS)

    Herrmann, Michael; Rademacher, Jens D M

    2010-01-01

    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space–time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax shocks are replaced by so-called dispersive shocks. For convex–concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave–convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

  17. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  18. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  19. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  20. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  1. Responses of an isolation system with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Base isolation systems are generally designed with a single natural frequency. A major concern for these isolation systems is that, if the dominant frequency of a future earthquake is equal or close to the system's natural frequency, the ground motion will be greatly amplified because of resonance,and the superstructure would suffer severe damages. This paper present an isolation system designed with two distinct frequencies. Its responses to different ground motions, including a harmonic motion, show that no excessive amplification will occur. Adoption of this isolation system would greatly enhance the safety of an isolated superstructure against future strong earthquakes. 3 refs., 4 figs., 2 tabs

  2. Shocks in coupled socio-ecological systems: what are they and how can we model them?

    NARCIS (Netherlands)

    Filatova, Tatiana; Polhill, Gary; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Coupled socio-ecological systems (SES) are complex systems characterized by self-organization, non-linearities, interactions among heterogeneous elements within each subsystem, and feedbacks across scales and among subsystems. When such a system experiences a shock or a crisis, the consequences are

  3. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  4. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  5. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    Science.gov (United States)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  6. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  7. δ- and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes

    International Nuclear Information System (INIS)

    Shelkovich, V M

    2008-01-01

    This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).

  8. Experimental models of acute infection and Toll-like receptor driven septic shock.

    Science.gov (United States)

    Ferstl, Ruth; Spiller, Stephan; Fichte, Sylvia; Dreher, Stefan; Kirschning, Carsten J

    2009-01-01

    Mainly Gram-negative and Gram-positive bacterial infections, but also other infections such as with fungal or viral pathogens, can cause the life-threatening clinical condition of septic shock. Transgression of the host immune response from a local level limited to the pathogen's place of entry to the systemic level is recognised as a major mode of action leading to sepsis. This view has been established upon demonstration of the capacity of specific pathogen-associated molecular patterns (PAMPs) to elicit symptoms of septic shock upon systemic administration. Immune stimulatory PAMPs are agonists of soluble, cytoplasmic, as well as/or cell membrane-anchored and/or -spanning pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). However, reflection of pathogen-host crosstalk triggering sepsis pathogenesis upon an infection by a host response to challenge with an isolated PAMP is incomplete. Therefore, an experimental model more reflective of pathogen-host interaction requires experimental host confrontation with a specific pathogen in its viable form resulting in a collective stimulation of a variety of specific PRRs. This chapter describes methods to analyse innate pathogen sensing by the host on both a cellular and systemic level.

  9. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  10. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.

    Science.gov (United States)

    Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C

    2017-01-01

    Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.

  11. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  12. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  13. Spiral shocks on a Roche lobe overflow in a semi-detached binary system

    International Nuclear Information System (INIS)

    Sawada, K.; Matsuda, T.; Hachisu, I.

    1986-01-01

    Two-dimensional hydrodynamic calculations of a Roche lobe overflow in a semi-detached binary system with a mass ratio of unity are carried out. The region of the computation covers both a mass-losing star filling its critical Roche lobe and a mass-accreting compact star. Gas ejected from the mass-losing star with specified energy flows through the L1 point to form an elephant trunk and an accretion ring. It is found that spiral-shaped shocks are formed on the accretion ring. It is suggested that the gas in the accretion ring loses angular momentum at the shocks and spirals in towards the compact star even without viscosity. (author)

  14. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  15. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  16. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  17. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  18. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  19. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  20. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  1. Isolated systems with wind power. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Lundsager, P.; Bindner, H.; Clausen, N.E.; Frandsen, S.; Hansen, L.H.; Hansen, J.C.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present a more unified and generally applicable approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, field measurements in Egypt, development of an inventory of small isolated systems, overview of end-user demands, analysis of findings and development of proposed guidelines. The project is reported in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report Risoe-R-1256, summing up the activities and findings of the project and outlining an Implementation Strategy for Isolated Systems with Wind Power, applicable for international organisations such as donor agencies and development banks. (au)

  2. Effect of Pressure Gradients on the Initiation of PBX-9502 via Irregular (Mach) Reflection of Low Pressure Curved Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Lawrence Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Phillip Isaac [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moro, Erik Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.

  3. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  4. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  5. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-05-17

    An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

  6. Multistage position-stabilized vibration isolation system for neutron interferometry

    Science.gov (United States)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  7. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  8. Noninvasive optoacoustic system for rapid diagnostics and management of circulatory shock

    Science.gov (United States)

    Esenaliev, Rinat O.; Petrov, Irene Y.; Petrov, Yuriy; Kinsky, Michael; Prough, Donald S.

    2012-02-01

    Circulatory shock is lethal, if not promptly diagnosed and effectively treated. Typically, circulatory shock resuscitation is guided by blood pressure, heart rate, and mental status, which have poor predictive value. In patients, in whom early goaldirected therapy was applied using central venous oxygenation measurement, a substantial reduction of mortality was reported (from 46.5% to 30%). However, central venous catheterization is invasive, time-consuming and often results in complications. We proposed to use the optoacoustic technique for noninvasive, rapid assessment of central venous oxygenation. In our previous works we demonstrated that the optoacoustic technique can provide measurement of blood oxygenation in veins and arteries due to high contrast and high resolution. In this work we developed a novel optoacoustic system for noninvasive, automatic, real-time, and continuous measurement of central venous oxygenation. We performed pilot clinical tests of the system in human subjects with different oxygenation in the internal jugular vein and subclavian vein. A novel optoacoustic interface incorporating highly-sensitive optoacoustic probes and standard ultrasound imaging probes were developed and built for the study. Ultrasound imaging systems Vivid i and hand-held Vscan (GE Healthcare) as well as Site-Rite 5 (C.R. Bard) were used in the study. We developed a special algorithm for oxygenation monitoring with minimal influence of overlying tissue. The data demonstrate that the system provides precise measurement of venous oxygenation continuously and in real time. Both current value of the venous oxygenation and trend (in absolute values and for specified time intervals) are displayed in the system. The data indicate that: 1) the optoacoustic system developed by our group is capable of noninvasive measurement of blood oxygenation in specific veins; 2) clinical ultrasound imaging systems can facilitate optoacoustic probing of specific blood vessels; 3) the

  9. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  10. Characterization of Staphylococcus aureus isolates from patients with toxic shock syndrome, using polyethylene infection chambers in rabbits.

    Science.gov (United States)

    Scott, D F; Kling, J M; Kirkland, J J; Best, G K

    1983-01-01

    Isolates of Staphylococcus aureus from patients with toxic shock syndrome (TSS) were compared with non-TSS strains of S. aureus with respect to their virulence in rabbits. When the organisms were injected into subcutaneous chambers (perforated polyethylene golf balls) to assess virulence, a rapid mortality was observed with TSS but not with non-TSS strains. Of 16 TSS strains, 11 caused lethal infections in 33 rabbits tested, and none of the 5 control strains caused mortality in 10 rabbits. This evidence of enhanced virulence associated with TSS strains did not appear to be associated with the size of the inoculum. In addition, strains which produced lethal infections appeared to do so despite a reduction in the size of the original inoculum during the first 24 h. All of the TSS strains and none of the non-TSS strains elaborated extracellular protein(s) with a neutral pI when grown in a dialyzed beef heart medium. No other physiological difference was noted between the TSS and non-TSS strains.

  11. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy

    Science.gov (United States)

    Loske, Achim M.; Prieto, Fernando E.; Fernández, Francisco; van Cauwelaert, Javier

    2002-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 µs is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 µs using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator.

  12. Thermalization and prethermalization in isolated quantum systems: a theoretical overview

    Science.gov (United States)

    Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito

    2018-06-01

    The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.

  13. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.

    Science.gov (United States)

    Schurr, M J; Deretic, V

    1997-04-01

    Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsible for the production of the exopolysaccharide alginate resulting in mucoid colony morphology. In Escherichia coli, a close homologue of AIgU, sigma(E), directs transcription of several genes under conditions of extreme heat shock. Here we examined whether AIgU, besides its role in controlling alginate production, affects the heat-shock response in P. aeruginosa. The P. aeruginosa rpoH gene encoding a homologue of the major heat-shock sigma factor, sigma32, was found to be transcribed by AIgU containing RNA polymerase from one of its promoters (P3) identified in this study. Transcription of rpoH from P3 was elevated upon exposure to extreme heat shock in an aIgU-dependent manner. Importantly, the AIgU-dependent promoter of rpoH was found to be activated in mucoid mucA mutants. In keeping with this observation, introduction of a wild-type mucA gene abrogated AIgU-dependent rpoH transcription in mucoid P. aeruginosa laboratory isolates and CF isolates. These results suggest that conversion to mucoidy and the heat-shock response are co-ordinately regulated in P. aeruginosa. The simultaneous activation of both systems in mucA mutants, selected in the lungs of CF patients, may have significance for the inflammatory processes characteristic of the establishment of chronic infection and ensuing clinical deterioration in CF.

  14. Isolated systems with wind power. An implementation guideline

    DEFF Research Database (Denmark)

    Clausen, Niels-Erik; Bindner, Henrik W.; Frandsen, Sten Tronæs

    2001-01-01

    The overall objective of this research project is to study the development of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated communities. So far most studies of isolated systems with wind power have beencase-oriented and it has proven difficult...... feasibility of isolated power supply systems with wind energy. General guidelines and checklists on which facts and data are needed to carry out a projectfeasibility analysis are presented as well as guidelines how to carry out the project feasibility study and the environmental analysis. The report outlines...... the results of the project as a set of proposed guidelines to be applied when developing a projectcontaining an application of wind in an isolated power system. It is the author's hope that this will facilitate the development of projects and enhance electrification of small rural communities in developing...

  15. Sepsis and Septic Shock Strategies.

    Science.gov (United States)

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study

    OpenAIRE

    Prabhudesai, Sumant; Kanjani, Amruta; Bhagat, Isha; Ravikumar, Karnam G.; Ramachandran, Bala

    2015-01-01

    Aims: The aim of this prospective, observational study was to determine the accuracy of a real-time continuous glucose monitoring system (CGMS) in children with septic shock. Subjects and Methods: Children aged 30 days to 18 years admitted to the Pediatric Intensive Care Unit with septic shock were included. A real-time CGMS sensor was used to obtain interstitial glucose readings. CGMS readings were compared statistically with simultaneous laboratory blood glucose (BG). Results: Nineteen chil...

  17. Systemic Liquidity Shocks and Banking Sector Liquidity Characteristics on the Eve of Liquidity Coverage Ratio Application - The Case of the Czech Republic1

    Directory of Open Access Journals (Sweden)

    Brůna Karel

    2016-01-01

    Full Text Available The paper contains an analysis of the economic and regulatory concept of bank liquidity in the context of systemic liquidity shock. A formal model analysis shows that the application of liquidity coverage ratio (LCR based on Basel III will lead to a significant adaptation of banks liquidity management. LCR causes a change in bank’s liquidity allocation and funding to be less effective and more costly and restrictive for providing credits comparing with economic determinants. It is demonstrated that the application of LCR underestimates actual liquidity position of a bank and leads to allocation ineffectiveness. The empirical part contains simulation of impacts of systemic liquidity shock on the banking sector’s ability to withstand the unfavourable credit shock while solvency is maintained. The results confirm the robustness of the Czech banking system ensuing from the systemic surplus of liquidity, high volume of bank capital and its high profitability. The estimations of the VAR model show that the relations between liquidity characteristics of banks, sources of aggregate liquidity shock, interbank market illiquidity and the credit facilities of the Czech National Bank are relatively weak, supporting the conclusion that the banks face liquidity shocks of non-persistent character.

  18. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  19. Isolation contactor state control system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  20. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  1. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  2. Improvement of the vibration isolation system for TAMA300

    CERN Document Server

    Takahashi, R

    2002-01-01

    The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

  3. Offshoring as an Exogenous Shock to the Services Production System

    DEFF Research Database (Denmark)

    Brandl, Kristin; Mol, Michael; Petersen, Bent

    Production of services involves three key elements, an output for the client, resources of a provider and task execution. Offshoring of services acts as an exogenous shock to such a production system. Using multiple case methodology we investigate how task output, execution, and resources change...... as a consequence of offshoring and particularly how these elements are realigned. The cases reveal substantial managerial challenges in the alignment process prompted by a relocation of service task execution to an emerging economy. In particular, we find that instead of some set of capabilities that proactively...

  4. Tension pneumocephalus mimicking septic shock: a case report.

    Science.gov (United States)

    Miranda, Caroline; Mahta, Ali; Wheeler, Lee Adam; Tsiouris, A John; Kamel, Hooman

    2018-02-01

    Tension pneumocephalus can lead to rapid neurologic deterioration. We report for the first time its association with aseptic systemic inflammatory response syndrome mimicking septic shock and the efficacy of prompt neurosurgical intervention and critical care support in treating this condition. A 64-year-old man underwent 2-stage olfactory groove meningioma resection. The patient developed altered mental status and gait instability on postoperative day 6. Imaging showed significant pneumocephalus. The patient subsequently developed worsening mental status, respiratory failure, and profound shock requiring multiple vasopressors. Bedside needle decompression, identification and repair of the cranial fossa defect, and critical care support led to improved mental status and reversal of shock and multiorgan dysfunction. Thorough evaluation revealed no evidence of an underlying infection. In this case, tension pneumocephalus incited an aseptic systemic inflammatory response syndrome mimicking septic shock. Prompt neurosurgical correction of pneumocephalus and critical care support not only improved neurologic status, but also reversed shock. Such a complication indicates the importance of close monitoring of patients with progressive pneumocephalus.

  5. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  6. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  7. On a Stochastic Failure Model under Random Shocks

    Science.gov (United States)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  8. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    International Nuclear Information System (INIS)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  9. Vulnerability to shocks in the global seafood trade network

    Science.gov (United States)

    Gephart, Jessica A.; Rovenskaya, Elena; Dieckmann, Ulf; Pace, Michael L.; Brännström, Åke

    2016-03-01

    Trade can allow countries to overcome local or regional losses (shocks) to their food supply, but reliance on international food trade also exposes countries to risks from external perturbations. Countries that are nutritionally or economically dependent on international trade of a commodity may be adversely affected by such shocks. While exposure to shocks has been studied in financial markets, communication networks, and some infrastructure systems, it has received less attention in food-trade networks. Here, we develop a forward shock-propagation model to quantify how trade flows are redistributed under a range of shock scenarios and assess the food-security outcomes by comparing changes in national fish supplies to indices of each country’s nutritional fish dependency. Shock propagation and distribution among regions are modeled on a network of historical bilateral seafood trade data from UN Comtrade using 205 reporting territories grouped into 18 regions. In our model exposure to shocks increases with total imports and the number of import partners. We find that Central and West Africa are the most vulnerable to shocks, with their vulnerability increasing when a willingness-to-pay proxy is included. These findings suggest that countries can reduce their overall vulnerability to shocks by reducing reliance on imports and diversifying food sources. As international seafood trade grows, identifying these types of potential risks and vulnerabilities is important to build a more resilient food system.

  10. Synthesis of Optimal Isolation Systems of Hand-Transmitted Vibration

    Directory of Open Access Journals (Sweden)

    Marek Książek

    1997-01-01

    Full Text Available In this article a procedure is presented for the analytical synthesis of optimal vibration isolation for a hand-arm system subjected to stochastic excitation. A general approach is discussed for a selected vibration isolation criterion. The general procedure is illustrated by analytical examples for different hand-arm systems described by their driving-point impedances. The influence of particular forms of excitation and the structure of the vibroisolated hand-arm systems on the resultant vibration isolation is then discussed. Some numerical examples illustrating the procedure have also been included.

