WorldWideScience

Sample records for shock control elements

  1. Shock buffer for nuclear control element assembly

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1977-01-01

    A shock buffer for a control element assembly in a nuclear reactor is described, comprising a piston and a cylinder. The piston is affixed to and extends upward from the control rod guide structure; the cylinder is supported by the upper portion of the control element assembly and is vertically oriented with open end downward for receiving the piston. Coolant liquid normally has free access to the cylinder. The piston displaces liquid from the cylinder when inserted, thereby decelerating the control element assembly near its lower extent of travel. (LL)

  2. Depletion of elements in shock-driven gas

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-01-01

    The depletion of elements in shocked gas in supernova remnants and in interstellar bubbles is examined. It is shown that elements are depleted in varying degrees in gas filaments shocked to velocities up to 200 km s -1 and that large differences in depletions are observed in gas filaments shocked to similar velocities. In the shocked gas the depletion of an element appears to be correlated with the electron density (or the neutral gas density) in the filaments. This correlation, if confirmed, is similar to the correlation between depletion and mean density of gas in the clouds in interstellar space. (author)

  3. Shock buffer for nuclear control assembly

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1977-01-01

    A shock buffer is provided for the gradual deceleration of a rapidly descending control element assembly in a nuclear reactor. The interactive buffer components are associated respectively with the movable control element assembly and part of the upper guide structure independent of and spaced from the fuel assemblies of the reactor

  4. Underwater hydraulic shock shovel control system

    Science.gov (United States)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  5. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.

  6. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  7. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  8. Mobilization of lead and other trace elements following shock chlorination of wells

    International Nuclear Information System (INIS)

    Seiler, Ralph L.

    2006-01-01

    Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24 h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120 mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45 μm) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 21 Pb, however, measured 21 Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100 mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 21 Pb, that exceed drinking-water standards

  9. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  10. Study of shift shock reduction of an automatic transmission using robust control; Robust seigyo wo mochiita ido hensokuki no hensoku shock teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, K [JATCO Corp., Shizuoka (Japan); Totsuka, H; Sanada, K; Kitagawa, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    To effectively reduce shift shock of an Automatic Transmission, we designed a feed-back controller that manipulates the hydraulic pressure of a clutch and input torque, and also controls the turbine revolution and output torque. We used robust control theory to consider the fluctuation of hydraulic characteristics and friction elements, and verified the effect of the controller by simulation and experiment. 1 ref., 11 figs.

  11. Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Orikasa, S.; Takayama, K.

    1991-06-01

    A new device to prevent erroneously focused shock waves to the renal parenchyma during extracorporeal shock wave lithotripsy (ESWL) has been developed; an anti-miss-shot control device (AMCD) and experiments have been conducted to evaluate its effectiveness. For shock wave generation and stone localization, piezoceramic elements (PSE) and ultrasound localization, respectively were used. After stone localization, probing ultrasounds (PU) were emmitted from the PSE towards the focal region and the reflected sound levels (RSL) were monitored by the PSE which also functioned as a microphone. A direct hit by the PU to the stone or a miss was judged from the RSL, i.e. a high RSL indicates a direct hit and a low RSL indicates a miss. Shock waves were generated only when the RSL exceeded the level which indicated a direct hit. The experimental results showed that the injury to the renal parenchyma was decreased by using the AMCD. Clinical application of the AMCD is expected to increase the safety of ESWL.

  12. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  13. Control groups in recent septic shock trials

    DEFF Research Database (Denmark)

    Pettilä, Ville; Hjortrup, Peter B; Jakob, Stephan M

    2016-01-01

    PURPOSE: The interpretation of septic shock trial data is profoundly affected by patients, control intervention, co-interventions and selected outcome measures. We evaluated the reporting of control groups in recent septic shock trials. METHODS: We searched for original articles presenting......, and mortality outcomes, and calculated a data completeness score to provide an overall view of quality of reporting. RESULTS: A total of 24 RCTs were included (mean n = 287 patients and 71 % of eligible patients were randomized). Of the 24 studies, 14 (58 %) presented baseline data on vasopressors and 58...... % the proportion of patients with elevated lactate values. Five studies (21 %) provided data to estimate the proportion of septic shock patients fulfilling the Sepsis-3 definition. The mean data completeness score was 19 out of 36 (range 8-32). Of 18 predefined control group characteristics, a mean of 8 (range 2...

  14. Pre-Acting Control for Shock and Impact Isolation Systems

    Directory of Open Access Journals (Sweden)

    D.V. Balandin

    2005-01-01

    Full Text Available Pre-acting control in shock/impact isolation systems is studied. With pre-acting control, the isolation system begins to respond to an impact before this impact has been applied to the base. The limiting performance of the isolator with pre-acting control is investigated for a single-degree-of-freedom system subject to an instantaneous impact. The isolation performance index is defined as the maximum of the absolute value of the displacement of the object to be isolated relative to the base, provided that the magnitude of the control force transmitted to the object does not exceed a prescribed value. It is shown that there is a substantial advantage in the use of pre-acting isolators over isolators without pre-action. Particular attention is given to a pre-acting isolator based on a passive elastic element (a spring separating the object to be protected from the base. An example illustrates the calculation of the design parameters of such an isolator.

  15. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    Science.gov (United States)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  16. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  17. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  18. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  19. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  20. Preview control of vehicle suspension system featuring MR shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seong, M S; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Cho, M W [Precision Manufacturing and Inspection Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, H G [Department of Automotive Engineering, Daeduk College, Daejeon, 305-715 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  1. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    Seong, M S; Choi, S B; Cho, M W; Lee, H G

    2009-01-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  2. Finite element study of a HDR-RPV-section including a nozzle under thermal shock transient

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E [Stuttgart Univ. (Germany); Katzenmeier, G [Forschungszentrum Juelich GmbH (Germany); Wanner, R; Mercier, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1988-12-31

    This document presents a finite element study of a reactor pressure vessel section under thermal stresses. The strength properties of the vessel walls are studied as well as cracks due to the thermo-shock transient. (TEC). 6 refs.

  3. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  4. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  5. Flow control for oblique shock wave reflections

    NARCIS (Netherlands)

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  6. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  7. Integrated microelectromechanical gyroscope under shock loads

    Science.gov (United States)

    Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.

    2018-01-01

    The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.

  8. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  9. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  10. Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

    Directory of Open Access Journals (Sweden)

    Grivon Daniel

    2015-12-01

    Full Text Available The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm with low power consumption (from a minimum of 63 mW to a max. of 110 mW and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

  11. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  12. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  13. Finite element analysis of the shock waves induced in the liquid wall of a pellet fusion reactor

    International Nuclear Information System (INIS)

    Miya, K.; Iizuka, T.; Silverman, J.

    1985-01-01

    A shock wave induced in liquid metal is analyzed numerically by application of the finite element method. Since the governing equations of motion of the fluid are nonlinear, an incremental method is combined with the finite element method to obtain a convergent solution of the shock wave without an interaction technique. To demonstrate the validity of the method developed, shock wave problems in an inertial confinement spherical reactor with a liquid lithium ''waterfall'' are solved for two cases of surface heating due to soft x-ray absorption and bulk heating due to 14-MeV neutron absorption. The solution is based on a combination of the conservation equations for mass, energy, and momentum along with the following equation of state for liquid metals: p = P /sub b/ ((/rho///rho/ 0 ) /sup n/ - 1). Numerical results show that peak pressure induced in the liquid lithium is very high even for a comparatively small energy release E /sub TAU/ = 100 MJ/microexplosion of a pellet. Dynamic stress induced in a 5-cm-thick stainless steel pressure vessel is 1.14 x 10 3 MPa for the surface heating. The results show that the dynamic stress induced by bulk heating is superimposed on that due to surface heating within the same period. Two appropriate ways to reduce the high stress are application of two-phase flow of liquid lithium or an increase in the thickness of the pressure vessel

  14. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  15. Level set methods for detonation shock dynamics using high-order finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grogan, F. C. [Univ. of California, San Diego, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, T. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tomov, V. Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-26

    Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two- and three-dimensional benchmark problems as well as applications to DSD.

  16. Consideration of Optimal Input on Semi-Active Shock Control System

    Science.gov (United States)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  17. Schedules of electric shock presentation in the behavioral control of imprinted ducklings.

    Science.gov (United States)

    Barrett, J E

    1972-09-01

    The behavioral effects of various schedules of electric shock presentation were investigated during and after the imprinting of Peking ducklings to moving stimuli. The behavior of following a moving imprinted stimulus was differentially controlled by a multiple schedule of punishment and avoidance that respectively suppressed and maintained following behavior. Pole-pecking, reinforced by presentations of the imprinted stimulus, was suppressed by response-produced shock (punishment); various schedules of response-independent shock and delayed punishment had an overall minimal effect. The delivery of response-independent shock in the presence of one of two stimuli, both during and after imprinting, resulted in a marked reduction in choice of the stimulus paired with shock. The experiments provide no support for a differentiation of imprinting from learning on the basis of the behavioral effects of aversive stimuli. Instead, as is the case with other organisms, the schedule under which shock is delivered to imprinted ducklings appears to be an important determinant of the temporal patterning of subsequent behavior.

  18. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Nougaret, Stephanie; Aufort, S.; Gallix, B. [Hopital Saint Eloi, Department of Abdominal Imaging, CHU Montpellier, Montpellier, Cedex 5 (France); Jung, B.; Chanques, G.; Jaber, S. [Hopital Saint Eloi, Intensive Care Unit, Department of Critical Care and Anesthesiology: DAR B, CHU Montpellier, Montpellier, Cedex 5 (France)

    2010-10-15

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 {+-} 2.0 cm{sup 3} in control subjects and 13.3 {+-} 4.7 cm{sup 3} for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  19. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    International Nuclear Information System (INIS)

    Nougaret, Stephanie; Aufort, S.; Gallix, B.; Jung, B.; Chanques, G.; Jaber, S.

    2010-01-01

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 ± 2.0 cm 3 in control subjects and 13.3 ± 4.7 cm 3 for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  20. In situ detection of a heat-shock regulatory element binding protein using a soluble short synthetic enhancer sequence

    Energy Technology Data Exchange (ETDEWEB)

    Harel-Bellan, A; Brini, A T; Farrar, W L [National Cancer Institute, Frederick, MD (USA); Ferris, D K [Program Resources, Inc., Frederick, MD (USA); Robin, P [Institut Gustave Roussy, Villejuif (France)

    1989-06-12

    In various studies, enhancer binding proteins have been successfully absorbed out by competing sequences inserted into plasmids, resulting in the inhibition of the plasmid expression. Theoretically, such a result could be achieved using synthetic enhancer sequences not inserted into plasmids. In this study, a double stranded DNA sequence corresponding to the human heat shock regulatory element was chemically synthesized. By in vitro retardation assays, the synthetic sequence was shown to bind specifically a protein in extracts from the human T cell line Jurkat. When the synthetic enhancer was electroporated into Jurkat cells, not only the enhancer was shown to remain undegraded into the cells for up to 2 days, but also its was shown to bind intracellularly a protein. The binding was specific and was modulated upon heat shock. Furthermore, the binding protein was shown to be of the expected molecular weight by UV crosslinking. However, when the synthetic enhancer element was co-electroporated with an HSP 70-CAT reporter construct, the expression of the reporter plasmid was consistently enhanced in the presence of the exogenous synthetic enhancer.

  1. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  2. Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil

    Directory of Open Access Journals (Sweden)

    Yun TIAN

    2017-10-01

    Full Text Available Current research shows that the traditional shock control bump (SCB can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it can decrease the adverse pressure gradient. This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance. Based on RAE2822 airfoil, two types of SCB are designed according to the two different mechanisms. By using Reynolds-averaged Navier-Stokes (RANS and unsteady Reynolds-averaged Navier-Stokes (URANS methods to analyze the properties of RAE2822 airfoil with and without SCB, the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil. The traditional SCB can only weaken the intensity of the shock under the design condition. Under the off-design conditions, the SCB does not do much to or even worsen the buffet performance. Indeed, the use of backward bump can flatten the leeward side of the airfoil, and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.

  3. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  4. Passive shock wave/boundary layer control of wing at transonic speeds

    Directory of Open Access Journals (Sweden)

    Ling Zhou

    2017-11-01

    Full Text Available At supercritical conditions a porous strip (or slot strip placed beneath a shock wave can reduce the drag by a weaker lambda shock system, and increase the buffet boundary, even may increase the lift. Passive shock wave/boundary layer control (PSBC for drag reduction was conducted by SC(2-0714 supercritical wing, with emphases on parameter of porous/slot and bump, such as porous distribution, hole diameter, cavity depth, porous direction and so on. A sequential quadratic programming (SQP optimization method coupled with adjoint method was adopted to achieve the optimized shape and position of the bumps. Computational fluid dynamics (CFD, force test and oil test with half model all indicate that PSBC with porous, slot and bump generally reduce the drag by weaker lambda shock at supercritical conditions. According to wind tunnel test results for angle of attack of 2° at Mach number M=0.8, the porous configuration with 6.21% porosity results in a drag reduction of 0.0002 and lift–drag ratio increase of 0.2, the small bump configuration results in a drag reduction of 0.0007 and lift–drag ratio increase of 0.3. Bump normally reduce drag at design point with shock wave position being accurately computed. If bump diverges from the position of shock wave, drag will not be easily reduced.

  5. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  6. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  7. Shock capturing techniques for hphp-adaptive finite elements

    Czech Academy of Sciences Publication Activity Database

    Hierro, A.; Kůs, Pavel; Badia, S.

