WorldWideScience

Sample records for shock current layers

  1. 2-Shock layered tuning campaign

    Science.gov (United States)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  2. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  3. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.; Leveque, Randall J.

    2012-01-01

    of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation

  4. Shock timing measurements in DT ice layers

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Radiography for a Shock-accelerated Liquid Layer

    International Nuclear Information System (INIS)

    P. Meekunnasombat J.G. Oakley/inst M.H. Anderson R. Bonazza

    2005-01-01

    This program supported the experimental study of the interaction of planar shock waves with both solid structures (a single cylinder or a bank of cylinders) and single and multiple liquid layers. Objectives of the study included: characterization of the shock refraction patterns; measurements of the impulsive loading of the solid structures; observation of the response of the liquid layers to shock acceleration; assessment of the shock-mitigation effects of single and multiple liquid layers. The uploaded paper is intended as a final report for the entire funding period. The poster described in the paper won the Best Poster Award at the 25 International Symposium on Shock Waves

  7. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  8. Transonic shock wave. Boundary layer interaction at a convex wall

    NARCIS (Netherlands)

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  9. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  10. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  11. Multi-layer protective armour for underwater shock wave mitigation

    Directory of Open Access Journals (Sweden)

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  12. Nonequilibrium effects on shock-layer radiometry during earth entry.

    Science.gov (United States)

    Arnold, J. O.; Whiting, E. E.

    1973-01-01

    Radiative enhancement factors for the CN violet and N2(+) first negative band systems caused by nonequilibrium thermochemistry in the shock layer of a blunt-nosed vehicle during earth entry are reported. The results are based on radiometric measurements obtained with the aid of a combustion-driven shock tube. The technique of converting the shock-tube measurements into predictions of the enhancement factors for the blunt-body case is described, showing it to be useful for similar applications of other shock-tube measurements.

  13. Current Opinions in Pediatric Septic Shock

    Directory of Open Access Journals (Sweden)

    José Irazuzta

    2009-11-01

    Full Text Available Objectives: Our aim is to describe the current clinical practice related to the management of septic shock (SS. Methods: Review of medical literature using the MEDLINE database. Articles were selected according to their relevancy to the objective and according to the author’s opinion. Summary of the findings: The outcome from SS is dependent on an early recognition and a sequential implementation of time-sensitive goal-directed therapies. The goals of the resuscitation are rapid restoration of micro circulation and improved organ tissue perfusion. Clinical and laboratory markers are needed to assess the adequacy of the treatments. Initial resuscitation involves the use of isotonic solutions (>60ml/kg either crystalloid (normal saline or colloid infusion often followed by vasoactive medications. Altered pharmacokinetics and pharmacodynamics responses dictate that vasoactive agents should be adjusted to achieve predetermined goals. An assessment of central venous pressure complements clinical and serological findings to tailor therapies. Elective airway instrumentation and mechanical ventilation as well as adjunctive therapy with stress dose of corticosteroid are indicated in selected populations. In neonates, a special attention to the presence of electrolyte imbalance and increase pulmonary vascular resistance needs to be considered early. Conclusions: Septic shock hemodynamic is a changing process that requires frequent assessment and therapeutic adjustments.

  14. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  15. Experimental research on crossing shock wave boundary layer interactions

    Science.gov (United States)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  16. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    Science.gov (United States)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  17. Cardiogenic shock. Current concepts in management.

    Science.gov (United States)

    Balakumaran, K; Hugenholtz, P G

    1986-10-01

    This article presents a categorisation of circulatory shock and discusses the causes, haemodynamics, and clinical recognition of cardiogenic shock. The first step in the management strategy in cardiogenic shock is to guide the patient from the state of shock to one of managed haemodynamic stability. The therapeutic manoeuvres of this first step constitute the management tactics, which can be grouped under 3 general headings: (a) making the most of a malfunctioning heart; (b) improving the state of the heart; and (c) reducing the demands on the heart. In order to make the most of the heart, i.e. to get the highest possible output at the lowest possible cost, clinicians need to use their judgement in stimulating an overtaxed heart on the one hand, and in manipulating the loads on it (the preload and afterload) on the other, for although these methods may be advantageous, they are not without their pitfalls. Efforts to improve the state of the heart often necessitate surgical (e.g. mitral valve replacement) or semisurgical (e.g. coronary angiography and recanalisation) techniques, although intravenous antithrombotic agents may achieve comparable results in a few cases at the bedside. Reducing the demands on the heart is an active process involving the takeover of at least a part of the work of the heart by ancillary devices such as the intra-aortic balloon pump, and of the work of breathing by intubation and artificial ventilation. The individuality of each case of cardiogenic shock emphasises the need for empirical modulation of therapy based on feedback information obtained by haemodynamic monitoring.

  18. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  19. Simulation of hypersonic shock wave - laminar boundary layer interactions

    Science.gov (United States)

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  20. Effects of shock on hypersonic boundary layer stability

    Science.gov (United States)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  1. A numerical investigation on the effects of slot geometry on shock boundary layer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bazazzadeh, M.; Menshadi, M. D.; Karbasizadeh, M. [Dept. of Mechanical and Aerospace Engineering, Malek Ashtar University of Technology, Esfahan (Turkmenistan)

    2017-01-15

    Slot is one of the features that control Shock wave-boundary layer interaction (SBLI), which is generally used to prevent strong interference from shockwaves to the boundary layer in supersonic flows. With this feature, the height of the triple point of λ shock significantly increases, and this increase causes a decline in shock power and pressure drop rate. In the current paper, the main focus is on the monitoring of the geometrical effect of slot as an influential parameter on the structure of the shock and flow characteristics by using numerical methods. Therefore, the averaged implicit Navier-Stokes equations and two equation standard k-ω turbulence models for the numerical simulation of the flow field have been used. Results indicate that the numerical results are fairly consistent with the experimental data. Because of the increase in the number of slots (n), and the leading leg of the λ shock is located within the slot, the height of the triple point increases. However, because of the increasing drops due to viscosity, the total pressure changes are negligible. In addition, with an increase in this parameter, changes in the static pressure caused by the leading leg of the shock have increased. By increasing the width of the slots, the height of the triple point has had an upward trend up to s = 8 mm and then had nearly constant values. In this mode, the static pressure changes resulting from the leading leg of the shock are negligible. For increasing the number or the width of slots, the re-expansion waves formed within the slot are removed because of the reduction in the severity of the changes in the boundary layer. To simulate and compare the results with the data obtained from the experimental tests, results from the Cambridge University's wind tunnel tests have been used.

  2. Titan atmospheric composition by hypervelocity shock layer analysis

    International Nuclear Information System (INIS)

    Nelson, H.F.; Park, C.; Whiting, E.E.

    1989-01-01

    The Cassini Mission, a NASA/ESA cooperative project which includes a deployment of probe into the atmosphere of Titan, is described, with particular attention given to the shock radiometer experiment planned for the Titan probe for the analysis of Titan's atmosphere. Results from a shock layer analysis are presented, demonstrating that the mole fractions of the major species (N2, CH4, and, possibly Ar) in the Titan atmosphere can be successfully determined by the Titan-probe radiometer, by measuring the intensity of the CN(violet) radiation emitted in the shock layer during the high velocity portion of the probe entry between 200 and 400 km altitude. It is shown that the sensitivity of the CN(violet) radiation makes it possible to determine the mole fractions of N2, CH4, and Ar to about 0.015, 0.003, and 0.01, respectively, i.e., much better than the present uncertainties in the composition of Titan atmosphere. 29 refs

  3. DSMC Computations for Regions of Shock/Shock and Shock/Boundary Layer Interaction

    Science.gov (United States)

    Moss, James N.

    2001-01-01

    This paper presents the results of a numerical study of hypersonic interacting flows at flow conditions that include those for which experiments have been conducted in the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel and the ONERA R5Ch low-density wind tunnel. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 9.3 to 11.4 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The results presented highlight the sensitivity of the calculations to grid resolution, provide results concerning the conditions for incipient separation, and provide information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  4. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.

    1988-01-01

    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  5. Turbulent current layer equilibrium and current layer of the Earth magnetotail

    International Nuclear Information System (INIS)

    Antonova, E.E.; Ovchinnikov, I.L.

    1996-01-01

    Analysis of distribution of plasma and magnetic field concentration in the unidimensional current layer under the condition of equality of the current inflowing into the layer and the counter diffusion current by various dependences of the regular velocity and the turbulent diffusion coefficient on the magnetic field. Corresponding two-dimensional solutions are obtained in the tail approximation. Comparison of the model turbulent current layer with characteristics of the plasma layer of the Earth magnetosphere tail is carried out. 16 refs., 3 figs

  6. Variations in the magnetopause current layer

    Science.gov (United States)

    Laakso, H. E.; Middleton, H. R.

    2017-12-01

    We use multi-point observations from the Cluster spacecraft to investigate the variations in the magnetopause current layer. With help of the curlometer technique one can determine the magnetopause current and its variability. Most of the time the magnetopause location is moving back and forth, so during any given pass the current layer is crossed several times. We use such crossings to investigate the characteristics of the current layer as the solar wind pressure varies (and the magnetopause moves accordingly). In addition we take an advantage of the ambient electron measurements from the EDI experiment which have been calibrated against the PEACE electron spectrometer data. These data can be used to detect fast variations of 1 keV electrons at resolution of 1-100 ms. Overall, Cluster observations are highly complimentary to the MMS observations due to the polar orbit of the Cluster spacecraft which provide fast vertical profiles of the magnetopause current layer.

  7. Multi-layer protective armour for underwater shock wave mitigation

    OpenAIRE

    Ahmed Hawass; Hosam Mostafa; Ahmed Elbeih

    2015-01-01

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected p...

  8. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    Science.gov (United States)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin

  9. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    Science.gov (United States)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  10. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  11. Structure of the magnetopause current layer at the subsolar point

    International Nuclear Information System (INIS)

    Okuda, H.

    1991-12-01

    A one-dimensional electromagnetic particle simulation model developed for the magnetopause current layer between the shocked solar wind and the dipole magnetic field at the subsolar point has been extended to include the interplanetary magnetic field (IMF) in the solar wind. Interaction of the solar wind with the vacuum dipole field as well as the dipole field filled with a low density magnetospheric plasma are studied. It is found that the width and the structure of the magnetopause current layer differ markedly depending on the direction of the IMF. When the IMF is pointing southward, the current layer between the solar wind and the dipole field is narrow and the magnetic field has a single ramp structure caused by the reflection of the solar wind at that point. The current layer becomes several times wider and the magnetic field developes a multiple ramp structure when the IMF is northward. This broadening of the current layer is caused by the multiple reflection of the solar wind by the magnetic field. For the northward IMF, the magnetic field does not change its sign across the current layer so that the E x B drift of the solar wind electrons remains the same direction while for the southward IMF, it reverses the sign. This results in a single reflection of the solar wind for the southward IMF and multiple reflections for the northward IMF. When a low density mangetospheric plasma is present in the dipole magnetic field, a small fraction of the solar wind ions are found to penetrate into the dipole magnetic field beyond the reflection point of the solar wind electrons. The width of the ion current layer is of the order of the solar wind ion gyroradius, however, the current associated with the ions remains much smaller than the electron current so long as the density of the magnetospheric plasma is much smaller than the density of the solar wind. Comparisons of our simulation results with the magnetopause crossing near the subsolar point are provided

  12. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  13. Ideal shocks in 2-layer flow Part I: Under a rigid lid

    OpenAIRE

    Jiang, Qingfang; Smith, Ronald B.

    2011-01-01

    Previous work on the classical problem of shocks in a 2-layer density-stratified fluid used eithera parameterized momentum exchange or an assumed Bernoulli loss. We propose a new theorybased on a set of viscous model equations. We define an idealized shock in two-layer densitystratified flow under a rigid lid as a jump or drop of the interface in which (1) the force balanceremains nearly hydrostatic in the shock, (2) there is no exchange of momentum between thetwo layers except by pressure fo...

  14. Transonic shock wave. Turbulent boundary layer interaction on a curved surface

    NARCIS (Netherlands)

    Nebbeling, C.; Koren, B.

    1988-01-01

    This paper describes an experimental investigation of a transonic shock wave - turbulent boundary layer interaction in a curved test section, in which the flow has been computed by a 2-D Euler flow method. The test section has been designed such that the flow near the shock wave on the convex curved

  15. Factors influencing flow steadiness in laminar boundary layer shock interactions

    Science.gov (United States)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  16. Interaction of a conical shock wave with a turbulent boundary layer

    Science.gov (United States)

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  17. Bow Shock Generator Current Systems: MMS Observations of Possible Current Closure

    Science.gov (United States)

    Hamrin, M.; Gunell, H.; Lindkvist, J.; Lindqvist, P.-A.; Ergun, R. E.; Giles, B. L.

    2018-01-01

    We use data from the first two dayside seasons of the Magnetospheric Multiscale (MMS) mission to study current systems associated with quasi-perpendicular bow shocks of generator type. We have analyzed 154 MMS bow shock crossings near the equatorial plane. We compute the current density during the crossings and conclude that the component perpendicular to the shock normal (J⊥) is consistent with a pileup of the interplanetary magnetic field (IMF) inside the magnetosheath. For predominantly southward IMF, we observe a component Jn parallel (antiparallel) to the normal for GSM Y > 0 (MMS probing region. For IMF clock angles near 90∘, we find indications of the current system being tilted toward the north-south direction, obtaining a significant Jz component, and we suggest that the current closes off the equatorial plane at higher latitudes where the spacecraft are not probing. The observations are complicated for several reasons. For example, variations in the solar wind and the magnetospheric currents and loads affect the closure, and Jn is distributed over large regions, making it difficult to resolve inside the magnetosheath proper.

  18. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction

    NARCIS (Netherlands)

    Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of

  19. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Science.gov (United States)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  20. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

    OpenAIRE

    Mehrnaz Rouhi Youssefi; Doyle Knight

    2017-01-01

    The goal of this study is to assess CFD capability for the prediction of shock wave laminar boundary layer interactions at hypersonic velocities. More specifically, the flow field over a double-cone configuration is simulated using both perfect gas and non-equilibrium Navier–Stokes models. Computations are compared with recent experimental data obtained from measurements conducted in the LENS XX (Large Energy National Shock Expansion Tunnel Version 2) at the Calspan University of Buffalo Rese...

  1. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  2. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  3. Time-resolved stereo PIV measurements of shock-boundary layer interaction on a supercritical airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Axel; Klaas, Michael; Schroeder, Wolfgang [RWTH Aachen University, Institute of Aerodynamics, Aachen (Germany)

    2012-03-15

    Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave-boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 x 10{sup 6} are analyzed regarding the origin and nature of the unsteady shock-boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa. (orig.)

  4. Laser-driven shock-wave propagation in pure and layered targets

    International Nuclear Information System (INIS)

    Salzmann, D.; Eliezer, S.; Krumbein, A.D.; Gitter, L.

    1983-01-01

    The propagation properties of laser-driven shock waves in pure and layered polyethylene and aluminum slab targets are studied for a set of laser intensities and pulse widths. The laser-plasma simulations were carried out by means of our one-dimensional Lagrangian hydrodynamic code. It is shown that the various parts of a laser-driven compression wave undergo different thermodynamic trajectories: The shock front portion is on the Hugoniot curve whereas the rear part is closer to an adiabat. It is found that the shock front is accelerated into the cold material till troughly-equal0.8tau (where tau is the laser pulse width) and only later is a constant velocity propagation attained. The scaling laws obtained for the pressure and temperature of the compression wave in pure targets are in good agreement with those published in other works. In layered targets, high compression and pressure were found to occur at the interface of CH 2 on Al targets due to impedance mismatch but were not found when the layers were reversed. The persistence time of the high pressure on the interface in the CH 2 on Al case is long enough relative to the characteristic times of the plasma to have an appreciable influence on the shock-wave propagation into the aluminum layer. This high pressure and compression on the interface can be optimized by adjusting the CH 2 layer thickness

  5. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Hohenberger, M.; Boehly, T. R. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Nikroo, A. [General Atomics, San Diego, California 92196 (United States)

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  6. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  7. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    International Nuclear Information System (INIS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J.; Hohenberger, M.; Boehly, T. R.; Nikroo, A.

    2014-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing

  8. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  9. Passive shock wave/boundary layer control of wing at transonic speeds

    Directory of Open Access Journals (Sweden)

    Ling Zhou

    2017-11-01

    Full Text Available At supercritical conditions a porous strip (or slot strip placed beneath a shock wave can reduce the drag by a weaker lambda shock system, and increase the buffet boundary, even may increase the lift. Passive shock wave/boundary layer control (PSBC for drag reduction was conducted by SC(2-0714 supercritical wing, with emphases on parameter of porous/slot and bump, such as porous distribution, hole diameter, cavity depth, porous direction and so on. A sequential quadratic programming (SQP optimization method coupled with adjoint method was adopted to achieve the optimized shape and position of the bumps. Computational fluid dynamics (CFD, force test and oil test with half model all indicate that PSBC with porous, slot and bump generally reduce the drag by weaker lambda shock at supercritical conditions. According to wind tunnel test results for angle of attack of 2° at Mach number M=0.8, the porous configuration with 6.21% porosity results in a drag reduction of 0.0002 and lift–drag ratio increase of 0.2, the small bump configuration results in a drag reduction of 0.0007 and lift–drag ratio increase of 0.3. Bump normally reduce drag at design point with shock wave position being accurately computed. If bump diverges from the position of shock wave, drag will not be easily reduced.

  10. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Science.gov (United States)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  11. Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer

    Science.gov (United States)

    Melnik, R. E.; Grossman, B.

    1974-01-01

    The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.

  12. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    Science.gov (United States)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  13. Investigation of 3D Shock-Boundary Layer Interaction: A Combined Approach using Experiments, Numerical Simulations and Stability Analysis

    Science.gov (United States)

    2015-12-02

    layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...Introduction Shock-wave boundary layer interactions (SBLIs) occur in most supersonic flight applications and have been the subject of many studies...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental

  14. A computational study on oblique shock wave-turbulent boundary layer interaction

    Science.gov (United States)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  15. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  16. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  17. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  18. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  19. Application of pressure-sensitive paint in shock-boundary layer interaction experiments

    OpenAIRE

    Seivwright, Douglas L.

    1996-01-01

    Approved for public release; distribution is unlimited A new type of pressure transducer, pressure-sensitive paint, was used to obtain pressure distributions associated with shock-boundary layer interaction. Based on the principle of photoluminescence and the process of oxygen quenching, pressure-sensitive paint provides a continous mapping of a pressure field over a surface of interest. The data measurement and acquisition system developed for use with the photoluminescence sensor was eva...

  20. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  1. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  2. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David Owen

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  3. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  4. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  5. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  6. Dark current of organic heterostructure devices with insulating spacer layers

    Science.gov (United States)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  7. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  8. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  9. Limiting velocity of reconnection in a current layer

    International Nuclear Information System (INIS)

    Podgornyj, A.N.; Syrovatskij, S.I.