  11. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  12. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  13. Development of Calculation Algorithm for ECCS Kinematic Shock

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Chan; Yoon, Duk-Joo; Ha, Sang-Jun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The void fraction of inverted U-pipes in front of SI(Safety Injection) pumps impact on the pipe system of ECCS(Emergency Core Cooling Systems). This phenomena is called as 'Kinematic Shock'. The purpose of this paper is to achieve the more exactly calculation when the kinematic shock is calculated by simplified equation. The behavior of the void packet of the ECCS pipes is illustrated by the simplified (other name is kinematic shock equation).. The kinematic shock is defined as the depth of total length of void clusters in the pipes of ECCS when the void cluster is continually reached along the part of pipes in vertical direction. In this paper, the simplified equation is evaluated by comparing calculation error each other.]. The more exact methods of calculating the depth of the kinematic shock in ECCS is achieved. The error of kinematic shock calculation is strongly depended on the calculation search gap and the order of Taylor's expansion. From this study, to select the suitable search gap and the suitable calculation order, differential root method, secant method, and Taylor's expansion form are compared one another.

  14. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  15. GEOMETRICAL OPTIMIZATION OF VEHICLE SHOCK ABSORBERS WITH MR FLUID

    OpenAIRE

    ENGIN, Tahsin; PARLAK, Zekeriya; ŞAHIN, Ismail; ÇALLI, Ismail

    2016-01-01

    Magnetorheological (MR) shock absorber have received remarkable attention in the last decade due to being a potential technology to conduct semi-active control in structures and mechanical systems in order to effectively suppress vibration. To develop performance of MR shock absorbers, optimal design of the dampers should be considered. The present study deals with optimal geometrical modeling of a MR shock absorber. Optimal design of the present shock absorber was carried out by using Taguch...

  16. On some properties of shock processes in a ‘natural’ scale

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2016-01-01

    We consider shocks modeling in a ‘natural’ scale which is a discrete scale of natural numbers. A system is subject to the shock process and its survival probability and other relevant characteristics are studied in this scale. It turns out that all relations for the probabilities of interest become much easier in the new scale as compared with the conventional chronological time scale. Furthermore, it does not matter what type of the point process of shocks is considered. The shock processes with delays and the analog of a shot-noise process are discussed. Another example of the application of this concept is presented for systems with finite number of components described by signatures. - Highlights: • A novel approach to systems subject to shock processes is suggested. • Alternative to chronological time, the discrete time scale of natural numbers is considered. • Shock processes with delays and a shot-noise process are discussed in the new alternative scale. • As an application, n-component systems with structures described by signatures is suggested.

  17. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  18. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  19. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  20. Integrated microelectromechanical gyroscope under shock loads

    Science.gov (United States)

    Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.

    2018-01-01

    The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.

  1. Temperature measurements of shock-compressed deuterium

    International Nuclear Information System (INIS)

    Holmes, N.C.; Ross, M.; Nellis, W.J.

    1994-11-01

    The authors measured the temperatures of single and double-shocked D 2 and H 2 up to 85 GPa (0.85 Mbar) and 5,200 K. While single shock temperatures, at pressures to 23 GPa, agree well with previous models, the double shock temperatures are as much as 40% lower than predicted. This is believed to be caused by molecular dissociation, and a new model of the hydrogen EOS at extreme conditions has been developed which correctly predicts their observations. These data and model have important implications for programs which use condensed-phase hydrogen in implosion systems

  2. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  3. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  4. [Septic shock due to infective endocarditis of stimulation system of implantable cardioverter-defibrillator].

    Science.gov (United States)

    Porubčinová, I; Porubčin, S; Stančák, B; Beňa, M; Sabol, F

    2012-01-01

    We present a case of a 60-year old patient hospitalized at the Department of Infectious Diseases and Travel Medicine, Medical faculty of UPJS and L. Pasteurs University Hospital in Kosice with suspected gastroenteritis. The patient was admitted to an intensive care unit because of the signs of septic shock. Within one hour from admission, the patient was administered early goal directed therapy for septic shock. Subsequently, infectious endocarditis of stimulation electrodes and tricuspid valve was identified as the origin of the infection. The stimulation system was then explanted from a stabilized and afebrile patient at the Department of cardiac Surgery of Eastern Slovak Institute of Cardiac and Vascular Diseases in Kosice. This case should emphasise frequently atypical course of this serious disease and the need for early identification of severe sepsis to enable timely management to affect mortality.

  5. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  6. Tension pneumocephalus mimicking septic shock: a case report

    Directory of Open Access Journals (Sweden)

    Caroline Miranda, MD

    2018-02-01

    Full Text Available Tension pneumocephalus can lead to rapid neurologic deterioration. We report for the first time its association with aseptic systemic inflammatory response syndrome mimicking septic shock and the efficacy of prompt neurosurgical intervention and critical care support in treating this condition. A 64-year-old man underwent 2-stage olfactory groove meningioma resection. The patient developed altered mental status and gait instability on postoperative day 6. Imaging showed significant pneumocephalus. The patient subsequently developed worsening mental status, respiratory failure, and profound shock requiring multiple vasopressors. Bedside needle decompression, identification and repair of the cranial fossa defect, and critical care support led to improved mental status and reversal of shock and multiorgan dysfunction. Thorough evaluation revealed no evidence of an underlying infection. In this case, tension pneumocephalus incited an aseptic systemic inflammatory response syndrome mimicking septic shock. Prompt neurosurgical correction of pneumocephalus and critical care support not only improved neurologic status, but also reversed shock. Such a complication indicates the importance of close monitoring of patients with progressive pneumocephalus.

  7. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Soldat, J.K.; Napier, B.A.; Strenge, D.L.; Schreckhise, R.G.; Zimmerman, M.G.

    1981-01-01

    The program for Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) is managed through PNL's Water and Land Resources Department and is funded through the Battelle Office of Nuclear Waste Isolation (ONWI). The Ecological Sciences Department was involved in two subtasks under AEGIS: Dose Methodology Development and Reference Site Initial Analysis (RSIA) for a Salt Dome

  8. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  9. 3D seismic isolation for advanced N.P.P application. Hydraulic 3-Dimensional base-isolation system

    International Nuclear Information System (INIS)

    Shimada, Takahiro; Kashiwazaki, Akihiro; Fujiwaka, Tatsuya; Moro, Satoshi

    2003-01-01

    In Japan, a number of three-dimensional base isolation systems have been studied for application to new nuclear plant concepts such as the FBR, but these effects have not so far yielded practically applicable results. The impeding factor has been the difficulty of obtaining an adequate capacity on the vertical isolator for supporting the mass of an actual structure and for suppressing rocking motion. In this paper, we propose a new three-dimensional base isolation system that should solve the foregoing problem. The system is constituted of a set of hydraulic load-carrying cylinders connected to accumulator units containing a compressed gas, another set of rocking-suppression cylinders connected in series, and a laminated rubber bearing laid under each load-carrying cylinder. The present paper covers a basic examination for applying the proposed system to a commercialized FBR now under development in Japan, together with static and dynamic loading tests performed on a scale model to verify expected system performance. Response and analysis reflecting the test results has indicated the proposed system to be well applicable to the envisaged commercialized FBR. The study was undertaken as part of an R and D project sponsored by the government for realizing a three-dimensional seismic isolation system applicable to future FRB's. (author)

  10. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  11. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  12. Examining platelet-fibrin interactions during traumatic shock in a swine model using platelet contractile force and clot elastic modulus.

    Science.gov (United States)

    White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R

    2011-07-01

    A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt. Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, Pshock, platelet function was preserved, whereas terminal clot elastic modulus was reduced during shock in a manner most consistent with early changes in the mechanical properties of the developing fibrin fiber network.

  13. Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts

    Science.gov (United States)

    Ginn, Starr

    2011-01-01

    The Starr Soft Support isolation system incorporates an automatically reconfigurable aircraft jack into NASA's existing 1-Hertz isolators. This enables an aircraft to float in mid-air without the need for a critical lift during ground vibration testing (GVT), significantly reducing testing risk, time, and costs. Currently incorporating the most advanced technology available, the 60,000-poundcapacity (27-metric-ton) isolation system is used for weight and measurement tests, control-surface free-play tests, and structural mode interaction tests without the need for any major reconfiguration, often saving days of time and significantly reducing labor costs. The Starr Soft Support isolation system consists of an aircraft-jacking device with three jacking points, each of which has an individual motor and accommodates up to 20,000 pounds (9 metric tons) for a total 60,000-pound (27-metric-ton) capacity. The system can be transported to the aircraft by forklift and placed at its jacking points using a pallet jack. The motors power the electric actuators, raising the aircraft above the ground until the landing gear can retract. Inflatable isolators then deploy, enabling the aircraft to float in mid-air, simulating a 1-Hertz free-free boundary condition. Inflatable isolators have been in use at NASA for years, enabling aircraft to literally float unsupported for highly accurate GVT. These isolators must be placed underneath the aircraft for this to occur. Traditionally, this is achieved by a critical lift a high-risk procedure in which a crane and flexible cord system are used to lift the aircraft. In contrast, the Starr Soft Support isolation system eliminates the need for critical lift by integrating the inflatable isolators into an aircraft jacking system. The system maintains vertical and horizontal isolating capabilities. The aircraft can be rolled onto the system, jacked up, and then the isolators can be inflated and positioned without any personnel needing to work

  14. Nonequilibrium effects on shock-layer radiometry during earth entry.

    Science.gov (United States)

    Arnold, J. O.; Whiting, E. E.

    1973-01-01

    Radiative enhancement factors for the CN violet and N2(+) first negative band systems caused by nonequilibrium thermochemistry in the shock layer of a blunt-nosed vehicle during earth entry are reported. The results are based on radiometric measurements obtained with the aid of a combustion-driven shock tube. The technique of converting the shock-tube measurements into predictions of the enhancement factors for the blunt-body case is described, showing it to be useful for similar applications of other shock-tube measurements.

  15. High-power laser experiments to study collisionless shock generation

    Directory of Open Access Journals (Sweden)

    Sakawa Y.

    2013-11-01

    Full Text Available A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics.

  16. Isolation, pointing, and suppression (IPS) system for high-performance spacecraft

    Science.gov (United States)

    Hindle, Tim; Davis, Torey; Fischer, Jim

    2007-04-01

    Passive mechanical isolation is often times the first step taken to remedy vibration issues on-board a spacecraft. In many cases, this is done with a hexapod of axial members or struts to obtain the desired passive isolation in all six degrees-of-freedom (DOF). In some instances, where the disturbance sources are excessive or the payload is particularly sensitive to vibration, additional steps are taken to improve the performance beyond that of passive isolation. Additional performance or functionality can be obtained with the addition of active control, using a hexapod of hybrid (passive/active) elements at the interface between the payload and the bus. This paper describes Honeywell's Isolation, Pointing, and Suppression (IPS) system. It is a hybrid isolation system designed to isolate a sensitive spacecraft payload with very low passive resonant break frequencies while affording agile independent payload pointing, on-board payload disturbance rejection, and active isolation augmentation. This system is an extension of the work done on Honeywell's previous Vibration Isolation, Steering, and Suppression (VISS) flight experiment. Besides being designed for a different size payload than VISS, the IPS strut includes a dual-stage voice coil design for improved dynamic range as well as improved low-noise drive electronics. In addition, the IPS struts include integral load cells, gap sensors, and payloadside accelerometers for control and telemetry purposes. The associated system-level control architecture to accomplish these tasks is also new for this program as compared to VISS. A summary of the IPS system, including analysis and hardware design, build, and single axis bipod testing will be reviewed.

  17. Effect of environmental temperature on shock absorption properties of running shoes.

    Science.gov (United States)

    Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A

    2005-05-01

    To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.

  18. Advances in NIF Shock Timing Experiments

    Science.gov (United States)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  19. Shock to the system: Restructuring America's electricity industry

    International Nuclear Information System (INIS)

    Brennan, T.J.; Palmer, K.L.; Kopp, R.J.; Krupnick, A.J.; Stagliano, V.

    1996-01-01

    Recent decades have seen revolutions in communications, finance, and transportation. In a similar way, technological, economic, and political developments are reshaping the US electricity industry. This concise, balanced, and readable primer, produced by a team of economic analysts at Resources for the Future, introduces the concepts, crucial elements, and terminology used in discussions about electricity restructuring. A Shock to the System provides the background necessary to understand the increasing role of competition in electricity markets. The authors present the history of public policy regarding electricity, identify the significant proposals for implementing competition, and examine their potential consequences for utility regulation, industry structure, cost recovery, and the environment. This volume is an instructive guide to the decisions that electricity providers, customers, and policy makers will face, what forms the decisions are likely to take, and what the long-term ramifications may be

  20. Isolated systems with wind power. An implementation guideline

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, N.E.; Bindner, H.; Frandsen, S.; Hansen, J.C.; Hansen, L.H.; Lundsager, P.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. So far most studies of isolated systems with wind power have been case-oriented and it has proven difficult to extend results from one project to another, not least due to the strong individuality that has characterised such systems in design and implementation. In the present report a unified and generally applicable approach is attempted in order to support a fair assessment of the technical and economical feasibility of isolated power supply systems with wind energy. General guidelines and checklists on which facts and data are needed to carry out a project feasibility analysis are presented as well as guidelines how to carry out the project feasibility study and the environmental analysis. The report outlines the results of the project as a set of proposed guidelines to be applied when developing a project containing an application of wind in an isolated power system. It is the author's hope that this will facilitate the development of projects and enhance electrification of small rural communities in developing countries. (au)

  1. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    International Nuclear Information System (INIS)

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  2. The asymmetric effects of oil price and monetary policy shocks. A nonlinear VAR approach

    International Nuclear Information System (INIS)

    Rahman, Sajjadur; Serletis, Apostolos

    2010-01-01

    In this paper we investigate the asymmetric effects of oil price shocks and monetary policy on macroeconomic activity, using monthly data for the United States, over the period from 1983:1 to 2008:12. In doing so, we use a logistic smooth transition vector autoregression (VAR), as detailed in Terasvirta and Anderson (1992) and Weise (1999), and make a distinction between two oil price volatility regimes (high and low), using the realized oil price volatility as a switching variable. We isolate the effects of oil price and monetary policy shocks and their asymmetry on output growth and, following Koop et al. (1996) and Weise (1999), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) to trace the effects of independent shocks on the conditional means of the variables. Our results suggest that in addition to the price of oil, oil price volatility has an impact on macroeconomic activity and that monetary policy is not only reinforcing the effects of oil price shocks on output, it is also contributing to the asymmetric response of output to oil price shocks. (author)

  3. The asymmetric effects of oil price and monetary policy shocks. A nonlinear VAR approach

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sajjadur [Department of Economics, University of Saskatchewan, Saskatoon (Canada); Serletis, Apostolos [Department of Economics, University of Calgary, Calgary (Canada)

    2010-11-15

    In this paper we investigate the asymmetric effects of oil price shocks and monetary policy on macroeconomic activity, using monthly data for the United States, over the period from 1983:1 to 2008:12. In doing so, we use a logistic smooth transition vector autoregression (VAR), as detailed in Terasvirta and Anderson (1992) and Weise (1999), and make a distinction between two oil price volatility regimes (high and low), using the realized oil price volatility as a switching variable. We isolate the effects of oil price and monetary policy shocks and their asymmetry on output growth and, following Koop et al. (1996) and Weise (1999), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) to trace the effects of independent shocks on the conditional means of the variables. Our results suggest that in addition to the price of oil, oil price volatility has an impact on macroeconomic activity and that monetary policy is not only reinforcing the effects of oil price shocks on output, it is also contributing to the asymmetric response of output to oil price shocks. (author)

  4. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M

    2012-09-12

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  5. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M; Trillo, S; Fratalocchi, Andrea

    2012-01-01

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  6. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    Science.gov (United States)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The

  7. Banking System Shocks and REIT Performance

    OpenAIRE

    Olliges, Jan-Willem; Raudszus, Malte H.; Mueller, Glenn R.