    2016-01-01

    Roč. 309, 1 September (2016), s. 532-553 ISSN 0045-7825 Institutional support: RVO:67985840 Keywords : hphp-adaptivity * discontinuous Galerkin * shock capturing Subject RIV: BA - General Mathematics Impact factor: 3.949, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045782516305862

  8. Role of transfused red blood cells for shock and coagulopathy within remote damage control resuscitation.

    Science.gov (United States)

    Spinella, Philip C; Doctor, Allan

    2014-05-01

    The philosophy of damage control resuscitation (DCR) and remote damage control resuscitation (RDCR) can be summarized by stating that the goal is to prevent death from hemorrhagic shock by "staying out of trouble instead of getting out of trouble." In other words, it is preferred to arrest the progression of shock, rather than also having to reverse this condition after significant tissue damage and organ injury cascades are established. Moreover, to prevent death from exsanguination, a balanced approach to the treatment of both shock and coagulopathy is required. This was military doctrine during World War II, but seemed to be forgotten during the last half of the 20th century. Damage control resuscitation and RDCR have revitalized the approach, but there is still more to learn about the most effective and safe resuscitative strategies to simultaneously treat shock and hemorrhage. Current data suggest that our preconceived notions regarding the efficacy of standard issue red blood cells (RBCs) during the hours after transfusion may be false. Standard issue RBCs may not increase oxygen delivery and may in fact decrease it by disturbing control of regional blood flow distribution (impaired nitric oxide processing) and failing to release oxygen, even when perfusing hypoxic tissue (abnormal oxygen affinity). Standard issue RBCs may assist with hemostasis but appear to have competing effects on thrombin generation and platelet function. If standard issue or RBCs of increased storage age are not optimal, then are there alternatives that will allow for an efficacious and safe treatment of shock while also supporting hemostasis? Studies are required to determine if fresh RBCs less than 7 to 10 days provide an outcome advantage. A resurgence in the study of whole blood stored at 4°C for up to 10 days also holds promise. Two randomized controlled trials in humans have indicated that following transfusion with either whole blood stored at 4°C or platelets stored at 4

  9. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  10. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  11. Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer.

    Science.gov (United States)

    Buchanan, Kimberly A; Maza, Maria; Pérez-Vázquez, Carlos E; Yen, Thomas Y; Kijowski, Richard; Liu, Fang; Radwin, Robert G

    2016-10-01

    Repetitive hammer use has been associated with strain and musculoskeletal injuries. This study investigated if using a shock-control hammer reduces forearm muscle strain by observing adverse physiological responses (i.e. inflammation and localized edema) after use. Three matched framing hammers were studied, including a wood-handle, steel-handle, and shock-control hammer. Fifty volunteers were randomly assigned to use one of these hammers at a fatiguing pace of one strike every second, to seat 20 nails in a wood beam. Magnetic resonance imaging was used to scan the forearm muscles for inflammation before the task, immediately after hammering, and one to two days after. Electromyogram signals were measured to estimate grip exertions and localized muscle fatigue. High-speed video was used to calculate the energy of nail strikes. While estimated grip force was similar across the three hammers, the shock-control hammer had 40% greater kinetic energy upon impact and markedly less proximal extensor muscle edema than the wood-handle and steel-handle hammers, immediately after use (phandle shock can mitigate strain in proximal forearm extensor muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Lateral ring metal elastic wheel absorbs shock loading

    Science.gov (United States)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  13. Control rod drive mechanism with shock absorber for nuclear reactor

    International Nuclear Information System (INIS)

    Chevereau, G.

    1989-01-01

    The mechanism usable in a PWR has a shaft carrying the bar vertically displaceable in the reactor internals and a dash pot with a hydraulic cylinder and a piston. The cylinder has a large diameter perforated upper section to the cylinder, a small diameter lower section, a piston traversed by the control rod sized to fit into the upper section and forced downwards when the control descends. The shock absorbing chamber is defined between the piston and the upper section [fr

  14. Validation of the CQUAD4 element for vibration and shock analysis of thin laminated composite plate structure

    Science.gov (United States)

    Lesar, Douglas E.

    1992-01-01

    The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship

  15. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  16. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    Science.gov (United States)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  17. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    Science.gov (United States)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin

  18. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  19. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  20. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  1. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

    Science.gov (United States)

    Oliveira, D. M.; Samsonov, A. A.

    2018-01-01

    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  2. Underwater Shock Response Analysis of a Floating Vessel

    Directory of Open Access Journals (Sweden)

    J.E. van Aanhold

    1998-01-01

    Full Text Available The response of a surface vessel to underwater shock has been calculated using an explicit finite element analysis. The analysis model is two-dimensional and contains the floating steel structure, a large surrounding water volume and the free surface. The underwater shock is applied in the form of a plane shock wave and cavitation is considered in the analysis. Advanced computer graphics, in particular video animations, provide a powerful and indispensable means for the presentation and evaluation of the analysis results.

  3. Grain Destruction in a Supernova Remnant Shock Wave

    Science.gov (United States)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  4. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL‐Nawawy

    2018-01-01

    Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  5. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats

    Directory of Open Access Journals (Sweden)

    Bianca Genenncher

    2018-02-01

    Full Text Available The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5 RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.

  6. Structure of oblique subcritical bow shocks: ISEE 1 and 2 observations

    International Nuclear Information System (INIS)

    Mellott, M.M.; Greenstadt, E.W.

    1984-01-01

    We have studied the structural elements, including shock ramps and precursor wave trains, of a series of oblique low-Mach number terrestrial bow shocks. We used magnetic field data from the dual ISEE 1 and 2 spacecraft to determine the scale lengths of various elements of shock structure as well as wavelengths and wave polarizations. Bow shocks structure under these conditions is esstentially that of a large-amplitude damped whistler mode wave which extends upstream in the form of a precursor wave train. Shock thicknesses, which are determined by the dispersive properties of the ambient plasma, are too broad to support current-driven electrostatic waves, ruling out such turbulence as the source of dissipation in these shocks. Dissipative processes are reflected in the damping of the precursors, and dissipative scale lengths are approx.200--800 km (several times greater than shock thicknesses). Precursor damping is not related to shock normal angle or Mach number, but is correlated with T/sub e//T/sub t/. The source of the dissipation in the shocks does not appear to be wave-wave decay of the whistlers, for which no evidence is found. We cannot rule out the possibility of contribution to the dissipation from ion acoustic and, or lower hybrid mode turbulence, but interaction of the whistler itself with upstream electrons offers a simpler and more self-consistent explanation for the observed wave train damping

  7. failure analysis and shock protection of external hard disk drive

    African Journals Online (AJOL)

    user

    model its structural responses to free fall drop-impact shock and vibration. Secondly, the hard ... Keywords: Free fall, impact force, Shock, Vibration, Stress, Reliability, Modeling, Simulation External Hard disk drive. 1. ..... on the disk, it could initiate process which could .... [19] Katta, P.: MATLAB Guide to Finite Elements - An.

  8. Shock Incarceration: Rehabilitation or Retribution?

    Science.gov (United States)

    MacKenzie, Doris Layton; And Others

    1989-01-01

    Reviews Louisiana's shock incarceration program used as alternative to standard prison incarceration. Program involves short period of imprisonment in a "boot camp" type atmosphere followed by three phases of intensive parole supervision. Examines the program in regard to its rehabilitative potential and compares program elements to…

  9. Transonic shock wave. Boundary layer interaction at a convex wall

    NARCIS (Netherlands)

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  10. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  11. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    Science.gov (United States)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  12. Simple feed-forward active control method for suppressing the shock response of a flexible cantilever beam

    International Nuclear Information System (INIS)

    Shin, Kihong; Pyo, Sangho; Lee, Young-Sup

    2009-01-01

    In this paper a 'simple' active control method (without using an error sensor and an adaptive algorithm) is proposed for reducing the residual vibration of a flexible cantilever beam excited by a shock impulse. It is assumed that the shock input can be measured and always occurs on the same point of the beam. In this case, it is shown that a much simpler active control strategy than conventional methods can be used if the system is well identified. The proposed method is verified experimentally with consideration of some practical aspects: the control performance with respect to the control point in time and the choice of frequency response function (FRF) estimators to cope with measurement noise. Experimental results show that a large attenuation of the residual vibration can be achieved using the proposed method. (technical note)

  13. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  14. Shock Transmission Analyses of a Simplified Frigate Compartment Using LS-DYNA

    National Research Council Canada - National Science Library

    Trouwborst, W

    1999-01-01

    This report gives results as obtained with finite element analyses using the explicit finite element program LS-DYNA for a longitudinal slice of a frigate's compartment loaded with a shock pulse based...

  15. Control coordination abilities in shock combat sports

    Directory of Open Access Journals (Sweden)

    Natalya Boychenko

    2014-12-01

    Full Text Available Purpose: optimize the process control level of coordination abilities in martial arts. Material and Methods: analysis and compilation of scientific and methodological literature, interviews with coaches of drum martial arts, video analysis techniques, teacher observations. Results: identified specific types of coordination abilities in shock combat sports. Pod branny and offered specific and nonspecific tests to monitor the level of species athletes coordination abilities. Conclusion: it is determined that in order to achieve victory in the fight martial artists to navigate the space to be able to assess and manage dynamic and spatio-temporal parameters of movements, maintain balance, have a high coordination of movements. The proposed tests to monitor species coordination abilities athletes allow an objective assessment of not only the overall level of coordination, and the level of specific types of manifestations of this ability.

  16. The Septic Shock 3.0 Definition and Trials: A Vasopressin and Septic Shock Trial Experience.

    Science.gov (United States)

    Russell, James A; Lee, Terry; Singer, Joel; Boyd, John H; Walley, Keith R

    2017-06-01

    The Septic Shock 3.0 definition could alter treatment comparisons in randomized controlled trials in septic shock. Our first hypothesis was that the vasopressin versus norepinephrine comparison and 28-day mortality of patients with Septic Shock 3.0 definition (lactate > 2 mmol/L) differ from vasopressin versus norepinephrine and mortality in Vasopressin and Septic Shock Trial. Our second hypothesis was that there are differences in plasma cytokine levels in Vasopressin and Septic Shock Trial for lactate less than or equal to 2 versus greater than 2 mmol/L. Retrospective analysis of randomized controlled trial. Multicenter ICUs. We compared vasopressin-to-norepinephrine group 28- and 90-day mortality in Vasopressin and Septic Shock Trial in lactate subgroups. We measured 39 cytokines to compare patients with lactate less than or equal to 2 versus greater than 2 mmol/L. Patients with septic shock with lactate greater than 2 mmol/L or less than or equal to 2 mmol/L, randomized to vasopressin or norepinephrine. Concealed vasopressin (0.03 U/min.) or norepinephrine infusions. The Septic Shock 3.0 definition would have decreased sample size by about half. The 28- and 90-day mortality rates were 10-12 % higher than the original Vasopressin and Septic Shock Trial mortality. There was a significantly (p = 0.028) lower mortality with vasopressin versus norepinephrine in lactate less than or equal to 2 mmol/L but no difference between treatment groups in lactate greater than 2 mmol/L. Nearly all cytokine levels were significantly higher in patients with lactate greater than 2 versus less than or equal to 2 mmol/L. The Septic Shock 3.0 definition decreased sample size by half and increased 28-day mortality rates by about 10%. Vasopressin lowered mortality versus norepinephrine if lactate was less than or equal to 2 mmol/L. Patients had higher plasma cytokines in lactate greater than 2 versus less than or equal to 2 mmol/L, a brisker cytokine response to infection. The Septic

  17. Albumin in Burn Shock Resuscitation: A Meta-Analysis of Controlled Clinical Studies.

    Science.gov (United States)

    Navickis, Roberta J; Greenhalgh, David G; Wilkes, Mahlon M

    2016-01-01

    Critical appraisal of outcomes after burn shock resuscitation with albumin has previously been restricted to small relatively old randomized trials, some with high risk of bias. Extensive recent data from nonrandomized studies assessing the use of albumin can potentially reduce bias and add precision. The objective of this meta-analysis was to determine the effect of burn shock resuscitation with albumin on mortality and morbidity in adult patients. Randomized and nonrandomized controlled clinical studies evaluating mortality and morbidity in adult patients receiving albumin for burn shock resuscitation were identified by multiple methods, including computer database searches and examination of journal contents and reference lists. Extracted data were quantitatively combined by random-effects meta-analysis. Four randomized and four nonrandomized studies with 688 total adult patients were included. Treatment effects did not differ significantly between the included randomized and nonrandomized studies. Albumin infusion during the first 24 hours showed no significant overall effect on mortality. However, significant statistical heterogeneity was present, which could be abolished by excluding two studies at high risk of bias. After those exclusions, albumin infusion was associated with reduced mortality. The pooled odds ratio was 0.34 with a 95% confidence interval of 0.19 to 0.58 (P Albumin administration was also accompanied by decreased occurrence of compartment syndrome (pooled odds ratio, 0.19; 95% confidence interval, 0.07-0.50; P albumin can improve outcomes of burn shock resuscitation. However, the scope and quality of current evidence are limited, and additional trials are needed.

  18. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  19. Apparatus for reducing shock and overpressure

    Science.gov (United States)

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  20. Impaired Fracture Healing after Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Philipp Lichte

    2015-01-01

    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  1. Dynamic analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas, E-mail: gintas@mail.lei.lt [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania)

    2013-07-15

    Highlights: • Plastical deformation of the shock absorber. • Dynamic testing of the scaled shock absorber. • Dynamic simulation of the shock absorber using finite element method. • Strain-rate evaluation in dynamic analysis. • Variation of displacement, acceleration and velocity during dynamic impact. -- Abstract: The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shut down at the end of 2004 while Unit 2 has been in operation for over 5 years. After shutdown at the Unit 1 remained spent fuel assemblies with low burn-up depth. In order to reuse these assemblies in the reactor of Unit 2 a special set of equipment was developed. One of the most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined using scaled experiments and finite element analysis. Static and dynamic investigations of the shock absorber were performed for the estimation and optimization of its geometrical parameters. The objective of this work is the estimation whether the proposed design of shock absorber can fulfil the stopping function of the spent fuel assemblies and is capable to withstand the dynamics load. Experimental testing of scaled shock absorber models and dynamic analytical investigations using the finite element code ABAQUS/Explicit were performed. The simulation model was verified by comparing the experimental and simulation results and it was concluded that the shock absorber is capable to withstand the dynamic load, i.e. successful force suppression function in case of accident.