    1981-01-01

    Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed

  10. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions

    Directory of Open Access Journals (Sweden)

    Mehrnaz Rouhi Youssefi

    2017-04-01

    Full Text Available The goal of this study is to assess CFD capability for the prediction of shock wave laminar boundary layer interactions at hypersonic velocities. More specifically, the flow field over a double-cone configuration is simulated using both perfect gas and non-equilibrium Navier–Stokes models. Computations are compared with recent experimental data obtained from measurements conducted in the LENS XX (Large Energy National Shock Expansion Tunnel Version 2 at the Calspan University of Buffalo Research Center (CUBRC. Four separate cases of freestream conditions are simulated to examine the models for a range of stagnation enthalpies from 5.44 MJ/kg to 21.77 MJ/kg and Mach numbers from 10.9 to 12.82.

  11. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    Science.gov (United States)

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  12. 228 Empirical Analysis of Fiscal Policy Shocks and Current Account ...

    African Journals Online (AJOL)

    First Lady

    2013-01-28

    Jan 28, 2013 ... budget deficit on the current account balance in Nigeria but their claims and results are sketchy at ..... financial sector variables on Nigeria's CAB. The results ..... 08/60 (Washington: International Monetary Fund). Looney, R. E. ...

  13. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  14. Analysis of dimensionality effect on shock wave boundary layer interaction in laminar hypersonic flows

    International Nuclear Information System (INIS)

    John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak

    2016-01-01

    Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.

  15. Shock dynamics induced by double-spot laser irradiation of layered targets

    Directory of Open Access Journals (Sweden)

    Aliverdiev Abutrab A.

    2015-06-01

    Full Text Available We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

  16. Natural Rubber Modification For Upper Layer Of Rubberized Asphalt Paving Block AS Shock Absorber

    OpenAIRE

    Nasruddin, Nasruddin

    2017-01-01

    The research of rubber compounding modification for upper layer of rubberized asphalt paving block as shock absorber using natural rubber, styrene butadiene rubber (SBR) as synthetic rubber, fly ash as filler and also vegetable oil as plasticizer has been conducted. The research design was varying the filler Si-69, fly ash and palm oil. The five formulas A, B, C, D, and E designed by varying the amount of Si-69 (48.5; 50.75; 53.00; 55.25; and 57.50) phr; coal fly ash (4.75, 7.00, 9.25, 11.50 ...

  17. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    Science.gov (United States)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  18. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  19. Modeling of the plasma generated in a rarefied hypersonic shock layer

    International Nuclear Information System (INIS)

    Farbar, Erin D.; Boyd, Iain D.

    2010-01-01

    In this study, a rigorous numerical model is developed to simulate the plasma generated in a rarefied, hypersonic shock layer. The model uses the direct simulation Monte Carlo (DSMC) method to treat the particle collisions and the particle-in-cell (PIC) method to simulate the plasma dynamics in a self-consistent manner. The model is applied to compute the flow along the stagnation streamline in front of a blunt body reentering the Earth's atmosphere at very high velocity. Results from the rigorous DSMC-PIC model are compared directly to the standard DSMC modeling approach that uses the ambipolar diffusion approximation to simulate the plasma dynamics. It is demonstrated that the self-consistent computation of the plasma dynamics using the rigorous DSMC-PIC model captures many physical phenomena not accurately predicted by the standard modeling approach. These computations represent the first assessment of the validity of the ambipolar diffusion approximation when predicting the rarefied plasma generated in a hypersonic shock layer.

  20. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    Science.gov (United States)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  1. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  2. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  3. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  4. A thin-shock-layer solution for nonequilibrium, inviscid hypersonic flows in earth, Martian, and Venusian atmospheres

    Science.gov (United States)

    Grose, W. L.

    1971-01-01

    An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.

  5. Observations of propagating double layers in a high current discharge

    International Nuclear Information System (INIS)

    Lindberg, L.

    1988-01-01

    Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2 x 10 19 m - 3 , highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3-5kV). An initial plasma column is formed in an axial magnetic field (0.1T) by means of a conical theta-pinch plasma gun. When an axial current (max 5kA, 3-5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds. Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1-2 kV above the anode potential during a few μs) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions

  6. Spontaneous layering of porous silicon layers formed at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Parkhutik, Vitali; Curiel-Esparza, Jorge; Millan, Mari-Carmen [R and D Center MTM, Technical University of Valencia, Valencia (Spain); Albella, Jose [Institute of Materials Science (ICMM CSIC) Madrid (Spain)

    2005-06-01

    We report here a curious effect of spontaneous fracturing of the silicon layers formed in galvanostatic conditions at medium and high current densities. Instead of formation of homogeneous p-Si layer as at low currents, a stack of thin layers is formed. Each layer is nearly separated from others and possesses rather flat interfaces. The effects is observed using p{sup +}-Si wafers for the p-Si formation and starts being noticeable at above 100 mA/cm{sup 2}. We interpret these results in terms of the porous silicon growth model where generation of dynamic mechanical stress during the p-Si growth causes sharp changes in Si dissolution mechanism from anisotropic etching of individual needle-like pores in silicon to their branching and isotropic etching. At this moment p-Si layer loses its adhesion to the surface of Si wafer and another p-Si layer starts growing. One of the mechanisms triggering on the separation of p-Si layers from one another is a fluctuation of local anodic current in the pore bottoms associated with gas bubble evolution during the p-Si formation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. An Experimental Study into the Scaling of an Unswept-Sharp-Fin-Generated Shock/Turbulent Boundary Layer Interaction.

    Science.gov (United States)

    1983-01-01

    Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250

  8. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  9. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  10. Parametric Study of Swept Impinging Oblique Shock/Boundary Layer Interactions

    Science.gov (United States)

    Doehrmann, Adam; Threadgill, James; Little, Jesse

    2017-11-01

    Modern high-speed vehicles have increasingly complex 3D geometries featuring: surface curvature, variable aspect ratio inlet ducts and swept bodies. Such distortion to the flow field necessitates a further understanding of swept 3D Shock/Boundary Layer Interactions (SBLIs), where various regimes of spanwise interaction development have been observed. A parametric experimental study of swept oblique impinging SBLIs has been conducted comparing cylindrical and conical interaction structures to that of swept compression ramps in previous work. This investigation examines five shock generators with 2D deflection of θ = 12 .5° and varying degrees of sweep (ψ = 10 .0° , 15 .0° , 22 .5° , 30 .0° , 40 .0°), with an incoming turbulent flow at Mach 2.3 and 3.0. Parametric characterization of surface oil-flow visualizations has shown that the inception length of the interaction follows a similar trend to that seen in swept compression ramps as sweep is varied, namely that it increases as sweep approaches a critical angle. However, this criteria disagrees with direct observations of separation and reattachment angles. Similarities in mean pressures profiles have also been assessed and analyzed with respect to the onset of a cylindrical/conical interaction. Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430).

  11. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  12. Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry

    Science.gov (United States)

    Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth

    1990-01-01

    Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.

  13. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  14. Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen

    Science.gov (United States)

    Blackwell, H. E.

    1991-01-01

    An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.

  15. AC over-current characteristics of YBCO coated conductor with copper stabilizer layer considering insulation layer

    International Nuclear Information System (INIS)

    Du, H.-I.; Kim, M.-J.; Kim, Y.-J.; Lee, D.-H.; Han, B.-S.; Song, S.-S.

    2010-01-01

    Compared with the first-generation BSCCO wire, the YBCO thin-film wire boasts low material costs and high J c and superior magnetic-field properties, among other strengths. Meanwhile, the previous BSCCO wire material for superconducting cables has been researched on considerably with regard to its post-wire quenching characteristics during the application of an alternating over-current. In this regard, the promising YBCO thin-film wire has yet to be further researched on. Moreover, still lacking is research on the YBCO thin-film wire with insulating layers, which is essential in the manufacture of superconducting cables, along with the testing of the application of an alternating over-current to the wire. In this study, YBCO thin-film wires with copper-stabilizing layers were used in testing alternating over-current application according to the presence or absence of insulating layers and to the thickness of such layers, to examine the post-quenching wire resistance increase and quenching trends. The YBCO thin-film wire with copper-stabilizing layers has a critical temperature of 90 K and a critical current of 85 A rms . Moreover, its current application cycle is 5.5 cycles, and its applied currents are 354, 517, 712, and 915 A peak . These figures enabled the YBCO thin-film wires with copper-stabilizing layers to reach 90, 180, 250, and 300 K, respectively, in this study. These temperatures serve as a relative reference to examine the post-quenching wire properties following the application of an alternating over-current.

  16. Government Spending Shocks, the Current Account and the Real Exchange Rate in OECD Countries

    Directory of Open Access Journals (Sweden)

    Soyoung Kim

    2008-06-01

    Full Text Available This paper examines the effects of government spending shocks on the current account and the real exchange rate for 20 OECD countries using panel VAR model, in order to provide empirical stylized facts. The countries were grouped based on openness and size, and the influence of openness and size on the effects of government spending shocks. The main findings are as follows. First, in the analysis of all 20 countries, in response to government spending shocks, the worsening of the current account is significant, but real exchange rate appreciation is not significant. Second, real exchange rate appreciation is more significant and worsening of the current account is more temporary in the group of countries with higher openness than in those with low openness. Third, the worsening of the current account is more significant in the group of large countries than in the group of small countries. Although real exchange rate depreciation under fiscal expansion is not consistent with traditional theories, the results are broadly consistent with the existing theories that incorporate openness and the size of the country.

  17. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  18. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  19. Anti-diffusive radiation flow in the cooling layer of a radiating shock

    International Nuclear Information System (INIS)

    McClarren, Ryan G.; Paul Drake, R.

    2010-01-01

    This paper shows that for systems with optically thin, hot layers, such as those that occur in radiating shocks, radiation will flow uphill: radiation will flow from low to high radiation energy density. These are systems in which the angular distribution of the radiation intensity changes rapidly in space, and in which the radiation in some region has a pancaked structure, whose effect on the mean intensity will be much larger than the effect on the scalar radiation pressure. The salient feature of the solution to the radiative transfer equation in these circumstances is that the gradient of the radiation energy density is in the same direction as the radiation flux, i.e. radiation energy is flowing uphill. Such an anti-diffusive flow of energy cannot be captured by a model where the spatial variation of the Eddington factor is not accounted for, as in flux-limited diffusion models or the P 1 equations. The qualitative difference between the two models leads to a monotonic mean intensity for the diffusion model whereas the transport mean intensity has a global maximum in the hot layer. Mathematical analysis shows that the discrepancy between the diffusion model and the transport solution is due to an approximation of exponential integrals using a simple exponential.

  20. A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control

    Science.gov (United States)

    Baurle, Robert A.; Norris, Andrew T.

    2011-01-01

    A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.

  1. Shocks and currents in stratified atmospheres with a magnetic null point

    Science.gov (United States)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  2. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  3. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  4. Cracking of a layered medium on an elastic foundation under thermal shock

    Science.gov (United States)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  5. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David O.

    2015-01-01

    Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.

  6. Investigation of corner shock boundary layer interactions to understand inlet unstart

    Science.gov (United States)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  7. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    Science.gov (United States)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  8. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  9. Switching a Perpendicular Ferromagnetic Layer by Competing Spin Currents

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Gopman, D. B.; Kabanov, Yu. P.; Shull, R. D.; Chien, C. L.

    2018-03-01

    An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects. Here we present a novel structure consisting of two heavy metals that delivers competing spin currents of opposite spin indices. Instead of just canceling the pure spin current and the associated SOTs as one expects and corroborated by the widely accepted SOTs, such devices manifest the ability to switch the perpendicular CoFeB magnetization solely with an in-plane current without any magnetic field. Magnetic domain imaging reveals selective asymmetrical domain wall motion under a current. Our discovery not only paves the way for the application of SOT in nonvolatile technologies, but also poses questions on the underlying mechanism of the commonly believed SOT-induced switching phenomenon.

  10. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    Science.gov (United States)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  11. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  12. An experimental study of three-dimensional shock wave/boundary layer interactions generated by sharp fins

    Science.gov (United States)

    Lu, F. K.; Settles, G. S.; Bogdonoff, S. M.

    1983-01-01

    The interaction between a turbulent boundary layer and a shock wave generated by a sharp fin with leading edge sweepback was investigated. The incoming flow was at Mach 2.96 and at a unit Reynolds number of 63 x 10 to the 6th power 0.1 m. The approximate incoming boundary layer thickness was either 4 mm or 17 mm. The fins used were at 5 deg, 9 deg and 15 deg incidence and had leading edge sweepback from 0 deg to 65 deg. The tests consisted of surface kerosene lampblack streak visualization, surface pressure measurements, shock wave shape determination by shadowgraphs, and localized vapor screen visualization. The upstream influence lengths of the fin interactions were correlated using viscous and inviscid flow parameters. The parameters affecting the surface features close to the fin and way from the fin were also identified. Essentially, the surface features in the farfield were found to be conical.

  13. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David O.

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  14. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  15. Collaborative Research: Dynamics of Electrostatic Solitary Waves on Current Layers

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Jolene S.

    2012-10-31

    The research carried out under the subject grant has provided insight into the generation of Electrostatic Solitary Waves (ESWs), which are nonlinear structures observed in space plasma data. These ESWs, appearing as pulses in the electric field time series data, represent the presence of several hundred meters to kilometer size positive potential structures, similar to champagne bubbles, where the electrons have been depleted, and which travel along Earth's magnetic field lines. The laboratory experiments carried out at the UCLA LAPD under the grant allowed us the opportunity to change various plasma and field conditions within the plasma device, and experiment with injection of suprathermal electron beams, in order to create ESWs. This then allowed us to determine the most likely method of generation of the ESWs. By comparing the properties of the ESWs observed in the LAPD to those observed in space and the plasma and field conditions under which those ESWs were observed in both locations, we were able to evaluate various ESW generation mechanisms. The findings of the laboratory experiments are that ESWs are generated through a lower hybrid instability. The ESWs observed in Earth's auroral current regions have similar characteristics to those generated by the laboratory when referenced to basic plasma and field characteristics, leading us to the conclusion that the lower hybrid drift instability is certainly a possibility for generation of the ESWs, at least in the auroral (northern/southern lights) regions. Due to space instrumentation insufficiencies and the limitations on telemetry, and thus poor time resolution, it is not possible to determine absolutely what generates these bubbles in space, but the laboratory experiments and supporting simulations have helped us to further our understanding of the processes under which they are generated. The public benefits from the findings of this research because the research is focused on current layers

  16. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  17. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.

    2011-01-01

    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  18. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  19. Is there an Optimal Shape of the Defibrillation Shock: Constant Current vs. Pulsed Biphasic Waveforms

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2013-04-01

    Full Text Available Three waveforms for transthoracic defibrillation are assessed and compared: the Pulsed Biphasic Waveform (PBW, the Rectilinear Biphasic Waveform (RBW, and the "lossless" constant current (LLCC pulses. Two indices are introduced: 1 kf = W/W0 - the ratio between the delivered energy W and the energy W0 of a rectangular pulse with the same duration and electric charge; 2 ηC = W/WC0 - the level of utilizing the initially loaded capacitor energy WC0. The envisioned comparative study shows that ηC index is favorable for both PBW and LLCC, while kf of both RBW and LLCC demonstrates advantage over the PBW in the range of small inter-electrode thoracic impedances below 80 Ω. Some design considerations are also discussed. The attractive LLCC concept needs large and heavy inductive coil to support the constant current amplitude, besides it is capable to induce strong electromagnetic influences due to the complex current control. The RBW technology controls the delivery of current through a series of internal resistors which are, however, a source of high heat losses. The PBW implements controlled duty cycle of high-frequency chopped pulses to adapt the energy delivery in respect of the patient impedance measured at the beginning of the shock. PBW technology makes use of small capacitors which allows the construction of light weight and small-size portable devices for transthoracic defibrillation.

  20. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    Science.gov (United States)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  1. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    Science.gov (United States)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  2. Towards a smoothed particle hydrodynamics algorithm for shocks through layered materials

    NARCIS (Netherlands)

    Zisis, I.A.; Linden, van der B.J.; Giannopapa, C.G.

    2013-01-01

    Hypervelocity impacts (HVIs) are collisions at velocities greater than the target object’s speed of sound. Such impacts produce pressure waves that generate sharp and sudden changes in the density of the materials. These are propagated as shock waves. Previous computational research has given

  3. Physiology and Endocrinology Symposium: The current status of heat shock in early embryonic survival and reproductive efficiency

    Science.gov (United States)

    The Physiology and Endocrinology Symposium entitled “The Current Status of Heat Shock in Early Embryonic Survival and Reproductive Efficiency” was held at the Joint ADSA-CSAS-AMPA-WSAS-ASAS Meeting in Phoenix, Arizona, July 15 to 19, 2012. In recent years, data has accumulated suggesting a role for...

  4. Geometric corrections due to inhomogeneous field in the magnetospheric double current layer

    International Nuclear Information System (INIS)

    Callebaut, D.K.; Van den Buys, A.M.

    1985-01-01

    The case of oblique incidence and of a slope in the magnetic field for plane parallel models of the magnetospheric double layer is considered. The two models are the Magnetospheric Double Layer (MDL) and the Magnetospheric Double Current Layer (MDCL). The latter is more appropriate but due to some approximations it gives sometimes incorrect results. An improved model uses a triple current layer. (R.P.)

  5. Numerical simulation of the subsolar magnetopause current layer in the sun-earth meridian plane

    Science.gov (United States)

    Okuda, H.

    1993-01-01

    The formation and stability of the magnetopause current layer near the subsolar point in the sun-earth meridian plane are examined using a 2D electromagnetic particle simulation. For the case of zero IMF, the simulation results show that the current layer remains stable and is essentially the same as in the 1D simulation. The width of the current layer is given by the electron-ion hybrid gyroradius which is much smaller than the ion gyroradius. The current layer is found to remain stable for the northward IMF as well. As in the 1D simulation, the jump of the magnetic field at the current layer for the northward IMF remains small. For the southward IMF, collisionless magnetic reconnection is found to develop, leading to the formation of magnetic islands and density peaking within the current layer.

  6. Aeroheating Measurement of Apollo Shaped Capsule with Boundary Layer Trip in the Free-piston Shock Tunnel HIEST

    Science.gov (United States)

    Hideyuki, TANNO; Tomoyuki, KOMURO; Kazuo, SATO; Katsuhiro, ITOH; Lillard, Randolph P.; Olejniczak, Joseph

    2013-01-01

    An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28º under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition.

  7. Ion Demagnetization in the Magnetopause Current Layer Observed by MMS

    Science.gov (United States)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert; hide

    2016-01-01

    We report ion velocity distribution functions (VDfs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X llne, as well as near the current sheet midlplane about tens of ion skin depths (d(sub 1)) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.

  8. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    Science.gov (United States)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  9. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    transport, (3) the process of wave transition in shallow water in the presence of strong alongshore currents, (4) the interaction between oblique...conducted in relatively deep water with bottom sediment comprised mostly of silt. One of the earlier studies for a wide shallow shelf was conducted off...wave asymmetry in combined flows and how this drives mass transport, (3) the process of wave transition in shallow water in the presence of strong

  10. PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions

    Science.gov (United States)

    Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.

    2017-11-01

    Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.