    2013-01-01

    The purpose of this study is to directly contrast the REIT market’s stock return response to bank failures versus bank bailouts. The non-negativity constraints of the GARCH model measuring risk dynamics are mitigated by the use of the EGARCH model. EGARCH accounts for non-symmetrical effects of risk adjustments in response to return shocks. Previous research shows that bank failures cause a positive abnormal return effect for REITs. This confirms the expectation that during crises, market par...

  8. Internal defibrillation: pain perception of low energy shocks.

    Science.gov (United States)

    Steinhaus, David M; Cardinal, Debbie S; Mongeon, Luc; Musley, Shailesh Kumar; Foley, Laura; Corrigan, Susie

    2002-07-01

    Recently, device-based low energy cardoversion shocks have been used as therapy for AF. However, discomfort from internal low energy electrical shocks is poorly understood. The aim of this study was to evaluate pain perception with low energy internal discharges. Eighteen patients with ICD devices for malignant ventricular arrhythmias were recruited to receive shocks of 0.4 and 2 J in the nonsedated state. Discharges were delivered in a blinded, random order and questionnaires were used to determine discomfort levels and tolerability. Patients perceived discharges at these energies as relatively uncomfortable, averaging a score of 7.3 on a discomfort scale of 0-10, and could not distinguish 0.4-J shocks from 2-J shocks. Second shocks were perceived as more uncomfortable than initial discharges, regardless of the order in which the shocks were delivered. Despite the perceived discomfort, 83% of patients stated that they would tolerate discharges of this magnitude once per month, and 44% would tolerate weekly discharges. Patients perceive low energy discharges as painful and cannot distinguish between shocks of 0.4 and 2 J. The results suggest that ICD systems developed to treat atrial tachyarrhythmias should minimize the number of shocks delivered to terminate an atrial tachyarrhythmia episode. The majority of the patients tolerated low energy shocks provided the discharges are infrequent (once per month).

  9. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  10. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  11. Shock Protection of Portable Electronic Products: Shock Response Spectrum, Damage Boundary Approach, and Beyond

    Directory of Open Access Journals (Sweden)

    Suresh Goyal

    1997-01-01

    Full Text Available The pervasive shock response spectrum (SRS and damage boundary methods for evaluating product fragility and designing external cushioning for shock protection are described in detail with references to the best available literature. Underlying assumptions are carefully reviewed and the central message of the SRS is highlighted, particularly as it relates to standardized drop testing. Shortcomings of these methods are discussed, and the results are extended to apply to more general systems. Finally some general packaging and shock-mounting strategies are discussed in the context of protecting a fragile disk drive in a notebook computer, although the conclusions apply to other products as well. For example, exterior only cushioning (with low restitution to reduce subsequent impacts will provide a slenderer form factor than the next best strategy: interior cushioning with a “dead” hard outer shell.

  12. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    Science.gov (United States)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  13. Charging system with galvanic isolation and multiple operating modes

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  14. On terminating Poisson processes in some shock models

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Maxim, E-mail: FinkelMI@ufs.ac.z [Department of Mathematical Statistics, University of the Free State, Bloemfontein (South Africa); Max Planck Institute for Demographic Research, Rostock (Germany); Marais, Francois, E-mail: fmarais@csc.co [CSC, Cape Town (South Africa)

    2010-08-15

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  15. On terminating Poisson processes in some shock models

    International Nuclear Information System (INIS)

    Finkelstein, Maxim; Marais, Francois

    2010-01-01

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  16. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  17. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  18. Influenza A/H1N1 septic shock in a patient with systemic lupus erythematosus. A case report

    Directory of Open Access Journals (Sweden)

    Tselios Konstantinos

    2011-12-01

    Full Text Available Abstract Background Immunocompromised patients, such as systemic lupus erythematosus (SLE sufferers have an increased risk of mortality, following influenza infection. In the recent pandemic, influenza A H1NI virus caused 18449 deaths, mainly because of adult respiratory distress syndrome or bacterial co-infections. Case Presentation In this case report, an SLE patient with viral-induced septic shock, without overt pulmonary involvement, is discussed. The patient was administered oseltamivir and supportive treatment, including wide-spectrum antibiotics, vasopressors and steroids, according to the guidelines proposed for bacterial sepsis and septic shock. She finally survived and experienced a lupus flare soon after intensive care unit (ICU discharge. Conclusions To our knowledge, this is the first case to report severe septic shock from influenza A/H1N1 virus, without overt pulmonary involvement.

  19. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  20. Is shock index associated with outcome in children with sepsis/septic shock?*.

    Science.gov (United States)

    Yasaka, Yuki; Khemani, Robinder G; Markovitz, Barry P

    2013-10-01

    To investigate the association between PICU shock index (the ratio of heart rate to systolic blood pressure) and PICU mortality in children with sepsis/septic shock. To explore cutoff values for shock index for ICU mortality, how change in shock index over the first 6 hours of ICU admission is associated with outcome, and how the use of vasoactive therapy may affect shock index and its association with outcome. Retrospective cohort. Single-center tertiary PICU. Five hundred forty-four children with the diagnosis of sepsis/septic shock. None. From January 2003 to December 2009, 544 children met International Pediatric Sepsis Consensus Conference of 2005 criteria for sepsis/septic shock. Overall mortality was 23.7%. Among all patients, hourly shock index was associated with mortality: odds ratio of ICU mortality at 0 hour, 1.08, 95% CI (1.04-1.12); odds ratio at 1 hour, 1.09 (1.04-1.13); odds ratio at 2 hours, 1.09 (1.05-1.13); and odds ratio at 6 hours, 1.11 (1.06-1.15). When stratified by age, early shock index was associated with mortality only in children 1-3 and more than or equal to 12 years old. Area under the receiver operating characteristic curve in age 1-3 and more than or equal to 12 years old for shock index at admission was 0.69 (95% CI, 0.58-0.80) and 0.62 (95% CI, 0.52-0.72) respectively, indicating a fair predictive marker. Although higher shock index was associated with increased risk of mortality, there was no particular cutoff value with adequate positive or negative likelihood ratios to identify mortality in any age group of children. The improvement of shock index in the first 6 hours of ICU admission was not associated with outcome when analyzed in all patients. However, among patients whose shock index were above the 50th percentile at ICU admission for each age group, improvement of shock index was associated with lower ICU mortality in children between 1-3 and more than or equal to 12 years old (p = 0.02 and p = 0.03, respectively). When

  1. Proposal for a method to estimate nutrient shock effects in bacteria

    Directory of Open Access Journals (Sweden)

    Azevedo Nuno F

    2012-08-01

    Full Text Available Abstract Background Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp. and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525 were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A and rich nutrient medium (TSA. The average improvement (A.I. of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. Conclusions This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration.

  2. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  3. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  4. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  5. Effect of isolated hepatic ischemia on organic anion clearance and oxidative metabolism.

    Science.gov (United States)

    Minard, G; Bynoe, R; Wood, G C; Fabian, T C; Croce, M; Kudsk, K A

    1992-04-01

    Hepatic failure is frequently seen following severe hemorrhagic shock, sepsis, and trauma. Clearance of various drugs has been used to evaluate hepatocellular dysfunction, including indocyanine green (ICG), an organic anionic dye that is transported similarly to bilirubin, and antipyrine (AP), a marker of oxidative phosphorylation. Previous investigators have noted a decrease in ICG excretion following systemic hemorrhage. The effect of isolated hepatic ischemia on the clearances of ICG and AP was studied in 16 pigs after 90 minutes of vascular occlusion to the liver. Antipyrine clearance decreased almost 50% from baseline values at 24 and 72 hours after the ischemia procedure, indicating a significant depression in the cytochrome P-450 system. On the other hand, ICG clearance did not change significantly. In conclusion, ICG clearance is not depressed after isolated hepatic ischemia in pigs. Changes in organic anion clearance after systemic hemorrhage may be because of release of toxic products from ischemic peripheral tissue.

  6. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  7. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  8. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  9. Shock timing technique for the National Ignition Facility

    International Nuclear Information System (INIS)

    Munro, David H.; Celliers, Peter M.; Collins, Gilbert W.; Gold, David M.; Silva, Luiz B. da; Haan, Steven W.; Cauble, Robert C.; Hammel, Bruce A.; Hsing, Warren W.

    2001-01-01

    Among the final shots at the Nova laser [Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] was a series testing the VISAR (velocity interferometry system for any reflector) technique that will be the primary diagnostic for timing the shocks in a NIF (National Ignition Facility) ignition capsule. At Nova, the VISAR technique worked over the range of shock strengths and with the precision required for the NIF shock timing job--shock velocities in liquid D 2 from 12 to 65 μm/ns with better than 2% accuracy. VISAR images showed stronger shocks overtaking weaker ones, which is the basis of the plan for setting the pulse shape for the NIF ignition campaign. The technique is so precise that VISAR measurements may also play a role in certifying beam-to-beam and shot-to-shot repeatability of NIF laser pulses

  10. Shock propagation in a heterogeneous medium

    International Nuclear Information System (INIS)

    Elbaz, D.

    2011-01-01

    In the frame of the inertial confinement fusion in direct drive, the use of foams as ablator allows the reduction of hydrodynamic instabilities created on the target by the direct laser irradiation. The foam is made up of carbon (CH) fibers impregnated of cryogenic deuterium-tritium (DT). In the past, studies have been carried out considering this foam to be a homogeneous medium. Yet, the foam presents heterogeneous features. We study the effects of this heterogeneity on the shock velocity when the laser irradiates the target. Thanks to experimental and numerical studies, we show that the shock propagates faster in the heterogeneous medium than in the homogeneous one with the same averaged density. This velocity gap depends on the presence rate of the CH fibers in the foam, the density ratio, the adiabatic coefficient and the foam geometry. We model the foam by different ways, more and more complex. The shock velocity modification is due to the baroclinicity which, during the interaction between the shock front and the interface, creates a vorticity deposition, responsible for the shock acceleration. Accordingly, an interface, which is plane and perpendicular to the front shock, maximizes the vorticity deposition and increases the velocity gaps between heterogeneous and homogeneous media. We found a correlation between the kinetic energy behind the shock front and the velocities relative difference. We compared our results with two analytical models. However, the system is not closed, so we can't for the moment develop a predictive model. (author) [fr

  11. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  12. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  13. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  14. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  15. Total Isolation Status Monitoring and Management System by CAD Assisted Technology

    International Nuclear Information System (INIS)

    Nakamura, Masaaki

    1995-01-01

    Isolation tasks in a nuclear power station require high confidence and quick response particularly during the annual inspection when the equipment must be checked in a safe and planned manner. To realize these advanced isolation works, JAPC has developed TOtal Isolation Status Monitoring and Management System using CAD Assisted Technology. This system, TOMM-CAT, developed under the concept of 'User friendly advanced man-machine interface', allows planning and management to be performed on a CRT display. TOMM-CAT allows isolation tasks to be performed accurately and efficiently in conjunction with equipment information from the existing Job Order Management System, which runs on the station host computer. (author)

  16. The Risk of Termination Shock From Solar Geoengineering

    Science.gov (United States)

    Parker, Andy; Irvine, Peter J.

    2018-03-01

    If solar geoengineering were to be deployed so as to mask a high level of global warming, and then stopped suddenly, there would be a rapid and damaging rise in temperatures. This effect is often referred to as termination shock, and it is an influential concept. Based on studies of its potential impacts, commentators often cite termination shock as one of the greatest risks of solar geoengineering. However, there has been little consideration of the likelihood of termination shock, so that conclusions about its risk are premature. This paper explores the physical characteristics of termination shock, then uses simple scenario analysis to plot out the pathways by which different driver events (such as terrorist attacks, natural disasters, or political action) could lead to termination. It then considers where timely policies could intervene to avert termination shock. We conclude that some relatively simple policies could protect a solar geoengineering system against most of the plausible drivers. If backup deployment hardware were maintained and if solar geoengineering were implemented by agreement among just a few powerful countries, then the system should be resilient against all but the most extreme catastrophes. If this analysis is correct, then termination shock should be much less likely, and therefore much less of a risk, than has previously been assumed. Much more sophisticated scenario analysis—going beyond simulations purely of worst-case scenarios—will be needed to allow for more insightful policy conclusions.

  17. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  18. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  19. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  20. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks

    Science.gov (United States)

    Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.

    2017-09-01

    Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached

  1. Adiabatic invariants in stellar dynamics. 2: Gravitational shocking

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.

  2. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  3. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  4. Thermodynamic laws in isolated systems.

    Science.gov (United States)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  5. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  6. LIGS measurements in the nozzle reservoir of a free-piston shock tunnel

    Science.gov (United States)

    Altenhöfer, P.; Sander, T.; Koroll, F.; Mundt, Ch.

    2018-02-01

    Free-piston shock tunnels are ground-based test facilities allowing the simulation of reentry flow conditions in a simple and cost-efficient way. For a better understanding of the processes occurring in a shock tunnel as well as for an optimal comparability of experimental data gained in shock tunnels to numerical simulations, it is highly desirable to have the best possible characterization of the generated test gas flows. This paper describes the final step of the development of a laser-induced grating spectroscopy (LIGS) system capable of measuring the temperature in the nozzle reservoir of a free-piston shock tunnel during tests: the successful adaptation of the measurement system to the shock tunnel. Preliminary measurements were taken with a high-speed camera and a LED lamp in order to investigate the optical transmissibility of the measurement volume during tests. The results helped to successfully measure LIGS signals in shock tube mode and shock tunnel mode in dry air seeded with NO. For the shock tube mode, six successful measurements for a shock Mach number of about 2.35 were taken in total, two of them behind the incoming shock (p ≈ 1 MPa, T ≈ 600 K) and four after the passing of the reflected shock (p ≈ 4 MPa, T ≈ 1000 K). For five of the six measurements, the derived temperatures were within a deviation range of 6% to a reference value calculated from measured shock speed. The uncertainty estimated was less than or equal to 3.5% for all six measurements. Two LIGS signals from measurements behind the reflected shock in shock tunnel mode were analyzed in detail. One of the signals allowed an unambiguous derivation of the temperature under the conditions of a shock with Mach 2.7 (p ≈ 5 MPa, T ≈ 1200 K, deviation 0.5% , uncertainty 4.9% ).