  2. Damper mechanism for nuclear reactor control elements

    International Nuclear Information System (INIS)

    Taft, W.E.

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke is described. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping. 3 claims, 2 figures

  3. Optimal control of transient processes in an oscillating system with an electrorheological shock-absorber

    Energy Technology Data Exchange (ETDEWEB)

    Reizina, G N [National Technical University, 65 Nezavisimosti Avenue, Minsk, 220013 (Belarus); Korobko, E V; Bilyk, V A [Luikov Heat and Mass Transfer Institute of NASB, 15 P Brovki Street, Minsk, 220072 (Belarus); Efremov, V L; Binshtok, A E [Minsk Wheel Tractor Plant, 150 Partizanskii Avenue, Minsk, 220021 (Belarus)], E-mail: eva@itmo.by

    2009-02-01

    The problem of optimal control of the oscillation of a driver's seat with ER shock absorber is discussed in application to vehicles based on the principle of maximum. Coordinates of a vector of the control parameter and vertical motions of a seat are obtained. Test experimental investigations on working regimes for the driver's seat model depending on the controlling impact of the electrical signal (the intensity of the electric field) were performed.

  4. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  5. Comparative study of early liquid resuscitation in controlled and uncontrolled hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    He-ming YANG

    2012-01-01

    Full Text Available Objective  To compare the effects of routine liquid resuscitation on hemorrhagic shock in uncontrolled and controlled states for exploring the strategy of liquid resuscitation. Methods  Twenty-eight healthy male SD rats were randomly divided into three groups: control (n=8, controlled hemorrhagic shock (CHS, n=10, and uncontrolled hemorrhagic shock (UHS, n=10. In the CHS and UHS groups, the rats were made to bleed from the femoral artery till the blood pressure declined to 30 mmHg within 15 minutes. Thereafter, the roots of the rat tails in the three groups were cut. The trunks of the tails were ligated to stop the bleeding in the control and CHS groups, but it was not ligated in the UHS group, and no treatment was given. Imitating war condition, the animals were divided into three phases: pre-hospital period (30–90 minutes, hospital period (90–150 minutes, and recovery period (150 minutes to 72 hours. The blood pressure was maintained at 60mmHg in the pre-hospital period by transfusion. The bleeding point was ligated in the hospital period, and the blood pressure was maintained at 90mmHg by blood and fluid transfusions. In the recovery period, the observation time was maintained up to 72 hours. The mean arterial pressure (MAP, central venous pressure (CVP, heart function, blood gas analysis, hematocrit, and blood lactic acid were determined. The amount of bleeding, quantity of infusions, and survival time of animals were observed and recorded. Results  Based on the design of the experiment, the MAP of rats in the CHS and UHS groups was maintained at 60mmHg and 90mmHg in the pre-hospital period and hospital period by liquid resuscitation, respectively. There was no significant difference in the MAP and CVP between the CHS and UHS groups. However, the hematocrit of the rats in the UHS group in the pre-hospital period was clearly lower than that in the CHS group. Starting from the pre-hospital period, blood lactic acid content increased

  6. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  7. Is shock index associated with outcome in children with sepsis/septic shock?*.

    Science.gov (United States)

    Yasaka, Yuki; Khemani, Robinder G; Markovitz, Barry P

    2013-10-01

    controlling for the use of vasoactive therapy within the first 6 hours with logistic regression analysis, shock index at hour 6 remained significantly associated with mortality (odds ratio, 1.09; 95% CI, 1.05-1.14). Shock index may have promise as a marker of mortality in children with sepsis/septic shock. Although there is no clear cutoff shock index to identify risk of mortality, given the higher risk of mortality as shock index increases, children with elevated shock index may benefit from more aggressive resuscitation and higher level of care.

  8. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  9. Shock and Vibration. Volume 1, Issue 1

    National Research Council Canada - National Science Library

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  10. Selective release of D and 13C from insoluble organic matter of the Murchison meteorite by impact shock

    Science.gov (United States)

    Mimura, Koichi; Okamoto, Michioki; Sugitani, Kenichiro; Hashimoto, Shigemasa

    2007-03-01

    We performed shock-recovery experiments on insoluble organic matter (IOM) purified from the Murchison meteorite, and determined the abundances and isotope ratios of hydrogen and carbon in the shocked IOM sample. We also performed shock experiments on type III kerogen and compared the results of these experiments with the experimental results regarding IOM.The shock selectively released D and 13C from the IOM, while it preferably released H and 12C from the kerogen. The release of these elements from IOM cannot be explained in terms of the isotope effect, whereas their release from kerogen can be explained by this effect. The selective release of heavier isotopes from IOM would be due to its structure, in which D and 13C-enriched parts are present as an inhomogeneity and are weakly attached to the main network. Shock gave rise to a high release of D even at a lower degree of dehydrogenation compared with the stepwise heating of IOM. This effective release of D is probably an inherent result of shock, in which a dynamic high-pressure and high-temperature condition prevails. Thus, shock would effectively control the hydrogen isotope behavior of extraterrestrial organic matter during the evolution of the solar nebula.

  11. On the Nonlinear Dynamics of a Tunable Shock Micro-switch

    Science.gov (United States)

    Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa

    2016-12-01

    A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.

  12. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  13. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  14. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Science.gov (United States)

    2010-04-01

    ..., control console, imaging/localization system, and patient table. Prior to treatment, the urinary stone is targeted using either an integral or stand-alone localization/imaging system. Shock waves are typically... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that...

  15. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  16. Phantom shocks in patients with implantable cardioverter defibrillator

    DEFF Research Database (Denmark)

    Berg, Selina Kikkenborg; Moons, Philip; Zwisler, Ann-Dorthe

    2013-01-01

    of phantom shocks.METHODS AND RESULTS: The design was secondary explorative analyses of data from a randomized controlled trial. One hundred and ninety-six patients with first-time ICD implantation (79% male, mean age 58 years) were randomized (1 : 1) to either combined rehabilitation or a control group...... questions regarding the experience of phantom shocks, date, time, and place. Twelve patients (9.4%) experienced a phantom shock, 7 in the intervention group and 5 in the control group (NS). Neither age, sex, quality of life nor perceived health at baseline was significantly related to the probability...

  17. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  18. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  19. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  20. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  1. Application of the adjoint optimisation of shock control bump for ONERA-M6 wing

    Science.gov (United States)

    Nejati, A.; Mazaheri, K.

    2017-11-01

    This article is devoted to the numerical investigation of the shock wave/boundary layer interaction (SWBLI) as the main factor influencing the aerodynamic performance of transonic bumped airfoils and wings. The numerical analysis is conducted for the ONERA-M6 wing through a shock control bump (SCB) shape optimisation process using the adjoint optimisation method. SWBLI is analyzed for both clean and bumped airfoils and wings, and it is shown how the modified wave structure originating from upstream of the SCB reduces the wave drag, by improving the boundary layer velocity profile downstream of the shock wave. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for the ONERA-M6 airfoil and wing. Two different geometrical models are introduced for the 3D SCB, one with linear variations, and another with periodic variations. Both configurations result in drag reduction and improvement in the aerodynamic efficiency, but the periodic model is more effective. Although the three-dimensional flow structure involves much more complexities, the overall results are shown to be similar to the two-dimensional case.

  2. Design and testing of a magnetorheological damper to control both vibration and shock loads for a vehicle crew seat

    Science.gov (United States)

    Becnel, Andrew; Hu, Wei; Hiemenz, Gregory J.; Wereley, Norman M.

    2010-04-01

    A magnetorheological shock absorber (MRSA) prototype is designed, fabricated and tested to integrate semiactive shock and vibration mitigation technology into the existing Expeditionary Fighting Vehicle (EFV) forward seating positions. Utilizing Bingham-Plastic (BP) constitutive fluid relationships and a steady state fluid flow model, the MR valve parameters are determined using magnetic circuit analysis, and subsequently validated via electromagnetic finite element analysis (FEA). Low speed (up to 0.9 m/s) simulations of normal vibration mode operation are conducted on the MRSA prototype using single frequency sinusoidal displacements by a servohydraulic testing machine. The high speed (up to 2.2 m/s) design procedure is verified by using a rail-guided drop test stand to impact a known payload mass onto the damper shaft. A refined hydromechanical model of the MRSA under both cyclic and impact loadings is developed and validated using the measured test data. This ratedependent, mechanisms-based model predicts the time response of the MRSA under both loading conditions. The hydromechanical analysis marks a significant improvement over previous linear models. Key design considerations for the MRSA to accommodate both vibration and shock spectra using a single MR device are presented.

  3. System of the optic-electronic sensors for control position of the radio telescope elements

    Science.gov (United States)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  4. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  5. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  6. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    International Nuclear Information System (INIS)

    Kucharek, Harald; Moebius, Eberhard

    2005-01-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism

  7. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  8. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  9. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    Science.gov (United States)

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  10. DETERMINATION OF ENERGY LOSSES BY SHOCK ABSORBER IN A FREIGHT CAR AT CRASH MODE

    Directory of Open Access Journals (Sweden)

    Ya. V. Bolzhelarskyi

    2016-08-01

    Full Text Available Purpose. The purpose of this work is to determine the energy losses in the shock absorber of the freight car whose wheel-set moves in the derailed state on the track panel depending on the axle load and structural parameters of spring suspension. Methodology. On the basis of spring suspension construction analysis and operating principle of the friction shock absorber of the freight car bogie the authors provide the method for determining the energy absorbed by it. The calculations take the maximum values of the absorber elements displacement and the regulatory values of spring suspension parameters. Findings. The authors obtained the calculated formula for determining the energy absorbed by shock absorber for regulation-set mounting schemes of elastic bogie elements depending on the axial load. The mentioned curves are parabolic. Originality. The work examines the crash mode of the wheel-set movement on the track panels after its derailment. It is shown that the energy dissipation in the shock absorbers is the reason for increase in resistance to rolling stock movement. The formulas for calculating the amount of energy dissipated in the shock absorber with a maximum displacement of its elements are derived. This energy depends on the axle load and structural parameters of spring suspension. Practical value. The proposed method allows setting the value of the additional resistance to motion that occurs in crash mode which makes it possible to increase the accuracy of traction calculations.

  11. Disposal of control elements from the VAK reactor

    International Nuclear Information System (INIS)

    Eickelpasch, N.

    1996-01-01

    From the 25 years of operation there were available in the VAK fuel cooling installation 22 control elements which had to be dismantled and packed ready for disposal. The design of the control elements was already that which was later used in other boiling water reactors, so that the procedure took on a pioneering character. The technique of a remote controlled underwater scissors was suitable for the dismantling. By means of an accompanying measuring programme, it was confirmed that the released tritium posed no radiological problem for the working place and the waste values of the installation. (author) 1 fig

  12. Quality control in the fuel elements production process

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Spasic, Z.; Djuricis, Lj.

    1977-01-01

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel and fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and producers fuel elements in a general effort to secure successful work of nuclear plants. For adequate and timely participation in future in the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in out country it is necessary to be well informed and to follow this activity at the international level. (author)

  13. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  14. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  15. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    International Nuclear Information System (INIS)

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-01-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  16. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  17. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures

    CERN Document Server

    Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław

    2013-01-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method  and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...

  18. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  19. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  20. Development of methods and means to improve a performance of microprocessor shock sensors for car alarms

    Directory of Open Access Journals (Sweden)

    S. A. Vasyukov

    2014-01-01

    Full Text Available Existing shock sensors for car protection using the sensitive elements (SE of piezoelectric, microphone and electromagnetic types and the analogue circuitry of signal processing, have a number of essential shortcomings:- piezoelectric sensitive elements have no characteristics repeatability that complicates their use in mass production;- microphone sensors are structurally complicated and demand difficult information signal processing;- sensitive elements of electromagnetic sensors demand individual control (a specified clearance to be set between a magnet and the coil.Use of analogue elements (resistors, capacitors in the amplifier and filter circuits reduces temporary and temperature stability of characteristics. An adjustment of the sensor operating zones via variable resistors on a printed circuit is extremely inconvenient and doesn't allow to change quickly the sensor sensitivity depending on an external situation (for example, to increase quickly an operating zone of the sensor with an alarm system of a key fob when securing a car in the country or in the woods, or to reduce it in the street with heavy traffic streams.An analogue circuit–based sensor design disables its automatic adaptation to such external impacts as a rain, a stream passing by cars, etc.The article considers how to solve some of above problems while designing the two-zone digital shock sensors with a SE of electromagnetic type. It shows the SE design developed by the authors as a module containing the coil and a magnet, secured on the coil axis in a silicone extension. The circuitry solution and algorithms of signals processing allowed authors to realize a remote control of the prevention and alarm zones (with 16 gradation of sensitivity. The algorithm of self-adaptation to the repeating external impacts is proposed. The developed method to form the basic levels of digital comparators for each gradation of sensitivity enables the sensor to have the straight

  1. Pseudo-shock waves and their interactions in high-speed intakes

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  2. The Finnish EMU Buffers and the Labour Market under Asymmetric Shocks

    OpenAIRE

    Alho, Kari

    2004-01-01

    The Finnish EMU buffers consist of elements built into the unemployment insurance and employment pension systems, which aim to stabilise employer contributions and employment during economic fluctuations in the EMU age. The paper simulates the role of these buffers in a hypothetical recession caused by an adverse asymmetric shock. The results show that the buffers play only a modest role in stabilising employment, although their importance increases as the shocks to the economy become greater...