  11. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  12. Evaluation of Current Planetary Boundary Layer Retrieval Capabilities from Space

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Schaefer, Alexander J.; Blaisdell, John; Yorks, John

    2016-01-01

    The PBL over land remains a significant gap in our water and energy cycle understanding from space. This work combines unique NASA satellite and model products to demonstrate the ability of current sensors (advanced IR sounding and lidar) to retrieve PBL properties and in turn their potential to be used globally to evaluate and improve weather and climate prediction models. While incremental progress has been made in recent AIRS retrieval versions, insufficient vertical resolution remains in terms of detecting PBL properties. Lidar shows promise in terms of detecting vertical gradients (and PBLh) in the lower troposphere, but daytime conditions over land remain a challenge due to noise, and their coverage is limited to approximately 2 weeks or longer return times.

  13. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  14. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  15. Current Spreading Layer with High Transparency and Conductivity for near-ultraviolet light emitting diodes

    DEFF Research Database (Denmark)

    Lin, Li; Jensen, Flemming; Herstrøm, Berit

    Transparent conductive aluminum-doped zinc oxide (AZO) layer was deposited on GaN-based near-ultraviolet (NUV) light emitting epitaxial wafers as current spreading layer by a sputtering process. Efforts were made to improve the electrical properties of AZO in order to produce ohmic contact....

  16. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  17. Study of thermochemical nonequilibrium flow in the radiative shock layer of the simulated atmosphere of Titan

    International Nuclear Information System (INIS)

    Koffi-Kpante, Kossi

    1996-01-01

    Inviscid flow of the N 2 -CH 4 -Ar gas mixture in thermochemical nonequilibrium has been studied. We have specially modelled the thermal and the chemical processes, such as vibrational excitation, dissociation, ionization and radiation which can occur in the hypersonic flows. Different vibrational models are tested and the effects of kinetic-vibration coupling modeling are studied on the flow-field properties. Therefore, the intensity of spontaneous emission of CN molecule from B 2 Σ + → X 2 Σ + electronic transition of the violet band, where Δν = 0 is computed. So, comparison is made between experimental and numerical results on: 1) The spontaneous emission of CN, 2) the rotational temperature of CN B state and 3) the vibrational temperature of CN B state. Because of the profiles of the measured intensity and the disagreement between numerical results and measurements, especially on the spontaneous emission and in the thermodynamic size, the inviscid flow and the unsteady boundary layer interaction study is made. Last, the thermal and the chemical processes models described in the first part of this thesis are used to compute the inviscid nonequilibrium flow around the Huygens probe. The equations system has been solved with a finite volume method, in with the fluxes have been split with Van-Leer methods. (author) [fr

  18. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  19. Long-term stability of a one-dimensional current-driven double layer

    International Nuclear Information System (INIS)

    Hori, N.; Yamamoto, T.

    1988-01-01

    Long-term (>an electron transit time over the system) stability of a one-dimensional current-driven double layer is studied by numerical experiments using particles. In these experiments, the potential difference across the system is self-consistently determined by the space charge distributions inside the system. Each boundary of the system supplies a nondrifting half-Maxwellian plasma. The current density is increased by increasing the number density of the source plasma at the injection (right) boundary. A double layer can be developed by injection of a sufficiently high current density. For a fixed level of current injection, plasmas carrying no current with various densities (n/sup ts/ 0 ) are loaded on the left side of the system. Whether or not the generated double layer can maintain its potential drop for a long period depends on the density (n/sup ts/ 0 ) relative to the initial density (n/sup */ 0 ) near the injection boundary: (1) the double layer is found to grow when n/sup ts/ 0 = n/sup */ 0 ; (2) the steady double layer is seen for a long period when n/sup ts/ 0 approx. >n/sup */ 0 ; (3) the double layer is found to decay when n/sup ts/ 0 is even higher than n/sup */ 0 . A new concept of the current polarizability P/sub c/ = J/n/sup number/ is introduced for understanding these results, where J is the current density flowing through the double layer and n/sup number/ is the plasma density at the injection front, i.e., the low-potential edge of the double layer

  20. Magnetic vortex growth in the transition layer of a mildly relativistic plasma shock

    International Nuclear Information System (INIS)

    Murphy, G. C.; Dieckmann, M. E.; Drury, L. O'C.

    2010-01-01

    A two-dimensional particle simulation models the collision of two electron-ion plasma clouds along a quasiparallel magnetic field. The collision speed is 0.9c and the density ratio, 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles the cross-section of the torus of a spheromak, which may provide the coherent magnetic fields in gamma-ray burst jets needed for their prompt emissions.

  1. Extended theory of main ion and impurity rotation and bootstrap current in a shear layer

    International Nuclear Information System (INIS)

    Kim, Y.B.; Hinton, F.L.; St. John, H.; Taylor, T.S.; Wroblewski, D.

    1993-11-01

    In this paper, standard neoclassical theory has been extended into the shear layer. Main ion and impurity ion rotation velocity and bootstrap current within shear layer in H-mode are discussed. Inside the H-mode shear layer, standard neoclassical theory is not valid since the ion poloidal gyroradius becomes comparable to pressure gradient and electric field gradient scale length. To allow for arbitrary ratio of ρθi/L n and ρθi/L Er a new kinetic theory of main ion species within electric field shear layer has been developed with the assumption that ρθi/R o is still small. As a consequence, both impurity flows and bootstrap current have to be modified. We present modified expressions of impurity flows and bootstrap current are presented neglecting ion temperature gradient. Comparisons with DIII-D measurements are also discussed

  2. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  3. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Science.gov (United States)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  4. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  5. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P

    1979-10-01

    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  6. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  7. Harmonic current layer method for the design of superconducting quadrupole magnetic field

    International Nuclear Information System (INIS)

    Zizek, F.

    1977-01-01

    The magnetic field of a superconducting quadrupole is investigated by the method of harmonic current layers of cylindrical shape. The superconducting winding is replaced by a system of thin current layers with a harmonically distributed density of the surface current along the circumference. The effect of the outer ferromagnetic circuit with an arbitrary constant permeability over the cross section is replaced analogically. The resultant magnetic field is then given by the superposition of the contributions from the individual current layers. The calculation method can be modified for the selection of the geometry of the winding for the latter to meet the demand for the high homogeneity of the gradient of magnetic induction in the working space of the superconducting quadrupole. (author)

  8. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  9. Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    Science.gov (United States)

    Kirk, Lindsay C.; Lillard, Randolph P.; Olejniczak, Joseph; Tanno, Hideyuki

    2015-01-01

    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions.

  10. Archaeal S-Layers: Overview and Current State of the Art

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues-Oliveira

    2017-12-01

    Full Text Available In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.

  11. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  12. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  13. Flux pinning and critical current in layered type-II superconductors in parallel magnetic fields

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We have shown, within the Ginzburg-Landau theory, that the interaction between vortices and normal-metal layers in high-T c superconductor--normal-metal superlattices can cause high critical-current densities j c . The interaction is primarily magnetic, except at very low temperatures T, where the core interaction is dominant. For a lattice of vortices commensurate with an array of normal-metal layers in a parallel magnetic field H, strong magnetic pinning is obtained, with a nonmonotonic critical-current dependence on H, and with j c of the order of 10 7 --10 8 A/cm 2

  14. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  15. Limiting diffusion current at rotating disk electrode with dense particle layer.

    Science.gov (United States)

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  16. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  17. Graphene as current spreading layer on AlGaInP light emitting diodes

    Science.gov (United States)

    Guo, Xia; Feng, Yajie; Liu, Qiaoli; Hu, Anqi; He, Xiaoying; Hu, Zonghai

    2018-05-01

    Due to high transmittance and high mobility, graphene is one of the promising candidates for a current spreading layer, which is crucial to light emitting diode (LED) performance. In this paper, improved AlGaInP LED performance was reported after graphene was applied on the GaP surface. Due to its lowered work function difference than with the GaN material, the electrical properties remain the same without additional voltage bias. The light output power is enhanced by about 40% under the current injection of 5 mA at room temperature, which was confirmed by the light emission profile analysis in this study. Such results indicate that raphene is a promising candidate as a current spreading layer under low current injection.

  18. Observation of a current-limited double layer in a linear turbulent-heating device

    International Nuclear Information System (INIS)

    Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.

    1985-01-01

    Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL

  19. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    NARCIS (Netherlands)

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  20. Sinking of armour layer around a cylinder exposed to a current

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Sumer, B. Mutlu; Fredsøe, Jørgen

    2011-01-01

    The flow processes in a scour protection around a monopile in steady current are described in relation to transport of sediment in the scour protection based on physical model tests. The scour protection consisted of uniformly distributed coarse stones without filter layer. Transport of sediment ...

  1. Modification of critical current in HTSC tape conductors by a ferromagnetic layer

    International Nuclear Information System (INIS)

    Goemoery, F; Souc, J; Seiler, E; Vojenciak, M; Granados, X

    2008-01-01

    In some applications of tape conductors from high temperature superconductors (HTSC) the magnetic field is created by the transported current itself. This is e.g. the case of power transmission cables or current leads. Quite complex distribution of local magnetic field determines then the ability of the superconducting element to carry electrical current. We have investigated how much the critical current of a tape conductor can be changed by putting a ferromagnetic layer in the vicinity of the HTSC material. Numerical procedure has been developed to resolve the current and field distribution in such superconductor-ferromagnet composite tape. Theoretical predictions have been confirmed by experiments on sample made from Bi-2223/Ag composite tape. The critical current of such tape can be improved by placing a soft ferromagnetic material at the tape's edges. On the other hand, the calculations show that the ferromagnetic substrate of YBCO coated tape reduces its self-field critical current

  2. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  3. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  4. Current density redistribution from no current crowding to current crowding in Pb-free solder joints with an extremely thick Cu layer

    International Nuclear Information System (INIS)

    Han, Jung Kyu; Choi, Daechul; Fujiyoshi, Masaru; Chiwata, Nobuhiko; Tu, King-Ning

    2012-01-01

    In order to remove the effect of current crowding on electromigration, thick Cu under-bump metallization has been widely adopted in the electronics industry. Three-dimensional (3-D) integrated circuits, using through Si via Cu column interconnects, is being developed, and it seems that current crowding may not be a reliability issue. However, statistical experiments and 3-D finite element simulation indicate that there is a transition from no current crowding to current crowding, caused by void growth at the cathode. An analysis of the electromigration-induced failure mechanism in solder joints having a very thick Cu layer is presented. It is a unique failure mechanism, different from that in flip chip technology. Moreover, the study of marker displacement shows two different stages of drift velocity, which clearly demonstrates the back-stress effect and the development of compressive stress.

  5. The effect of Laser Shock Peening on Fatigue Life Using Pure Water and Hydrofluoric Acid As a Confining Layer of Al – Alloy 7075-T6

    Directory of Open Access Journals (Sweden)

    Shaker Sakran Hassan

    2018-01-01

    Full Text Available Laser shock peening (LSP is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF and pure water as a coating layer were utilized as a new technique to improve the properties and to harden the treated surface of the Al -alloy 7075-T6. Fatigue life by means of laser peened workpieces was improved to 154.3%, 9.78%, respectively, for Hydrofluoric (HF and pure water compared to un-peened specimens. And the outcomes of Vickers hardness test for laser shock peening with acid and pure water as well as un-peened specimens were 165.2HV30, 143.95HV30 and 134.7HV30, respectively showed a significant improvement in the hardness property.

  6. Assessment of CFD capability for prediction of hypersonic shock interactions

    Science.gov (United States)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  7. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  8. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    Science.gov (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  9. Studies of low current back-discharge in point-plane geometry with dielectric layer

    International Nuclear Information System (INIS)

    Jaworek, A.; Rajch, E.; Czech, T.; Lackowski, M

    2005-01-01

    The paper presents results of spectroscopic investigations of back-discharge generated in the point-plane electrode geometry in air at atmospheric pressure, with the plane covered with fly ash layer. Four forms of the discharges were studied: onset streamers, glow, breakdown streamers and low-current back-arc discharge. Both polarities of the active discharge electrode, positive and negative, were tested. The back discharge is a type of DC electrical discharge, which take place when the passive plane electrode is covered with a dielectric layer. The layer can be made of solid material or a packed bed of dust or powder of low conductivity. The charge produced due to ionisation processes in the vicinity of the active point electrode is accumulated on the dielectric surface, and generates high electric field through this layer. When critical electric field through the layer is attained an electrical breakdown of the layer take place. The point of breakdown becomes a new source of ions of polarity opposite to those generated by the active electrode. The dielectric layer on the passive electrode causes that gaseous discharges such as breakdown streamers or arc start at lower voltages than they could in the case of normal corona discharge. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. Emission spectra of the discharge were measured in the light wavelength range of 200 to 600 nm to get information about excitation and ionisation processes. The light spectra were analysed by monochromator SPM-2 Karl-Zeiss-Jena with diffraction grating of 1302 grooves/mm and photomultiplier R375 (Hamamatsu) and signal preamplifier unit C7319 (Hamamatsu). The spectral analysis showed that the nitrogen molecular bands were dominant, but the emission of negative ions from the dielectric layer material were also detected. The most noticeable light emission in the range from 280 to 490 nm due to second

  10. CANDU fuel sheath integrity and oxide layer thickness determination by Eddy current technique

    International Nuclear Information System (INIS)

    Gheorghe, Gabriela; Man, Ion; Parvan, Marcel; Valeca, Serban

    2010-01-01

    This paper presents results concerning the integrity assessment of the fuel elements cladding and measurements of the oxide layer on sheaths, using the eddy current technique. Flaw detection using eddy current provides information about the integrity of fuel element sheath or presence of defects in the sheath produced by irradiation. The control equipment consists of a flaw detector with eddy currents, operable in the frequency range 10 Hz to 10 MHz, and a differential probe. The calibration of the flaw detector is done using artificial defects (longitudinal, transversal, external and internal notches, bored and unbored holes) obtained on Zircaloy-4 tubes identical to those out of which the sheath of the CANDU fuel element is manufactured (having a diameter of 13.08 mm and a wall thickness of 0.4 mm). When analyzing the behavior of the fuel elements' cladding facing the corrosion is important to know the thickness of the zirconium oxide layer. The calibration of the device measuring the thickness of the oxide layer is done using a Zircaloy-4 tube identical to that which the cladding of the CANDU fuel element is manufactured of, and calibration foils, as well. (authors)

  11. Shadowgraph studies of laser-assisted non-thermal structuring of thin layers on flexible substrates by shock-wave-induced delamination processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre, E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Smausz, Tomi [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamas [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, Martin; Zimmer, Klaus [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Hopp, Bela [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The shock-wave-induced film delamination (SWIFD) is a laser patterning process. • The SWIFD process of CIGS solar cells was studied by shadowgraph measurements. • The study presented that SWIFD allows the structuring of CIGS solar cells. • The dynamics of the delamination process was analyzed. - Abstract: The laser-assisted microstructuring of thin films especially for electronic applications without damaging the layers or the substrates is a challenge for the laser micromachining techniques. The laser-induced thin-film patterning by ablation of the polymer substrate at the rear side that is called ‘SWIFD’ – shock-wave-induced film delamination patterning has been demonstrated. This study focuses on the temporal sequence of processes that characterize the mechanism of this SWIFD process on a copper indium gallium selenide (CIGS) solar cell stacks on polyimide. For this purpose high-speed shadowgraph experiments were performed in a pump probe experimental set-up using a KrF excimer laser for ablating the rear side of the polyimide substrate and measuring the shock wave generation at laser ablation of the polymer substrate as well as the thin-film delamination. The morphology and size of the thin-film structures were studied by scanning electron microscopy (SEM). Furthermore, the composition after the laser treatment was analyzed by energy dispersive X-ray (EDX) spectroscopy. The shadowgraph experiments allow the time-dependent identification and evaluation of the shock wave formation, substrate bending, and delamination of the thin film in dependence on the laser parameters. These results will contribute to improve the physical understanding of the laser-induced delamination effect for thin-film patterning.

  12. Collaborative research: Dynamics of electrostatic solitary waves and their effects on current layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Jen

    2014-04-18

    The project has accomplished the following achievements including the goals outlined in the original proposal. Generation and measurements of Debye-scale electron holes in laboratory: We have generated by beam injections electron solitary waves in the LAPD experiments. The measurements were made possible by the fabrication of the state-of-the-art microprobes at UCLA to measure Debye-scale electric fields [Chiang et al., 2011]. We obtained a result that challenged the state of knowledge about electron hole generation. We found that the electron holes were not due to two-stream instability, but generated by a current-driven instability that also generated whistler-mode waves [Lefebvre et al., 2011, 2010b]. Most of the grant supported a young research scientist Bertrand Lefebvre who led the dissemination of the laboratory experimental results. In addition to two publications, our work relevant to the laboratory experiments on electron holes has resulted in 7 invited talks [Chen, 2007, 2009; Pickett et al., 2009a; Lefebvre et al., 2010a; Pickett et al., 2010; Chen et al., 2011c, b] (including those given by the co-I Jolene Pickett) and 2 contributed talks [Lefebvre et al., 2009b, a]. Discovery of elecctron phase-space-hole structure in the reconnection electron layer: Our theoretical analyses and simulations under this project led to the discovery of an inversion electric field layer whose phase-space signature is an electron hole within the electron diffusion layer in 2D anti-parallel reconnection [Chen et al., 2011a]. We carried out particle tracing studies to understand the electron orbits that result in the phase-space hole structure. Most importantly, we showed that the current density in the electron layer is limited in collisionless reconnection with negligible guide field by the cyclotron turning of meandering electrons. Comparison of electrostatic solitary waves in current layers observed by Cluster and in LAPD: We compared the ESWs observed in a supersubstorm

  13. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Soestbergen, M. van, E-mail: m.vansoestbergen@tudelft.n [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Precision and Microsystems Engineering, University of Technology Delft, Mekelweg 2, 2628 CD Delft (Netherlands)

    2010-02-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  14. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    International Nuclear Information System (INIS)

    Soestbergen, M. van

    2010-01-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  15. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    Science.gov (United States)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  16. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    Science.gov (United States)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  17. Theory and observations of upward field-aligned currents at the magnetopause boundary layer.

    Science.gov (United States)

    Wing, Simon; Johnson, Jay R

    2015-11-16

    The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .

  18. Four-point probe measurements of a direct current potential drop on layered conductive cylinders

    International Nuclear Information System (INIS)

    Lu, Yi; Bowler, John R

    2012-01-01

    We have determined the steady state electric field due to direct current flowing via point contacts at the cylindrical surface of a uniformly layered conductive rod of finite length. The solution allows one to use four-point probe potential drop measurements to estimate the conductivity or thickness of the layer assuming that the other parameters are known. The electrical potential in the rod has a zero radial derivative at its surface except at the injection and extractions points. This means that the required solution can be expressed in terms of a Green’s function satisfying a Neumann boundary condition. Four-point measurements have been made to demonstrate the validity of theoretical results. (paper)

  19. Four-point probe measurements of a direct current potential drop on layered conductive cylinders

    Science.gov (United States)

    Lu, Yi; Bowler, John R.

    2012-11-01

    We have determined the steady state electric field due to direct current flowing via point contacts at the cylindrical surface of a uniformly layered conductive rod of finite length. The solution allows one to use four-point probe potential drop measurements to estimate the conductivity or thickness of the layer assuming that the other parameters are known. The electrical potential in the rod has a zero radial derivative at its surface except at the injection and extractions points. This means that the required solution can be expressed in terms of a Green’s function satisfying a Neumann boundary condition. Four-point measurements have been made to demonstrate the validity of theoretical results.

  20. Space charge limitation of the current in implanted SiO2 layers

    International Nuclear Information System (INIS)

    Szydlo, N.; Poirier, R.