  7. Electronic isolators used in safety systems of US nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, J.R.

    1986-01-01

    An evaluation program has been conducted for electronic isolators used in safety systems of US nuclear power plants. As a result of the program, some recommendations are made for test methods that can be used to ensure that isolation devices are being qualified adequately to satisfy IEEE-279 requirements. These recommendations are based on studies made on National Standards; conversations held with utility personnel, Nuclear Steam System Suppliers, Architect Engineers, and the isolator vendor staff; and analysis of actual tests performed on sample isolators

  8. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  9. Deinococcus gobiensis cold shock protein improves salt stress tolerance of escherichia coli

    International Nuclear Information System (INIS)

    Jiang Shijie; Wang Jin; Yang Mingkun; Chen Ming; Zhang Wei; Luo Xuegang

    2013-01-01

    The Deinococcus gobiensis I-0, an extremely radiation-resistant bacterium, isolated from the Gobi, has superior resistance to abiotic stress (e.g radiation, oxidation, dehydration and so on). The two cold-shock proteins encoded by csp1 (Dgo_CA1136) and csp2 (Dgo_PA0041) were identified in the complete genome sequence of D. gobiensis. In this study, we showed that D. gobiensis Csp1 protected Escherichia coli cells against cold shock and other abiotic stresses such as salt and osmotic shocks. The quantitative real-time PCR assay shows that the expression of trehalose synthase (otsA, otsB) was up-regulated remarkably under salt stress in the csp1-expressing strain, while no difference in the expression of the genes involved in trehalose degradation (treB and treC). The results suggested that Csp1 caused the accumulation of the trehalose was a major feature for improving tolerance to salt stress in E. coli. (authors)

  10. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    Science.gov (United States)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  11. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  12. Multi-shock Shield Performance at 16.5 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Davis, B. A.

    2014-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multi-shock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multi-shock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multi-shock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multi-shock system will be discussed along with considerations for deployment and improvement.

  13. Development of a General Shocked-Materials-Response Description for Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Valone

    2000-07-01

    This report outlines broad modeling issues pertaining to polymeric materials behavior under detonation conditions. Models applicable system wide are necessary to cope with the broad range of polymers and complex composite forms that can appear in Laboratory weapons systems. Nine major topics are discussed to span the breadth of materials, forms, and physical phenomena encountered when shocking polymers and foams over wide ranges of temperatures, pressures, shock strengths, confinement conditions, and geometries. The recommendations for directions of more intensive investigation consider physical fidelity, computational complexity, and application over widely varying physical conditions of temperature, pressure, and shock strength.

  14. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  15. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  16. A transport equation for the evolution of shock amplitudes along rays

    Directory of Open Access Journals (Sweden)

    Giovanni Russo

    1991-05-01

    Full Text Available A new asymptotic method is derived for the study of the evolution of weak shocks in several dimension. The method is based on the Generalized Wavefront Expansion derived in [1]. In that paper the propagation of a shock into a known background was studied under the assumption that shock is weak, i.e. Mach Number =1+O(ε, ε ≪ 1, and that the perturbation of the field varies over a length scale O(ε. To the lowest order, the shock surface evolves along the rays associated with the unperturbed state. An infinite system of compatibility relations was derived for the jump in the field and its normal derivatives along the shock, but no valid criterion was found for a truncation of the system. Here we show that the infinite hierarchy is equivalent to a single equation that describes the evolution of the shock along the rays. We show that this method gives equivalent results to those obtained by Weakly Nonlinear Geometrical Optics [2].

  17. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Teuta Pilizota

    Full Text Available All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15-20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.

  18. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  19. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  20. Review of relevant studies of isolated systems

    DEFF Research Database (Denmark)

    Hansen, L.H.; Lundsager, P.

    2001-01-01

    The report presents the results of a review of studies relating to integration of wind energy in isolated power supply systems, based on a systematic literature survey. The purpose of the study is to develop a methodology consisting of a set of guidelinesfor wind energy projects in isolated energy...... systems and a set of tools and models that are operational on an engineering level. The review is based on a literature search in the ETDE Energy Database with a main search covering the period 7/88 to 6/97 andsupplemented by partial update periods. A few newer references have been included in the review...... have been organised according to the following keywords: methods & guides, economics, concept ofapplication, system solutions, case studies, financial programmes, dedicated software tools. None of the found references presents methods or tools that contradict the philosophy of Risø's methodology...

  1. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  2. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  3. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  4. Nonlinear damping based semi-active building isolation system

    Science.gov (United States)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  5. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Justinas Kuncė

    2012-12-01

    Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

  6. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  7. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    Science.gov (United States)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  8. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  9. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  10. Sensitivity studies of a seismically isolated system to low frequency amplification

    International Nuclear Information System (INIS)

    Wu, T.S.; Seidensticker, R.W.

    1987-06-01

    Responses of a seismically isolated structure to earthquake motions will depend primarily on the input ground motion and the isolation system frequency. The isolation frequency generally is relatively low when isolating against horizontal ground motions. After installation, the isolation frequency could deviate from its designed value due to aging, manufacturing tolerance etc. In addition, under cettain soil conditions, the input motion could have high energy content at relatively low frequencies. This report covers the first of these two concerns by performing a sensitivity study of the variations in isolation frequency on the responses of a nuclear reactor module incorporated with an isolation system. Results from a number of ground motions have shown that, for most earthquake motions, a higher isolation frequency tends to yield higher maximum acceleration, higher transmitted shear force, and lower relative displacement between the isolated and unisolated parts of the structure. In one of the ground motions considered, a 7% increase in the isolation frequency from its original design value is observed to give over a 22% increase in the transmitted shear force. Other ground motions, especially those exhibiting sharp rise in spectral accelerations in the vicinity of the designed isolated frequency, yield responses following the same general trend

  11. Experimental chaos in nonlinear vibration isolation system

    International Nuclear Information System (INIS)

    Lou Jingjun; Zhu Shijian; He Lin; He Qiwei

    2009-01-01

    The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.

  12. Progress in ISOL target-ion source systems

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. [Institut Laue Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland)], E-mail: koester@ill.fr; Arndt, O. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Bouquerel, E.; Fedoseyev, V.N. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Franberg, H. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joinet, A. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Centre d' Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Jost, C. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Kerkines, I.S.K. [Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Department of Chemistry, Zografou 157 71, GR (Greece); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany)

    2008-10-15

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  13. Progress in ISOL target-ion source systems

    International Nuclear Information System (INIS)

    Koester, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V.N.; Franberg, H.; Joinet, A.; Jost, C.; Kerkines, I.S.K.; Kirchner, R.

    2008-01-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  14. A progress report on an isolated Darrieus Wind Electrical System

    International Nuclear Information System (INIS)

    Katzberg, J.D.; Stewart, W.D.; Berwald, H.

    1991-01-01

    This paper discusses an isolated electrical generation system powered by a Darrieus Wind Turbine nearing completion on the farm of W. D. Stewart near Arcola (NE 5-9-4 W2). This is providing the University of Regina with a unique facility for the study of the economics and operation of isolated wind power systems, and for investigating the control and dynamics of such systems and alternatives for blade materials and coverings

  15. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  16. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  17. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    Science.gov (United States)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  18. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion.

    Science.gov (United States)

    Xue, Yuquan; Xu, Zhibin; Chen, Haiwen; Gan, Weimin; Chong, Tie

    2017-07-01

    To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.

  19. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems.

    Science.gov (United States)

    Koskinen, R; Ali-Vehmas, T; Kämpfer, P; Laurikkala, M; Tsitko, I; Kostyal, E; Atroshi, F; Salkinoja-Salonen, M

    2000-10-01

    Sphingomonas species were commonly isolated from biofilms in drinking water distribution systems in Finland (three water meters) and Sweden (five water taps in different buildings). The Sphingomonas isolates (n = 38) were characterized by chemotaxonomic, physiological and phylogenetic methods. Fifteen isolates were designated to species Sphingomonas aromaticivorans, seven isolates to S. subterranea, two isolates to S. xenophaga and one isolate to S. stygia. Thirteen isolates represented one or more new species of Sphingomonas. Thirty-three isolates out of 38 grew at 5 degrees C on trypticase soy broth agar (TSBA) and may therefore proliferate in the Nordic drinking water pipeline where the temperature typically ranges from 2 to 12 degrees C. Thirty-three isolates out of 38 grew at 37 degrees C on TSBA and 15 isolates also grew on blood agar at 37 degrees C. Considering the potentially pathogenic features of sphingomonas, their presence in drinking water distribution systems may not be desirable.

  20. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  1. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  2. Isolated heart models: cardiovascular system studies and technological advances.

    Science.gov (United States)

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  3. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  4. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  5. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  6. Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test

    International Nuclear Information System (INIS)

    Ferrell, P.C.; Moody, D.A.

    1995-10-01

    This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ''Part 71'' (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G's at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G's was not exceeded in any test from a free drop height of 457 mm (18 in.)

  7. Sex differences in the outcome of juvenile social isolation on HPA axis function in rats.

    Science.gov (United States)

    Pisu, M G; Garau, A; Boero, G; Biggio, F; Pibiri, V; Dore, R; Locci, V; Paci, E; Porcu, P; Serra, M

    2016-04-21

    Women are more likely than men to suffer from anxiety disorders and major depression. These disorders share hyperresponsiveness to stress as an etiological factor. Thus, sex differences in brain arousal systems and their regulation by chronic stress may account for the increased vulnerability to these disorders in women. Social isolation is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like and depressive-like behaviors. Here we investigated the sex difference in the effects of post-weaning social isolation on acute stress sensitivity and behavior in rats. In both sexes, social isolation at weaning reduced basal levels of the neuroactive steroid allopregnanolone in the brain and of corticosterone in plasma. Moreover, acute stress increased plasma corticosterone levels in both group-housed and socially isolated male and female rats; however this effect was greater in male than female rats subjected to social isolation. Intriguingly, group-housed female rats showed no change in plasma and brain levels of allopregnanolone after acute foot-shock stress. The absence of stress-induced effects on allopregnanolone synthesis might be due to the physiologically higher levels of this hormone in females vs. males. Accordingly, increasing allopregnanolone levels in male rats blunted the response to foot-shock stress in these animals. Socially isolated male, but not female, rats also display depressive-like behavior and increased hippocampal brain-derived neurotrophic factor (BDNF). The ovarian steroids could "buffer" the effect of this adverse experience in females on these parameters. Finally, the dexamethasone (DEX) suppression test indicated that the chronic stress associated with social isolation impairs feedback inhibition in both sexes in which an increase in the abundance of glucocorticoid receptors (GRs) in the hippocampus was found. Altogether, these results demonstrate that social isolation affects neuroendocrine

  8. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  9. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  10. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  11. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  12. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  13. Glovebox-contained forty-millimeter gun system for the study of one-dimensional shock waves in toxic materials

    International Nuclear Information System (INIS)

    Honodel, C.A.

    1975-01-01

    A new gun system is being constructed at the Lawrence Livermore Laboratory for studies of the behavior of toxic materials under shock-loaded conditions. Due to the extreme toxicity of some materials, such as plutonium, the entire gun system must be enclosed in gloveboxes. Some of the experimental requirements that affected the design of the system, various diagnostic techniques that will be employed with the system, and some details of the final design that is presently under assembly are presented

  14. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  15. Produção de enterotoxinas e da toxina da síndrome do choque tóxico por cepas de Staphylococcus aureus isoladas na mastite bovina Production of enterotoxins and toxic shock syndrome toxin by Staphylococcus aureus strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    A. Nader Filho

    2007-10-01

    Full Text Available A total of 72 strains of Staphylococcus aureus were examined for the production of staphylococcal enterotoxins (SE A, B, C, D and toxic shock syndrome toxin (TSST-1. The strains were isolated from milk samples from cows with mastitis in dairy herds of São Paulo State, Brazil. Off 72 isolates, 38 (52.8% produced SEA, 38 (52.8% SEB, 32 (44.4% SED, 28 (38.9% SEC and 27 (37.5% TSST-1. From the 72 strains, 66 (91.7% produced, at least, one or more toxin, including TSST-1.

  16. The Impact of the Sepsis-3 Septic Shock Definition on Previously Defined Septic Shock Patients.

    Science.gov (United States)

    Sterling, Sarah A; Puskarich, Michael A; Glass, Andrew F; Guirgis, Faheem; Jones, Alan E

    2017-09-01

    The Third International Consensus Definitions Task Force (Sepsis-3) recently recommended changes to the definitions of sepsis. The impact of these changes remains unclear. Our objective was to determine the outcomes of patients meeting Sepsis-3 septic shock criteria versus patients meeting the "old" (1991) criteria of septic shock only. Secondary analysis of two clinical trials of early septic shock resuscitation. Large academic emergency departments in the United States. Patients with suspected infection, more than or equal to two systemic inflammatory response syndrome criteria, and systolic blood pressure less than 90 mm Hg after fluid resuscitation. Patients were further categorized as Sepsis-3 septic shock if they demonstrated hypotension, received vasopressors, and exhibited a lactate greater than 2 mmol/L. We compared in-hospital mortality in patients who met the old definition only with those who met the Sepsis-3 criteria. Four hundred seventy patients were included in the present analysis. Two hundred (42.5%) met Sepsis-3 criteria, whereas 270 (57.4%) met only the old definition. Patients meeting Sepsis-3 criteria demonstrated higher severity of illness by Sequential Organ Failure Assessment score (9 vs 5; p definition demonstrated significant mortality benefit following implementation of a quantitative resuscitation protocol (35% vs 10%; p = 0.006). In this analysis, 57% of patients meeting old definition for septic shock did not meet Sepsis-3 criteria. Although Sepsis-3 criteria identified a group of patients with increased organ failure and higher mortality, those patients who met the old criteria and not Sepsis-3 criteria still demonstrated significant organ failure and 14% mortality rate.

  17. A preventive maintenance policy based on dependent two-stage deterioration and external shocks

    International Nuclear Information System (INIS)

    Yang, Li; Ma, Xiaobing; Peng, Rui; Zhai, Qingqing; Zhao, Yu

    2017-01-01

    This paper proposes a preventive maintenance policy for a single-unit system whose failure has two competing and dependent causes, i.e., internal deterioration and sudden shocks. The internal failure process is divided into two stages, i.e. normal and defective. Shocks arrive according to a non-homogeneous Poisson process (NHPP), leading to the failure of the system immediately. The occurrence rate of a shock is affected by the state of the system. Both an age-based replacement and finite number of periodic inspections are schemed simultaneously to deal with the competing failures. The objective of this study is to determine the optimal preventive replacement interval, inspection interval and number of inspections such that the expected cost per unit time is minimized. A case study on oil pipeline maintenance is presented to illustrate the maintenance policy. - Highlights: • A maintenance model based on two-stage deterioration and sudden shocks is developed. • The impact of internal system state on external shock process is studied. • A new preventive maintenance strategy combining age-based replacements and periodic inspections is proposed. • Postponed replacement of a defective system is provided by restricting the number of inspections.

  18. Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes

    Energy Technology Data Exchange (ETDEWEB)

    Tschauner, Oliver; Asimow, Paul; Kostandova, Natalia; Ahrens, Thomas; Ma, Chi; Sinogeikin, Stanislav; Liu, Zhenxian; Fakra, Sirine; Tamura, Nobumichi

    2009-12-01

    We observed micrometer-sized grains of wadsleyite, a high-pressure phase of (Mg,Fe)2SiO4, in the recovery products of a shock experiment. We infer these grains crystallized from shock-generated melt over a time interval of <1 fs, the maximum time over which our experiment reached and sustained pressure sufficient to stabilize this phase. This rapid crystal growth rate (=1 m/s) suggests that, contrary to the conclusions of previous studies of the occurrence of high-pressure phases in shock-melt veins in strongly shocked meteorites, the growth of high-pressure phases from the melt during shock events is not diffusion-controlled. Another process, such as microturbulent transport, must be active in the crystal growth process. This result implies that the times necessary to crystallize the high-pressure phases in shocked meteorites may correspond to shock pressure durations achieved on impacts between objects 1-5 m in diameter and not, as previously inferred, =1-5 km in diameter. These results may also provide another pathway for syntheses, via shock recovery, of some high-value, high-pressure phases.