  3. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  4. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    Science.gov (United States)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  5. GEOMETRICAL OPTIMIZATION OF VEHICLE SHOCK ABSORBERS WITH MR FLUID

    OpenAIRE

    ENGIN, Tahsin; PARLAK, Zekeriya; ŞAHIN, Ismail; ÇALLI, Ismail

    2016-01-01

    Magnetorheological (MR) shock absorber have received remarkable attention in the last decade due to being a potential technology to conduct semi-active control in structures and mechanical systems in order to effectively suppress vibration. To develop performance of MR shock absorbers, optimal design of the dampers should be considered. The present study deals with optimal geometrical modeling of a MR shock absorber. Optimal design of the present shock absorber was carried out by using Taguch...

  6. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  7. Side-Pinch Effect of a Magnetically Driven Shock Tube with Parallel Plate Electrodes

    DEFF Research Database (Denmark)

    Chang, C. T.; Korsbech, Uffe C C; Mondrup, K.

    1969-01-01

    To study the possible effect of the side pinch on the steady-state current and the steady-state shock speed of a magnetically driven shock tube, a semiempirical model is formulated. The time history of the current, the radial and the translational motion of the current-carrying region are expressed...... by three interacting nonlinear equations with five adjustable parameters describing the variation of the electric circuit elements, the geometry of the shock tube, and the initial running conditions. Within the range of practical interest for values of the parameters investigated, computational results...

  8. The control of artificial radio-elements of medical use in France

    International Nuclear Information System (INIS)

    Cohen, Y.

    1960-01-01

    Artificial radio-elements are sometimes used in hospitals or laboratories possessing specific equipment and certified staff. These radio-elements are produced within the Saclay Nuclear Centre, and, if they are aimed to a medical use, are submitted to a pharmaceutical control which the issue is addressed in this report. After a recall of the preparation of these radio-elements, the author describes physical controls (determination of radioactivity, measurement of colloidal particle size, impurity content), and biological controls performed on these radio-elements. Reprint of a paper published in Annales pharmaceutiques francaises, tom. XVII, p. 250-260, 1959

  9. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  10. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  11. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.

    Science.gov (United States)

    Furia, John P

    2008-03-01

    High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P wave therapy and control groups were 12 and 0 (P wave therapy group than in the control group (P wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.

  12. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  13. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.

    2002-01-01

    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  14. Rigid finite element method in analysis of dynamics of offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)

    2013-07-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.

  15. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  16. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    Science.gov (United States)

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  17. Numerical simulation of the structure of collisionless supercritical shocks

    International Nuclear Information System (INIS)

    Lipatov, A.S.

    1990-01-01

    Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs

  18. Triiodothyronine Administration in a Model of Septic Shock: A Randomized Blinded Placebo-Controlled Trial.

    Science.gov (United States)

    Maiden, Matthew J; Chapman, Marianne J; Torpy, David J; Kuchel, Timothy R; Clarke, Iain J; Nash, Coralie H; Fraser, Jonathan D; Ludbrook, Guy L

    2016-06-01

    Triiodothyronine concentration in plasma decreases during septic shock and may contribute to multiple organ dysfunction. We sought to determine the safety and efficacy of administering triiodothyronine, with and without hydrocortisone, in a model of septic shock. Randomized blinded placebo-controlled trial. Preclinical research laboratory. Thirty-two sheep rendered septic with IV Escherichia coli and receiving protocol-guided sedation, ventilation, IV fluids, and norepinephrine infusion. Two hours following induction of sepsis, 32 sheep received a 24-hour IV infusion of 1) placebo + placebo, 2) triiodothyronine + placebo, 3) hydrocortisone + placebo, or 4) triiodothyronine + hydrocortisone. Primary outcome was the total amount of norepinephrine required to maintain a target mean arterial pressure; secondary outcomes included hemodynamic and metabolic indices. Plasma triiodothyronine levels increased to supraphysiological concentrations with hormonal therapy. Following 24 hours of study drug infusion, the amount of norepinephrine required was no different between the study groups (mean ± SD μg/kg; placebo + placebo group 208 ± 392; triiodothyronine + placebo group 501 ± 370; hydrocortisone + placebo group 167 ± 286; triiodothyronine + hydrocortisone group 466 ± 495; p = 0.20). There was no significant treatment effect on any hemodynamic variable, metabolic parameter, or measure of organ function. A 24-hour infusion of triiodothyronine, with or without hydrocortisone, in an ovine model of septic shock did not markedly alter norepinephrine requirement or any other physiological parameter.

  19. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    Science.gov (United States)

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  20. ShockOmics: multiscale approach to the identification of molecular biomarkers in acute heart failure induced by shock.

    Science.gov (United States)

    Aletti, Federico; Conti, Costanza; Ferrario, Manuela; Ribas, Vicent; Bollen Pinto, Bernardo; Herpain, Antoine; Post, Emiel; Romay Medina, Eduardo; Barlassina, Cristina; de Oliveira, Eliandre; Pastorelli, Roberta; Tedeschi, Gabriella; Ristagno, Giuseppe; Taccone, Fabio S; Schmid-Schönbein, Geert W; Ferrer, Ricard; De Backer, Daniel; Bendjelid, Karim; Baselli, Giuseppe

    2016-01-28

    The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock. Ninety septic shock and cardiogenic shock patients will be recruited in three intensive care units (ICU) (Hôpital Erasme, Université Libre de Bruxelles, Belgium; Hospital Universitari Mutua Terrassa, Spain; Hôpitaux Universitaires de Genève, Switzerland). Hemodynamic signals will be recorded every day for up to seven days from shock diagnosis (time T0). Clinical data and blood samples will be collected for analysis at: i) T1  5 and lactate levels ≥ 2 mmol/L. The exclusion criteria are: expected death within 24 h since ICU admission; > 4 units of red blood cells or >1 fresh frozen plasma transfused; active hematological malignancy; metastatic cancer; chronic immunodepression; pre-existing end stage renal disease requiring renal replacement therapy; recent cardiac surgery; Child-Pugh C cirrhosis; terminal illness. Enrollment will be preceded by the signature of the Informed Consent by the patient or his/her relatives and by the physician in charge. Three non-shock control groups will be included in the study: a) healthy blood donors (n = 5); b) septic patients (n = 10); c) acute myocardial infarction or patients with prolonged acute arrhythmia (n = 10). The hemodynamic data will be downloaded from the ICU monitors by means of dedicated software. The blood samples will be utilized for transcriptomics, proteomics and metabolomics ("-omics") analyses. ShockOmics will provide new insights into the pathophysiological mechanisms underlying shock as well as new biomarkers for the timely diagnosis of cardiac dysfunction in shock and quantitative indices for assisting the therapeutic management of shock patients.

  1. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  2. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  3. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  4. Hydrodynamic simulations of microjetting from shock-loaded grooves

    Science.gov (United States)

    Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.

    2017-01-01

    The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  5. Utilizing Computational Probabilistic Methods to Derive Shock Specifications in a Nondeterministic Environment

    Energy Technology Data Exchange (ETDEWEB)

    FIELD JR.,RICHARD V.; RED-HORSE,JOHN R.; PAEZ,THOMAS L.

    2000-10-25

    One of the key elements of the Stochastic Finite Element Method, namely the polynomial chaos expansion, has been utilized in a nonlinear shock and vibration application. As a result, the computed response was expressed as a random process, which is an approximation to the true solution process, and can be thought of as a generalization to solutions given as statistics only. This approximation to the response process was then used to derive an analytically-based design specification for component shock response that guarantees a balanced level of marginal reliability. Hence, this analytically-based reference SRS might lead to an improvement over the somewhat ad hoc test-based reference in the sense that it will not exhibit regions of conservativeness. nor lead to overtesting of the design.

  6. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  7. Measuring resilience to energy shocks

    OpenAIRE

    Molyneaux, Lynette; Brown, Colin; Foster, John; Wagner, Liam

    2015-01-01

    Measuring energy security or resilience in energy is, in the main, confined to indicators which are used for comparative purposes or to show trends rather than provide empirical evidence of resilience to unpredicted crises. In this paper, the electricity systems of the individual states within the United States of America are analysed for their response to the 1973-1982 and the 2003-2012 oil price shocks. Empirical evidence is sought for elements which are present in systems that experience r...

  8. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    Science.gov (United States)

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  9. Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.

    Science.gov (United States)

    Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max

    2015-02-01

    In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.

  10. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  11. Investigation on Shock Induced Stripping Breakup Process of A Liquid Droplet

    KAUST Repository

    Liu, Yao

    2017-03-02

    Stripping breakup process of a single liquid droplet under the impact of a planar shock wave is investigated both experimentally and numerically. The droplet breakup experiment is conducted in a horizontal shock tube and the evolution of the droplet is recorded by direct high-speed photography. The experimental images clearly illustrate the droplet interface evolution features from its early to relatively late stage. Compressible Euler equations are solved using an in-house inviscid upwind characteristic space-time conservation element and solution element (CE/SE) method coupled with the HLLC approximate Riemann solver. A reduced five-equation model is employed to demonstrate the air/liquid interface. Numerical results accurately reproduce the water column and axi-symmetric water droplet breakup processes in experiments. The present study confirms the validity of the present numerical method in solving the shock wave induced droplet breakup problem and elaborates the stripping breakup process numerically in a long period. Droplet inner flow pattern is depicted, based on which the drives of protrusions emerged on the droplet surface are clearly seen. The droplet deformation is proved to be determined by not only the outer air flow, but also the inner liquid flow.

  12. Investigation on Shock Induced Stripping Breakup Process of A Liquid Droplet

    KAUST Repository

    Liu, Yao; Wen, Chihyung; Shen, Hua; Guan, Ben

    2017-01-01

    Stripping breakup process of a single liquid droplet under the impact of a planar shock wave is investigated both experimentally and numerically. The droplet breakup experiment is conducted in a horizontal shock tube and the evolution of the droplet is recorded by direct high-speed photography. The experimental images clearly illustrate the droplet interface evolution features from its early to relatively late stage. Compressible Euler equations are solved using an in-house inviscid upwind characteristic space-time conservation element and solution element (CE/SE) method coupled with the HLLC approximate Riemann solver. A reduced five-equation model is employed to demonstrate the air/liquid interface. Numerical results accurately reproduce the water column and axi-symmetric water droplet breakup processes in experiments. The present study confirms the validity of the present numerical method in solving the shock wave induced droplet breakup problem and elaborates the stripping breakup process numerically in a long period. Droplet inner flow pattern is depicted, based on which the drives of protrusions emerged on the droplet surface are clearly seen. The droplet deformation is proved to be determined by not only the outer air flow, but also the inner liquid flow.

  13. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  14. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  15. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  16. Shock analysis on hydraulic drive control rod during scram

    International Nuclear Information System (INIS)

    Song Wei; Qin Benke; Bo Hanliang

    2013-01-01

    Control rod hydraulic drive mechanism (CRHDM) is a new invention of Institute of Nuclear and New Energy Technology of Tsinghua University. The hydraulic absorber buffers the control rod when it scrams. The control rod fast drop impact experiment was conducted and the key parameters of control rod hydraulic buffering performance were obtained. Based on the test results and according to D'Alembert principle, the maximum inertial impact force on the control rod during the fast drop period was applied as equivalent static load force on the control rod. The deformations and stress distributions on the control rod in this worst case were calculated by using finite element software ABAQUS. Calculation results were compared with the experiment results, and it was verified that nonlinear transient dynamics analysis in this problem can be simplified as static analysis. Damage criterion of the control rod fast drop impact process was also given. And it lays foundation for optimal design of the control rod and hydraulic absorber. (authors)

  17. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  18. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    Science.gov (United States)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The

  19. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Science.gov (United States)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  20. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  1. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  2. Boundary element analysis of stress due to thermal shock loading or reactor pressure vessel nozzle; Napetostna analiza pri nestacionarni termicni obremenitvi cevnega prikljucka reaktorske tlacne posode z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)

  3. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  4. ANALYSIS OF THE MECHANICAL STRENGTH OF A DRIVING MECHANISM CALLED SHOCK

    Directory of Open Access Journals (Sweden)

    Dan ILINCIOIU

    2015-05-01

    Full Text Available It evaluates the maximum static and dynamic stresses produced in the elements of a quadrilateral mechanism transporting a vehicle in the storage in an urban park. Determine multiplier shock hazard if the mechanism freezes and increases mechanical stress.

  5. Is Tamsulosin Effective after Shock Wave Lithotripsy for Pediatric Renal Stones? A Randomized, Controlled Study.

    Science.gov (United States)

    Shahat, Ahmed; Elderwy, Ahmad; Safwat, Ahmed S; Abdelkawi, Islam F; Reda, Ahmed; Abdelsalam, Yasser; Sayed, Mohamed; Hammouda, Hisham

    2016-04-01

    We assessed the effect of tamsulosin as an adjunctive therapy after shock wave lithotripsy for pediatric single renal pelvic stones. A total of 120 children with a unilateral single renal pelvic stone were included in a prospective randomized, controlled study. All children were randomized to 2 equal groups. Group 1 received tamsulosin (0.01 mg/kg once daily) as adjunctive therapy after shock wave lithotripsy in addition to paracetamol while group 2 received paracetamol only. Stone clearance was defined as no renal stone fragments or fragments less than 3 mm and no pelvicalyceal system dilatation. Our study included 69 boys and 51 girls with a median age of 3.5 years and a median stone size of 1.2 cm. There was no statistically significant difference between groups 1 and 2 in stone or patient criteria. Of the children 99 (82.5%) achieved stone clearance after the first session, including 50 in group 1 and 49 in group 2. All children in each group were cleared of stones after the second session. The overall complication rate was 14.2%. There was no statistically significant difference between single session stone clearance rates (p = 0.81) and complications rates (p = 0.432) in either group. On multivariate analysis using logistic regression smaller stone size (p = 0.016) and radiopaque stones (p = 0.019) were the only predictors of stone clearance at a single shock wave lithotripsy session. Tamsulosin therapy did not affect stone clearance (p = 0.649). Tamsulosin does not seem to improve renal stone clearance. Smaller and radiopaque renal stones have more chance of clearance after shock wave lithotripsy for pediatric single renal pelvic stones. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Moving finite element method for ICF target implosion

    Science.gov (United States)

    Furuta, J.; Kawata, S.; Niu, K.