    1974-01-01

    Metal-oxide-semiconductor capacitors were studied where the metal is a semitransparent gold layer of 5mm diameter, the oxide is thermal silica whose, thickness depends on the nature of the implant, and the semiconductor is N-type silicon of 5 ohms/cm. The SiO 2 thickness was chosen in such a way that the maximum of the profile of the implanted substance is in the medium of the oxide layer. In the case of virgin silica, the oscillations in the photocurrent versus energy and exponential variations versus the applied voltage show that the photoconduction obeys the model of injection limited current. In the case of the oxide after ion bombardment, the photocurrent similarity, independent of the direction of the electric field in silica, shows that volume transport phenomena become preponderent [fr

  1. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  2. On Poor Separation in Magnetically Driven Shock Tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  3. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  4. Bursty, Broadband Electromagnetic Waves Associated with Thin Current Layers and Turbulent Magnetosheath Reconnection

    Science.gov (United States)

    Adrian, M. L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.

  5. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current

  6. Influence of the anodic etching current density on the morphology of the porous SiC layer

    Directory of Open Access Journals (Sweden)

    Anh Tuan Cao

    2014-03-01

    Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

  7. The Effect of Image Potential on the Current-Voltage Characteristics of a Ferritin-layer

    Directory of Open Access Journals (Sweden)

    Eunjung Bang

    2010-11-01

    Full Text Available Considering for the concept of power storage systems, such as those used to supply power to microelectronic devices, ferritins have aroused a lot of interests for applications in bioelectrochemical devices. And electron transfer rates from the proteins to electrode surface are key determinants of overall performance and efficiency of the ferritin-based devices. Here we have investigated the electron transport mechanism of ferritin layer which was immobilized on an Au electrode. The current-voltage (I-V curves are obtained by a conductive atomic force microscope (c-AFM as a function of contact area between AFM tip and the ferritin layer. In the low voltage region, I-V curves are affected by both Fowler-Nordheim tunneling and image force. On the other hand, the experimental results are consistent with a Simmons model in a high voltage region, indicating that, as the voltage increases, the image potential has a dominant effect on the electron transport mechanism. These results are attributed to the film-like character of the ferritin layer, which generates an image potential to lower the barrier height in proportion to the voltage increment.

  8. Influence of Al{sub 2}O{sub 3} reflective layer under phosphor layer on luminance and luminous efficiency characteristics in alternating-current plasma display panel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon-Sang [School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu (Korea, Republic of); Tae, Heung-Sik, E-mail: hstae@ee.knu.ac.kr [School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu (Korea, Republic of); Jung, Eun Young [Core Technology Lab., Corporate R and D Center, Samsung SDI Company Ltd., Cheonan (Korea, Republic of)

    2013-11-29

    This paper examines the optical and discharge characteristics of alternating-current plasma display panel when adopting the Al{sub 2}O{sub 3} reflective layer. The Al{sub 2}O{sub 3} reflective layer is deposited under the phosphor layer by using the screen-printing method. The resulting changes in the optical and discharge characteristics, including the power consumption, color temperature, luminance, luminous efficiency, scanning electron microscopy image, and reflectance, are then compared for both cases with and without Al{sub 2}O{sub 3} reflective layer. As a result of optimizing the thicknesses between the Al{sub 2}O{sub 3} and phosphor layers, the luminance and luminous efficiency are improved by about 17% and 7%, respectively. - Highlights: • We examine characteristics of plasma display panel when adopting reflective layer. • Al{sub 2}O{sub 3} reflective layer was deposited under the phosphor layer. • Al{sub 2}O{sub 3} reflective layer with flaky shape is very effective in enhancing luminance.

  9. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  10. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  11. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  12. Numerical simulation of current-free double layers created in a helicon plasma device

    Science.gov (United States)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  13. The effect of a thin silver layer on the critical current of epitaxial YBCO films

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Cohen, D.; Cohen, D.; Snapiro, I.

    1992-01-01

    We compare measurements of the critical current density of an epitaxial YBCO film with that of an identical film overlaid by a thin silver layer. We find that the presence of the silver lowers Tc of the film by about 1.5 K, which is two orders of magnitude larger than predicted by the theory of the proximity effect for our experimental conditions. In addition, J c of the Ag/YBCO film near Tc is also significantly lower than that of the bare YBCO film. We propose two alternate interpretations of this effect, one in terms of destabilization of the flux distribution in the film and the other making use of the effect of the silver on the Bean-Livingston surface barrier for the initial penetration of flux. The latter seems the more plausible explanation of our results. (orig.)

  14. Inducted circulation current in a conductor consisting of strands coated with a high resistive layer

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Kato, Takashi; Tsuji, Hiroshi; Shimamoto, Susumu

    2000-01-01

    Nonuniform current distribution is generated in a conductor consisting of strands coated by a high resistive layer, such as chromium plating, as a result of superimposition of transport and induce circulation currents. The characteristics of the induced circulation current are analytically studied by using a distributed model circuit. The parameters mostly used in this calculation are those of US-DPC coil, which at first exhibited instability and so-called ramp rate limitation (RRL) because of current imbalance in the conductor consisting of chrome-plated strands. Thus the conductance along strands and the inductance of unit length loop and length of the conductor are mostly assumed to be 10 kS/m, 0.5 μH/m and 150 m, respectively. The analysis results indicate that the induced circulation current can be classified into the boundary and interstrand-induce circulation currents hereafter referred to as BICC an IICC. BICC is induced only across the joint at the ends of the conductor, resulting in a constant along the conductor axis, when the total leakage magnetic flux of the loop is not zero. Its decay time constant is quite long, more than a few hours. In contrast, when the leakage magnetic flux distributes along the conductor axis, IICC is induced among strands in the conductor to eliminate this flux. Since the leakage magnetic flux normally becomes largest where the magnetic field is highest, it becomes larger where the time variation of the magnetic field is larger. Its decay time contrast is much less than that of BICC. If the leakage magnetic flux linearly changes along the US-DPC conductor, it is evaluated to be about 10 s. This IICC therefore becomes dominate in a pulse charge, whose ramping tine is less than 10 s. Moreover, it is found that the variation of the leakage a magnetic flux with the relatively long cycle, such as more than a few 10-meter lengths, causes IICC with a decay-time constant of more than several hundred milliseconds. Such and IICC can

  15. Circular electrodes to reduce the current variation of OTFTs with the drop-casted semiconducting layer

    Science.gov (United States)

    Dipu Kabir, H. M.; Ahmed, Zubair; Kariyadan, Remashan; Zhang, Lining; Chan, Mansun

    2018-06-01

    Circular organic thin film transistor (OTFT) structures are proposed to reduce the impact of variable grain alignment on the drive current of the polycrystalline organic thin film transistor (OTFT). As the circular structure is planar symmetric, the orientation of the grain cannot affect the drive current of the circular OTFT. Thus, circular electrodes expected to provide a lower variation. Top-gate, bottom-contact circular and conventional OTFTs with drop-casted polycrystalline 6,13-Bis(triisopropyl-silylethynyl) (TIPS)-Pentacene organic semiconducting layer (OSC) are fabricated to verify the theoretical variation reduction. The relative standard deviation (RSD), defined as the ratio of standard deviation and the average of drive current is used as the degree of variations in different structures. According to our fabrication result, circular transistors have a significantly lower variation (20% RSD), compared to the variation of conventional OTFTs (61% RSD). His research interests include Organic Electronics, VLSI Design, Embedded System, Neural Networks, and Solid-state devices. Between July 2001 and December 2002, he was a Visiting Professor at University of California at Berkeley and the Co-director of the BSIM program. He is currently still consulting on the development of the next generation compact models. He has been actively contributing to the professional community and hold many positions. He was a Board of Governor, Chair of the Education Committee, the Chair of the Region 10 subcommittee and a Distinguished lecturer of the IEEE Electron Device Society. He has also chaired many international conferences and acting as editors for a number of technical journals. In addition, he has received many awards including the UC Regents Fellowship, Golden Keys Scholarship for Academic Excellence, SRC Inventor Recognition Award, Rockwell Research Fellowship, R&D 100 award (for the BSIM3v3 project), Distinguished Teaching Award, the Shenzhen Science and Technology

  16. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Effects of alternating and direct electrical current application on the odontoblastic layer in human teeth : an in vitro study

    NARCIS (Netherlands)

    Alwas-Danowska, HM; Huysmans, MCDNJM; Verdonschot, EH

    Aim The aim of this study was to investigate the influence of a low intensity alternating current on the odontoblasts and odontoblast layer and compare this with the effects of a direct current. Methodology Teeth extracted for orthodontic were immersed in physiological saline stabilized with thymol

  18. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  19. Advances in NIF Shock Timing Experiments

    Science.gov (United States)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  20. Euler potentials for two layers with non-constant current densities in the ambient magnetic field aligned to the layers

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Romashets, E.

    2016-01-01

    Roč. 34, č. 12 (2016), s. 1165-1173 ISSN 0992-7689 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:67985815 Keywords : magnetospheric physics * scale birkeland currents * charged particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.610, year: 2016

  1. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  2. Direct Current Sputter Epitaxy of Heavily Doped p+ Layer for Monocrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Wenchang Yeh

    2017-01-01

    Full Text Available Sputter epitaxy of p+ layer for fabrication of Si solar cells (SCs was demonstrated. Hall carrier concentration of p+ layer was 2.6 × 1020 cm−3 owing to cosputtering of B with Si at low temperature, which had enabled heavy and shallow p+ dope layer. p+nn+ SCs were fabricated and influence of p+ and n+ layers was investigated. Internal quantum efficiency (IQE of p+nn+ SCs was 95% at visible light and was larger than 60% at ultraviolet (UV light when the p+ layer was thinner than 30 nm. At near infrared (NIR, extra increment on IQE was achieved by rear n+ back surface field (BSF layer with a thickness thinner than 100 nm.

  3. Role of electron-inertia-linked current source terms in the physics of cylindrically symmetric imploding snowplow shocks

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2002-01-01

    Snowplow shocks are supersonic flows in plasmas driven by a magnetic piston, in which the material impacted by the piston 'sticks' to it, resulting in accretion of the plasma near the piston. The density front and the magnetic piston move together as a single structure. A typical example of a snowplow shock is the plasma focus sheath. When normally neglected electron-inertia (EI) terms in the fluid model of the plasma are taken into account, a time scale ω p -1 and a space scale cω p -1 are introduced which are negligible in the bulk of the plasma but are non-negligible in a transition region between the no-plasma region and the dense plasma. As a result 'no-plasma' initial conditions are not valid for the fluid equations obtained by neglecting EI. A resonant coupling between two electron plasma modes via the Hall term is shown to result in spontaneous generation of axial magnetic field and rotation even in the presence of perfect azimuthal symmetry in the low density precursor plasma formed before the ideal plasma phase. Related physics issues such as spontaneous symmetry breaking mechanism are discussed

  4. Noncoplanar magnetic fields at collisionless shocks: A test of a new approach

    International Nuclear Information System (INIS)

    Gosling, J.T.; Winske, D.; Thomsen, M.F.

    1988-01-01

    Within the foot and ramp of a fast mode collisionless shock the magnetic field rotates out of the plane of coplanarity defined by the upstream magnetic field and the shock normal. As previously noted (Goodrich and Scudder, 1984), the sense of this rotation is such as to reduce the cross-shock potential drop when measured in the deHoffman-Teller frame relative to that measured in the normal incidence frame. From a consideration of the requirement that there be zero current in the coplanarity plane downstream of the shock, Jones and Ellison (1987) have argued that the field rotation and potential drop difference are a consequence of unequal ion and electron masses, and have derived an expression for the spatial integral of the noncoplanar field component in terms of the electron current within the shock layer. Moreover, by assuming that the ion current within the shock layer is negligible compared to the electron current, they derive equations which predict the magnitude of both the field rotation and the potential drop difference in terms of upstream quantities and the field jump at the shock. We have tested their equations with ISEE 1 and 2 plasma and field measurements at the Earth's bow shock and by means of numerical simulations. We find substantial support for their suggestion that the field rotation and thus also the frame dependence of the potential drop are fundamentally a consequence of unequal ion and electron masses. Further, for subcritical shocks (low Mach number) one can neglect the ion current to predict both the sign and the magnitude of the field rotation and potential drop difference. However, at supercritical shocks (high Mach numbers) the ion current associated with reflected, gyrating ions cannot be neglected, and the final equations of Jones and Ellison seriously underestimate the magnitude of the field rotation and the potential drop difference at these shocks

  5. Evolution of disturbances in the shock layer on a flat plate in the flow of a mixture of vibrationally excited gases

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.; Maslov, A. A.

    2017-05-01

    The results of the numerical and experimental investigations of the evolution of the disturbances in a hypersonic shock layer on a flat plate streamlined by a flow of the mixture of vibrationally excited gases are presented. The experimental study was conducted in the hot-shot high-enthalpy wind tunnel IT-302 of the ITAM SB RAS. The numerical simulation was carried out with the aid of the ANSYS Fluent package using the solution of the unsteady two-dimensional Navier-Stokes equations with the incorporation of the user-created modules and enabling the consideration of the vibrational non-equilibrium of the carbon dioxide molecules within the framework of the model of the two-temperature aerodynamics. It was obtained that an increase in the carbon dioxide concentration in the mixture with air leads to a reduction of the intensity of pressure disturbances on the surface. The efficiency (up to 20 %) of the method of sound absorbing coatings in the vibrationally excited flows of the mixture of the carbon dioxide and air has been shown.

  6. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  7. Contributions for the modelling of submarine cables – current density and simplified modelling of wired layers

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Ebdrup, Thomas

    2015-01-01

    formulae. The substitution of round wires by equivalent solid layers is tested and tuned by changing the permeability of the insulation and the resistivity of the of the substitution layer. The tuning of these two parameters allows obtaining similar results for both cases even for materials with high...... permeabilities, like steel....

  8. Development of compound layer during nitriding and nitrocarburising; current status and future challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    2011-01-01

    The development of the compound layer during gaseous nitriding and nitrocarburising of Fe based material is described. The first nucleation of the compound layer at the surface depends on the competition between the dissociation of ammonia and the removal of nitrogen from the surface by solid sta...

  9. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2015-10-01

    Full Text Available The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam–plasma interaction. The double layer is disrupted when reaching altitudes of 1–2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  10. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  11. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  12. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  13. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yuan, Shu; Liu, Yingce [Quantum Wafer Inc., Foshan 528251 (China); Guo, L. Jay [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Sheng, E-mail: victor_liu63@126.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Ding, Han [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TEM is used to characterize threading dislocation existing in GaN epitaxial layer. • Effect of threading dislocation on optical and electrical of LEDs is discussed. • Strip-shaped SiO{sub 2} DCBL is designed to improve current spreading performance of LEDs. - Abstract: We demonstrated that the improvement in optical and electrical performance of high power LEDs was achieved using cone-shaped patterned sapphire substrate (PSS) and strip-shaped SiO{sub 2} distributed current blocking layer (DCBL). We found through transmission electron microscopy (TEM) observation that densities of both the screw dislocation and edge dislocation existing in GaN epitaxial layer grown on PSS were much less than that of GaN epitaxial layer grown on flat sapphire substrate (FSS). Compared to LED grown on FSS, LED grown on PSS showed higher sub-threshold forward-bias voltage and lower reverse leakage current, resulting in an enhancement in device reliability. We also designed a strip-shaped SiO{sub 2} DCBL beneath a strip-shaped p-electrode, which prevents the current from being concentrated on regions immediately adjacent the strip-shaped p-electrode, thereby facilitating uniform current spreading into the active region. By implementing strip-shaped SiO{sub 2} DCBL, light output power of high power PSS-LED chip could be further increased by 13%.

  14. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  15. Electroluminescence enhancement for near-ultraviolet light emitting diodes with graphene/AZO-based current spreading layers

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Zhu, Xiaolong

    LEDs) have attracted significant research interest due to their intensive applications in various areas where indium tin oxide (ITO) is one of the most widely employed transparent conductive materials for NUV LEDs. Compared to ITO, indium-free aluminum-doped zinc oxide (AZO) has similar electrical......Near-ultraviolet light emitting diodes with different aluminum-doped zinc oxide-based current spreading layers were fabricated and electroluminescence (EL) was compared. A 170% EL enhancement was achieved by using a graphene-based interlayer. GaN-based near-ultraviolet light emitting diodes (NUV...... with a new type of current spreading layer (CSL) which combines AZO and a single-layer graphene (SLG) as an effective transparent CSL [1]. In the present work, LEDs with solo AZO CSL in Fig.1(a) and SLG/Ni/AZO-based CSL in Fig.1(b) were both fabricated for EL comparison. Standard mesa fabrication including...

  16. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  17. Fabrication of current confinement aperture structure by transforming a conductive GaN:Si epitaxial layer into an insulating GaOx layer.

    Science.gov (United States)

    Lin, Chia-Feng; Lee, Wen-Che; Shieh, Bing-Cheng; Chen, Danti; Wang, Dili; Han, Jung

    2014-12-24

    We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact. The fibrous texture of NP GaN with an average wall thickness of less than 100 nm dramatically increases the surface-to-volume ratio and facilitates a rapid oxidation process of GaN into GaOX. The GaOX aperture was formed on the n-side of the LED between the active region and the n-type GaN layer. The wavelength blueshift phenomena of electroluminescence spectra is observed in the treated aperture-emission LED structure (441.5 nm) when compared to nontreated LED structure (443.7 nm) at 0.1 mA. The observation of aperture-confined electroluminescence from an InGaN LED structure suggests that the NP GaN based oxidation will play an enabling role in the design and fabrication of III-nitride photonic devices.

  18. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.M., E-mail: Dennis.Butt@forces.gc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Underhill, P.R.; Krause, T.W., E-mail: Thomas.Krause@rmc.ca [Royal Military College of Canada, Dept. of Physics, Kingston, Ontario (Canada)

    2016-09-15

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  19. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    International Nuclear Information System (INIS)

    Butt, D.M.; Underhill, P.R.; Krause, T.W.

    2016-01-01

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  20. Nanoparticle mediated electron transfer across organic layers: from current understanding to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, J. Justin; Alam, Muhammad Tanzirul; Barfidokht, Abbas; Carter, Lachlan, E-mail: justin.gooding@unsw.edu.au [School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney (Australia)

    2014-03-15

    In the last few years electrode-organic layer-nanoparticle constructs have attracted considerable research interest for systems where in the absence of the nanoparticles the electrode is passivated. This is because it has been observed that if the organic layer is a good self-assembled monolayer that passivates the electrode, the presence of the nanoparticles 'switches on' faradaic electrochemistry and because electron transfer between the electrode and the nanoparticles is apparently independent of the thickness of the organic layer. This review 1) outlines the full extent of the experimental observations regarding this phenomenon, 2) discusses a recent theoretical description to explain the observations that have just been supported with experimental evidences and 3) provides an overview of the application of these systems in sensing and photovoltaic. (author)

  1. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar

    International Nuclear Information System (INIS)

    Care, S.; Nguyen, Q.T.; L'Hostis, V.; Berthaud, Y.

    2008-01-01

    This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurements were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer

  2. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  3. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    International Nuclear Information System (INIS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T.; Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-01-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al_0_._7_0Ga_0_._3_0N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm"2.