  19. Effects of response-shock interval and shock intensity on free-operant avoidance responding in the pigeon1

    Science.gov (United States)

    Klein, Marty; Rilling, Mark

    1972-01-01

    Two experiments investigated free-operant avoidance responding with pigeons using a treadle-pressing response. In Experiment I, pigeons were initially trained on a free-operant avoidance schedule with a response-shock interval of 32 sec and a shock-shock interval of 10 sec, and were subsequently exposed to 10 values of the response-shock parameter ranging from 2.5 to 150 sec. The functions relating response rate to response-shock interval were similar to the ones reported by Sidman in his 1953 studies employing rats, and were independent of the order of presentation of the response-shock values. Shock rates decreased as response-shock duration increased. In Experiment II, a free-operant avoidance schedule with a response-shock interval of 20 sec and a shock-shock interval of 5 sec was used, and shock intensities were varied over five values ranging from 2 to 32 mA. Response rates increased markedly as shock intensity increased from 2 to 8 mA, but rates changed little with further increases in shock intensity. Shock rates decreased as intensity increased from 2 to 8 mA, and showed little change as intensity increased from 8 to 32 mA. PMID:4652617

  20. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    Busby, M.R.; Kahn, J.E.; Belk, J.P.

    1976-01-01

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  1. [Toxic-shock syndrome. Three cases (author's transl)].

    Science.gov (United States)

    Rapin, M; D'Enfert, J; Cabane, J

    1981-06-13

    Several cases of toxic shock syndrome (T.S.S) have been recently reported from the U.S.A. Clinical features of this new syndrome include fever, desquamative scarlatiniform rash, hypotension and involvement of central nervous system, liver, kidney and muscles. More than 90% of cases are women with staphylococcic vaginitis using tampons during menstruations. A toxin produced by staphylococcus aureus is thought to be the causative agent, because the germ has been isolated in local (vaginal, pharyngeal, subcutaneous or other sites) but not systemic (blood, cerebrospinal fluid) cultures. The mortality rate is 3-10%, and relapse can occur. We report the first three french cases of T.S.S.: a 17 year old girl with typical tampon-associated vaginitis, a 36 year old woman with a postoperative peritonitis and a 20 year old man with a popliteal abscess. Staphylococcus aureus of type I or IV was identified at the site of infection in all cases, but never in blood cultures. These three patients recovered with antistaphylococcic antibiotics and supportive therapy, but local treatment of infections seems to have been of utmost importance. These cases suggest that T.S.S. can occur with several staphylococcus serotypes and confirm that this syndrome is not always associated with tampons and vaginitis.

  2. LCLS-II CRYOMODULE TRANSPORT SYSTEM TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Edward F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); McGee, Michael W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2018-04-01

    The Cryomodules (CM) for the Linear Coherent Light Source II (LCLS-II) will be shipped to SLAC (Menlo Park, California) from JLab (Newport News, Virginia) and FNAL (Batavia, Illinois). A transportation system has been designed and built to safely transport the CMs over the road. It uses an array of helical isolator springs to attenuate shocks on the CM to below 1.5g in all directions. The system rides on trailers equipped with Air-Ride suspension, which attenuates vibration loads. The prototype LCLS-II CM (pCM) was driven 750 miles to test the transport system; shock loggers recorded the shock attenuation on the pCM and vacuum gauges were used to detect any compromises in beamline vacuum. Alignment measurements were taken before and after the trip to check whether cavity positions had shifted beyond the ± 0.2mm spec. Passband frequencies and cavity gradients were measured at 2K at the Cryomodule Test Facility (CMTF) at JLab to identify any degradation of CM performance after transportation. The transport system was found to have safely carried the CM and is cleared to begin shipments from JLab and FNAL to SLAC.

  3. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  4. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    International Nuclear Information System (INIS)

    Le, Thanh Danh; Ahn, Kyoung Kwan

    2012-01-01

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

  5. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  6. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  7. Mechanic- and hydraulic shock-absorbers - layout, construction, operation experience

    International Nuclear Information System (INIS)

    Kluge, M.

    1981-01-01

    The problem lies in the protection of the flexible supported power plant components against undesired sudden movements. Various shock absorbing systems are at disposal in this case: Mechanical and hydraulic shock absorbers, whose functioning systems are shown in figures. The operation experience showed a series of deficiencies, as demonstrated on various figures. In order to avoid them, some important recommendations are given. Requirements and layout are demonstrated according to todays' state-of-the-art. The admissible stresses, resulting from the summary of various specifications for the analytical evidence will be described. Development and construction will be explained in detail by means of pictures with cross sections of original shock absorbers. Todays' construction characteristics will be summarized. The final remark includes a request for generally valid guidelines. (orig.) [de

  8. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2014-06-01

    Full Text Available In order to obtain better vibration suppression effect, this paper designs a semiactive/fully active hybrid isolator by using magnetorheological elastomer (MRE and piezoelectric material. Combined with multimode control scheme, full frequency vibration suppression is achieved. Firstly, series type structure is determined for the hybrid isolator, and the structure of hybrid isolator is designed. Next, the dynamic model of hybrid isolator is derived, the dynamic characteristics measurement for MRE isolator and piezoelectric stack actuator (PSA is established, and parameters such as voltage-displacement coefficient, stiffness and damping constant are identified from the experimental results, respectively. Meanwhile, the switch frequency is determined by experimental results of PSA and MRE isolator. Lastly, influence of the stiffness of MRE, control voltage of PSA, and intermediate mass on hybrid isolator system is analyzed by simulations, and the results show that the hybrid isolator proposed is effective.

  9. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  10. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  11. Remote vacuum or pressure sealing device and method for critical isolated systems

    Science.gov (United States)

    Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  12. Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene

    Science.gov (United States)

    O'Connor, Thomas C.; Elder, Robert M.; Sliozberg, Yelena R.; Sirk, Timothy W.; Andzelm, Jan W.; Robbins, Mark O.

    2018-03-01

    Molecular dynamics simulations are used to analyze shock propagation in amorphous and crystalline polyethylene. Results for the shock velocity Us are compared to predictions from Pastine's equation of state and hydrostatic theory. The results agree with Pastine at high impact velocities. At low velocities the yield stress becomes important, increasing the shock velocity and leading to anisotropy in the crystalline response. Detailed analysis of changes in atomic order reveals the origin of the anisotropic response. For shock along the polymer backbone, an elastic front is followed by a plastic front where chains buckle with a characteristic wavelength. Shock perpendicular to the chain backbone can produce plastic deformation or transitions to different orthorhombic or monoclinic structures, depending on the impact speed and direction. Tensile loading does not produce stable shocks: Amorphous systems craze and fracture while for crystals the front broadens linearly with time.

  13. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  14. Prevalence of toxin genes among the clinical isolates of Staphylococcus aureus and its clinical impact

    Directory of Open Access Journals (Sweden)

    Divya Deodhar

    2015-01-01

    Full Text Available Introduction: Staphylococcus aureus (S. aureus causes a variety of infections, ranging from a mild skin infection to blood stream infections and deep seated infections. As Stapylococcus aureus bacteremia (SAB has the tendency to cause endovascular and metastatic infections, complications can occur at almost all sites of the body. Hence, SAB is associated with increased morbidity and mortality in spite of appropriate antimicrobial treatment. The virulence in S. aureus is determined by the presence of adhesins and toxins, which behave like superantigens (SAgs and leads to a massive release of proinflammatory cytokines causing overwhelming inflammatory response leading to endothelial leakage, hemodynamic shock, multiorgan failure, and possibly death. Materials and Methods: One year prospective study conducted in a tertiary care hospital in southern part of India included all patients with SAB. Clinical details were filled according to. All isolates were subjected to polymerase chain reaction (PCR for enterotoxin profiling. Results: A total of 101 patients of SAB were identified which comprises of 61 (60.4% patients with methicillin-susceptible S. aureus (MSSA and 40 (39.6% patients with methicillin-resistant S. aureus (MRSA. Most common predictors of mortality were prior hospitalization and antibiotic intake, severe organ dysfunction, shock, tachycardia, and leukocytosis. Two-third of the isolates had at least one enterotoxin, most prevalent was sea; 28% and 27% (P - value = 0.001 MSSA isolates had seg and sei; whereas, 38.6% (P - value < 0.001 of MRSA isolates were found to have sea. The most common enterotoxin associated with mortality was sei, which comprised of 38% of all mortality. Conclusion: In SAB, the significant predictors of mortality were prior hospitalization and antibiotic intake, presence of multiorgan dysfunction, and shock. Although overall significance between the enterotoxin and shock could not be demonstrated, it successfully

  15. Prevalence of Toxin Genes among the Clinical Isolates of Staphylococcus aureus and its Clinical Impact.

    Science.gov (United States)

    Deodhar, Divya; Varghese, George; Balaji, Veeraraghavan; John, James; Rebekah, Grace; Janardhanan, Jeshina; Jeyaraman, Ranjith; Jasmine, Sudha; Mathews, Prasad

    2015-01-01

    Staphylococcus aureus (S. aureus) causes a variety of infections, ranging from a mild skin infection to blood stream infections and deep seated infections. As Stapylococcus aureus bacteremia (SAB) has the tendency to cause endovascular and metastatic infections, complications can occur at almost all sites of the body. Hence, SAB is associated with increased morbidity and mortality in spite of appropriate antimicrobial treatment. The virulence in S. aureus is determined by the presence of adhesins and toxins, which behave like superantigens (SAgs) and leads to a massive release of proinflammatory cytokines causing overwhelming inflammatory response leading to endothelial leakage, hemodynamic shock, multiorgan failure, and possibly death. One year prospective study conducted in a tertiary care hospital in southern part of India included all patients with SAB. Clinical details were filled according to. All isolates were subjected to polymerase chain reaction (PCR) for enterotoxin profiling. A total of 101 patients of SAB were identified which comprises of 61 (60.4%) patients with methicillin-susceptible S. aureus (MSSA) and 40 (39.6%) patients with methicillin-resistant S. aureus (MRSA). Most common predictors of mortality were prior hospitalization and antibiotic intake, severe organ dysfunction, shock, tachycardia, and leukocytosis. Two-third of the isolates had at least one enterotoxin, most prevalent was sea; 28% and 27% (P - value = 0.001) MSSA isolates had seg and sei; whereas, 38.6% (P - value < 0.001) of MRSA isolates were found to have sea. The most common enterotoxin associated with mortality was sei, which comprised of 38% of all mortality. In SAB, the significant predictors of mortality were prior hospitalization and antibiotic intake, presence of multiorgan dysfunction, and shock. Although overall significance between the enterotoxin and shock could not be demonstrated, it successfully demonstrated the difference of enterotoxin between MSSA and MRSA.

  16. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  17. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  18. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  19. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  1. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  2. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  3. X-ray diffraction measurements in KCl shocked along [100

    International Nuclear Information System (INIS)

    D'Almeida, T.; Gupta, Y.M.

    2000-01-01

    Real time x-ray diffraction measurements were used to examine the polymorphic phase transformation in KCl shocked along the [100] direction. Shock wave continuum data, obtained previously by Hayes, were used to design the experiments and to predict diffraction from KCl shocked to different peak stresses. Here, we present the results obtained below the transition stress: between 1.4 and 2 GPa. Diffraction data obtained were quantitatively related to macroscopic compression. Interplanar spacing measurements revealed isotropic compression of the unit cell in contrast to previously reported results. Above the transition stress, descriptions of the atomic arrangement with respect to shock propagation (not available in the literature) are required for setting up the detection system. Hence, continuum results in combination with various crystallographic considerations were utilized to obtain data above the transition stress

  4. Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

    International Nuclear Information System (INIS)

    Xing Liudong; Levitin, Gregory

    2010-01-01

    This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

  5. Relativistic shocks in the systems containing domains with anomalous equation of state and quark baryonic matter hadronization

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Gorenshtejn, M.I.; Zhdanov, V.I.

    1987-01-01

    Theoretical basis for general stability criterion of relativistic shocks in baryonic matter is proposed. Different formulations of shock mechanical stability are considered and applied to the analysis of rarefaction shock hadronization transition. 13 refs.; 2 figs

  6. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-15

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

  7. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-01

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions

  8. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  9. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  10. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  11. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  12. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  13. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.

    1997-01-01

    The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure and distr......The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure...... and distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which...... the contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  14. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  15. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    Science.gov (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  16. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  17. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  18. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2015-01-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture. (paper)

  19. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    Science.gov (United States)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  20. Fault Detection and Isolation for a Supermarket Refrigeration System - Part One

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario, n....... The test results show that the EKF-based FDI method generally performances better and faster than the KF-based method does. However, both methods can not handle the isolation between sensor faults and parametric fault.......Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario...... isolation purpose, a bank of KFs arranged by splitting measurements is constructed for sensor fault isolation, while the Multi-Model Adaptive Estimation (MMAE) method is employed to handle parametric fault isolation. All these approaches are extended and checked by using Extended KF technique afterwards...

  1. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  2. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  3. Simulation Study of Shock Reaction on Porous Material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan Xiaofei; Zhu Jianshi

    2009-01-01

    Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation. (general)

  4. Initial ISEE magnetometer results: shock observation

    International Nuclear Information System (INIS)

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  5. Ship Power System Analysis Based on Safety Aspects

    Directory of Open Access Journals (Sweden)

    Urbaha Margarita

    2017-08-01

    Full Text Available This article analyses the reasons for the reduction of insulating resistance, processes influencing them and isolation diagnostic methods. It provides a short description of electrical safety situation on ships with isolated neutral electrical power systems. It also covers the methods of protecting personnel from electric shock or preventing ignition or arching damage at the fault location with the help of fault current compensation. Principal fault current compensation circuit diagrams are analysed by using the minimum value and time of transient fault current as criteria.