    1985-03-01

    One dimensional hydrodynamic codes for the analysis of internal confinement fusion (ICF) target implosion which include various effects were developed, but most of them utilize the artificial viscosity (e.g., Von Neumann's viscosity) which cannot reveal accurately the shock waves. A gain of ICF target implosion is much due to the dissipation at the shock fronts, so it is necessary to express correctly the shock waves which are affected by the viscosity. The width of the shock waves is usually a few times as large as the length of mean free path, therefore the meshes for the shock waves must be set to about 10 to the 4th to 10 to the 5th power. It is a serious problem because of the computational memories or CPU time. In the moving finite element (MPE) method, both nodal amplitudes and nodal positions move continuously with time in such a way as to satisfy simultaneous ordinary differential equations (OPDs) which minimize partial differential equation (PDE) residuals.

  7. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  8. Compactable control element assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Dupen, C.F.G.

    1976-01-01

    A description is given of a compactable control element assembly for a nuclear reactor in which the absorber pins of the assembly are compacted during downward movement of the pin and are returned to their uncompacted state when downward movement is stopped. The control element assembly comprises a support member longitudinally movable within a control assembly duct and a plurality of absorber pins supported laterally outward of the support member and within the duct by pairs of support arms. The absorber pins are pivotably mounted to the support arms and the support arms in turn are supported from the support member for upward pivotable movement in a longitudinal plane. As the support member is moved downward, the support arms pivot upwardly and the absorber pins move upwardly and inwardly towards the support member. When the support member is stopped the absorber pins return to their uncompacted position

  9. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  10. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  11. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  12. Systematic Integrated Process Design and Control of Binary Element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes is considered through a computer-aided framework. First, a set of simple design methods for reactive distillation column that are similar in concept to non-reactive distillation design methods are extended...... to design-control of reactive distillation columns. These methods are based on the element concept where the reacting system of compounds is represented as elements. When only two elements are needed to represent the reacting system of more than two compounds, a binary element system is identified....... It is shown that the same design-control principles that apply to a non-reacting binary system of compounds are also valid for a reactive binary system of elements for distillation columns. Application of this framework shows that designing the reactive distillation process at the maximum driving force...

  13. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  14. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  15. Economic shocks and child welfare: the effect of past economic shocks on child nutritional achievements, schooling and work in rural and urban Ethiopia

    NARCIS (Netherlands)

    Woldehanna, T.

    2009-01-01

    Using data from the Young Lives younger cohort, we examine the effect of economic shocks on nutritional achievement, schooling and child work of index children (at age 5), controlling for various individual and household characteristics. Shocks that occurred both before and after the child was born

  16. Modernisation of a test rig for determination of vehicle shock absorber characteristics by considering vehicle suspension elements and unsprung masses

    Science.gov (United States)

    Maniowski, M.; Para, S.; Knapczyk, M.

    2016-09-01

    This paper presents a modernization approach of a standard test bench for determination of damping characteristics of automotive shock absorbers. It is known that the real-life work conditions of wheel-suspension dampers are not easy to reproduce in laboratory conditions, for example considering a high frequency damper response or a noise emission. The proposed test bench consists of many elements from a real vehicle suspension. Namely, an original tyre-wheel with additional unsprung mass, a suspension spring, an elastic top mount, damper bushings and a simplified wheel guiding mechanism. Each component was tested separately in order to identify its mechanical characteristics. The measured data serve as input parameters for a numerical simulation of the test bench behaviour by using a vibratory model with 3 degrees of freedom. Study on the simulation results and the measurements are needed for further development of the proposed test bench.

  17. Spallation reactions in shock waves at supernova explosions and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru [RAS, V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry (Russian Federation)

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  18. Shock Generation and Control Using DBD Plasma Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock-wave/boundary-layer interactions (SWBLI) pose challenges to aeronautical engineers because they create regions of adverse pressure gradients as a result of the...

  19. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  20. On the shock response of the magnesium alloy Elektron 675

    Science.gov (United States)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  1. Compendium of shock wave data. Section A2. Inorganic compounds. Section B. Hydrocarbons

    International Nuclear Information System (INIS)

    van Thiel, M.; Shaner, J.; Salinas, E.

    1977-06-01

    This volume lists in a concise manner the thermodynamic data in condensed media obtained by shock wave techniques. The volume should be useful both to people working in the shockwave field and to others interested primarily in thermodynamic properties at high pressure. Therefore, both dynamic variables and volumetric quantities associated with the shock wave are given. The format was selected to make the volume useful in engineering as well as scientific reserch activities. Data on the elements are contained in this volume

  2. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  3. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  4. Low fluid level in pulse rod shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, H. C.

    1974-07-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  5. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    Aderhold, H.C.

    1974-01-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  6. Device for preventing spontaneous repositioning of a control element of a nuclear reactor

    International Nuclear Information System (INIS)

    Maslenok, B.A.; Chegaj, A.S.; Slobin, W.G.; Mednickij, W.G.; Genkin, L.I.; Petritschenko, N.F.; Mitrofanow, B.I.

    1976-01-01

    The invention concerns the control element of a nuclear reactor. The vertical connecting rod is to be prevented from spontaneous repositioning if the pressurized housing which encloses the control element becomes leaky. It is proposed to provide spheres as wedging elements locking the connecting rod, but also allowing easy loosening. (UWI) [de

  7. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  8. Experimental investigation of flow-induced control-element movements by noise analysis

    International Nuclear Information System (INIS)

    Grunwald, G.; Liewers, P.; Schumann, P.; Weiss, F.P.

    1978-01-01

    The possibility has been reported of separating a single noise component due to flow-induced vibrations of a certain control element from a complex neutron signal which also contained contributions of many other control elements vibrating similarly. One of the basic assumptions for the different methods applied was that the body sound signal originating from touch events with the channel wall is closely correlated with the control-element movement. Some discrepancies between the results of the different methods showed that this assumption may not be entirely fulfilled. This paper investigates this correlation more accurately by measurements of an air flow model of the control-element channel. The pendulum movement of the element, and the body-sound signal due to the touch events with the channel wall, were measured at different flow-rates. The result is that the correlation is not an ideal one. For a constant flow-rate the touch events happen mainly within a small angle region, which means that the touch event marks a certain phase of the movement period and is therefore correlated with the movement. The dispersion of the touch events' angle distribution explains the small discrepancy between the so-called modified averaging method, which uses the sound signal to trigger the averaging procedure, and the partial spectral density method. But not all discrepancies can be explained by these results; they await further investigation. (author)

  9. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  10. The Practical Application of Minor Element Control in Small Scale Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    Many times small scale melts are made for the purposes of alloy development, component evaluation, or simply economic concerns when "commercial" alloys are unavailable in small quantities. Not only is it critical that the major alloy elements meet the desired levels, but "tramp" elements or trace element additions must also be controlled. Control of tramp and trace elements on the small scale is often done differently simply due to the scale of the melt or the equipment available. In this paper several approaches will be presented that have been used at NETL in manufacturing alloys for in-house research, including, for example, vacuum refining. Also, the relative effectiveness of various gettering elements will be explored. The successes achieved as well as the failures of the various approaches will be discussed in terms of thermodynamic and kinetic considerations. The presentation will conclude with practical alloy examples.

  11. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  12. Evaluation of Coagulation Profiles in Dogs with Septic Shock

    OpenAIRE

    YILMAZ, Zeki; YALÇIN, Ebru

    2002-01-01

    The aim of the this study was to observe possible changes in coagulation profiles in dogs with septic shock. A total of 30 dogs (control group n=10, test group n=20) were used as materials in this study. Although different diseases leading to septic shock were diagnosed in dogs in the test group, dogs were selected on the basis of septic shock criteria such as fever or hypothermia, hypotension, leukopenia or leukocytosis and thrombocytopenia. In addition to the results of rutine clinical and...

  13. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  14. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  15. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  16. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  17. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V; Kumar, P; Shukla, A

    2013-01-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation

  18. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  19. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock

    International Nuclear Information System (INIS)

    Ognibene, F.P.; Parker, M.M.; Natanson, C.; Shelhamer, J.H.; Parrillo, J.E.

    1988-01-01

    Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was a strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock

  20. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  1. Milrinone therapy for enterovirus 71-induced pulmonary edema and/or neurogenic shock in children: a randomized controlled trial.

    Science.gov (United States)

    Chi, Chia-Yu; Khanh, Truong Huu; Thoa, Le Phan Kim; Tseng, Fan-Chen; Wang, Shih-Min; Thinh, Le Quoc; Lin, Chia-Chun; Wu, Han-Chieh; Wang, Jen-Ren; Hung, Nguyen Thanh; Thuong, Tang Chi; Chang, Chung-Ming; Su, Ih-Jen; Liu, Ching-Chuan

    2013-07-01

    Enterovirus 71-induced brainstem encephalitis with pulmonary edema and/or neurogenic shock (stage 3B) is associated with rapid mortality in children. In a small pilot study, we found that milrinone reduced early mortality compared with historical controls. This prospective, randomized control trial was designed to provide more definitive evidence of the ability of milrinone to reduce the 1-week mortality of stage 3B enterovirus 71 infections. Prospective, unicenter, open-label, randomized, controlled study. Inpatient ward of a large tertiary teaching hospital in Ho Chi Minh City, Vietnam. Children (≤ 18 yr old) admitted with proven enterovirus 71-induced pulmonary edema and/or neurogenic shock. Patients were randomly assigned to receive intravenous milrinone (0.5 μg/kg/min) (n = 22) or conventional management (n = 19). Both groups received dopamine or dobutamine and intravenous immunoglobulin. The primary endpoint was 1-week mortality. The secondary endpoints included length of ventilator dependence and hospital stay and adverse events. The median age was 2 years with a predominance of boys in both groups. The 1-week mortality was significantly lower, 18.2% (4/22) in the milrinone compared with 57.9% (11/19) in the conventional management group (relative risk = 0.314 [95% CI, 0.12-0.83], p = 0.01). The median duration of ventilator-free days was longer in the milrinone treatment group (p = 0.01). There was no apparent neurologic sequela in the survivors in either group, and no drug-related adverse events were documented. Milrinone significantly reduced the 1-week mortality of enterovirus 71-induced pulmonary edema and/or neurogenic shock without adverse effects. Further studies are needed to determine whether milrinone might be useful to prevent progression of earlier stages of brainstem encephalitis.

  2. Static analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)], E-mail: gintas@mail.lei.lt; Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)

    2009-01-15

    The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite-moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shutdown at the end of 2004, while Unit 2 is foreseen to be shutdown at the end of 2009. At the Ignalina NPP Unit 1 remains approximately 1000 spent fuel assemblies with low burn-up depth. A special set of equipment was developed to reuse these assemblies in the reactor of Unit 2. One of most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined by using scaled experiments. The objective of this article is the estimation whether the proposed design of shock absorber fulfils the function of the absorber and the optimization of its geometrical parameters using the results of the performed investigations. Static analytical and experimental investigations are presented in the article. The finite element code BRIGADE/Plus was used for the analytical analysis. The calculation model was verified by comparing the experimental investigation and simulation results for further employment of this finite element model in the development of an optimum design of shock absorber. Static simulation was used to perform primary optimization of design and dimension of the shock absorber.

  3. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    Science.gov (United States)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock

  4. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  5. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  6. Sepsis and Septic Shock Strategies.

    Science.gov (United States)

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Focused and Radial Shock Wave Therapy in the Treatment of Tennis Elbow: A Pilot Randomised Controlled Study

    Directory of Open Access Journals (Sweden)

    Król Piotr

    2015-09-01

    Full Text Available The purpose of this article was to evaluate and compare the efficacy of radial and focused shock wave therapies applied to treat tennis elbow. Patients with tennis elbow were randomized into two comparative groups: focused shock wave therapy (FSWT; n=25 and radial shock wave therapy (RSWT; n=25. Subjects in the FSWT and RSWT groups were applied with a focused shock wave (3 sessions, 2000 shocks, 4 Hz, 0.2 mJ/mm2 and a radial shock wave (3 sessions, 2000 + 2000 shocks, 8 Hz, 2.5 bar, respectively. The primary study endpoints were pain relief and functional improvement (muscle strength one week after therapy. The secondary endpoint consisted of the results of the follow-up observation (3, 6 and 12 weeks after the study. Successive measurements showed that the amount of pain patients felt decreased in both groups. At the same time grip strength as well as strength of wrist extensors and flexors of the affected extremity improved significantly. Both focused and radial shock wave therapies can comparably and gradually reduce pain in subjects with tennis elbow. This process is accompanied by steadily improved strength of the affected extremity.

  8. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a t...

  9. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  10. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  11. Stress, Burnout and Culture Shock: An Experiential, Pre-service Approach.

    Science.gov (United States)

    Mungo, Samuel J.

    A carefully-monitored off-campus program for preservice teacher education students can be used as a preventive approach to teacher stress, burnout, and culture shock often experienced by practicing and beginning teachers. Anxiety, caused by a variety of reactions including low self image, threat to security, and fear, is a common element in stress…

  12. Soft-sphere simulations of a planar shock interaction with a granular bed

    Science.gov (United States)

    Stewart, Cameron; Balachandar, S.; McGrath, Thomas P.