  4. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  5. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  6. Quantifying hidden defect in multi-layered structures by using eddy current system combined with a scanner

    International Nuclear Information System (INIS)

    Huang Pingjie; Zhou Zekui; Wu Zhaotong

    2005-01-01

    The eddy current testing forward model of scanning inspection of multi-layered structures is introduced and simulation work is carried out to reveal the interaction between the scanning coil and defects with different geometric properties. A multi-frequency ECT experimental instrument combined with a scanner is established and scanning inspections are performed to detect the artificial etched flaws with different geometric parameters in the multi-layered structures. The predicted signals by the forward model are compared with the measured signals and the defects are characterized

  7. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  8. Reactively sputtered Ti-Si-N films for application as heating layers for low-current phase-change memory

    International Nuclear Information System (INIS)

    Yin, You; Noguchi, Tomoyuki; Ota, Kazuhiro; Higano, Naoya; Sone, Hayato; Hosaka, Sumio

    2009-01-01

    In this study, we investigate the properties of Ti-Si-N films for the application as the heating layers in phase-change memory (PCM). The experimental results show that the resistivity of Ti-Si-N films can be varied by over six orders of magnitude from 2.18 x 10 4 to 3.9x10 2 Ω-cm by increasing the flow rate ratio [N 2 /(N 2 +Ar)] from 0 to 10%. The controllability of resistivity might result from the concentration change from Ti-Si to mixture of TiN and Si 3 N 4 . Reversible switching was also successfully demonstrated by using a lateral PCM with these heating layers. The stability of the Ti-Si-N films at high temperatures implies that they can be used as the heating layers in the conventional vertical PCMs for current reduction.

  9. System of ionospheric currents excited by a magnetospheric generator in the boundary layer

    International Nuclear Information System (INIS)

    Denisenko, V.V.; Zamaj, S.S.; Kitaev, A.V.; Matveenkov, I.T.; Pivovarov, V.G.

    1992-01-01

    A model of ionospheric electric fields and currents in the vicinity of the daytime cusp is proposed; the fields and currents occur due to diffusion mechanism of electric field generation at the boundary of Earth's magnetosphere. The results of calculating electric fields and currents are presented for various values of magnetic field components in the solar wind

  10. Non-dissipative currents in the theory of thermomagnetic properties of inversion layers

    International Nuclear Information System (INIS)

    Streda, P.; Oji, H.

    1983-07-01

    Starting from the Kubo formula, the non-dissipative electric and thermal currents are expressed as functions of thermodynamical quantities only. These currents originate from the surface currents which are responsible for the quantized Hall effect. The results are in full agreement with that, obtained from thermodynamical arguments. One-electron approximation is used. (author)

  11. Influences of the current density on the performances of the chrome-plated layer in deterministic electroplating repair

    Science.gov (United States)

    Xia, H.; Shen, X. M.; Yang, X. C.; Xiong, Y.; Jiang, G. L.

    2018-01-01

    Deterministic electroplating repair is a novel method for rapidly repairing the attrited parts. By the qualitative contrast and quantitative comparison, influences of the current density on performances of the chrome-plated layer were concluded in this study. The chrome-plated layers were fabricated under different current densities when the other parameters were kept constant. Hardnesses, thicknesses and components, surface morphologies and roughnesses, and wearability of the chrome-plated layers were detected by the Vickers hardness tester, scanning electron microscope / energy dispersive X-ray detector, digital microscope in the 3D imaging mode, and the ball-milling instrument with profilograph, respectively. In order to scientifically evaluate each factor, the experimental data was normalized. A comprehensive evaluation model was founded to quantitative analyse influence of the current density based on analytic hierarchy process method and the weighted evaluation method. The calculated comprehensive evaluation indexes corresponding to current density of 40A/dm2, 45A/dm2, 50A/dm2, 55A/dm2, 60A/dm2, and 65A/dm2 were 0.2246, 0.4850, 0.4799, 0.4922, 0.8672, and 0.1381, respectively. Experimental results indicate that final optimal option was 60A/dm2, and the priority orders were 60A/dm2, 55A/dm2, 45A/dm2, 50A/dm2, 40A/dm2, and 65A/dm2.

  12. The dependence of critical current density of GdFeCo layer on composition of thermally assisted STT-RAM

    Science.gov (United States)

    Dai, B.; Zhu, J.; Liu, K.; Yang, L.; Han, J.

    2017-07-01

    Amorphous rare earth-transitional metal (RETM) GdFeCo memory layer with RE- and TM-rich compositions was fabricated in stacks of GdFeCo (10 nm)/Cu (3 nm)/[Co(0.2 nm)/Pd(0.4 nm)]6. Their magnetic properties and spin transfer torque (STT) switching of magnetization were investigated. The maximum magneto-resistance (MR) was around 0.24% for the TM-rich Gd21.4 (Fe90Co10)78.6 memory layer and was -0.03% for the RE-rich Gd29.0 (Fe90Co10)71.0 memory layer. The critical current densities Jc to switch the GdFeCo memory layers are in the range of 1.4 × 107 A/cm2-4.5 × 107 A/cm2. The dependence of critical current density Jc and effective anisotropy constant Keff on Gd composition were also investigated. Both Jc and Keff have maximum values in the Gd composition range from 21-29 at.%, suitable for thermally assisted STT-RAM for storage density exceeding Gb/inch2.

  13. Resonant Excitation of Boundary Layer Instability of DC Arc Plasma Jet by Current Modulation

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Vladimír; Hrabovský, Milan

    2011-01-01

    Roč. 31, č. 6 (2011), s. 827-838 ISSN 0272-4324 R&D Projects: GA ČR GAP205/11/2070 Institutional research plan: CEZ:AV0Z20430508 Keywords : dc arc jet * plasma jet oscillations * boundary layer instability * frequency spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2011 http://www.springerlink.com/content/v160841757161758/

  14. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    Science.gov (United States)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  15. The low-latitude boundary layer at mid-altitiudes: Relation to large-scale Birkeland currents

    International Nuclear Information System (INIS)

    Woch, J.; Yamauchi, M.; Lundin, R.; Potemra, T.A.; Zanetti, L.J.

    1993-01-01

    In this work the authors seek to test a projected relationship between the low latitude boundary layer (LLBL) and field aligned currents (FAC), or Birkeland currents. They use the procedure developed by Woch and Lundin for identifying LLBL boundaries. They look for correlations between properties of the FAC and properties of the LLBL. Their results show that in most cases the FAC observed are totally inside the region which exhibits LLBL plasma precipitation. The authors argue that within the biases to their data because of its source, and relative sensitivities, their conclusions support earlier work which argues for the LLBL acting as a source region for FAC features

  16. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Science.gov (United States)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  17. Current real-life use of vasopressors and inotropes in cardiogenic shock - adrenaline use is associated with excess organ injury and mortality.

    Science.gov (United States)

    Tarvasmäki, Tuukka; Lassus, Johan; Varpula, Marjut; Sionis, Alessandro; Sund, Reijo; Køber, Lars; Spinar, Jindrich; Parissis, John; Banaszewski, Marek; Silva Cardoso, Jose; Carubelli, Valentina; Di Somma, Salvatore; Mebazaa, Alexandre; Harjola, Veli-Pekka

    2016-07-04

    Vasopressors and inotropes remain a cornerstone in stabilization of the severely impaired hemodynamics and cardiac output in cardiogenic shock (CS). The aim of this study was to analyze current real-life use of these medications, and their impact on outcome and on changes in cardiac and renal biomarkers over time in CS. The multinational CardShock study prospectively enrolled 219 patients with CS. The use of vasopressors and inotropes was analyzed in relation to the primary outcome, i.e., 90-day mortality, with propensity score methods in 216 patients with follow-up data available. Changes in cardiac and renal biomarkers over time until 96 hours from baseline were analyzed with linear mixed modeling. Patients were 67 (SD 12) years old, 26 % were women, and 28 % had been resuscitated from cardiac arrest prior to inclusion. On average, systolic blood pressure was 78 (14) and mean arterial pressure 57 (11) mmHg at detection of shock. 90-day mortality was 41 %. Vasopressors and/or inotropes were administered to 94 % of patients and initiated principally within the first 24 hours. Noradrenaline and adrenaline were given to 75 % and 21 % of patients, and 30 % received several vasopressors. In multivariable logistic regression, only adrenaline (21 %) was independently associated with increased 90-day mortality (OR 5.2, 95 % CI 1.88, 14.7, p = 0.002). The result was independent of prior cardiac arrest (39 % of patients treated with adrenaline), and the association remained in propensity-score-adjusted analysis among vasopressor-treated patients (OR 3.0, 95 % CI 1.3, 7.2, p = 0.013); this was further confirmed by propensity-score-matched analysis. Adrenaline was also associated, independent of prior cardiac arrest, with marked worsening of cardiac and renal biomarkers during the first days. Dobutamine and levosimendan were the most commonly used inotropes (49 % and 24 %). There were no differences in mortality, whether noradrenaline was combined

  18. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model

    Science.gov (United States)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-05-01

    By assuming a relaxation process for depolarization associated with the ferroelectric (FE) to antiferroelectric (AFE) phase transition in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression, we build a new model for the depoling current, which is different from both the traditional constant current source (CCS) model and the phase transition kinetics (PTK) model. The characteristic relaxation time and new-equilibrated polarization are dependent on both the shock pressure and electric field. After incorporating a Maxwell s equation, the relaxation model developed applies to all the depoling currents under short-circuit condition and high-impedance condition. Influences of shock pressure, load resistance, dielectric property, and electrical conductivity on the depoling current are also discussed. The relaxation model gives a good description about the suppressing effect of the self-generated electric field on the FE-to-AFE phase transition at low shock pressures, which cannot be described by the traditional models. After incorporating a time- and electric-field-dependent repolarization, this model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. Finally, we make the comparison between our relaxation model and the traditional CCS model and PTK model.

  19. Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers

    International Nuclear Information System (INIS)

    Tang, N.Y.

    2009-01-01

    The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.

  20. Current status of AlInN layers lattice-matched to GaN for photonics and electronics

    International Nuclear Information System (INIS)

    Butte, R; Carlin, J-F; Feltin, E; Gonschorek, M; Nicolay, S; Christmann, G; Simeonov, D; Castiglia, A; Dorsaz, J; Buehlmann, H J; Christopoulos, S; Hoegersthal, G Baldassarri Hoeger von; Grundy, A J D; Mosca, M; Pinquier, C; Py, M A; Demangeot, F; Frandon, J; Lagoudakis, P G; Baumberg, J J; Grandjean, N

    2007-01-01

    We report on the current properties of Al 1-x In x N (x ∼ 0.18) layers lattice-matched (LM) to GaN and their specific use to realize nearly strain-free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state-of-the-art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of (1-5) x 10 18 cm -3 and a large Stokes shift (∼800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified through the properties of GaN/AlInN multiple quantum wells (QWs) suitable for near-infrared intersubband applications. A built-in electric field of 3.64 MV cm -1 solely due to spontaneous polarization is deduced from photoluminescence measurements carried out on strain-free single QW heterostructures, a value in good agreement with that deduced from theoretical calculation. Other potentialities regarding optoelectronics are demonstrated through the successful realization of crack-free highly reflective AlInN/GaN distributed Bragg reflectors (R > 99%) and high quality factor microcavities (Q > 2800) likely to be of high interest for short wavelength vertical light emitting devices and fundamental studies on the strong coupling regime between excitons and cavity photons. In this respect, room temperature (RT) lasing of a LM AlInN/GaN vertical cavity surface emitting laser under optical pumping is reported. A description of the selective lateral oxidation of AlInN layers for current confinement in nitride-based light emitting devices and the selective chemical etching of oxidized AlInN layers is also given. Finally, the characterization of LM AlInN/GaN heterojunctions will reveal the potential of such a system for the fabrication of high electron mobility transistors through the report of a high two

  1. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors.

    Science.gov (United States)

    Bo, Zheng; Zhu, Weiguang; Ma, Wei; Wen, Zhenhai; Shuai, Xiaorui; Chen, Junhong; Yan, Jianhua; Wang, Zhihua; Cen, Kefa; Feng, Xinliang

    2013-10-25

    Dense networks of graphene nanosheets standing vertically on a current collector can work as numerous electrically conductive bridges to facilitate charge transport and mitigate the constriction/spreading resistance at the interface between the active material and the current collector. The vertically oriented graphene-bridged supercapacitors present excellent rate and power capabilities. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Entropy jump across an inviscid shock wave

    Science.gov (United States)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  3. Sausage instabilities in the electron current layer and its role in the concept of fast ignition

    International Nuclear Information System (INIS)

    Das, Amita; Jain, Neeraj; Kaw, Predhiman; Sengupta, Sudip

    2004-01-01

    The fast ignition concept of laser fusion utilizes hot electrons produced at the surface of the target by an incident intense laser pulse for the creation of the hot spot for ignition. As the hot electrons move inwards to the core of the precompressed target, the electrons from the background plasma provide a return shielding current. Three dimensional PIC simulations have shown that intense Weibel, tearing and coalescence instabilities take place which organize the current distribution into a few current filaments. In each of these filaments the central core region constitutes a current due to the fast electrons propagating inwards towards the pellet core, while the outer cylindrical shell region carries the return shielding current. The presence of instabilities and their subsequent nonlinear development can hinder the propagation of fast electrons towards the core influencing the location of the hot spot for ignition. Earlier studies showing the existence of sausage-like modes were carried out in the nonrelativistic limit and under the assumption of equal electron densities of the fast and the cold electrons. The fast electron density, in general, differs considerably from the background plasma density as it is dependent on the incident laser intensity. This paper incorporates relativistic effects and also studies the dependence of the growth rate on the fast electron density. Finally, nonlinear saturation of the instability and its impact on the stopping of the fast electron motion towards the core have also been investigated using numerical simulations. The simulations have, however, currently been carried out for non-relativistic dynamics. The results show that the sheared velocity profile of the channel gets flattened, causing an effective drop in the inward moving current. (author)

  4. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Science.gov (United States)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  5. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2010-01-01

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  6. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang

    2010-02-15

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  7. On the surface recombination current of metal-insulator semiconductor inversion layer solar cells

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1981-01-01

    voltages Voc were found to be lower than for ~ cells. The measured differences in Voc were higher than expected from the dark characteristics which is explained as a difference in the surface recombination current due to a higher interface state density Nss of ~ cells. Journal of Applied Physics...

  8. Sinking of armour layer around a vertical cylinder exposed to waves and current

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Probst, Thomas; Petersen, Thor Ugelvig

    2015-01-01

    The mechanisms of the sinking of a scour protection adjacent to a monopile are described in this paper, together with the determination of the equilibrium sinking depth in various wave and combined wave and current conditions based on physical model tests.Sinking of the rocks may ultimately lead ...

  9. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    Science.gov (United States)

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  10. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    Science.gov (United States)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current

  11. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo; Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr

    2016-10-15

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective current path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.

  12. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  13. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  14. Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, M.; Hattori, Y. [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8677 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally around the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.

  15. Two-stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation Through Background Plasma

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail

    2009-01-01

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δx perpendicular ∼ (delta) pe , where (delta) pe = c/ω pe is the collisionless skin depth, and ω pe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability

  16. Laboratory investigation of physical mechanisms of auroral charged particle acceleration in the field-aligned currents layers

    Science.gov (United States)

    Gavrilov, B.; Zetzer, J.; Sobyanin, D.; Podgorny, I.

    One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and produce auroral substorms. Navigation, communications and radars in the high latitude regions are severely affected through the effects on the ionosphere. It has long been recognized that the direct cause of the aurora is the precipitation of energetic electrons and ions into the atmosphere leading to excitation of the ambient atmospheric gases. Observations of the ionospheric ionization profiles and auroral precipitation characteristics have shown that field-aligned potential drops are formed to create this effect. The problem is that it is not clear the structure of the regions of magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electrons acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.

  17. Vortex lines in layered superconductors. II. Pinning and critical currents in high temperature superconductors

    Science.gov (United States)

    Manuel, P.

    1994-02-01

    In this article, a qualitative survey is given on the various phenomena which influence the critical current of high temperature superconductors. Critical current is defined as a property related to a non-zero electric field criterion, the level of which is fixed by experimental considerations, or efficiency requirements of applications. The presentation is restricted to extrinsic intragranular critical current, which depends in a complex way on the interplay between the characteristics of pinning centres and the properties of the vortex lattice. The discussion is focussed on the configuration {B} / / {c}, which contains the main elements of this problem. Differences of behaviour between Y(123) and BSCCO (Bi(2212) or Bi(2223)) are analysed in the context of their respective anisotropy factors. Possible regimes for pinning and creep are discussed in various temperature domains. From critical current results, a strong pinning regime is found to occur in BSCCO, whereas the pinning strength in Y(123) is still an open question. The thermal decrease of critical current allows a collective creep regime to appear in both materials, but at different temperature ranges. The disappearance of correlation effects near the irreversibility line results in a fall of the effective pinning energy. We show that in BSCCO, the effective pinning energy deduced from experimental results is not in agreement with pinning by randomly dispersed oxygen vacancies. Finally, we shortly describe the microstructures which could allow a more efficient pinning in future materials. On effectue une présentation qualitative des divers phénomènes qui contrôlent la valeur du courant critique dans les supraconducteurs à haute température. La notion de courant critique qui est utilisée est reliée à un critère de champ électrique non nul, fixé par des considérations expérimentales ou des exigences de rendement pour les applications. On se restreint au problème des courants critiques

  18. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  19. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    Science.gov (United States)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  20. Measurements in Regions of Shock Wave/Turbulent Boundary Layer Interaction from Mach 3 to 10 for Open and Blind Code Evaluation/Validation

    Science.gov (United States)

    2013-03-01

    34Blind" Code Evaluation/Validation Michael S. Holden, Timothy P. Wadhams, Matthew G. MacLean, Aaron Dufrene CUBRC , Inc March 2013 Final...298 Back (Rev. 8/98) *Fellow, AIAA, Vice President-Hypersonics, CUBRC , 4455 Genesee Street, Buffalo, NY 14225 ** Member, AIAA, Project Engineers... CUBRC , 4455 Genesee Street, Buffalo, NY 14225 This work was supported by AFOSR Grant No. FA9550-11-1-0290 MEASUREMENTS IN REGIONS OF SHOCK WAVE

  1. Interferometric studies of the pre-plasma influence on the laser energy transfer to the shock wave with the use of two-layer planar targets

    Czech Academy of Sciences Publication Activity Database

    Kalinowska, Z.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Kasperczuk, A.; Gus´kov, S.Y.; Demchenko, N. N.; Ullschmied, Jiří; Renner, Oldřich; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Šmíd, Michal; Pisarczyk, P.

    T161, May (2014), 014023-014023 ISSN 0031-8949 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : ablation pressure * fast electron * interferometry * resonance absorption * scale length of electron density * shock ignition conception Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T161/014023

  2. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  3. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.