  6. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  7. Theory and Experiment on Radiative Shocks

    Science.gov (United States)

    Drake, R. Paul

    2005-07-01

    The current generation of high-energy-density research facilities has enabled the beginnings of experimental studies of radiation hydrodynamic systems, common in astrophysics but difficult to produce in the laboratory. Radiative shock experiments specifically have been a topic of increasing effort in recent years. Our group and collaborators [1] have emphasized the radiographic observation of structure in radiative shocks. These shocks have been produced on the Omega laser by driving a Be piston through Xenon at velocities above 100 km/s. The talk will summarize these experiments and their results. Interpreting these and other experiments is hampered by the limited range of assumptions used in published theories, and by the limitations in readily available simulation tools. This has motivated an examination of radiative shock theory [2]. The talk will summarize the key issues and present results for specific cases. [ 1 ] Gail Glendinning, Ted Perry, Bruce Remington, Jim Knauer, Tom Boehly, and other members of the NLUF Experimental Astrophysics Team. Publications: Reighard et al., Phys. Rev. Lett. submitted; Leibrandt, et al., Ap J., in press, Reighard et al., IFSA 03 Proceedings, Amer. Nucl. Soc. (2004). [2] Useful discussions with Dmitri Ryutov and Serge Bouquet. Supported by the NNSA programs via DOE Grants DE-FG52-03NA00064 and DE FG53 2005 NA26014

  8. A development of three-dimensional seismic isolation for advanced reactor systems in Japan: Pt.2

    International Nuclear Information System (INIS)

    Kenji Takahashi; Kazuhiko Inoue; Asao Kato; Masaki Morishita; Takafumi Fujita

    2005-01-01

    Two types of three-dimensional seismic isolation systems were developed for the fast breeder reactor (FBR). One is the three-dimensional entire building base isolation system It was developed by collecting concepts Japanese companies from which a combination system with air springs and hydraulic rocking suppression devices was selected. The other is the vertically isolated system for main components with horizontally entire building base isolation, which was developed by adopting coned disk spring devices. In the study, seismic condition was assumed based on a strict reference ground motion. Design data of the building and components are referred to FBR being developed as the 'Commercialized Fast Reactor Cycle System'. Analysis based on these assumed conditions showed suitable combinations of natural frequencies and damping ratios for isolation. Devices were developed to satisfy the combinations. In five years research and development, several verification tests were performed including shake table tests with scaled models. Finally it is found that the two types of seismic isolation systems are available for FBR. The result is reflected in the preliminary design guideline for the three-dimensional isolation system. (authors)

  9. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    Directory of Open Access Journals (Sweden)

    Jiaqi Tang

    2006-05-01

    Full Text Available BACKGROUND: Streptococcus suis serotype 2 (S. suis 2, SS2 is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS. However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. METHODS AND FINDINGS: We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. CONCLUSIONS: We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe

  10. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  11. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  12. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  13. Physics of IED blast shock tube simulations for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.; Berg, A.C. van den; Sibma, P.C.; Bree, J.L.M.J. van; Vries, D.V.W.M. de

    2011-01-01

    Shock tube experiments and simulations are conducted with a spherical gelatin filled skull- brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic impro-vised explosive device

  14. Directly acting spring loaded safety valves as shock reducing measure

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2010-01-01

    Hydraulic shocks as induced by fast closure of armatures or by sudden pump failures are massive impacts in piping systems and require extensive measures to absorb the generated load. Basically the avoidance of water hammers are preferable but in case of emergency shutdowns unavoidable hydraulic shocks have to be reduced by appropriate measures. The authors describe experiments with spring loaded safety valves as shock reducing measures. It was shown that the vale dimensions is essential for the efficacy. A realistic modeling is possible using the one-dimensional fluid mechanics code ROLAST.

  15. Computational Study of Shock/Plume Interactions Between Multiple Jets in Supersonic Crossflow

    Science.gov (United States)

    Tylczak, Erik B.

    The interaction of multiple jets in supersonic crossflow is simulated using hybrid Reynolds- Averaged Navier Stokes and Large Eddy Simulation turbulence models. The blockage of a jet generates a curved bow shock, and in multi-jet flows, each shock impinges on the other fuel plumes. The curved nature of each shock generates vorticity directly, and the impingement of each shock on the vortical structures within the adjacent fuel plumes strengthens vortical structures already present. These stirring motions are the major driver of fuel-air mixing, and so mixing enhancement is predicted to occur in multi-port configurations. The primary geometry considered is that of the combustion duct at the Calspan- University of Buffalo Research Center 48" Large Energy National Shock (LENS) tunnel. This geometry was developed to be representative of the geometry and flow physics of the Flight 2 test vehicle of the Hypersonic International Flight Research Experimenta- tion Program (HiFIRE-2). This geometry takes the form of a symmetric pair of external compression ramps that feed an isolator of approximately 4" x 1" cross-section. Nine interdigitated flush-wall injectors, four on one wall and five on the other, inject hydrogen at an angle of 30 degrees to the freestream. Two freestream flow conditions are consid- ered: approximately Mach 7.2 at a static temperature of 214K and a density of 0.039 kg/m3 for the five-injector case, and approximately Mach 8.9 at a static temperature of 167K and density of 0.014 kg/m 3 for the nine-injector case. Validation computations are performed on a single-port experiment with an imposed shock wave. Unsteady calculations are performed on five-port and nine-port configura- tions, and the five-port configuration is compared to calculations performed with only a single active port on the same geometry. Analysis of statistical data demonstrates enhanced mixing in the multi-port configurations in regions where shock impingement occurs.

  16. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  17. CRYOPRESERVATION OF FRESHLY ISOLATED SYNAPTOSOMES PREPARED FROM THE CEREBRAL-CORTEX OF RATS

    NARCIS (Netherlands)

    GLEITZ, J; BEILE, A; WILFFERT, B; TEGTMEIER, F

    In the present study, we established a cryopreservation method for freshly isolated synaptosomes prepared from the cerebral cortex of rats. Freshly prepared synaptosomes were either shock-frozen or frozen under temperature-controlled conditions using a programmable temperature controller. Each group

  18. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  19. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  20. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  1. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  2. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  3. Isolation and identification of antibiotic resistance genes in Staphylococcus aureus isolates from respiratory system infections in shahrekord, Iran

    Directory of Open Access Journals (Sweden)

    Maryam Reisi

    2014-07-01

    Full Text Available   Introduction : Staphylococcus aureus is considered as one of pathogenic agents in humans, that engages different body parts including respiratory system and causes to spend lots of costs and extending patient’s treatment period. This study which is performed to separate and investigate the pattern of antibiotic resistance in Staphylococcus aureus isolates from upper respiratory system infections in Shahrekord.   Materials and methods: This study was done by sectional-descriptive method On 200 suspicious persons to the upper respiratory system infections who were referred to the Imam Ali clinic in Shahrekord in 2012. After isolation of Staphylococcus aureus from cultured nose discharges, antibiotic resistance genes were identified by polymerase chain reaction (PCR by using defined primer pairs .   Results : Among 200 investigated samples in 60 cases (30% Staphylococcus aureus infection (by culturing and PCR method was determined. Isolates showed the lowest amount of antibiotic resistance to vancomycin (0.5% and the highest amount of resistance to the penicillin G and cefotaxime (100%. mecA gene (encoding methicillin resistance with frequency of 85.18% and aacA-D gene (encoding resistance to aminoglycosides with frequency of 28.33% showed the highest and lowest frequency of antibiotic resistance genes coding in Staphylococcus aureus isolates respectively .   Discussion and conclusion : Notable prevalence of resistant Staphylococcus aureus isolates in community acquired respiratory infections, recommend continuous control necessity to impede the spreading of these bacteria and their infections.  

  4. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  5. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  6. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  7. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  8. Shock Interaction with a Finite Thickness Two-Gas Interface

    Science.gov (United States)

    Labenski, John; Kim, Yong

    2006-03-01

    A dual-driver shock tube was used to investigate the growth rate of a finite thickness two-gas interface after shock forcing. One driver was used to create an argon-refrigerant interface as the contact surface behind a weak shock wave. The other driver, at the opposite end of the driven section, generates a stronger shock of Mach 1.1 to 1.3 to force the interface back in front of the detector station. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface during both it's initial passage and return. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thicknesses and that the interaction with a shock further broadens the interface.

  9. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  10. Performance Based Failure Criteria of the Base Isolation System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil

    2013-01-01

    The realistic approach to evaluate the failure state of the base isolation system is necessary. From this point of view, several concerns are reviewed and discussed in this study. This is the preliminary study for the performance based risk assessment of a base isolated nuclear power plant. The items to evaluate the capacity and response of an individual base isolator and a base isolation system were briefly outlined. However, the methodology to evaluate the realistic fragility of a base isolation system still needs to be specified. For the quantification of the seismic risk for a nuclear power plant structure, the failure probabilities of the structural component for the various seismic intensity levels need to be calculated. The failure probability is evaluated as the probability when the seismic response of a structure exceeds the failure criteria. Accordingly, the failure mode of the structural system caused by an earthquake vibration should be defined first. The type of a base isolator appropriate for a nuclear power plant structure is regarded as an elastometric rubber bearing with a lead core. The failure limit of the lead-rubber bearing (LRB) is not easy to be predicted because of its high nonlinearity and a complex loading condition by an earthquake excitation. Furthermore, the failure mode of the LRB system installed below the nuclear island cannot be simply determined because the basemat can be sufficiently supported if the number of damaged isolator is not much

  11. Effects of operational shocks on key microbial populations for biogas production in UASB (Upflow Anaerobic Sludge Blanket) reactors

    International Nuclear Information System (INIS)

    Couras, C.S.; Louros, V.L.; Grilo, A.M.; Leitão, J.H.; Capela, M.I.; Arroja, L.M.; Nadais, M.H.

    2014-01-01

    This work compares the overall performance and biogas production of continuous and intermittent UASB (Upflow Anaerobic Sludge Blanket) reactors treating dairy wastewater and subjected to fat, hydraulic and temperature shocks. The systems were monitored for methane production, effluent concentration, volatile fatty acids, and microbial populations of the Eubacteria, Archaea and Syntrophomonadaceae groups. This last microbial group has been reported in literature as being determinant for the degradation of fatty substrates present in the wastewater and subsequent biogas production. Results show that both continuous and intermittent systems supported the applied shocks. However, the intermittent systems exhibited better performance than the continuous systems in biogas production and physical-chemical parameters. Syntrophomonadaceae microbial group was present in the intermittent systems, but was not detected in the biomass from the continuous systems. Hydraulic and temperature shocks, but not the fat shock, caused severe losses in the relative abundance of the Syntrophomonadaceae group in intermittent systems, leading to undetectable levels during the temperature shock. The severity of the effects of the applied shocks on the key microbial group Syntrophomonadaceae, were classified as: fats < hydraulic < temperature. Results from a full-scale anaerobic reactor confirm the effect of intermittent operation on the presence of Syntrophomonadaceae and the effect on reactor performance. - Highlights: • We compared intermittent and continuous UASB reactors upon operational shocks. • Syntrophomonadaceae key microbial group for maximizing biogas was quantified by FISH. • Syntrophomonadaceae is present in intermittent but not in continuous UASB reactors. • Syntrophomonadaceae abundance increases with fat shock in intermittent UASB reactor. • Syntrophomonadaceae abundance decreases with hydraulic or temperature shock

  12. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  13. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. MIGRE: an Expert System as an aid for loose part diagnosis and mechanical shocks interpretation in nuclear plant

    International Nuclear Information System (INIS)

    Monnier, B.; Puyal, C.; Fernandes, A.; Martin, C.

    1990-01-01

    This paper presents an application of the expert system technique to one of the functions which participate to the surveillance of the primary circuit of water-pressurized reactors: the detection of loose parts and the interpretation of mechanical shocks. First, we describe the domain of expertise and the context in which this expert system will be used. Then we deal with the principles and the different levels involved in the knowledge modeling and with the structure of the expert system

  15. The Septic Shock 3.0 Definition and Trials: A Vasopressin and Septic Shock Trial Experience.

    Science.gov (United States)

    Russell, James A; Lee, Terry; Singer, Joel; Boyd, John H; Walley, Keith R

    2017-06-01

    The Septic Shock 3.0 definition could alter treatment comparisons in randomized controlled trials in septic shock. Our first hypothesis was that the vasopressin versus norepinephrine comparison and 28-day mortality of patients with Septic Shock 3.0 definition (lactate > 2 mmol/L) differ from vasopressin versus norepinephrine and mortality in Vasopressin and Septic Shock Trial. Our second hypothesis was that there are differences in plasma cytokine levels in Vasopressin and Septic Shock Trial for lactate less than or equal to 2 versus greater than 2 mmol/L. Retrospective analysis of randomized controlled trial. Multicenter ICUs. We compared vasopressin-to-norepinephrine group 28- and 90-day mortality in Vasopressin and Septic Shock Trial in lactate subgroups. We measured 39 cytokines to compare patients with lactate less than or equal to 2 versus greater than 2 mmol/L. Patients with septic shock with lactate greater than 2 mmol/L or less than or equal to 2 mmol/L, randomized to vasopressin or norepinephrine. Concealed vasopressin (0.03 U/min.) or norepinephrine infusions. The Septic Shock 3.0 definition would have decreased sample size by about half. The 28- and 90-day mortality rates were 10-12 % higher than the original Vasopressin and Septic Shock Trial mortality. There was a significantly (p = 0.028) lower mortality with vasopressin versus norepinephrine in lactate less than or equal to 2 mmol/L but no difference between treatment groups in lactate greater than 2 mmol/L. Nearly all cytokine levels were significantly higher in patients with lactate greater than 2 versus less than or equal to 2 mmol/L. The Septic Shock 3.0 definition decreased sample size by half and increased 28-day mortality rates by about 10%. Vasopressin lowered mortality versus norepinephrine if lactate was less than or equal to 2 mmol/L. Patients had higher plasma cytokines in lactate greater than 2 versus less than or equal to 2 mmol/L, a brisker cytokine response to infection. The Septic

  16. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  17. Macroeconomic Evolution after a Production Shock: the Role for Financial Intermediation

    OpenAIRE

    Vinogradov, Dmitri V.

    2006-01-01

    Financial intermediaries may increase economic efficiency through intertemporal risk smoothing. However without an adequate regulation, intermediation may fail to do this. This paper studies the effects of a production shock in a closed economy and compares abilities of market-based and bank-based financial systems in processing the shock. Unregulated banking system may collapse in absence of a proper regulation. The paper studies several types of regulatory interventions, which may improve t...

  18. Measurement and Analysis of the Extreme Physical Shock Environment Experienced by Crane-Mounted Radiation Detection Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M [Texas A & M Univ., College Station, TX (United States); Erchinger, J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marianno, C [Texas A & M Univ., College Station, TX (United States); Kallenbach, Gene A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Grypp, M [US Dept. of the Navy

    2017-09-01

    Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s to 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.

  19. Superdiffusion of relativistic electrons at supernova remnant shocks

    Science.gov (United States)

    Perri, Silvia

    2018-01-01

    Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.

  20. Identification, Isolation, and Expression Analysis of Heat Shock Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Yang eHu

    2015-09-01

    Full Text Available Heat shock transcription factors (Hsfs are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14 and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt, biotic stress (powdery mildew infection, and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid. Fifteen of the 17 FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli.

  1. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  2. Application of a Fault Detection and Isolation System on a Rotary Machine

    Directory of Open Access Journals (Sweden)

    Silvia M. Zanoli

    2013-01-01

    Full Text Available The paper illustrates the design and the implementation of a Fault Detection and Isolation (FDI system to a rotary machine like a multishaft centrifugal compressor. A model-free approach, that is, the Principal Component Analysis (PCA, has been employed to solve the fault detection issue. For the fault isolation purpose structured residuals have been adopted while an adaptive threshold has been designed in order to detect and to isolate the faults. To prove the goodness of the proposed FDI system, historical data of a nitrogen centrifugal compressor employed in a refinery plant are considered. Tests results show that detection and isolation of single as well as multiple faults are successfully achieved.

  3. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  4. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  5. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  6. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  7. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiuang [Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai (China); Wong, Jenna [Lawrence Berkeley National Laboratories, Berkeley (United States); Mahin, Stephen [University of California, Berkeley (United States)

    2016-10-15

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  8. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    International Nuclear Information System (INIS)

    Zhou, Zhiuang; Wong, Jenna; Mahin, Stephen

    2016-01-01

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary

  9. Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhou

    2016-10-01

    Full Text Available Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP, with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  10. Cures for the shock instability: Development of a shock-stable Roe scheme

    CERN Document Server

    Kim, S S; Rho, O H; Kyu-Hong, S

    2003-01-01

    This paper deals with the development of an improved Roe scheme that is free from the shock instability and still preserves the accuracy and efficiency of the original Roe's Flux Difference Splitting (FDS). Roe's FDS is known to possess good accuracy but to suffer from the shock instability, such as the carbuncle phenomenon. As the first step towards a shock-stable scheme, Roe's FDS is compared with the HLLE scheme to identify the source of the shock instability. Through a linear perturbation analysis on the odd-even decoupling problem, damping characteristic is examined and Mach number-based functions f and g are introduced to balance damping and feeding rates, which leads to a shock-stable Roe scheme. In order to satisfy the conservation of total enthalpy, which is crucial in predicting surface heat transfer rate in high-speed steady flows, an analysis of dissipation mechanism in the energy equation is carried out to find out the error source and to make the proposed scheme preserve total enthalpy. By modif...