    2018-03-01

    Here we consider the problem of shock propagation through a layer of spherical particles. A point particle force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete element method (DEM) code liggghts is used to implement the shock-induced force as well as to capture the collisional forces within the system. A volume-fraction-dependent drag correction is applied using Voronoi tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the particle concentration downstream of the shock and this instability arises from the volume-fraction-dependent drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced. Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results for randomly distributed hard spheres.

  13. Offshoring as an Exogenous Shock to the Services Production System

    DEFF Research Database (Denmark)

    Brandl, Kristin; Mol, Michael; Petersen, Bent

    Production of services involves three key elements, an output for the client, resources of a provider and task execution. Offshoring of services acts as an exogenous shock to such a production system. Using multiple case methodology we investigate how task output, execution, and resources change...... as a consequence of offshoring and particularly how these elements are realigned. The cases reveal substantial managerial challenges in the alignment process prompted by a relocation of service task execution to an emerging economy. In particular, we find that instead of some set of capabilities that proactively...

  14. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    Science.gov (United States)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  15. A nondeterministic shock and vibration application using polynomial chaos expansions

    Energy Technology Data Exchange (ETDEWEB)

    FIELD JR.,RICHARD V.; RED-HORSE,JOHN R.; PAEZ,THOMAS L.

    2000-03-28

    In the current study, the generality of the key underpinnings of the Stochastic Finite Element (SFEM) method is exploited in a nonlinear shock and vibration application where parametric uncertainty enters through random variables with probabilistic descriptions assumed to be known. The system output is represented as a vector containing Shock Response Spectrum (SRS) data at a predetermined number of frequency points. In contrast to many reliability-based methods, the goal of the current approach is to provide a means to address more general (vector) output entities, to provide this output as a random process, and to assess characteristics of the response which allow one to avoid issues of statistical dependence among its vector components.

  16. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  17. Electromagnetic analysis of locking device for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Heo, H.; Kim, J. I.; Kim, J. H.; Kim, Y. W.; Park, J. S.

    1998-01-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analyzing the trend of the plunger pushing force with finite element method

  18. Training elements at different levels in the strategies for control of schistosomiasis

    DEFF Research Database (Denmark)

    Ørnbjerg, Niels; Simonsen, P. E.; Furu, Peter

    1989-01-01

    Recently acquired comprehensive knowledge concerning the epidemiology of schistosomiasis has provided the background for the establishment of schistosomiasis control strategies. However, the planning, implementation, and maintenance of such control programmes requires sufficient numbers of well t...... trained personnel at the local, district and central levels. Training of health personnel as well as motivation of the community are fundamental and essential elements in any schistosomiasis control programme. The training elements and approaches are discussed....

  19. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  20. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  1. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  2. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  3. Analysis of technology and quality control the fuel elements production process

    International Nuclear Information System (INIS)

    Katanic, J.; Spasic, Z.; Momcilovic, I.

    1976-01-01

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and procedures of fuel elements in a general effort to secure successful work with nuclear plants. For adequate and timely participation in future of the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in our country, it is necessary to be well informed and to follow this activity at the international level

  4. FEM correlation and shock analysis of a VNC MEMS mirror segment

    Science.gov (United States)

    Aguayo, Eduardo J.; Lyon, Richard; Helmbrecht, Michael; Khomusi, Sausan

    2014-08-01

    Microelectromechanical systems (MEMS) are becoming more prevalent in today's advanced space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS Mirror, the Multiple Mirror Array (MMA), is a key component that will enable the VNC instrument to detect Jupiter and ultimately Earth size exoplanets. Like other MEMS devices, the MMA faces several challenges associated with spaceflight. Therefore, Finite Element Analysis (FEA) is being used to predict the behavior of a single MMA segment under different spaceflight-related environments. Finite Element Analysis results are used to guide the MMA design and ensure its survival during launch and mission operations. A Finite Element Model (FEM) has been developed of the MMA using COMSOL. This model has been correlated to static loading on test specimens. The correlation was performed in several steps—simple beam models were correlated initially, followed by increasingly complex and higher fidelity models of the MMA mirror segment. Subsequently, the model has been used to predict the dynamic behavior and stresses of the MMA segment in a representative spaceflight mechanical shock environment. The results of the correlation and the stresses associated with a shock event are presented herein.

  5. A novel microbial fuel cell sensor with biocathode sensing element.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Development of a Novel Shock Wave Catheter Ablation System

    Science.gov (United States)

    Yamamoto, H.; Hasebe, Yuhi; Kondo, Masateru; Fukuda, Koji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    Although radio-frequency catheter ablation (RFCA) is quite effective for the treatment tachyarrhythmias, it possesses two fundamental limitations, including limited efficacy for the treatment of ventricular tachyarrhythmias of epicardial origin and the risk of thromboembolism. Consequently, new method is required, which can eradicate arrhythmia source in deep part of cardiac muscle without heating. On the other hand, for a medical application of shock waves, extracorporeal shock wave lithotripter (ESWL) has been established [1]. It was demonstrated that the underwater shock focusing is one of most efficient method to generate a controlled high pressure in a small region [2]. In order to overcome limitations of existing methods, we aimed to develop a new catheter ablation system with underwater shock waves that can treat myocardium at arbitrary depth without causing heat.

  7. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  8. Multiple spacecraft observations of interplanetary shocks: characteristics of the upstream ulf turbulence

    International Nuclear Information System (INIS)

    Russell, C.T.; Smith, E.J.; Tsurutani, B.T.; Gosling, J.T.; Bame, S.J.

    1982-01-01

    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. We invert an overdetermined set of equations to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals we then calculate the Mach number and angle between the interplanetary magnetic field and the shock normal for each shock. These parameters allow us to separate the upstream waves into two classes: whistler-mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right-hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

  9. SPECIAL PURPOSE SHOCK TUBE for BLAST ASSESSMENT

    Data.gov (United States)

    Federal Laboratory Consortium — This device is a specially designed shock tube for testing fabric samples in a controlled environment. The device determines the appropriate types of sensors to be...

  10. Visual inspection as one of the important elements of the quality control

    Directory of Open Access Journals (Sweden)

    Paweł Szklarzyk

    2014-06-01

    Full Text Available Quality control of the production process allows to detect incompatibilities. One of the key elements of quality control is a visual inspection. The object of the research is to determine the essential elements having an impact on visual inspections. Research was carried out according to the BOST method designed at the Institute of Production Engineering, Technical University of Czestochowa

  11. Design and Implementation of a Dual-Mass MEMS Gyroscope with High Shock Resistance.

    Science.gov (United States)

    Gao, Yang; Huang, Libin; Ding, Xukai; Li, Hongsheng

    2018-03-30

    This paper presents the design and implementation of a dual-mass MEMS gyroscope with high shock resistance by improving the in-phase frequency of the gyroscope and by using a two-stage elastic stopper mechanism and proposes a Simulink shock model of the gyroscope equipped with the two-stage stopper mechanism, which is a very efficient method to evaluate the shock resistance of the gyroscope. The structural design takes into account both the mechanical sensitivity and the shock resistance. The design of the primary structure and the analysis of the stopper mechanism are first introduced. Based on the expression of the restoring force of the stopper beam, the analytical shock response model of the gyroscope is obtained. By this model, the shock response of the gyroscope is theoretically analyzed, and the appropriate structural parameters are obtained. Then, the correctness of the model is verified by finite element (FE) analysis, where the contact collision analysis is introduced in detail. The simulation results show that the application of the two-stage elastic stopper mechanism can effectively improve the shock resistance by more than 1900 g and 1500 g in the x - and y -directions, respectively. Finally, experimental verifications are carried out by using a machete hammer on the micro-gyroscope prototype fabricated by the deep dry silicon on glass (DDSOG) technology. The results show that the shock resistance of the prototype along the x -, y - and z -axes all exceed 10,000 g. Moreover, the output of the gyroscope can return to normal in about 2 s.

  12. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  13. Integrated Process Design and Control of Multi-element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes involving multi-elements is presented. The reactive distillation column is designed using methods and tools which are similar in concept to non-reactive distillation design methods, such as driving force approach....... The methods employed in this work are based on equivalent element concept. This concept facilitates the representation of a multi-element reactive system as equivalent binary light and heavy key elements. First, the reactive distillation column is designed at the maximum driving force where through steady...

  14. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  15. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  16. Control software development for magnetorheological finishing of large aperture optical elements

    International Nuclear Information System (INIS)

    Zheng Nan; Li Haibo; Yuan Zhigang; Zhong Bo

    2011-01-01

    Based on the mechanism of magnetorheological finishing, the dwell time function was solved by Jansson-Van Cit-tert algorithm to accomplish the kernel module design. Then the software modularization programming, modular testing and integration testing were conducted. A verification experiment was carried out on a crystal element with full aperture of 500 mm and the element's surface achieved rapid and efficient convergence after the software controlled magnetorheological finishing. It is proved that the software could control the whole polishing process accurately. (authors)

  17. Electromagnetic analysis of locking device for SMART control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analysing the trend of the plunger pushing force with finite element method. 8 refs., 22 figs., 2 tabs. (Author)

  18. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  19. The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites

    Science.gov (United States)

    Baumgartner, Raphael J.; Fiorentini, Marco L.; Lorand, Jean-Pierre; Baratoux, David; Zaccarini, Federica; Ferrière, Ludovic; Prašek, Marko K.; Sener, Kerim

    2017-08-01

    The shergottite meteorites are ultramafic to mafic igneous rocks whose parental magmas formed from partial melting of the martian mantle. This study reports in-situ laser ablation inductively coupled plasma mass spectrometry analyses for siderophile and chalcophile major and trace elements (i.e., Co, Ni, Cu, As, Se, Ag, Sb, Te, Pb, Bi, and the highly siderophile platinum-group elements, PGE: Os, Ir, Ru, Rh, Pt and Pd) of magmatic Fe-Ni-Cu sulfide assemblages from four shergottite meteorites. They include three geochemically similar incompatible trace element- (ITE-) depleted olivine-phyric shergottites (Yamato-980459, Dar al Gani 476 and Dhofar 019) that presumably formed from similar mantle and magma sources, and one distinctively ITE-enriched basaltic shergottite (Zagami). The sulfides in the shergottites have been variably modified by alteration on Earth and Mars, as well as by impact shock-shock related melting/volatilization during meteorite ejection. However, they inherit and retain their magmatic PGE signatures. The CI chondrite-normalized PGE concentration patterns of sulfides reproduce the whole-rock signatures determined in previous studies. These similarities indicate that sulfides exerted a major control on the PGE during shergottite petrogenesis. However, depletions of Pt (and Ir) in sulfide relative to the other PGE suggest that additional phases such discrete Pt-Fe-Ir alloys have played an important role in the concentration of these elements. These alloys are expected to have enhanced stability in reduced and FeO-rich shergottite magmas, and could be a common feature in martian igneous systems. A Pt-rich PGM was found to occur in a sulfide assemblage in Dhofar 019. However, its origin may be related to impact shock-related sulfide melting and volatilisation during meteorite ejection. In the ITE-depleted olivine-phyric shergottites, positive relationships exist between petrogenetic indicators (e.g., whole-rock Mg-number) and most moderately to

  20. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  1. Phase distribution of ecologically controlled chemical elements in production of extraction phosphoric acid

    International Nuclear Information System (INIS)

    Kazak, V.G.; Agnelov, A.I.; Zajtsev, P.M.

    1995-01-01

    Content of 16 ecologically controlled chemical element (among them Cd, Sr, Th, U, V, Y) in solid and liquid phases of extraction phosphorus acid (EPA) production is determined. These elements are recommended to control by Scientific research institute of human ecology and environment to establish their extraction coefficients to phosphogypsum and EPA and optimal variant of production of ecologically sate phosphorus fertilizers. X-ray fluorescent, atomic-absorption and polarographic methods are used for analysis these elements

  2. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  3. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    Science.gov (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  4. Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock.

    Science.gov (United States)

    Kinasewitz, Gary T; Privalle, Christopher T; Imm, Amy; Steingrub, Jay S; Malcynski, John T; Balk, Robert A; DeAngelo, Joseph

    2008-07-01

    To assess the safety and efficacy of the hemoglobin-based nitric oxide scavenger, pyridoxalated hemoglobin polyoxyethylene (PHP), in patients with distributive shock. Phase II multicenter, randomized (1:1), placebo-controlled study. Fifteen intensive care units in North America. Sixty-two patients with distributive shock, > or = 2 systemic inflammatory response syndrome criteria, and persistent catecholamine dependence despite adequate fluid resuscitation (pulmonary capillary wedge pressure > or = 12). Patients were randomized to PHP at 0.25 mL/kg/hr (20 mg/kg/hr), or an equal volume of placebo, infused for up to 100 hrs, in addition to conventional vasopressor therapy. Because treatment could not be blinded, vasopressors and ventilatory support were weaned by protocol. Sixty-two patients were randomized to PHP (n = 33) or placebo (n = 29). Age, sex, etiology of shock (sepsis in 94%), and Acute Physiology and Chronic Health Evaluation II scores (33.1 +/- 8.3 vs. 30 +/- 7) were similar in PHP and placebo patients, respectively. Baseline plasma nitrite and nitrate levels were markedly elevated in both groups. PHP infusion increased systemic blood pressure within minutes. Overall 28-day mortality was similar (58% PHP vs. 59% placebo), but PHP survivors were weaned off vasopressors faster (13.7 +/- 8.2 vs. 26.3 +/- 21.4 hrs; p = .07) and spent less time on mechanical ventilation (10.4 +/- 10.2 vs. 17.4 +/- 9.9 days; p = .21). The risk ratio (PHP/placebo) for mortality was .79 (95% confidence interval, .39-1.59) when adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II score, and etiology of sepsis. No excess medical interventions were noted with PHP use. PHP survivors left the intensive care unit earlier (13.6 +/- 8.6 vs. 17.9 +/- 8.2 days; p = .21) and more were discharged by day 28 (57.1 vs. 41.7%). PHP is a hemodynamically active nitric oxide scavenger. The role of PHP in distributive shock remains to be determined.