  4. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  5. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  6. Effects of the intrinsic layer width on the band-to-band tunneling current in p-i-n GaN-based avalanche photodiodes

    International Nuclear Information System (INIS)

    Wang, Ling; Bao, Xichang; Zhang, Wenjing; Li, Chao; Yuan, Yonggang; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2009-01-01

    Dark current is critical for GaN-based avalanche photodiodes because it significantly increases the noise current and limits the multiplication factor. It has been found that the band-to-band tunneling current is the dominant origin of the dark current for avalanche photodiodes at the onset of breakdown voltage. Experimentally, for GaN-based avalanche photodiodes with a thinner intrinsic layer, the dark current increases nearly exponentially with the applied voltage even at a lower bias voltage. In this paper, the intrinsic layer (i-layer) width of GaN-based avalanche photodiodes has been varied to study its effect on the band-to-band tunneling current. A widely used equation was used to calculate the band-to-band tunneling current of avalanche photodiodes with different i-layer widths (i-layer 0.1 µm, 0.2 µm and 0.4 µm). At −40 V, the band-to-band tunneling current significantly reduces by a magnitude of 10 −15 A with an increase in the i-layer width from 0.1 µm to 0.2 µm, and a magnitude of 10 −29 A with an increase in the i-layer width from 0.2 µm to 0.4 µm. Then, GaN-based avalanche photodiodes (i-layer 0.1 µm, 0.2 µm and 0.4 µm) with different-sized mesa were fabricated. Also, the measurement of dark current of all three different structures was performed, and their multiplication factors were given

  7. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  8. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  9. Modeling and simulation of defects detection in conductive multi-layered pieces by the eddy current technique

    International Nuclear Information System (INIS)

    Bennoud, S; Zergoug, M

    2015-01-01

    It has been shown that the eddy current method is one of the most effective techniques for the detection and characterization of surface and near-surface defects in conductive mediums especially in aluminum alloy. It is one of the most applied methods in industries which require a maximum of reliability and security (aerospace, aeronautics, nuclear, Etc). In this study, a code to solve electromagnetic problems by employing the finite element method is developed. The suggested model can simulate the probe response to the presence of a defect hidden in a multi-layered structure or a riveted structure on aluminum alloy. The developed code is based on the discretization in three dimensions of the Maxwell's equations in harmonic mode by the finite element method based on the combined potential formulations. That will enable us to interpret the results, to present them in graphical form and to carry out simulations for various applications

  10. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    Science.gov (United States)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  11. Hall magnetohydrodynamics of neutral layers

    International Nuclear Information System (INIS)

    Huba, J.D.; Rudakov, L.I.

    2003-01-01

    New analytical and numerical results of the dynamics of inhomogeneous, reversed field current layers in the Hall limit (i.e., characteristic length scales < or approx. the ion inertial length) are presented. Specifically, the two- and three-dimensional evolution of a current layer that supports a reversed field plasma configuration and has a density gradient along the current direction is studied. The two-dimensional study demonstrates that a density inhomogeneity along the current direction can dramatically redistribute the magnetic field and plasma via magnetic shock-like or rarefaction waves. The relative direction between the density gradient and current flow plays a critical role in the evolution of the current sheet. One important result is that the current sheet can become very thin rapidly when the density gradient is directed opposite to the current. The three-dimensional study uses the same plasma and field configuration as the two-dimensional study but is also initialized with a magnetic field perturbation localized along the current channel upstream of the plasma inhomogeneity. The perturbation induces a magnetic wave structure that propagates in the direction of the electron drift (i.e., opposite to the current). The propagating wave structure is a Hall phenomenon associated with magnetic field curvature. The interaction between the propagating wave structure and the evolving current layer can lead to rapid magnetic field line reconnection. The results are applied to laboratory and space plasma processes

  12. Electric Shock Injuries in Children

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Electric Shock Injuries in Children Page Content ​When the ... comes into direct contact with a source of electricity, the current passes through it, producing what's called ...

  13. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  14. Oxidative stress in deep scattering layers: Heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones

    Science.gov (United States)

    Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2013-12-01

    Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia

  15. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  16. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  17. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  18. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  19. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  20. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  1. Critical current density of four-CuO2-layer T1Ba2Ca3Cu4O11-δ

    International Nuclear Information System (INIS)

    Zhang, L.; Liu, J.Z.; Shelton, R.N.

    1998-01-01

    Full text: A key requirement for technological application is to have superconductors with high critical current density at practical operating temperatures and magnetic fields. The critical current density is strongly related to underlying properties of high T c superconductors, such as layering, anisotropy and other intrinsic material structures. The thallium-based superconductors attracted much attention at early stage mainly due to their high superconducting transitions. Recent studies show that these materials appear to be a better choice for achieving higher critical current density because of a stronger interlayer coupling between superconducting layers. Single crystals of TlBa 2 Ca 3 Cu 4 O 11-δ were grown by a self-flux method. This material is a strong-layered superconductor with four-CuO 2 -planes in a unit cell and a superconducting transition temperature of 128K. Our experimental results show that TlBa 2 Ca 3 Cu 4 O 11-δ crystals have high irreversibility line, large critical current density and high upper critical field. The impact of layering and the number of Cu-O layers on flux pinning, critical current density and other magnetic properties will also be discussed

  2. Calibration of PCB-132 Sensors in a Shock Tube

    Science.gov (United States)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  3. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  4. A review of recent developments in the understanding of transonic shock buffet

    Science.gov (United States)

    Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg

    2017-07-01

    Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.

  5. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  6. Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons.

    Directory of Open Access Journals (Sweden)

    Bénédicte Rossi

    Full Text Available In developing cerebellar molecular layer interneurons (MLIs, NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+ channels (VDCCs. Using Ca(2+ imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+ or by the addition of APV. Similar paradigms yielded restricted Ca(2+ transients in interneurons loaded with a Ca(2+ indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+ elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+-induced Ca(2+ release process mediated by presynaptic Ca(2+ stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+-mediated synaptic plasticity.

  7. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Science.gov (United States)

    Pickett, J. S.; Chen, L.-J.; Santolík, O.; Grimald, S.; Lavraud, B.; Verkhoglyadova, O. P.; Tsurutani, B. T.; Lefebvre, B.; Fazakerley, A.; Lakhina, G. S.; Ghosh, S. S.; Grison, B.; Décréau, P. M. E.; Gurnett, D. A.; Torbert, R.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-06-01

    Electrostatic Solitary Waves (ESWs) have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period) in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18-19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1) the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2) the EDI instrument detected bursts of field-aligned electron currents, 3) the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4) the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5) CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD) with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in more detail using the space

  8. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2009-06-01

    Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in

  9. Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows.

    Science.gov (United States)

    1980-03-01

    distributions could be obtained. The pressure tappings were sampled using two computer controlled 48 port Model 48J4 Scanivalves equipped with Druck ...the boundary layer becomes turbulent, the upstream in- fluence drops to between 2 and 3D . 3.2 Pressure Distributions Off the Plane of Symmetry 3.2.1...upstream influence varies between 0.3 cm (0.12") and 7.6 cm (3.0"), a ratio of about 25, yet in terms of D , Iu lies between 2 and 3D . The figure shows

  10. Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature

    International Nuclear Information System (INIS)

    Chen, D. Y.; Sun, Y.; He, Y. J.; Xu, L.; Xu, J.

    2014-01-01

    We have investigated carrier transport in SiO 2 /nc-Si/SiO 2 multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V 2 ) as a function of 1/V and ln(I) as a function of V 1/2 . Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages

  11. Improvement of Short-Circuit Current Density in Dye-Sensitized Solar Cells Using Sputtered Nanocolumnar TiO2 Compact Layer

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2010-01-01

    Full Text Available The effect of a nanocolumnar TiO2 compact layer in dye-sensitized solar cells (DSSCs was examined. Such a compact layer was sputtered on a glass substrate with an indium tin oxide (ITO film using TiO2 powder as the raw material, with a thickness of ~100 nm. The compact layer improved the short-circuit current density and the efficiency of conversion of solar energy to electricity by the DSSC by 53.37% and 59.34%, yielding values of 27.33 mA/cm2 and 9.21%, respectively. The performance was attributed to the effective electron pathways in the TiO2 compact layer, which reduced the back reaction by preventing direct contact between the redox electrolyte and the conductive substrate.

  12. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  13. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  14. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  16. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  17. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    Science.gov (United States)

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  18. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  19. Particle dynamics and current-free double layers in an expanding, collisionless, two-electron-population plasma

    International Nuclear Information System (INIS)

    Hairapetian, G.; Stenzel, R.L.

    1991-01-01

    The expansion of a two-electron-population, collisionless plasma into vacuum is investigated experimentally. Detailed in situ measurements of plasma density, plasma potential, electric field, and particle distribution functions are performed. At the source, the electron population consists of a high-density, cold (kT e congruent 4 eV) Maxwellian, and a sparse, energetic ( (1)/(2) mv 2 e congruent 80 eV) tail. During the expansion of plasma, space-charge effects self-consistently produce an ambipolar electric field whose amplitude is controlled by the energy of tail electrons. The ambipolar electric field accelerates a small number (∼1%) of ions to streaming energies which exceed and scale linearly with the energy of tail electrons. As the expansion proceeds, the energetic tail electrons electrostatically trap the colder Maxwellian electrons and prevent them from reaching the expansion front. A potential double layer develops at the position of the cold electron front. Upstream of the double layer both electron populations exist; but downstream, only the tail electrons do. Hence, the expansion front is dominated by retarded tail electrons. Initially, the double layer propagates away from the source with a speed approximately equal to the ion sound speed in the cold electron population. The propagation speed is independent of the tail electron energy. At later times, the propagating double layer slows down and eventually stagnates. The final position and amplitude of the double layer are controlled by the relative densities of the two electron populations in the source. The steady-state double layer persists till the end of the discharge (Δt congruent 1 msec), much longer than the ion transit time through the device (t congruent 150 μsec)

  20. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  1. Evidence for Space Charge in Atomic Layer Epitaxy ZnS:Mn Alternating- Current Thin-Film Electroluminescent Devices,

    Science.gov (United States)

    1993-01-01

    exists wior with ra hho agop io model within the bulk portion of the phosphor layer. Although tAon to obtin alteratinbilarplses with mp del this...field region within the ZnS. emission with a peak at 460 nm and which exhibited ther- Postulating the existence of such a low-field region mal

  2. Flow control for oblique shock wave reflections

    NARCIS (Netherlands)

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  3. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  4. Experiments on ion acoustic typed double layers

    International Nuclear Information System (INIS)

    Chan, C.; Cho, M.H.; Intrator, T.; Hershkowitz, N.

    1984-01-01

    The formation of small amplitude double layers with potential drops the order of the electron temperature, was examined experimentally by pulsing a grid and thereby changing the electron drift across the target chamber of a triple plasma device. The rarefactive part of a long wavelength, low frequency ion wave grew in amplitude due to the presence of slowly drifting electrons. The corresponding current limitation led to the formation of the double layers. Depending on the plasma conditions, the asymmetric double layers either transform into a weak monotonic layer, a propagating shock, or a series of rarefactive solitary pulses. The rarefactive pulses propagate with Mach number less than one and resemble solitary plasma holes with density cavities in both the electron and the ion density profiles

  5. Surface profile gradient in amorphous Ta{sub 2}O{sub 5} semi conductive layers regulates nanoscale electric current stability

    Energy Technology Data Exchange (ETDEWEB)

    Cefalas, A.C., E-mail: ccefalas@eie.gr [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Kollia, Z.; Spyropoulos-Antonakakis, N.; Gavriil, V. [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Christofilos, D.; Kourouklis, G. [Physics Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Semashko, V.V.; Pavlov, V. [Kazan Federal University, Institute of Physics, 18 Kremljovskaja str., Kazan 420008 (Russian Federation); Sarantopoulou, E. [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Kazan Federal University, Institute of Physics, 18 Kremljovskaja str., Kazan 420008 (Russian Federation)

    2017-02-28

    Highlights: • The work links the surface morphology of amorphous semiconductors with both their electric-thermal properties and current stability at the nanoscale (<1 μm). • Measured high correlation value between surface morphological spatial gradient and conductive electron energy spatial gradient or thermal gradient. • Unidirectional current stability is associated with asymmetric nanodomains along nanosize conductive paths. • Bidirectional current stability is inherent with either long conductive paths or nanosize conductive paths along symmetric nanodomains. • Conclusion: Surface design improves current stability across nanoelectonic junctions. - Abstract: A link between the morphological characteristics and the electric properties of amorphous layers is established by means of atomic, conductive, electrostatic force and thermal scanning microscopy. Using amorphous Ta{sub 2}O{sub 5} (a-Ta{sub 2}O{sub 5}) semiconductive layer, it is found that surface profile gradients (morphological gradient), are highly correlated to both the electron energy gradient of trapped electrons in interactive Coulombic sites and the thermal gradient along conductive paths and thus thermal and electric properties are correlated with surface morphology at the nanoscale. Furthermore, morphological and electron energy gradients along opposite conductive paths of electrons intrinsically impose a current stability anisotropy. For either long conductive paths (L > 1 μm) or along symmetric nanodomains, current stability for both positive and negative currents i is demonstrated. On the contrary, for short conductive paths along non-symmetric nanodomains, the set of independent variables (L, i) is spanned by two current stability/intability loci. One locus specifies a stable state for negative currents, while the other locus also describes a stable state for positive currents.

  6. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  7. Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    International Nuclear Information System (INIS)

    Erfani, Rasool; Zare-Behtash, Hossein; Kontis, Konstantinos

    2012-01-01

    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma. (paper)

  8. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    Science.gov (United States)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  9. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  10. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  11. 28th International Symposium on Shock Waves

    CERN Document Server

    2012-01-01

    The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

  12. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Fei-ping; Liu, Xiao-bin; Xing, Yong-zhong

    2014-01-01

    Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ n ) is equal to the hole injection barrier (ϕ p ) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ n  > ϕ p under the condition of electron mobility (μ 0n ) > hole mobility (μ 0p ), whereas the result for the case of μ 0n   0p , is opposite. The largest CBF when μ 0n  = μ 0p can be achieved in the case of ϕ n  = ϕ p in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs

  13. Conditions for the occurrence of intense turbidity currents in the benthic boundary layer over a sloping bottom

    NARCIS (Netherlands)

    Zhmur, VV

    2003-01-01

    The evolution of density currents over the continental slope of the ocean is investigated with allowance for the entrainment of the bottom sediments and background liquid in motion. A simple criterion is proposed for determining the possibility of evolving initially weak density currents into bottom

  14. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  15. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  16. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  17. Development of biaxially textured buffer layers on rolled-Ni substrates for high current YBa2Cu3O7-y coated conductors

    International Nuclear Information System (INIS)

    Paranthaman, M.; Goyal, A.; Norton, D.P.

    1996-01-01

    This paper describes the development of 3 buffer layer architectures with good biaxial textures on rolled-Ni substrates using vacuum processing techniques. The techniques include pulsed laser ablation, e-beam evaporation, dc and rf magnetron sputtering. The first buffer layer architecture consists of an epitaxial laminate of Ag/Pd(Pt)/Ni. The second buffer layer consists of an epitaxial laminate of CeO 2 /Pd/Ni. The third alternative buffer layer architecture consists of an epitaxial laminate of YSZ/CeO 2 /Ni. The cube (100) texture in the Ni was produced by cold rolling followed by recrystallization. Crystallographic orientations of the Pd, Ag, CeO 2 , and YSZ films grown were all (100). We recently demonstrated a critical- current density of 0.73x10 6 A/cm 2 at 77 K and zero field on 1.4 μm thick YBa 2 Cu 3 O 7-y (YBCO) film. This film was deposited by pulsed laser ablation on a YBCO/YSZ/CeO 2 /Ni substrate

  18. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  19. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  20. Current status of submucosal tunneling endoscopic resection for gastrointestinal submucosal tumors originating from the muscularis propria layer.

    Science.gov (United States)

    Tan, Yuyong; Huo, Jirong; Liu, Deliang

    2017-11-01

    Gastrointestinal submucosal tumors (SMTs) have been increasingly identified via the use of endoscopic ultrasonography, and removal is often recommended for SMTs that are >2 cm in diameter or symptomatic. Submucosal tunneling endoscopic resection (STER), also known as submucosal endoscopic tumor resection, endoscopic submucosal tunnel dissection or tunneling endoscopic muscularis dissection, is a novel endoscopic technique for treating gastrointestinal SMTs originating from the muscularis propria layer, and has been demonstrated to be effective in the removal of SMTs with a decreased rate of recurrence by clinical studies. STER may be performed for patients with esophageal or cardia SMTs, and its application has expanded beyond these types of SMTs due to modifications to the technique. The present study reviewed the applications, procedure, efficacy and complications associated with STER.

  1. Influence of shock waves from plasma actuators on transonic and supersonic airflow

    Science.gov (United States)

    Mursenkova, I. V.; Znamenskaya, I. A.; Lutsky, A. E.

    2018-03-01

    This paper presents experimental and numerical investigations of high-current sliding surface discharges of nanosecond duration and their effect on high-speed flow as plasma actuators in a shock tube. This study deals with the effectiveness of a sliding surface discharge at low and medium air pressure. Results cover the electrical characteristics of the discharge and optical visualization of the discharge and high-speed post-discharge flow. A sliding surface discharge is first studied in quiescent air conditions and then in high-speed flow, being initiated in the boundary layer at a transverse flow velocity of 50-950 m s-1 behind a flat shock wave in air of density 0.04-0.45 kg m-3. The discharge is powered by a pulse voltage of 25-30 kV and the electric current is ~0.5 kA. Shadow imaging and particle image velocimetry (PIV) are used to measure the flow field parameters after the pulse surface discharge. Shadow imaging reveals shock waves originating from the channels of the discharge configurations. PIV is used to measure the velocity field resulting from the discharge in quiescent air and to determine the homogeneity of energy release along the sliding discharge channel. Semicylindrical shock waves from the channels of the sliding discharge have an initial velocity of more than 600 m s-1. The shock-wave configuration floats in the flow along the streamlined surface. Numerical simulation based on the equations of hydrodynamics matched with the experiment showed that 25%-50% of the discharge energy is instantly transformed into heat energy in a high-speed airflow, leading to the formation of shock waves. This energy is comparable to the flow enthalpy and can result in significant modification of the boundary layer and the entire flow.

  2. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  3. Bi-layer SixNy passivation on AlGaN/GaN HEMTs to suppress current collapse and improve breakdown

    International Nuclear Information System (INIS)

    Lee, K B; Green, R T; Houston, P A; Tan, W S; Uren, M J; Wallis, D J; Martin, T

    2010-01-01

    Si x N y deposited at low temperature was found to improve the breakdown voltage of AlGaN/GaN HEMTs at the expense of current collapse due to the presence of a high density of charge trapping states. On the other hand, stoichiometric Si 3 N 4 film deposited at high temperature was effective in mitigating current slump but no improvement in the breakdown voltage was observed. Combining the benefit of both films, a bi-layer stacked passivation has been employed on the HEMTs. Gate lag measurements revealed that the current collapse was mitigated and the breakdown voltage of the devices was found to increase from 120 V to 238 V upon passivation

  4. Current-limiting mechanisms in YBa2Cu3O7-δ thin layers and quasi-multilayers

    International Nuclear Information System (INIS)

    Haenisch, J.

    2004-01-01

    In this work, electrical transport properties and the maximum current carrying capability of YBa 2 Cu 3 O 7 -[δ] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO 3 ) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO 3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. (Orig.)

  5. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  6. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  7. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    CERN Document Server

    Shilon, I.; Langeslag, S.A.E.; Martins, L.P.; ten Kate, H.H.J.

    2015-06-19

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zon...