  11. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  12. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  13. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  14. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mizzouri, Nashwan Sh., E-mail: nashwan_mizzouri@yahoo.com [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Department of Civil Engineering, University of Duhok, Kurdistan (Iraq); Shaaban, Md Ghazaly [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-04-15

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.

  15. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  16. In vivo analysis of intestinal permeability following hemorrhagic shock

    Science.gov (United States)

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  17. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  18. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  19. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  20. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  1. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  2. Galaxy-Wide Shocks in the H$\\alpha$ Emission of Nearby Galaxy Mergers

    Science.gov (United States)

    Mortazavi, S. Alireza; Lotz, Jennifer M.

    2018-01-01

    We examine the properties of shocked gas produced as a result of binary galaxy interactions, using H$\\alpha$ emission in a sample 22 mergers observed with SparsePak Integral Field Unit (IFU) at Kitt Peak National Observatory (KPNO). Our sample consists of major and minor tidally interacting galaxies (mass ratio $1text{f}_\\text{shocked}$, and examine the spatial distribution of shocks. We find that close galaxy pairs have, on average, a higher shock fraction than wide pairs, and our coalesced mergers have the highest average $\\text{f}_\\text{shocked}$. Additionally, we find for the first time, correlations between mass ratio, mass of the companion, and $\\text{f}_\\text{shocked}$ in tidally interacting galaxy pairs. Among the non-coalesced systems in our sample, the galaxy pairs with more equal light ratio (stellar mass ratio) tend to have a higher average $\\text{f}_\\text{shocked}$. Also, the primary (more massive) companions are on average slightly more shocked than the secondary (less massive) ones. Utilizing dynamical models in the literature and this work, we inspect trends between $\\text{f}_\\text{shocked}$ and the reconstructed encounter parameters. In this very limited sample, we find that the orbital pericentric separation is correlated with shock fraction, consistent with shocks being produced by the chain of events caused by the tidal impulse during the first passage. These results lay a basis for furture analysis using the higher statistics provided by the on-going and future IFU galaxy surveys.

  3. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  4. Inferior vena cava obstruction and shock

    Directory of Open Access Journals (Sweden)

    Megri Mohammed

    2018-01-01

    Full Text Available Shock is one of the most challenging life-threatening conditions with high mortality and morbidity; the outcomes are highly dependent on the early detection and management of the condition. Septic shock is the most common type of shock in the Intensive Care Unit. While not as common as other subsets of shock, obstructive shock is a significant subtype due to well defined mechanical and pathological causes, including tension pneumothorax, massive pulmonary embolism, and cardiac tamponade. We are presenting a patient with obstructive shock due to inferior vena cava obstruction secondary to extensive deep venous thrombosis. Chance of survival from obstructive shock in our patient was small; however, there was complete and immediate recovery after treatment of the obstruction on recognizing the affected vessels. This case alerts the practicing intensivist and the emergency medicine physician to consider occlusion of the great vessels other than the pulmonary artery or aorta as causes of obstructive shock.

  5. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    Science.gov (United States)

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  6. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  7. A failure detection and isolation system simulator

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1990-04-01

    A failure detection and isolation system (FDI) simulation program has been developed for IBM-PC microcomputers. The program, based on the sequential likelihood ratio testing method developed by A. Wald, was implemented with the Monte-Carlo technique. The calculated failure detection rate was favorably compared against the wind-tunnel experimental redundant temperature sensors. (author) [pt

  8. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  9. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  10. A new shock wave assisted wood preservative injection system

    Science.gov (United States)

    Rao, K. S.; Ravikumar, G.; Lai, Ram; Jagadeesh, G.

    Preservative treatment of many tropical hard woods and bamboo pose severe problem. A number of wood preservatives (chemical formulations toxic to wood decay/ destroying organisms like fungi, wood destroying termites, marine borers etc.) and wood impregnating techniques are currently in use for improving bio resistance of timber and bamboo and thereby enhancing service life for different end uses. How ever, some species of tropical hardwoods and many species of bamboo are difficult to treat, posing technical problems. In this paper we report preliminary results of treatment of bamboo with a novel Shockwave assisted injection treatment. Samples (30×2.5×1.00 cm) of an Indian species of bamboo Dendrocalamus strictus prepared from defect free culms of dry bamboo are placed in the driven section of a vertical shock tube filled with the 4Coppepr-Chrome-Arsenic(CCA) preservative solution.The bamboo samples are subjected to repeated shock wave loading (3 shots) with typical over pressures of 30 bar. The results from the study indicate excellent penetration and retention of CCA preservative in bamboo samples. The method itself is much faster compared to the conventional methods like pressure treatment or hot and cold process.

  11. A polar-drive shock-ignition design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  12. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  13. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  14. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  15. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  16. Isolated pharmacomechanical thrombolysis using the Trellis system

    LENUS (Irish Health Repository)

    O’Sullivan, GJ

    2010-01-01

    While anticoagulation remains the current gold standard for treating acute deep vein thrombosis,1 there is a growing body of evidence that rapid thrombus removal results in better short- and long-term outcomes.2–5 This is a practical guide to achieve rapid thrombus removal with isolated pharmacomechanical thrombolysis using the Trellis® peripheral infusion system.\\r\

  17. Sustainable land use in Tikopia: Food production and consumption in an isolated agricultural system

    DEFF Research Database (Denmark)

    Mertz, Ole; Bruun, Thilde Bech; Fog, Bjarne

    2010-01-01

    long-term setbacks, not even from extreme events such as Cyclone Zoe in 2002. The high fertility of Tikopian soils reported in the 1960s was found to be unchanged. It is concluded that the land use system is highly resilient to shocks and that there are no indications that Tikopian villagers would...

  18. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  19. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  20. Corticosteroids in the treatment of dengue shock syndrome

    Directory of Open Access Journals (Sweden)

    Rajapakse S

    2014-05-01

    Full Text Available Senaka Rajapakse,1 Chaturaka Rodrigo,1 Sachith Maduranga,1 Anoja Chamarie Rajapakse21Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka; 2Kings Mill Hospital, Sherwood Forest NHS Foundation Trust, Sutton-in-Ashfield, Nottinghamshire, UKAbstract: Dengue infection causes significant morbidity and mortality in over 100 countries worldwide, and its incidence is on the rise. The pathophysiological basis for the development of severe dengue, characterized by plasma leakage and the “shock syndrome” are poorly understood. No specific treatment or vaccine is available, and careful monitoring and judicious administration of fluids forms the mainstay of management at present. It is postulated that vascular endothelial dysfunction, induced by cytokine and chemical mediators, is an important mechanism of plasma leakage. Although corticosteroids are potent modulators of the immune system, their role in pharmacological doses in modulating the purported immunological effects that take place in severe dengue has been a subject of controversy. The key evidence related to the role of corticosteroids for various manifestations of dengue are reviewed here. In summary, there is currently no high-quality evidence supporting the beneficial effects of corticosteroids for treatment of shock, prevention of serious complications, or increasing platelet counts. Non-randomized trials of corticosteroids given as rescue medication for severe shock have shown possible benefit. Nonetheless, the evidence base is small, and good-quality trials are lacking. We reiterate the need for well-designed and adequately powered randomized controlled trials of corticosteroids for the treatment of dengue shock.Keywords: dengue, dengue shock, shock, corticosteroids, vascular leak, thrombocytopenia

  1. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  2. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  3. Application of Underwater Shock Wave Focusing to the Development of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi

    1993-05-01

    This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.

  4. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  5. Interfacing system isolation experience review. Final report, August 1991

    International Nuclear Information System (INIS)

    1991-08-01

    A light water reactor power plant has auxiliary systems interconnected with the reactor coolant system that are not designed for reactor operating pressure. These principally include the shutdown heat removal systems and various emergency core cooling injection systems. There are multiple isolation valves that prevent rector vessel pressure from causing overpressurization in low pressure interfacing systems. Combinations of hardware failures or operational errors are necessary to expose these systems to overpressurization. This experience review provides insights regarding the risk that an auxiliary system might become over pressurized from the reactor system. While analyses show that for the pressures involved the probability of auxiliary system failure is low, the auxiliary system conceivably might fail outside of containment while the plant is at power. Such a potential event has come to be called an interfacing system loss of coolant accident (ISLOCA). This report provides a compilation of occurrences where valve leakage, valve failure, or valve mispositioning played a role in the ability to maintain interfacing system isolation. Seventeen U.S. BWR events, twenty three U.S. PWR events and one foreign event are discussed in the report. Eleven of the U.S. BWR events and ten U.S. PWR events are judged to relate directly to the so-called ISLOCA event in that they fulfilled one or more of the failures necessary to cause an ISLOCA. (author)

  6. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    Science.gov (United States)

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  7. Management of isolated nonresectable liver metastases in colorectal cancer patients: a case-control study of isolated hepatic perfusion with melphalan versus systemic chemotherapy

    NARCIS (Netherlands)

    van Iersel, L. B. J.; Koopman, M.; van de Velde, C. J. H.; Mol, L.; van Persijn van Meerten, E. L.; Hartgrink, H. H.; Kuppen, P. J. K.; Vahrmeijer, A. L.; Nortier, J. W. R.; Tollenaar, R. A. E. M.; Punt, C.; Gelderblom, H.

    2010-01-01

    To compare the median overall survival of patients with isolated nonresectable liver metastases in comparable groups of patients treated with either isolated hepatic perfusion (IHP) with melphalan or systemic chemotherapy. Colorectal cancer patients with isolated liver metastases, who underwent IHP,

  8. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    Science.gov (United States)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  9. Influence of artificial shock absorbers on human gait.

    Science.gov (United States)

    Voloshin, A; Wosk, J

    1981-10-01

    The effect of artificial shock absorbers on the human gait and the technique for its quantitative evaluation have been studied. The results obtained have shown that viscoelastic inserts reduced the amplitude of the incoming shock waves bearing upon the musculoskeletal system as a result of the heel strike, by 42 percent (mean value). Conservative treatment, using such inserts for patients with different clinical symptoms of degenerative joint diseases, has shown excellent results. Seventy-eight percent of the clinical symptoms disappeared, while satisfactory improvement was reported in 17 percent of the subjects.

  10. Fault Detection and Isolation for a Supermarket Refrigeration System - Part Two

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    be isolated by using a bank of UIOs. Thereby, a complete FDI approach is proposed by combining the Extended-Kalman-Filter (EKF) and UIO methods, after an extensive comparison of KF-, EKF- and UIO-based FDI methods is carried out. The simulation tests show that the complete FDI approach has a good......The Fault Detection and Isolation (FDI) using the Unknown Input Observer (UIO) for a supermarket refrigeration system is investigated. The original system's state $T_{goods}$ (temp. of the goods) is regarded as a system unknown input in this study, so that the FDI decision is not disturbed...

  11. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  12. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  13. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  14. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization

    International Nuclear Information System (INIS)

    Straub, G.K.; Holian, B.L.; Petschek, R.G.

    1979-01-01

    The thermalization behavior behind a shock front in one-dimensional chains has been studied in a series of molecular-dynamics computer experiments. We have found that a shock wave generated in a chain initially at finite temperature has essentially the same characteristics as in a chain initially at zero temperature. We also find that the final velocity distribution function for particles behind the shock front is not the Maxwell-Boltzmann distribution for an equilibrium system of classical particles. For times long after the shock has passed, we propose a nonequilibrium velocity distribution which is based upon behavior in the harmonic and hard-rod limits and agrees with our numerical results. Temperature profiles for both harmonic and anharmonic chains are found to exhibit a long-time tail that decays inversely with time. Finally, we have run a computer experiment to generate what qualitatively resembles solitons in Toda chains by means of shock waves

  15. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  16. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  17. Inappropriate shocks in the subcutaneous ICD

    DEFF Research Database (Denmark)

    Olde Nordkamp, Louise R A; Brouwer, Tom F; Barr, Craig

    2015-01-01

    shocks have been reported. METHODS: We analyzed the incidence, predictors and management of inappropriate shocks in the EFFORTLESS S-ICD Registry, which collects S-ICD implantation information and follow-up data from clinical centers in Europe and New Zealand. RESULTS: During a follow-up of 21 ± 13...... xyphoid to V6) reduced the risk. Reprogramming or optimization of SVT treatment after the first clinical event of inappropriate shock was successful in preventing further inappropriate shocks for cardiac oversensing and SVT events. CONCLUSIONS: Inappropriate shocks, mainly due to cardiac oversensing...

  18. Analysis of the computational methods on the equipment shock response based on ANSYS environments

    International Nuclear Information System (INIS)

    Wang Yu; Li Zhaojun

    2005-01-01

    With the developments and completions of equipment shock vibration theory, math calculation method simulation technique and other aspects, equipment shock calculation methods are gradually developing form static development to dynamic and from linearity to non-linearity. Now, the equipment shock calculation methods applied worldwide in engineering practices mostly include equivalent static force method, Dynamic Design Analysis Method (abbreviated to DDAM) and real-time simulation method. The DDAM is a method based on the modal analysis theory, which inputs the shock design spectrum as shock load and gets hold of the shock response of the integrated system by applying separate cross-modal integrating method within the frequency domain. The real-time simulation method is to carry through the computational analysis of the equipment shock response within the time domain, use the time-history curves obtained from real-time measurement or spectrum transformation as the equipment shock load and find an iterative solution of a differential equation of the system movement by using the computational procedure within the time domain. Conclusions: Using the separate DDAM and Real-time Simulation Method, this paper carried through the shock analysis of a three-dimensional frame floating raft in ANSYS environments, analyzed the result, and drew the following conclusion: Because DDAM does not calculate damping, non-linear effect and phase difference between mode responses, the result is much bigger than that of real-time simulation method. The coupling response is much complex when the mode result of 3-dimension structure is being calculated, and the coupling response of non-shock direction is also much bigger than that of real-time simulation method when DDAM is applied. Both DDAM and real-time simulation method has its good points and scope of application. The designers should select the design method that is economic and in point according to the features and anti-shock

  19. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  20. Measuring resilience to energy shocks

    OpenAIRE

    Molyneaux, Lynette; Brown, Colin; Foster, John; Wagner, Liam

    2015-01-01

    Measuring energy security or resilience in energy is, in the main, confined to indicators which are used for comparative purposes or to show trends rather than provide empirical evidence of resilience to unpredicted crises. In this paper, the electricity systems of the individual states within the United States of America are analysed for their response to the 1973-1982 and the 2003-2012 oil price shocks. Empirical evidence is sought for elements which are present in systems that experience r...

  1. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  2. A nova outburst powered by shocks

    Science.gov (United States)

    Li, Kwan-Lok; Metzger, Brian D.; Chomiuk, Laura; Vurm, Indrek; Strader, Jay; Finzell, Thomas; Beloborodov, Andrei M.; Nelson, Thomas; Shappee, Benjamin J.; Kochanek, Christopher S.; Prieto, José L.; Kafka, Stella; Holoien, Thomas W.-S.; Thompson, Todd A.; Luckas, Paul J.; Itoh, Hiroshi

    2017-10-01

    Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky1. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf, which is reprocessed through the ejected material2-5. Recent studies using the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt γ-ray emission6,7. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories for the study of the unknown efficiency of particle acceleration in shocks. Here, we report γ-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in γ-rays. The γ-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf8. The ratio of γ-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be around 0.005, favouring hadronic models for the γ-ray emission9. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.