  5. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  6. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  7. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  8. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  9. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  10. Assessing the shock state of the lunar highlands: Implications for the petrogenesis and chronology of crustal anorthosites.

    Science.gov (United States)

    Pernet-Fisher, J F; Joy, K H; Martin, D J P; Donaldson Hanna, K L

    2017-07-19

    Our understanding of the formation and evolution of the primary lunar crust is based on geochemical systematics from the lunar ferroan anorthosite (FAN) suite. Recently, much effort has been made to understand this suite's petrologic history to constrain the timing of crystallisation and to interpret FAN chemical diversity. We investigate the shock histories of lunar anorthosites by combining Optical Microscope (OM) 'cold' cathodoluminescence (CL)-imaging and Fourier Transform Infrared (FTIR) spectroscopy analyses. In the first combined study of its kind, this study demonstrates that over ~4.5 Ga of impact processing, plagioclase is on average weakly shocked (30 GPa; maskelynite) are uncommon. To investigate how plagioclase trace-element systematics are affected by moderate to weak shock (~5 to 30 GPa) we couple REE+Y abundances with FTIR analyses for FAN clasts from lunar meteorite Northwest Africa (NWA) 2995. We observe weak correlations between plagioclase shock state and some REE+Y systematics (e.g., La/Y and Sm/Nd ratios). This observation could prove significant to our understanding of how crystallisation ages are evaluated (e.g., plagioclase-whole rock Sm-Nd isochrons) and for what trace-elements can be used to differentiate between lunar lithologies and assess magma source compositional differences.

  11. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  12. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  13. The control of artificial radio-elements of medical use in France; Le controle des radioelements artificiels a usage medical en France

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' etudes nucleaires de Saclay, Service des Radio-elements artificiels (France)

    1960-07-01

    Artificial radio-elements are sometimes used in hospitals or laboratories possessing specific equipment and certified staff. These radio-elements are produced within the Saclay Nuclear Centre, and, if they are aimed to a medical use, are submitted to a pharmaceutical control which the issue is addressed in this report. After a recall of the preparation of these radio-elements, the author describes physical controls (determination of radioactivity, measurement of colloidal particle size, impurity content), and biological controls performed on these radio-elements. Reprint of a paper published in Annales pharmaceutiques francaises, tom. XVII, p. 250-260, 1959.

  14. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  15. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  16. Two-point method uncertainty during control and measurement of cylindrical element diameters

    Science.gov (United States)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  17. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice.

    Science.gov (United States)

    Johnson, E K; Kardong, K V; Mackessy, S P

    1987-01-01

    Electrical shocks, even crudely delivered from 'stun guns' and gasoline engine spark plugs, have been reported to be effective in the treatment of snake bite. We thus applied similar electric shocks to mice artificially injected with reconstituted rattlesnake venom at various LD50 multiples. Those envenomated mice treated with electric shock survived no better than the controls. We thus found no evidence that electric shocks crudely administered had any life saving effect in mice.

  18. Manipulator for fuel elements and control rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Voss, S.H.K.; Kipp, T.

    1974-01-01

    The manipulator serves for the transport and shuffling of fuel elements or control rods. It has a two-piece grab telescope which can be vertically rotated and on which an interior telescopic tube can be moved within a telescopic jacket if the grab head is raised or lowered. For unlimited rotation of the grab telescope a lifting traverse with supporting rocker and control rocker is used, on which the grab head is mounted by means of a hook suspension. On the grab head, two double pawls are arranged which are operated together and which open and close each other. The pawl device is operated by the control rocker. If the grab head is lowered, the double pawls, swinging outwards, with the aid of carrier bolts lock the rotating pawls of a guide matrix with the interior telescopic tube. The guide matrix has slots and bore holes for guiding the elements as well as centering bars for the heads of the fuel elements or control rods to be gripped. In the lowest position, it rests on the centering collar of the telescopic tube. (DG) [de

  19. Manipulator for fuel elements and control rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Voss, S.H.K.; Kipp, T.

    1977-01-01

    The manipulator serves for the transport and shuffling of fuel elements or control rods. It has a two-piece grab telescope which can be vertically rotated and on which an interior telescopic tube can be moved within a telescopic jacket if the grab head is raised or lowered. For unlimited rotation of the grab telescope a lifting traverse with supporting rocker and control rocker is used, on which the grab head is mounted by means of a hook suspension. On the grab head, two double pawls are arranged which are operated together and which open and close each other. The pawl device is operated by the control rocker. If the grab head is lowered, the double pawls, swinging outward with the aid of carrier bolts lock the rotating pawls of a guide matrix with the interior telescopic tube. The guide matrix has slots and bore holes for guiding the elements as well as centering bars for the heads of the fuel elements or control rods to be gripped. In the lowest position, it rests on the centering collar of the telescopic tube. (DG) [de

  20. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  1. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  2. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  3. ELEMENT DESIGN FOR AN INKJET SYSTEM OF HYDROSTATIC GAS BEARING CONTROL

    Directory of Open Access Journals (Sweden)

    T. E. Il'ina

    2015-09-01

    Full Text Available Subject of Study. The paper discusses the concept of inkjet systems application, also known as pneumonics, for automatic hydrostatic gas bearing control. Inkjet systems have the advantages over traditional control systems in those problems where the speed of traditional mechanical, electrical or hydraulic servomotors is not enough. Control of the shaft position in gas bearing with forced gas supply into the gap between the shaft and the bearing is typical for this class of problems. In this case, control means the pressure changing or flow rate of gas supplied to the gap by at least one of three axes at a frequency higher than the nominal speed of the shaft. Thus, high speed of response is required from the system. The objective of this work is to design a discrete jet element, testing of its geometry and switching characteristics. Main Results. The discrete inkjet element for oil-free non-contact transmission working on the refrigerant was designed. Relay transition process was modeled in the inkjet element with the use of numerical methods. The switching time has reached 0.2-0.3 ms; this is one order less than the requirements of aircraft control systems, which typically operate at a frequency of about 200 Hz. It is shown that periodic oscillations with high frequency occur when the control signal is injected with insufficient level of pressure. Therefore, a separate design task is to determine the minimum pressure allowable in the control channel.

  4. Observation and Control of Shock Waves in Individual Nanoplasmas

    Science.gov (United States)

    2014-03-18

    quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide...and observed ion energies indicates that the hydrodynamic calculations capture the physics of the plasma expansion. The hydrodynamic calculations ...2006). [23] A. Kawabata and R. Kubo , J. Phys. Soc. Jpn. 21, 1765 (1966). [24] M.M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S

  5. In vivo analysis of intestinal permeability following hemorrhagic shock

    Science.gov (United States)

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  6. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  7. State equations and stability of shock wave fronts in homogeneous and heterogeneous metallic medium

    International Nuclear Information System (INIS)

    Romain, Jean-Pierre

    1977-01-01

    This research thesis in physical sciences reports a theoretical and experimental study of some mechanical and thermodynamic aspects related to a shock wave propagation in homogeneous and heterogeneous metallic media: state equations, stability and instability of shock wave fronts. In the first part, the author reports the study of the Grueneisen coefficient for some metallic elements with known static and dynamic compression properties. The second part reports the experimental investigation of dynamic compressibility of some materials (lamellar Al-Cu compounds). The front shock wave propagation has been visualised, and experimental Hugoniot curves are compared with those deduced from a developed numeric model and other models. The bismuth Hugoniot curve is also determined, and the author compares the existence and nature of phase transitions obtained by static and dynamic compression

  8. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  9. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  10. Effects of response-shock interval and shock intensity on free-operant avoidance responding in the pigeon1

    Science.gov (United States)

    Klein, Marty; Rilling, Mark

    1972-01-01

    Two experiments investigated free-operant avoidance responding with pigeons using a treadle-pressing response. In Experiment I, pigeons were initially trained on a free-operant avoidance schedule with a response-shock interval of 32 sec and a shock-shock interval of 10 sec, and were subsequently exposed to 10 values of the response-shock parameter ranging from 2.5 to 150 sec. The functions relating response rate to response-shock interval were similar to the ones reported by Sidman in his 1953 studies employing rats, and were independent of the order of presentation of the response-shock values. Shock rates decreased as response-shock duration increased. In Experiment II, a free-operant avoidance schedule with a response-shock interval of 20 sec and a shock-shock interval of 5 sec was used, and shock intensities were varied over five values ranging from 2 to 32 mA. Response rates increased markedly as shock intensity increased from 2 to 8 mA, but rates changed little with further increases in shock intensity. Shock rates decreased as intensity increased from 2 to 8 mA, and showed little change as intensity increased from 8 to 32 mA. PMID:4652617

  11. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  12. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors....../kg. Measurement compatibility is obtained by control of traceability to certified reference materials, (C) 1994 Wiley-Liss, Inc....

  13. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Data collected by the Shock Wave Data Center

    International Nuclear Information System (INIS)

    Van Thiel, M.

    1976-01-01

    The Shock Wave Data Center of the Lawrence Livermore Lab collects and disseminates P.V.E. data obtained with shock waves. It has been in existence since 1964. An extensive number of papers reporting shock data had become available by that time. This was so in spite of the fact that the technology was developed only during the 2nd World War. Collection and partial evaluation of this data was therefore of value to facilitate its use by our laboratory and others who were involved with science and engineering in the high pressure field. The pressure range of the data collected is quite extensive and extends from 1 MPa to 1 TPa. One very important difference between shock wave compression data and those obtained with static presses must be emphasized, since it is often not fully appreciated. The pressure-volume locus of shock wave states (Hugoniot), which is obtained by passing increasingly stronger shocks into samples with the same initial state, rapidly increases in temperature as the shocks get stronger and the pressure and compression get higher. As a consequence, this Hugoniot locus must have a lower compressibility than isotherms obtained under static conditions. In fact, if porous or otherwise expanded samples are used, states at or near the critical region of metals can be obtained if the shock pressure is allowed to decrease in a controlled manner. Such pressure release measurements have so far only been utilized to a limited extent since the compression process has been of primary interest to workers in the field. As the use of this data in the energy field increases, however, such data will be needed more often. Applications are discussed that involve transient high pressure processes, practically all of which involve both compressed and expanded states

  15. Shock Interaction with a Finite Thickness Two-Gas Interface

    Science.gov (United States)

    Labenski, John; Kim, Yong

    2006-03-01

    A dual-driver shock tube was used to investigate the growth rate of a finite thickness two-gas interface after shock forcing. One driver was used to create an argon-refrigerant interface as the contact surface behind a weak shock wave. The other driver, at the opposite end of the driven section, generates a stronger shock of Mach 1.1 to 1.3 to force the interface back in front of the detector station. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface during both it's initial passage and return. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thicknesses and that the interaction with a shock further broadens the interface.

  16. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  17. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  18. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    Science.gov (United States)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  19. Reactor control device

    International Nuclear Information System (INIS)

    Araki, Takao; Inoue, Toyokazu.

    1981-01-01

    Purpose: To protect the reactor floor by alleviating the shock imparted to the reactor floor by a dropped control rod when a wire rope accidentally breaks. Constitution: A control rod is hung by wire rope from a control rod drive, and shock absorbers are mounted at the upper and lower portions of the control rod. The outer diameter of the upper shock absorber is made larger than the inner diameter of a control rod inserting hole formed in the reactor core. If the control rod drops, the upper absorber is stopped at the upper tapered portion of the inserting hole. Thus, the dropping energy of the control rod can be sufficiently absorbed by the upper and lower shock absorbers. (Kamimura, M.)

  20. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  1. Simultaneous use of traditional Chinese medicine (Si-Ni-Tang to treat septic shock patients: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Wu Shin-Hwar

    2011-08-01

    vasopressor activity, and positive chronotropic and inotropic effects. As this remedy has a potential benefit in treating septic shock patients, we designed a double-blind, prospective, randomized controlled trial and would like to publish the results and conclusions later. Trial Registration ClinicalTrials.gov: NCT01223430

  2. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  3. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  4. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  5. Shocks in coupled socio-ecological systems: what are they and how can we model them?

    NARCIS (Netherlands)

    Filatova, Tatiana; Polhill, Gary; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Coupled socio-ecological systems (SES) are complex systems characterized by self-organization, non-linearities, interactions among heterogeneous elements within each subsystem, and feedbacks across scales and among subsystems. When such a system experiences a shock or a crisis, the consequences are

  6. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  7. The bactericidal effect of shock waves

    Science.gov (United States)

    Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Goff, M. J.; Hameed, A.; Hazell, P. J.

    2014-05-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case.