  8. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong [College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 (China)

    2014-04-28

    Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ{sub n}) is equal to the hole injection barrier (ϕ{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ{sub n} > ϕ{sub p} under the condition of electron mobility (μ{sub 0n}) > hole mobility (μ{sub 0p}), whereas the result for the case of μ{sub 0n} < μ{sub 0p}, is opposite. The largest CBF when μ{sub 0n} = μ{sub 0p} can be achieved in the case of ϕ{sub n} = ϕ{sub p} in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs.

  9. High-performance alternating current field-induced chromatic-stable white polymer electroluminescent devices employing a down-conversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yingdong; Chen, Yonghua; Smith, Gregory M. [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Sun, Hengda; Yang, Dezhi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Nie, Wanyi; Li, Yuan; Huang, Wenxiao [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States)

    2015-05-15

    In this work, a high-performance alternating current (AC) filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated by combining a fluorophor Poly(9,9-dioctylfluorene) (PFO)-based blue device with a yellow down-conversion layer (YAG:Ce). A maximum luminance of this down-conversion FIPEL device achieves 3230 cd m{sup −2}, which is 1.41 times higher than the device without the down-conversion layer. A maximum current efficiency and power efficiency of the down-conversion WFIPEL device reach 19.7 cd A{sup −1} at 3050 cd m{sup −2} and 5.37 lm W{sup −1} at 2310 cd m{sup −2} respectively. To the best of our knowledge, the power efficiency is one of the highest reports for the WFIPEL up to now. Moreover, Commison Internationale de L’Eclairage (CIE) coordinates of (0.28, 0.30) is obtained by adjusting the thickness of the down-conversion layer to 30 μm and it is kept stable over the entire AC-driven voltage range. We believe that this AC-driven, down-conversion, WFIPEL device may offer an easy way towards future flat and flexible lighting sources. - Highlights: • A high-performance AC filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated. • A maximum luminance, current efficiency, and power efficiency achieves 3230 cd m{sup −2}, 19.7 cd A{sup −1}, and 5.37 lm W{sup −1}, respectively. • The power efficiency is one of the highest reports for the WFIPEL up to now. • The EL spectrum kept very stable over the entire AC-driven voltage range.

  10. Consequences of inhibition of mixed-layer deepening by the West India coastal current for winter phytoplankton bloom in the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Vinayachandran, P.N.; Thushara, V.; Amol, P.; Shankar, D; Anil, A.C.

    Consequences of inhibition of mixed-layer deepening by the1 West India Coastal Current for winter phytoplankton bloom in2 the northeastern Arabian Sea3 V. Vijith1, P. N. Vinayachandran 1, V. Thushara 1, P. Amol 1, D. Shankar 2, A. C. Anil 24 1Centre... m in375 February (Figure 5h). As the ML deepens in the north, cold sub-surface water376 that is rich in NO3 and PO4 entrains to the ML (Figures 4a,d and e). Vertical sec-377 tions of the nutrients (Figure 4d-e) resemble the temperature sections...

  11. Computer-aided design of multifrequency eddy-current tests for layered conductors with multiple property variations

    Energy Technology Data Exchange (ETDEWEB)

    Deeds, W E; Dodd, C V; Scott, G W

    1979-10-01

    Our program is part of a larger project designed to develop multifrequency eddy-current inspection techniques for multilayered conductors with parallel planar boundaries. To reduce the need to specially program each new problem, a family of programs that handle a large class of related problems with only minor editorial and interactive changes were developed. Programs for two types of cylindrical coil probes were developed: the reflection probe, which contains the driver and pickup coils and is used from one side of the specimen, and the through-transmission probe set, which places the driver and pickup coils on opposite sides of the conductor stack. The programs perform the following basic functions: (1) simulation of an ideal instrument's response to specific conductor and defect configurations, (2) control of an eddy-current instrument interfaced to a minicomputer to acquire and record actual instrument responses to test specimens, (3) construction of complex function expansions to relate instrument response to conductor and defect properties by using measured or computed responses and properties, and (4) simulation of a microcomputer on board the instrument by the interfaced minicomputer to test the analytical programming for the microcomputer. The report contains the basic equations for the computations, the main and subroutine programs, instructions for editorial changes and program execution, analyses of the main programs, file requirements, and other miscellaneous aids for the user.

  12. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  13. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  14. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  15. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  16. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  17. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  18. The potent activation of Ca(2+)-activated K(+) current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition.

    Science.gov (United States)

    Chiang, Nai-Jung; Wu, Sheng-Nan; Chen, Li-Tzong

    2015-04-01

    NVP-AUY922 (AUY) is a potent inhibitor of heat shock protein 90 (HSP90). Whether this compound can exert additional effects on membrane ion channels remains elusive. We investigated the effect of AUY on ion currents in human pancreatic duct epithelial cells (PDECs), including PANC-1 and MIA PaCa-2. AUY increased the amplitude of the K(+) current (IK) in PANC-1 cells shown by whole-cell configuration. Single-channel recordings revealed a large-conductance Ca(2+)-activated K(+) (BKCa) channel in PANC-1, but not in MIA PaCa-2. In cell-attached mode, AUY increased the probability of BKCa channel opening and also potentiated the activity of stretch-induced channels. However, other HSP inhibitors, 17-AAG or BIIB021 only slightly increased the activity of BKCa channels. In inside-out recordings, sodium hydrosulphide or caffeic acid phenethyl ester increased the activity of BKCa channels, but AUY did not. We further evaluated whether conductance of Ca(2+)-activated K(+) channels (IK(Ca)) influenced secretion of HCO3(-) and fluid in PDECs by using a modified Whitcomb-Ermentrout model. Simulation studies showed that an increase in IK(Ca) resulted in additional secretion of HCO3(-) and fluid by mimicking the effect of AUY in PDECs. Collectively, AUY can interact with the BKCa channel to largely increase IK(Ca) in PDECs. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Shocking revelations

    International Nuclear Information System (INIS)

    Crum, L.A.; Matula, T.J.

    1997-01-01

    In single-bubble sonoluminescence (SBSL) a small gas bubble that has been acoustically levitated in a liquid driven into large amplitude volume oscillations by the sound fields, radiation visible light each and every acoustic cycle. These emissions could potentially lead to thermonuclear fusion. This paper reports on the background of SBSL, what the current research is, and what questions need to be answered in the future. 26 refs., 1 fig

  20. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    Science.gov (United States)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how

  1. Nonequilibrium recombination after a curved shock wave

    Science.gov (United States)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  2. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  3. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  4. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  5. Collisionless Weibel shocks: Full formation mechanism and timing

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  6. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  7. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    Science.gov (United States)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  8. Shock Generation and Control Using DBD Plasma Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock-wave/boundary-layer interactions (SWBLI) pose challenges to aeronautical engineers because they create regions of adverse pressure gradients as a result of the...

  9. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  10. Sticker Shock

    Science.gov (United States)

    Schueler, Beth E.; West, Martin R.

    2016-01-01

    This study examines the role of information in shaping public opinion in the context of support for education spending. While there is broad public support for increasing government funding for public schools, Americans tend to underestimate what is currently spent. We embed a series of experiments in a nationally representative survey administered in 2012 (n = 2,993) to examine whether informing citizens about current levels of education spending alters public opinion about whether funding should increase. Providing information on per-pupil spending in a respondent’s local school district reduces the probability that he or she will express support for increasing spending by 22 percentage points on average. Informing respondents about state-average teacher salaries similarly depresses support for salary increases. These effects are larger among respondents who underestimate per-pupil spending and teacher salaries by a greater amount, consistent with the idea that the observed changes in opinion are driven, at least in part, by informational effects, as opposed to priming alone. PMID:27257308

  11. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    International Nuclear Information System (INIS)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-01-01

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10 12 to 2.1 × 10 13 cm −2 as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10 13 cm −2 on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm 2 /Vs for a density of 1.3 × 10 13 cm −2 . The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  12. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece); Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G. [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece)

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  13. Double layers above the aurora

    International Nuclear Information System (INIS)

    Temerin, M.; Mozer, F.S.

    1987-01-01

    Two different kinds of double layers were found in association with auroral precipitation. One of these is the so-called electrostatic shock, which is oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found at the edges of regions of upflowing ion beams and the direction of the electric fields in the shock points toward the ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfven waves, which may accelerate electrons to produce flickering auroras. The flickering aurora provides evidence that the electrostatic shock may have large temporal fluctuations. The other kind of double layer is the small-amplitude double layer found in regions of upward flowing in beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in these structures are comparable in magnitude. The associated potentials are a few eV. Since many such double layers are found in regions of upward flowing ion beams, the combined potential drop through a set of these double layers can be substantial

  14. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  15. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  16. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  17. Effect of interface structure regulation caused by variation of imidization rate on conduction current characteristics of PI/nano-Al2O3 three-layer composite films

    Science.gov (United States)

    Ma, Xinyu; Liu, Lizhu; Zhang, Xiaorui; He, Hongju

    2018-06-01

    A series of sandwich structure PI films were prepared by different imidization process, with pure PI film as the interlayer and PI/Al2O3 composite films as outer layers. The imidization rate of the film with different cured processes was calculated by characterizing by infrared spectrum (FT-IR), and the morphology of interlayer interface with different imidization rates by scanning electron microscope (SEM). When the imidization conditions of the first and second films were 260 °C/120 min, the composite films displayed better interface structure and higher imidization rate (ID) than others. Moreover, results also showed that the conduction current of three-layer composite film steadily improved with increased ID and temperature, and was higher than that of the pure film. At the temperature of 30 °C, the electrical aging threshold at different ID was obtained. When the ID reached the maximum value of 78.9%, the electrical aging threshold reached the maximum 41.69 kV/mm.

  18. Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer

    Science.gov (United States)

    Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.

    2018-04-01

    We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.

  19. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  20. Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2005-04-01

    Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.

  1. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  2. Effect of atomic layer deposition temperature on current conduction in Al{sub 2}O{sub 3} films formed using H{sub 2}O oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Matsumura, Daisuke [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-08-28

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450

  3. Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors

    Science.gov (United States)

    Zhang, Hongpeng; Jia, Renxu; Lei, Yuan; Tang, Xiaoyan; Zhang, Yimen; Zhang, Yuming

    2018-02-01

    In this paper, current conduction mechanisms in HfO2/β-Ga2O3 metal-oxide-semiconductor (MOS) capacitors under positive and negative biases are investigated using the current-voltage (I-V) measurements conducted at temperatures from 298 K to 378 K. The Schottky emission is dominant under positively biased electric fields of 0.37-2.19 MV cm-1, and the extracted Schottky barrier height ranged from 0.88 eV to 0.91 eV at various temperatures. The Poole-Frenkel emission dominates under negatively biased fields of 1.92-4.83 MV cm-1, and the trap energy levels are from 0.71 eV to 0.77 eV at various temperatures. The conduction band offset (ΔE c) of HfO2/β-Ga2O3 is extracted to be 1.31  ±  0.05 eV via x-ray photoelectron spectroscopy, while a large negative sheet charge density of 1.04  ×  1013 cm-2 is induced at the oxide layer and/or HfO2/β-Ga2O3 interface. A low C-V hysteresis of 0.76 V, low interface state density (D it) close to 1  ×  1012 eV-1 cm-2, and low leakage current density of 2.38  ×  10-5 A cm-2 at a gate voltage of 7 V has been obtained, suggesting the great electrical properties of HfO2/β-Ga2O3 MOSCAP. According to the above analysis, ALD-HfO2 is an attractive candidate for high voltage β-Ga2O3 power devices.

  4. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  5. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  6. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  7. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  8. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  9. Cavitation cluster dynamics in shock-wave lithotripsy: Part I

    NARCIS (Netherlands)

    Arora, M.; Junge, L.; Junge, L.; Ohl, C.D.

    2005-01-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30

  10. Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: A model study

    Science.gov (United States)

    Wagner, V.; von Glasow, R.; Fischer, H.; Crutzen, P. J.

    2002-02-01

    On the basis of a data set collected during the Indian Ocean Experiment (INDOEX) campaign 1999, we investigated the formaldehyde (CH2O) budget in the southern Indian Ocean (SIO). With a photochemical box model we simulated the contribution of methane and nonmethane volatile organic compounds to the CH2O budget. To identify the reactions and model constraints that introduce the largest uncertainties in the modeled CH2O concentration, we carried out a local sensitivity analysis. Furthermore, a Monte Carlo method was used to assess the global error of the model predictions. According to this analysis the 2σ uncertainty in the modeled CH2O concentration is 49%. The deviation between observed (200 +/- 70 parts per trillion by volume (pptv) (2σ)) and modeled (224 +/- 110 pptv (2σ)) daily mean CH2O concentration is 12%. However, the combined errors of model and measurement are such that deviations as large as 65% are not significant at the 2σ level. Beyond the ``standard'' photochemistry we analyzed the impact of halogen and aerosol chemistry on the CH2O concentration and investigated the vertical distribution of CH2O in the marine boundary layer (MBL). Calculations with the Model of Chemistry Considering Aerosols indicate that, based on the current understanding, halogen chemistry and aerosol chemistry have no significant impact on the CH2O concentration under conditions encountered in the SIO. However, a detailed investigation including meteorological effects such as precipitation scavenging and convection reveals an uncertainty in state-of-the-art model predictions for CH2O in the MBL that is too large for a meaningful test of the current understanding of CH4 photooxidation.

  11. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Dapeng Wang

    2018-04-01

    Full Text Available In this study, the initial electrical properties, positive gate bias stress (PBS, and drain current stress (DCS-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO thin-film transistors (TFTs with various active layer thicknesses (TIGZO are investigated. As the TIGZO increased, the turn-on voltage (Von decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm2·V−1·s−1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the TIGZO. The PBS results exhibit that the Von shift is aggravated as the TIGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various TIGZO values is revealed using current–voltage and capacitance–voltage (C–V measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source (Cgs curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the TIGZO value increased, the hump in the off state of the Cgs curve was gradually weakened.

  12. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses.

    Science.gov (United States)

    Wang, Dapeng; Zhao, Wenjing; Li, Hua; Furuta, Mamoru

    2018-04-05

    In this study, the initial electrical properties, positive gate bias stress (PBS), and drain current stress (DCS)-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with various active layer thicknesses ( T IGZO ) are investigated. As the T IGZO increased, the turn-on voltage ( V on ) decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm²·V −1 ·s −1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the T IGZO . The PBS results exhibit that the V on shift is aggravated as the T IGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various T IGZO values is revealed using current–voltage and capacitance–voltage ( C – V ) measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source ( C gs ) curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the T IGZO value increased, the hump in the off state of the C gs curve was gradually weakened.

  13. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  14. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  15. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  16. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  17. On the Validity of the “Thin” and “Thick” Double-Layer Assumptions When Calculating Streaming Currents in Porous Media

    Directory of Open Access Journals (Sweden)

    Matthew D. Jackson

    2012-01-01

    Full Text Available We find that the thin double layer assumption, in which the thickness of the electrical diffuse layer is assumed small compared to the radius of curvature of a pore or throat, is valid in a capillary tubes model so long as the capillary radius is >200 times the double layer thickness, while the thick double layer assumption, in which the diffuse layer is assumed to extend across the entire pore or throat, is valid so long as the capillary radius is >6 times smaller than the double layer thickness. At low surface charge density (0.5 M the validity criteria are less stringent. Our results suggest that the thin double layer assumption is valid in sandstones at low specific surface charge (<10 mC⋅m−2, but may not be valid in sandstones of moderate- to small pore-throat size at higher surface charge if the brine concentration is low (<0.001 M. The thick double layer assumption is likely to be valid in mudstones at low brine concentration (<0.1 M and surface charge (<10 mC⋅m−2, but at higher surface charge, it is likely to be valid only at low brine concentration (<0.003 M. Consequently, neither assumption may be valid in mudstones saturated with natural brines.

  18. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  19. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  20. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  1. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  2. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  3. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  4. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  5. Improvement of an installation to generate shock waves

    Energy Technology Data Exchange (ETDEWEB)

    1974-04-29

    An installation to generate a shock wave in a fluid layer is described. A water projectile is moved at a high velocity. It leaves behind an underpressure in which the adjacent water implodes, therby generating the desired shock wave. The installation is characterized by a tube-shaped hull in which a piston can move freely. One side of the hull is connected to the pressure-generator chamber of the piston. (6 claims)

  6. Red blood cell transfusion during septic shock in the ICU

    DEFF Research Database (Denmark)

    Perner, A; Smith, S H; Carlsen, S

    2012-01-01

    Transfusion of red blood cells (RBCs) remains controversial in patients with septic shock, but current practice is unknown. Our aim was to evaluate RBC transfusion practice in septic shock in the intensive care unit (ICU), and patient characteristics and outcome associated with RBC transfusion....

  7. Counseling For Future Shock

    Science.gov (United States)

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  8. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  9. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  10. LaNiO3 buffer layers for high critical current density YBa2Cu3O7-δ and Tl2Ba2CaCu2O8-δ films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5 K, H=0) than films grown directly on a bare LaAlO 3 substrate. YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films in coated conductor applications. copyright 1999 American Institute of Physics

  11. LaNiO3 Buffer Layers for High Critical Current Density YBa2Cu3O7δ and Tl2Ba2CaCu2O8δ Films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5K, H=0) than films grown directly on a bare LaAlO 3 substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications

  12. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  13. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  14. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  15. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  16. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    Science.gov (United States)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  17. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy

    Science.gov (United States)

    Loske, Achim M.; Prieto, Fernando E.; Fernández, Francisco; van Cauwelaert, Javier

    2002-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 µs is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 µs using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator.

  18. Simulations of embedded lateral stress gauge profiles in shocked targets

    International Nuclear Information System (INIS)

    Winter, R E; Harris, E J

    2008-01-01

    In principle, stress gauges mounted to measure lateral stresses in a shocked matrix allow the shear strength of the material to be determined. However, interpreting the resistance profiles from lateral stress gauges is hindered by the fact that the stress field in the vicinity of the insulating layer in which the gauges are embedded can differ significantly from the stress field that would be generated in the sample if no gauge were present. A series of high resolution Eulerian hydrocode simulations have been run which suggest that the stresses in the insulating layer vary with distance and time in a way that depends on the thickness of the layer, the shock strength and the elastic and plastic properties of both the layer and the matrix. In particular, if the shock velocity in the matrix material is high the stress at a typical gauge position initially rises to a sharp peak then falls with time, but when the shock velocity in the matrix is low the stress rises relatively gradually throughout the time of interest. The shapes of the stress versus time profiles predicted by the hydrocode compare well with the results of lateral gauge experiments on several different materials. It is concluded that lateral gauges can be used to measure the dynamic strength of materials provided high resolution computer simulation is used to take account of the perturbation of the stress field in the shocked sample caused by the gauges

  19. Shock aurora: Field-aligned discrete structures moving along the dawnside oval

    Science.gov (United States)

    Zhou, Xiaoyan; Haerendel, Gerhard; Moen, Jøran I.; Trondsen, Espen; Clausen, Lasse; Strangeway, Robert J.; Lybekk, Bjørn; Lorentzen, Dag A.