  3. Perspectives on aetiology, pathophysiology and management of shock in African children

    Directory of Open Access Journals (Sweden)

    Julius Nteziyaremye

    Full Text Available Paediatric shock is still a common emergency of public health importance with an estimated 400,000–500,000 reported cases annually. Mortality due to paediatric shock has varied over the years. Data in 1980s show that mortality rates due to septic shock in children were over 50%; but by the end of the year 2000 data indicated that though a marked decline in mortality rates had been achieved, it had stagnated at about 20%. Descriptions of paediatric shock reveal the lack of a common definition and there are important gaps in evidence-based management in different settings. In well-resourced healthcare systems with well-functioning intensive care facilities, the widespread implementation of shock management guidelines based on the Paediatric Advanced Life Support and European Paediatric Advanced Life Support courses have reduced mortality. In resource limited settings with diverse infectious causative agents, the Emergency Triage Assessment and Treatment (ETAT approach is more pragmatic, but its impact remains circumscribed to centres where ETAT has been implemented and sustained. Advocacy for common management pathways irrespective of underlying cause have been suggested. However, in sub Saharan Africa, the diversity of underlying causative organisms and patient phenotypes may limit a single approach to shock management.Data from a large fluid trial (the FEAST trial in East Africa have provided vital insight to shock management. In this trial febrile children with clinical features of impaired perfusion were studied. Rapid infusion of fluid boluses, irrespective of whether the fluid was colloid or crystalloid, when compared to maintenance fluids alone had an increased risk of mortality at 48 h. All study participants were promptly managed for underlying conditions and comorbidity such as malaria, bacteraemia, severe anaemia, meningitis, pneumonia, convulsions, hypoglycaemia and others. The overall low mortality in the trial suggests the

  4. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  5. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    International Nuclear Information System (INIS)

    Eem, S H; Jung, H J; Koo, J H

    2013-01-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)

  6. DebtRank: A Microscopic Foundation for Shock Propagation.

    Science.gov (United States)

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008-2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.

  7. Development of seismic isolation system in vertical direction

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1999-04-01

    A structure concept of vertical seismic isolation system which uses a common deck and a set of large dish springs was created in past studies. In this report, a series of dynamic tests on a small scale model of a common deck isolation structure were performed. The model was excited by random and seismic waves in the horizontal direction and 2-D excitation, horizontal and vertical, in order to identify the characteristics of isolation effect. The tests results are summarized as below. 1) This structure has three vibration mode. The second mode is rocking. 2) Rocking frequency depends on the excitation, for this structure has dish spring which contact with cylinders. Rocking damping varies from 2 to 8%, 3) Each mode's response peak frequency to 2-D(horizontal and vertical) excitation is almost the same the some to horizontal excitation. Vertical mode damping to 2-D excitation is about three times to horizontal excitation. 4) Isolation effect depends on a characteristics of frequency of input motion. The minimum response is to the Monju design seismic wave, soil shear wave:Vs=2000 m/sec, natural frequency of horizontal isolation in vertical direction:fv=20 Hz. A relative displacement is controlled. 5) A rocking angular displacement to 2-D excitation is about 2 times to 1-D excitation(vertical). However, it is about 1.2 E-4(rad), sufficiently small for a practical plant. (author)

  8. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  9. A shock and wear system under environmental conditions subject to internal failures, repair, and replacement

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Pérez-Ocón, Rafael

    2012-01-01

    A system in a random environment is considered. The influence of the external conditions is governed by a Markovian arrival process. The internal structure of failure and repair are governed by phase-type distributions. The maintenance is performed by policy N. Under these assumptions, the Markov process governing the system is constructed, and it is studied in transient and stationary regime, calculating the availability and the rate of occurrence of failures. The renewal process due to the replacements of the system is studied, and expressions for the number of replacements and for the number of repairs between replacements are calculated. This paper extends other previously published since it incorporates a shock arrival process with dependence among the interarrival times and the renewal process associated to the replacements. A numerical application illustrates the calculations.

  10. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  11. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  12. Multiple shocks, coping and welfare consequences: natural disasters and health shocks in the Indian Sundarbans.

    Science.gov (United States)

    Mazumdar, Sumit; Mazumdar, Papiya Guha; Kanjilal, Barun; Singh, Prashant Kumar

    2014-01-01

    Based on a household survey in Indian Sundarbans hit by tropical cyclone Aila in May 2009, this study tests for evidence and argues that health and climatic shocks are essentially linked forming a continuum and with exposure to a marginal one, coping mechanisms and welfare outcomes triggered in the response is significantly affected. The data for this study is based on a cross-sectional household survey carried out during June 2010. The survey was aimed to assess the impact of cyclone Aila on households and consequent coping mechanisms in three of the worst-affected blocks (a sub-district administrative unit), viz. Hingalganj, Gosaba and Patharpratima. The survey covered 809 individuals from 179 households, cross cutting age and gender. A separate module on health-seeking behaviour serves as the information source of health shocks defined as illness episodes (ambulatory or hospitalized) experienced by household members. Finding reveals that over half of the households (54%) consider that Aila has dealt a high, damaging impact on their household assets. Result further shows deterioration of health status in the period following the incidence of Aila. Finding suggests having suffered multiple shocks increases the number of adverse welfare outcomes by 55%. Whereas, suffering either from the climatic shock (33%) or the health shock (25%) alone increases such risks by a much lesser extent. The multiple-shock households face a significantly higher degree of difficulty to finance expenses arising out of health shocks, as opposed to their counterparts facing only the health shock. Further, these households are more likely to finance the expenses through informal loans and credit from acquaintances or moneylenders. This paper presented empirical evidence on how natural and health shocks mutually reinforce their resultant impact, making coping increasingly difficult and present significant risks of welfare loss, having short as well as long-run development manifestations.

  13. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  15. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    Science.gov (United States)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  16. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    OpenAIRE

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  17. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Ferrell, P.C.

    1996-01-01

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer

  18. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  19. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  20. Study on design procedure of three-dimensional building base isolation system using thick rubber bearing

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Matsuda, Akihiro

    2003-01-01

    In this study, design procedure on three-dimensional base isolation system is developed. Base isolation system proposed by CRIEPI uses thick rubber bearing and damper as isolation device. As for thick rubber bearings, design formula for evaluating vertical stiffness is proposed, and design conditions regarding size and vertical pressure are investigated. Figure-U type lead damper is proposed as three-dimensional damper and by loading tests its mechanical characteristics is evaluated. The concept of multi-layered interconnected rubber bearing, which is advantageous over large scale bearing in manufacturability, is proposed and its good performance is confirmed by the loading test. Through the response analyses, it is shown the rocking response of the proposed three-dimensional base isolation system is very small and not influential to the system, and the reduction of the vertical response is attained using the proposed isolation device. (author)

  1. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  2. System of the sensor failure detection and isolation system using Kalman filter

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1991-01-01

    The present work work summarizes the development of the sensor failure detection and isolation system (FDIS) suitable to be implemented in nuclear plant control systems. The methodology is based on the extended Kalman filter applied to a PWR pressurizer simplified model. The simulation of the most representative failure types showed the great reliability and fast response capability of the FDIS developed allowing the sizable savings in computational and economic expenditures. (author)

  3. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  4. ShockOmics: multiscale approach to the identification of molecular biomarkers in acute heart failure induced by shock.

    Science.gov (United States)

    Aletti, Federico; Conti, Costanza; Ferrario, Manuela; Ribas, Vicent; Bollen Pinto, Bernardo; Herpain, Antoine; Post, Emiel; Romay Medina, Eduardo; Barlassina, Cristina; de Oliveira, Eliandre; Pastorelli, Roberta; Tedeschi, Gabriella; Ristagno, Giuseppe; Taccone, Fabio S; Schmid-Schönbein, Geert W; Ferrer, Ricard; De Backer, Daniel; Bendjelid, Karim; Baselli, Giuseppe

    2016-01-28

    The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock. Ninety septic shock and cardiogenic shock patients will be recruited in three intensive care units (ICU) (Hôpital Erasme, Université Libre de Bruxelles, Belgium; Hospital Universitari Mutua Terrassa, Spain; Hôpitaux Universitaires de Genève, Switzerland). Hemodynamic signals will be recorded every day for up to seven days from shock diagnosis (time T0). Clinical data and blood samples will be collected for analysis at: i) T1  5 and lactate levels ≥ 2 mmol/L. The exclusion criteria are: expected death within 24 h since ICU admission; > 4 units of red blood cells or >1 fresh frozen plasma transfused; active hematological malignancy; metastatic cancer; chronic immunodepression; pre-existing end stage renal disease requiring renal replacement therapy; recent cardiac surgery; Child-Pugh C cirrhosis; terminal illness. Enrollment will be preceded by the signature of the Informed Consent by the patient or his/her relatives and by the physician in charge. Three non-shock control groups will be included in the study: a) healthy blood donors (n = 5); b) septic patients (n = 10); c) acute myocardial infarction or patients with prolonged acute arrhythmia (n = 10). The hemodynamic data will be downloaded from the ICU monitors by means of dedicated software. The blood samples will be utilized for transcriptomics, proteomics and metabolomics ("-omics") analyses. ShockOmics will provide new insights into the pathophysiological mechanisms underlying shock as well as new biomarkers for the timely diagnosis of cardiac dysfunction in shock and quantitative indices for assisting the therapeutic management of shock patients.

  5. Histological and autoradiographic studies on rat joints after experimental nervous shock

    International Nuclear Information System (INIS)

    Kohl, C.

    1981-01-01

    22 SPF-Wistar-rats of both sexes, ranging in age from 49 to 56 days, were used in this investigation. Of these, 6 served as controls. The remaining 16 rats received i.v. injections of E. coli-neurotoxin serotyp 0 139 : K 82 (B). 6 rats died in acute shock. The surviving animals received 4 injections of the neurotoxin. The maximum weight loss 24 h p.i. amounted to an average of 8.3% in the females and 10.4% in the males. The clinical symptoms after the inducement of skock are slight to severe apathy, rough coat, dyspnoe and nervous symptoms which are expressed in various degrees of oversensitivity to touch or sound. The light microscopic examination of the synovial membrane from control animals coincides with the findings of previous investigations. In acute shock the joints show a middle to high degree of hyperemia, slight sticking effect, and isolated microthrombi in the vessels of the subsynoviocytic tissue as well as increased exsudation in the joint cavities. Edemas of the subsynoviocytic tissue are found to a small extent. The joints of animals in protracted shock show none of the changes evident in acute shock. Autoradiological examinations were performed on 13 rats which had been injected with 1 μCi/g body weight 3H-thymidine 1 hour before killing. Joints were embedded in paraffin- and methyl-methacrylat. Comparison cuts from the same stifle joint resulted each time in reproducable labeling indices. This can be taken as a confirmation of the applicability of 3H-autoradiography in the case of joint cuts embedded in methacrylat. (orig./MG) [de

  6. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  7. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  8. Development of Seismic Isolation Systems Using Periodic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiqun [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Menq, Farn-Yuh [Univ. of Texas, Austin, TX (United States); Stokoe, II, Kenneth H. [Univ. of Texas, Austin, TX (United States); Perkins, Judy [Prairie View A & M University, Prairie View, TX (United States); Tang, Yu [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the

  9. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  10. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  11. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  12. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  13. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  14. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Roles of Technology and Nontechnology Shocks in the Business Cycles

    OpenAIRE

    Shingo Watanabe

    2006-01-01

    The empirical study of technology shocks is intensively conducted to evaluate plausibility of the technology-driven real business cycle hypothesis. A popular method is to identify technology shocks by the long-run restriction that those solely have permanent effects on labor productivity in the system consisting of labor productivity growth and hours worked. While it has an advantage of not using Solow residuals which tend to accompany measurement errors, it potentially misidentifies nontechn...

  16. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Vibration Isolation System Using Negative Stiffness(Advances in Motion and Vibration Control Technology)

    OpenAIRE

    水野, 毅; 高崎, 正也

    2003-01-01

    A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

  18. Do oil shocks predict economic policy uncertainty?

    Science.gov (United States)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  19. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  20. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  1. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  2. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  3. Organ distribution of radiolabeled enteric Escherichia coli during and after hemorrhagic shock

    International Nuclear Information System (INIS)

    Redan, J.A.; Rush, B.F.; McCullough, J.N.; Machiedo, G.W.; Murphy, T.F.; Dikdan, G.S.; Smith, S.

    1990-01-01

    Translocation of intestinal bacteria to the blood during hemorrhagic shock (HS) has been confirmed in rats and humans. The current study was designed to trace the path of translocated intestinal bacteria in a murine HS model. Thirty-one rats were gavaged with 1,000,000 counts of viable 14C oleic acid-labeled Escherichia coli. Forty-eight hours later the animals were bled to 30 mmHg until either 80% of their maximal shed blood was returned or 5 hours of shock had elapsed and they were resuscitated with Ringer's lactate as previously described. Control animals were cannulated but not shocked. Eight rats immediately after shock and resuscitation, 6 rats 24 hours after shock, 3 rats 48 hours after shock, and 4 animals that died in shock had their heart, lung, liver, spleen, kidney, and serum harvested, cultured, and radioactive content measured. Translocated enteric bacteria are found primarily in the lung immediately after shock with redistribution to the liver and kidney 24 hours later. Animals surviving to 48 hours were capable of eliminating the majority of the bacteria from their major organ systems. Positive cultures for E. coli were also found in the blood, lung, liver, and kidney. We speculate that the inflammatory response stimulated by the bacteria in these organs may contribute to the multiple-organ failure syndrome seen after HS

  4. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  5. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  6. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    International Nuclear Information System (INIS)

    Giacalone, J.; Jokipii, J. R.

    2004-01-01

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration

  7. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    Science.gov (United States)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  8. The introduction of wind powered pumped storage Systems in Greek isolated systems. Experiences and perspectives

    International Nuclear Information System (INIS)

    Katsaprakakis, Dimitris Al.; Christakis, Dimitris G.

    2009-01-01

    Full text: In the present paper, the experiences gained from the study of Wind Powered Pumped Storage Systems (WP-PSS), introduced in Greek isolated power production systems, are presented. The presented systems were studied in the frames of either research or development projects, financed by the public or private sector. Two main categories of WP-PSS are presented: The introduction of WP-PSS for power peak saving. The construction and the operation framework of these systems are fully defined in the relevant Greek laws. These systems were studied in the frames of individual development projects. The introduction of WPPSS aiming at the maximisation of wind power. These systems are not yet fully defined in the Greek legislation and were studied in the frames of research works. More than ten WP-PSS have been technically and economically studied so far. Each one of them has been introduced in a Greek isolated insular power system, integrated according to the to the specific design parameters of the examined insular system (power demand, wind potential, land morphology, etc). All the accomplished studies may be considered as parts of one long-time unified project, aiming at the investigation of the prerequisites for the maximisation of the Renewable Energy Sources (R.E.S.) exploitation in Greece. The general conclusions arisen from the so far accomplished work are: The R.E.S. penetration percentage in the Greek insular systems may exceed 80% of the annual energy demand, by introducing pumped storage systems as storage device. The electricity production cost is minimized, even in the isolated systems of small size. The corresponding investments exhibit very good economical indexes, regardless the possible availability of initial capitals subsidy. In case of initial capitals subsidy availability, the investments exhibit quite attractive economical indexes. The dynamic security of the proposed systems (author)

  9. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    International Nuclear Information System (INIS)

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-01-01

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu

  10. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  11. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  12. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significan