    2017-03-01

    Generated by interplanetary shocks or solar wind pressure pulses, shock aurora has transient, global, and dynamic significances and provides a direct manifestation of the solar wind-magnetosphere-ionosphere interaction. As a part of a series of studies of the shock aurora, this paper focuses on the interaction at the morning magnetopause and its auroral manifestation at 06 magnetic local time, where the velocity and magnetic field shears dominate the interaction. Flow shears can generate wave-like structures inside a viscous boundary layer or even larger-scale vortices. These structures couple to the ionosphere via quasi-static field-aligned currents or via kinetic Alfvén waves. Potential drops along field-aligned filaments may be generated accelerating electrons to form auroral manifestations of the structures. A shock aurora event at dawnside is used to test this scenario. The findings include moving auroral streaks/rays that have a vertical profile from red (at 250 km altitude) to purple (at 100 km). The streaks moved antisunward along the poleward boundary of the oval at an ionospheric speed of 3 km s-1. It was mapped to the magnetopause flank at 133 km s-1, which was consistent with the observed speed of the magnetopause surface waves generated by the Kelvin-Helmholtz instability. The calculated field-aligned potential drop using Haerendel's analytic model was 5 kV that reasonably explained the observations. The results support the above scenario and reveal that magnetic and velocity shears at the flanks of the magnetospause may be the main cause of the fast moving shock aurora streaks.

  20. Shock wave convergence in water with parabolic wall boundaries

    International Nuclear Information System (INIS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  1. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    Science.gov (United States)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  2. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  3. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  4. Time Series Analysis of Wheat flour Price Shocks in Pakistan: A Case Analysis

    OpenAIRE

    Asad Raza Abdi; Ali Hassan Halepoto; Aisha Bashir Shah; Faiz M. Shaikh

    2013-01-01

    The current research investigates the wheat flour Price Shocks in Pakistan: A case analysis. Data was collected by using secondary sources by using Time series Analysis, and data were analyzed by using SPSS-20 version. It was revealed that the price of wheat flour increases from last four decades, and trend of price shocks shows that due to certain market variation and supply and demand shocks also play a positive relationship in price shocks in the wheat prices. It was further revealed th...

  5. Shock Tube as an Impulsive Application Device

    Directory of Open Access Journals (Sweden)

    Soumya Ranjan Nanda

    2017-01-01

    Full Text Available Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.

  6. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  7. Theory of the shock process in dense fluids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1991-01-01

    A shock is assumed to be a steady plane wave, and irreversible thermodynamics is assumed valid. The fluid is characterized by heat conduction and by viscous or viscoelastic response, according to the strain rate. It is shown that setting the viscosity zero produces a solution which constitutes a lower bound through the shock process for the shear stress, and upper bounds for the temperature, entropy, pressure, and heat current. It is shown that there exists an upper bound to the dynamic stresses which can be achieved during shock compression, that this bound corresponds to a purely elastic response of the fluid, and that solution for the shock process along this bound constitutes lower bounds for the temperature and entropy. It is shown that a continuous steady shock is possible only if the heat current is positive and the temperature is an increasing function of compression almost everywhere. In his theory of shocks in gases, Rayleigh showed that there is a maximum shock strength for which a continuous steady solution can exist with heat conduction but without viscosity. Two more limits are shown to exist for dense fluids, based on the fluid response in the leading edge of the shock: for shocks at the overdriven threshold and above, no solution is possible without heat transport; for shocks near the viscous fluid limit and above, viscous fluid theory is not valid, and the fluid response in the leading edge of the shock is approximately that of a nonplastic solid. The viscous fluid limit is estimated to be 13 kbar for water and 690 kbar for mercury

  8. Life Shocks and Homelessness

    Science.gov (United States)

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  9. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  10. Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis

    NARCIS (Netherlands)

    Ecker, Bernhard; Egelhaaf, Hans-Joachim; Steim, Roland; Parisi, Juergen; von Hauff', Elizabeth

    2012-01-01

    In this study we propose an equivalent circuit model to describe S-shaped current–voltage (I–V) characteristics in inverted solar cells with a TiOx interlayer between the cathode and the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester active layer. Initially the solar cells

  11. Three-fluid MHD-model of a current shell in Z-pinch

    International Nuclear Information System (INIS)

    Bazdenkov, S.V.; Vikhrev, V.V.

    1975-01-01

    Formation and motion of the current shell in a power pulsed discharge (Z-pinch) are discussed. One-dimmensional nonstationary problem about a discharge in deuterium is solved in the three-liquid magnetohydrodynamic approximation with regard for gas ionization and motion of neutral atoms. It is shown that after the shell removal there remains a large quantity of an ionized gas near an isolating chamber wall. The quantity is sufficient that a secondary breakdown may take place in the ionized gas. The moving current shell has a double structure, i.e. a current ''piston'' and a current layer in the shock wave front

  12. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  13. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  14. Shock therapy: Gris Gun's shock absorber can take the punch

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-04-01

    A newly developed shock impedance tool that isolates downhole tools that measure the effects of well stimulation techniques from being damaged by the violent shaking caused by various well stimulation techniques which combine perforating and propellant technology in a single tool, is discussed. The shock exerted by a perforating gun can exceed 25,000 G forces within 100 to 300 milliseconds, may damage or even destroy the sensitive electronics housed in the various recorders that record data about fracture gradients, permeability and temperature. The shock absorber developed by Tesco Gris Gun and Computalog, incorporates the mechanics of a piston style shock absorber in combination with a progressive spring stack and energy-dampening silicone oil chambers. The end results is an EUE 'slim line' assembly that is adaptable between the gun perforating string and the electronic equipment. It is typically attached below, reducing the shock load by as much as 90 per cent. The shock absorber is now available commercially through Gris Gun's exclusive distributorship. An improved version, currently under development, will be used for wireline perforating and tubing-conveyed perforating applications. 2 figs.

  15. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  16. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  17. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  18. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  19. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  20. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  1. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levinson, Amir

    2012-01-01

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  2. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  3. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  4. On the Impact of Electrostatic Correlations on the Double-Layer Polarization of a Spherical Particle in an Alternating Current Field.

    Science.gov (United States)

    Alidoosti, Elaheh; Zhao, Hui

    2018-05-15

    At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.

  5. Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Ming; Wang Yong; Wong Kai-Ming; Lau Kei-May

    2014-01-01

    High-performance low-leakage-current AlGaN/GaN high electron mobility transistors (HEMTs) on silicon (111) substrates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally one. A 1-μm gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10 −8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown AlGaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μm gate length T-shaped gate HEMTs were also investigated

  6. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  7. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  8. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  9. Report of 22nd International Symposium on Shock Waves; Dai 22 kai kokusai shogekiha symposium shusseki hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    1999-11-05

    Outlined herein are the topics at the 22nd. International Symposium on Shock Waves, held in July 1999 in London. Prof. Takayama of Tohoku University gave an invited lecture on application of shock waves to medical area, stressing significance of shock waves on a human body. A total of 81 papers were presented from Japan. Number of Japanese papers and number of Japanese attendees both accounted for approximately 25%. The themes of these papers are centered by behavior of shock waves (e.g., propagation, reflection, and diffraction), extreme supersonic flows, interference between shock wave and boundary layer, aerodynamics (e.g., interference between vortex and shock wave), numerical simulation of shock wave phenomena, development of a new shock wave tube and measurement method, researches on elementary steps in chemical reactions, shock wave phenomena in condensed media and multi-phase media, shock wave noise produced while a high-speed train is running in a tunnel, and application of shock waves to industrial and medical areas. Japan contributes much to the application to medical area, and a method dispensing with injection is reported. Japan's aerospace-related researches include interference between shock wave and boundary layer, in which the real gas effect is taken into consideration, designs for protection from heat during the re-entry into the atmosphere, and construction of the world largest free-piston type wind tunnel. (NEDO)

  10. Modelling of current-voltage characteristics of infrared photo-detectors based on type – II InAs/GaSb super-lattice diodes with unipolar blocking layers

    Directory of Open Access Journals (Sweden)

    Vishnu Gopal

    2015-09-01

    Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.

  11. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  12. Shock wave structure in an ideal dissociating gas

    Science.gov (United States)

    Liu, K. H.

    1975-01-01

    Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.

  13. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  14. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  15. buffer Layer Growth, the Thickness Dependence of Jc in Coated Conductors, Local Identification of Current Limiting Mechanisms and Participation in the Wire Development Group

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David; Hellstron, Eric; Abraimov, Dmytro

    2011-12-17

    The primary thrusts of our work were to provide critical understanding of how best to enhance the current-carrying capacity of coated conductors. These include the deconstruction of Jc as a function of fim thickness, the growth of in situ films incorporating strong pinning centers and the use of a suite of position-sensitive tools that enable location and analysis of key areas where current-limiting occurs.

  16. Plasma and current structures in dynamical pinches

    International Nuclear Information System (INIS)

    Butov, I.Ya.; Matveev, Yu.V.

    1981-01-01

    Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru

  17. LaNiO(3) Buffer Layers for High Critical Current Density YBa(2)Cu(3)O(7-delta) and Tl(2)Ba(2)CaCu(2)O(8-delta) Films

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-08-24

    We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.

  18. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee

    2015-01-01

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  19. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  20. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  1. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  2. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  3. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  4. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  5. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  6. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  7. The Shock Doctrine

    OpenAIRE

    Dionysios K. Solomos; Dimitrios N. Koumparoulis

    2011-01-01

    Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...

  8. Pseudo-shock waves and their interactions in high-speed intakes

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  9. Evaluating the Critical Thickness of TiO 2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-01-15

    In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye-sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6-nm-thick TiO2 film on a 3-μm mesoporous insulating substrate is shown to transport 8 mA/cm 2 of photocurrent density along with ≈900 mV of open-circuit potential when using our standard donor-π-acceptor sensitizer and Co(bipyridine) redox mediator. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluating the Critical Thickness of TiO 2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar; Comte, Pascal; Humphry-Baker, Robin; Kessler, Florian; Yi, Chenyi; Nazeeruddin, Md. Khaja; Grä tzel, Michael

    2013-01-01

    In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye-sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6-nm-thick TiO2 film on a 3-μm mesoporous insulating substrate is shown to transport 8 mA/cm 2 of photocurrent density along with ≈900 mV of open-circuit potential when using our standard donor-π-acceptor sensitizer and Co(bipyridine) redox mediator. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical simulation of shock initiation of Ni/Al multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sraj, Ihab; Knio, Omar M., E-mail: omar.knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, North Carolina 27708 (United States); Specht, Paul E.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Weihs, Timothy P. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  12. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    Science.gov (United States)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  13. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  14. On the Nonlinear Dynamics of a Tunable Shock Micro-switch

    Science.gov (United States)

    Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa

    2016-12-01

    A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.

  15. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  16. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  17. Theory and Experiment on Radiative Shocks

    Science.gov (United States)

    Drake, R. Paul

    2005-07-01

    The current generation of high-energy-density research facilities has enabled the beginnings of experimental studies of radiation hydrodynamic systems, common in astrophysics but difficult to produce in the laboratory. Radiative shock experiments specifically have been a topic of increasing effort in recent years. Our group and collaborators [1] have emphasized the radiographic observation of structure in radiative shocks. These shocks have been produced on the Omega laser by driving a Be piston through Xenon at velocities above 100 km/s. The talk will summarize these experiments and their results. Interpreting these and other experiments is hampered by the limited range of assumptions used in published theories, and by the limitations in readily available simulation tools. This has motivated an examination of radiative shock theory [2]. The talk will summarize the key issues and present results for specific cases. [ 1 ] Gail Glendinning, Ted Perry, Bruce Remington, Jim Knauer, Tom Boehly, and other members of the NLUF Experimental Astrophysics Team. Publications: Reighard et al., Phys. Rev. Lett. submitted; Leibrandt, et al., Ap J., in press, Reighard et al., IFSA 03 Proceedings, Amer. Nucl. Soc. (2004). [2] Useful discussions with Dmitri Ryutov and Serge Bouquet. Supported by the NNSA programs via DOE Grants DE-FG52-03NA00064 and DE FG53 2005 NA26014

  18. The use of SVAR analysis in determining the effects of fiscal shocks in Croatia

    Directory of Open Access Journals (Sweden)

    Raafel Ravnik

    2011-03-01

    Full Text Available In this paper we use multivariate Blanchard-Perotti SVAR methodology to analyze disaggregated short-term effects of fiscal policy on economic activity, inflation and short-term interest rates. The results suggest that the effects of government expenditure shocks and the shock of government revenues are relatively the highest on interest rates and the lowest on inflation. A tax shock in the short term increases the inflation rate and also decreases the short-term interest rate, and after one year stabilization occurs at the initial level, while spending shock leads to a reverse effect. The effects of fiscal policies on the proxy variable of output, i.e. industrial production, are less economically intuitive, because the shock of expenditure decreases and revenue shock permanently increases industrial production. The empirical result shows that a tax shock has a permanent effect on future taxes; while future levels of government spending are not related to current expenditure shocks. Interactions between the components of fiscal policy are also examined and it is concluded that a tax shock increases expenditures permanently, while an expenditure shock does not significantly affect government revenues, which is consistent with the tendency of growth in public debt. Furthermore, it was found that government revenue and expenditure shocks do not have a mirror effect, which justifies disaggregated analysis of fiscal policy shocks.

  19. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  20. Effects of a highly Si-doped GaN current spreading layer at the n+-GaN/multi-quantum-well interface on InGaN/GaN blue-light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, C. S.; Cho, H. K.; Choi, R. J.; Hahn, Y. B.; Lee, H. J.; Hong, C. H.

    2004-01-01

    Highly Si-doped GaN thin current spreading layer (CSL) with various carrier concentrations were inserted before the n + -GaN/multi-quantum-well (MQW) interface controlled by the growth rate and the modulated Si-doping in InGaN/GaN blue light-emitting diodes (LEDs), and their effects were investigated by using capacitance-voltage (C-V), current-voltage (I-V), and output power measurements. The LEDs with a highly Si-doped CSL show enhanced I-V characteristics and increased output power with increasing carrier concentration up to some critical point in the CSL. This means that proper high Si-doping in some limited area before the interface may enhance the device performance through the current spreading effect.

  1. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  2. Properties and structure of a plasma non-neutral shock

    International Nuclear Information System (INIS)

    Hu Yemin; Hu Xiwei

    2004-01-01

    The shock is described by the Navier-Stokes equations of the electron and ion fluids, and coupled with Poisson's equation for the self-induced electric field. Profiles of the flow and electric variables in the weak or moderate shock front with or without current for different Debye lengths are presented. Comparison of profiles of flow and electric variables in the front for different heat flow modes is given

  3. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found

  4. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  5. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    NARCIS (Netherlands)

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  6. Evolution of wave patterns and temperature field in shock-tube flow

    Science.gov (United States)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  7. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  9. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  10. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  11. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    Science.gov (United States)

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  12. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  13. PARTICLE-IN-CELL SIMULATION OF A STRONG DOUBLE LAYER IN A NONRELATIVISTIC PLASMA FLOW: ELECTRON ACCELERATION TO ULTRARELATIVISTIC SPEEDS

    International Nuclear Information System (INIS)

    Dieckmann, Mark E.; Bret, Antoine

    2009-01-01

    Two charge- and current-neutral plasma beams are modeled with a one-dimensional particle-in-cell simulation. The beams are uniform and unbounded. The relative speed between both beams is 0.4c. One beam is composed of electrons and protons, and the other of protons and negatively charged oxygen (dust). All species have the temperature 9.1 keV. A Buneman instability develops between the electrons of the first beam and the protons of the second beam. The wave traps the electrons, which form plasmons. The plasmons couple energy into the ion acoustic waves, which trap the protons of the second beam. A structure similar to a proton phase-space hole develops, which grows through its interaction with the oxygen and the heated electrons into a rarefaction pulse. This pulse drives a double layer, which accelerates a beam of electrons to about 50 MeV, which is comparable to the proton kinetic energy. The proton distribution eventually evolves into an electrostatic shock. Beams of charged particles moving at such speeds may occur in the foreshock of supernova remnant (SNR) shocks. This double layer is thus potentially relevant for the electron acceleration (injection) into the diffusive shock acceleration by SNR shocks.

  14. The Effect of Shock Stress and Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5

    International Nuclear Information System (INIS)

    CHHABILDAS, LALIT C.; FURNISH, MICHAEL D.; MONTGOMERY, STEPHEN T.; SETCHELL, ROBERT E.

    1999-01-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics

  15. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  16. Myths of "shock therapy".

    Science.gov (United States)

    Fink, M

    1977-09-01

    The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.

  17. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  18. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  19. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  20. Particle magnetic moment conservation and resonance in a pure magnetohydrodynamic shock and field inclination influence on diffusive shock acceleration

    International Nuclear Information System (INIS)

    Lieu, R.; Quenby, J.J.

    1990-01-01

    Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs

  1. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    Science.gov (United States)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  2. DISRUPTING SHOCKS IN POSTWAR GLOBAL ECONOMIC EXPANSION

    Directory of Open Access Journals (Sweden)

    Dumitru FILIPEANU

    2016-06-01

    Full Text Available The coherence of the global economic system, created by its upswing in the first postwar decades, started to crumble in the ’70s. The destabilizing shocks affected the entire world, but in an uneven manner, in different geographical areas and at different times, being felt most acutely, with devastating economic and social effects, in Third World countries. Although the developed countries were affected as well, they always had means to combat or to diminish the adverse effects of the crises, leading to "gentler" consequences. This paper focuses on four main aspects in postwar global economic expansion, namely: the ’70s – the international monetary crisis and the oil shocks; the foreign debt crisis; the Latin American debt crisis, the Asian financial crises and the current global crisis.

  3. Monetary Shocks in Models with Inattentive Producers.

    Science.gov (United States)

    Alvarez, Fernando E; Lippi, Francesco; Paciello, Luigi

    2016-04-01

    We study models where prices respond slowly to shocks because firms are rationally inattentive. Producers must pay a cost to observe the determinants of the current profit maximizing price, and hence observe them infrequently. To generate large real effects of monetary shocks in such a model the time between observations must be long and/or highly volatile. Previous work on rational inattentiveness has allowed for observation intervals that are either constant-but-long ( e.g . Caballero, 1989 or Reis, 2006) or volatile-but-short ( e.g . Reis's, 2006 example where observation costs are negligible), but not both. In these models, the real effects of monetary policy are small for realistic values of the duration between observations. We show that non-negligible observation costs produce both of these effects: intervals between observations are infrequent and volatile. This generates large real effects of monetary policy for realistic values of the average time between observations.

  4. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  5. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  6. Molecular diagnostics of interstellar shocks

    International Nuclear Information System (INIS)

    Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds

  7. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  8. How Culture Shock Affects Communication.

    Science.gov (United States)

    Barna, LaRay M.

    The paper defines the term "culture shock" and discusses the changes that this state can make in a person's behavior. Culture shock refers to the emotional and physiological reaction of high activation that is brought about by sudden immersion in a new culture. Because one's own culture shields one from the unknown and reduces the need to make…

  9. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  10. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...

  11. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  12. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  13. Dynamic shock wave: hammer blow

    International Nuclear Information System (INIS)

    Lackme, Claude

    1978-01-01

    The general properties of shocks, their generation and the conditions of reflexion to an interface are dealt with in turn. By then applying these concepts to a liquid column and its environment (wall, free area, closing devices) the hammer blow is presented as being a relatively weak shock [fr

  14. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  15. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  16. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  17. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  18. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  19. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  20. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.