  8. The bactericidal effect of shock waves

    International Nuclear Information System (INIS)

    Leighs, J A; Appleby-Thomas, G J; Wood, D C; Goff, M J; Hameed, A; Hazell, P J

    2014-01-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case

  9. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  10. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial

    NARCIS (Netherlands)

    Kolk, A. van der; Yang, K.G.; Tamminga, R.; Hoeven, H. van der

    2013-01-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were

  11. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  12. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    Li Yinxie; Zhang Jie

    2012-01-01

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  13. Adaptive magnetorheological seat suspension for shock mitigation

    Science.gov (United States)

    Singh, Harinder Jit

    This research focuses on theoretical and experimental analysis of an adaptive seat suspension employing magnetorheological energy absorber with the objective of minimizing injury potential to seated occupant of different weights subjected to broader crash intensities. The research was segmented into three tasks: (1) development of magnetorheological energy absorber, (2) biodynamic modeling of a seated occupant, and (3) control schemes for shock mitigation. A linear stroking semi-active magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m/s. MREA design was optimized on the basis of Bingham-plastic model (BPM model) in order to maximize the energy absorption capabilities at high impact velocities. Computational fluid dynamics and magnetic FE analysis were conducted to validate MREA performance. Subsequently, low-speed cyclic testing (0-2 Hz subjected to 0-5.5 A) and high-speed drop testing (0-4.5 m/s at 0 A) were conducted for quantitative comparison with the numerical simulations. Later, a nonlinear four degrees-of-freedom biodynamic model representing a seated 50th percentile male occupant was developed on the basis of experiments conducted on Hybrid II 50th percentile male anthropomorphic test device. The response of proposed biodynamic model was compared quantitatively against two different biodynamic models from the literature that are heavily implemented for obtaining biodynamic response under impact conditions. The proposed biodynamic model accurately predicts peak magnitude, overall shape and the duration of the biodynamic transient response, with minimal phase shift. The biodynamic model was further validated against 16 impact tests conducted on horizontal accelerator facility at NAVAIR for two different shock intensities. Compliance effects of human body were also investigated on the performance of adaptive seat suspension by comparing the proposed biodynamic model

  14. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  15. Development of a scanning proton microprobe - computer-control, elemental mapping and applications

    International Nuclear Information System (INIS)

    Loevestam, Goeran.

    1989-08-01

    A scanning proton microprobe set-up has been developed at the Pelletron accelerator in Lund. A magnetic beam scanning system and a computer-control system for beam scanning and data aquisition is described. The computer system consists of a VMEbus front-end computer and a μVax-II host-computer, interfaced by means of a high-speed data link. The VMEbus computer controls data acquisition, beam charge monitoring and beam scanning while the more sophisticated work of elemental mapping and spectrum evaluations is left to the μVax-II. The calibration of the set-up is described as well as several applications. Elemental micro patterns in tree rings and bark has been investigated by means of elemental mapping and quantitative analysis. Large variations of elemental concentrations have been found for several elements within a single tree ring. An external beam set-up has been developed in addition to the proton microprobe set-up. The external beam has been used for the analysis of antique papyrus documents. Using a scanning sample procedure and particle induced X-ray emission (PIXE) analysis, damaged and missing characters of the text could be made visible by means of multivariate statistical data evaluation and elemental mapping. Also aspects of elemental mapping by means of scanning μPIXE analysis are discussed. Spectrum background, target thickness variations and pile-up are shown to influence the structure of elemental maps considerably. In addition, a semi-quantification procedure has been developed. (author)

  16. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  17. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  18. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  19. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  20. SPCC- Software Elements for Security Partition Communication Controller

    Science.gov (United States)

    Herpel, H. J.; Willig, G.; Montano, G.; Tverdyshev, S.; Eckstein, K.; Schoen, M.

    2016-08-01

    Future satellite missions like Earth Observation, Telecommunication or any other kind are likely to be exposed to various threats aiming at exploiting vulnerabilities of the involved systems and communications. Moreover, the growing complexity of systems coupled with more ambitious types of operational scenarios imply increased security vulnerabilities in the future. In the paper we will describe an architecture and software elements to ensure high level of security on-board a spacecraft. First the threats to the Security Partition Communication Controller (SPCC) will be addressed including the identification of specific vulnerabilities to the SPCC. Furthermore, appropriate security objectives and security requirements are identified to be counter the identified threats. The security evaluation of the SPCC will be done in accordance to the Common Criteria (CC). The Software Elements for SPCC has been implemented on flight representative hardware which consists of two major elements: the I/O board and the SPCC board. The SPCC board provides the interfaces with ground while the I/O board interfaces with typical spacecraft equipment busses. Both boards are physically interconnected by a high speed spacewire (SpW) link.

  1. Effect of back-pressure forcing on shock train structures in rectangular channels

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  2. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  3. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  4. Experimental Study of the Information Signal of Combined Shock, Tilt, and Motion Sensor Based on the 3-Axis MEMS-Accelerometer

    Directory of Open Access Journals (Sweden)

    S. A. Vasyukov

    2014-01-01

    Full Text Available Modern car alarm systems are equipped with smart sensors implemented using various physical principles. These sensors have to ensure high reliability and validity of monitored parameters with a lack of false operations. First of all, shock sensor, which is a part of, essentially, entire alarm systems, as well as tilt and motion sensors are referred to the smart sensors.Shock sensors with the sensitive elements (SE of piezoelectric, microphone, and electromagnetic types possess a number of the essential shortcomings caused by the type of SE. It is, first of all, a narrow band of the sensitive elements, which does not allow true differentiation of shocks to the autobody from false actions, as well as a various sensitivity of sensors depending on the SE axis orientation.Tilt sensors of electromagnetic type implemented as separate devices were seldom used because of their high cost and imperfect characteristics. Though there is still a need for such sensors. The specified shortcomings can be hardly overcome through improvement of sensitive element hangers of considered sensors. The use of the three-axial accelerometers made by MEMS technology seems to be the most perspective here.The article presents results of pilot studies of the accelerations reached when auto-body is under shock and a car is inclined and runs. When measuring, the test board STM32F3DISCOVERY with the MEMS accelerometer LSM303DLHS is used. A level of noise and vibrations has been analysed when mounting a board on the plastic panel of the car and when operating the engine in the range from 700 to 4000 rpm. The article presents accelerations implemented under the following conditions: light shocks in different parts of the auto-body (wing, trunk, hood; strong shock (closing a door; slow and fast acceleration to the speed of 20 km/h with the subsequent braking and passage of obstacles such as "sleeping policemen".Research results enabled us to make justification for selecting the

  5. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  6. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  7. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  8. Design and testing of a shock absorber for a type 1 container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.

    1993-01-01

    A shock-absorber will be required for a rad. waste 'Konrad' type 1 container made of ductile cast iron whenever it will be used as a type B container according to the IAEA-Regulations for the Safe Transport of Radioactive materials. The shock-absorber has to protect the type B container during shipping such as to withstand the accident scenarios that are covered by the IAEA-Regulation tests without substantial loss of its shielding and tightness functions. The designation as type 1 container originates from German regulations for the intermediate storage site Gorleben and the final depository Konrad-mine. These regulations call for the limits on outside dimensions of 1700 mm in length, 1600 mm in width and 1450 mm in height as well as for a limit of 20 Mg on total weight without shock-absorber. The relatively simple design method for the shock-absorber has been validated by the test results. It can be extended to other materials and designs for shock-absorbers if reliable force-displacement-diagrams are available for the structural elements from which the absorbed energy and the displacements can be calculated by integration. In order to account for the dynamic effects, the better approximation of the true duration of the impact would be helpful. The present limit of 0.5 R p0,2 on the nominal stresses should be discussed because the large number of tests on containers made of ductile cast iron that have been performed up to now have shown a substantial level of conservatism on this respect. The sharply tapered pipes on edge Kl of the shock-absorbers should be replaced by pipe bends. This will result in smaller accelerations and in an even higher level of protection of the container than effected by the tested shock-absorber

  9. Success and failure of the defibrillation shock: insights from a simulation study.

    Science.gov (United States)

    Skouibine, K; Trayanova, N; Moore, P

    2000-07-01

    This simulation study presents a further inquiry into the mechanisms by which a strong electric shock fails to halt life-threatening cardiac arrhythmias. The research uses a model of the defibrillation process that represents a sheet of myocardium as a bidomain. The tissue consists of nonuniformly curved fibers in which spiral wave reentry is initiated. Monophasic defibrillation shocks are delivered via two line electrodes that occupy opposite tissue boundaries. In some simulation experiments, the polarity of the shock is reversed. Electrical activity in the sheet is compared for failed and successful shocks under controlled conditions. The maps of transmembrane potential and activation times calculated during and after the shock demonstrate that weak shocks fail to terminate the reentrant activity via two major mechanisms. As compared with strong shocks, weak shocks result in (1) smaller extension of refractoriness in the areas depolarized by the shock, and (2) slower or incomplete activation of the excitable gap created by deexcitation of the negatively polarized areas. In its turn, mechanism 2 is associated with one or more of the following events: (a) lack of some break excitations, (b) latency in the occurrence of the break excitations, and (c) slower propagation through deexcited areas. Reversal of shock polarity results in a change of the extent of the regions of deexcitation, and thus, in a change in defibrillation threshold. The results of this study indicate the paramount importance of shock-induced deexcitation in both defibrillation and postshock arrhythmogenesis.

  10. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  11. The need to use elements of controlling system by entities of small and microenterprises

    Directory of Open Access Journals (Sweden)

    K.O. Buzhymska

    2017-08-01

    Full Text Available The entities of small and microenterprise are the basis of an effectively functioning market economy. The development of small business in Ukraine is hindered by a number of negative factors, one of them is the imperfection of the management system. An effective method of improving the management system is the use of controlling as one of the newest technologies for coordinating managerial and economic processes towards achieving the general goals of the business entity. The article is devoted to the substantiation of the need to use elements of the controlling system at microenterpreneurship enterprises, to identify elements that are subject to urgent implementation and to determine effective approaches to the practical implementation of selected elements. The controlling system is primarily used to coordinate the management process in complex organizational structures that are characteristic of large and medium-sized enterprises, but some of its elements can be effectively used by small and microenterprises. The authors substantiate the necessity of introducing the following elements of the controlling system by small business entities: management accounting, monitoring, cost-benefit analysis, the information support for management decisions. The introduction of these elements is appropriate with the use of outsourcing or co-sourcing. The consultative and professional support of these processes should be provided by local government authorities as one of the directions of the state program for supporting small business.

  12. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  13. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  14. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  15. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  16. Shock therapy: Gris Gun's shock absorber can take the punch

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-04-01

    A newly developed shock impedance tool that isolates downhole tools that measure the effects of well stimulation techniques from being damaged by the violent shaking caused by various well stimulation techniques which combine perforating and propellant technology in a single tool, is discussed. The shock exerted by a perforating gun can exceed 25,000 G forces within 100 to 300 milliseconds, may damage or even destroy the sensitive electronics housed in the various recorders that record data about fracture gradients, permeability and temperature. The shock absorber developed by Tesco Gris Gun and Computalog, incorporates the mechanics of a piston style shock absorber in combination with a progressive spring stack and energy-dampening silicone oil chambers. The end results is an EUE 'slim line' assembly that is adaptable between the gun perforating string and the electronic equipment. It is typically attached below, reducing the shock load by as much as 90 per cent. The shock absorber is now available commercially through Gris Gun's exclusive distributorship. An improved version, currently under development, will be used for wireline perforating and tubing-conveyed perforating applications. 2 figs.

  17. Initial ISEE magnetometer results: shock observation

    International Nuclear Information System (INIS)

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  18. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  19. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  20. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  1. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  2. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    2018-05-01

    Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

  3. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  4. Corticosteroids in the treatment of dengue shock syndrome

    Directory of Open Access Journals (Sweden)

    Rajapakse S

    2014-05-01

    Full Text Available Senaka Rajapakse,1 Chaturaka Rodrigo,1 Sachith Maduranga,1 Anoja Chamarie Rajapakse21Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka; 2Kings Mill Hospital, Sherwood Forest NHS Foundation Trust, Sutton-in-Ashfield, Nottinghamshire, UKAbstract: Dengue infection causes significant morbidity and mortality in over 100 countries worldwide, and its incidence is on the rise. The pathophysiological basis for the development of severe dengue, characterized by plasma leakage and the “shock syndrome” are poorly understood. No specific treatment or vaccine is available, and careful monitoring and judicious administration of fluids forms the mainstay of management at present. It is postulated that vascular endothelial dysfunction, induced by cytokine and chemical mediators, is an important mechanism of plasma leakage. Although corticosteroids are potent modulators of the immune system, their role in pharmacological doses in modulating the purported immunological effects that take place in severe dengue has been a subject of controversy. The key evidence related to the role of corticosteroids for various manifestations of dengue are reviewed here. In summary, there is currently no high-quality evidence supporting the beneficial effects of corticosteroids for treatment of shock, prevention of serious complications, or increasing platelet counts. Non-randomized trials of corticosteroids given as rescue medication for severe shock have shown possible benefit. Nonetheless, the evidence base is small, and good-quality trials are lacking. We reiterate the need for well-designed and adequately powered randomized controlled trials of corticosteroids for the treatment of dengue shock.Keywords: dengue, dengue shock, shock, corticosteroids, vascular leak, thrombocytopenia

  5. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    Science.gov (United States)

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  6. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    International Nuclear Information System (INIS)

    Rauen, Thomas; Frye, Bjoern C.; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R.

    2016-01-01

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.

  7. Fate of trace element haps when applying mercury control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H. [University of North Dakota Energy and Environmental Research Center 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018 (United States); Brickett, Lynn; Pletcher, Sara [U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, PO Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)

    2009-11-15

    During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air pollutants (HAPs), which typically include As, Be, Cd, Cr, Co, Mn, Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects, Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (author)

  8. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    International Nuclear Information System (INIS)

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  9. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  10. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  11. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  12. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  13. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  14. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    International Nuclear Information System (INIS)

    Horton, J.W.

    1987-01-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

  15. Enhancement of the Effectiveness of Extracorporeal Shock Wave Therapy with Topical Corticosteroid in Treatment of Chronic Plantar Fasciitis: A Randomized Control Clinical Trial

    Science.gov (United States)

    Vahdatpour, Babak; Mokhtarian, Arghavan; Raeissadat, Seyed Ahmad; Dehghan, Farnaz; Nasr, Nafiseh; Mazaheri, Mahsa

    2018-01-01

    Background: Chronic recalcitrant plantar fasciitis is a disabling condition. We presumed if shock wave could increase the permeability of skin and facilitate penetration of topical corticosteroid through the skin; the combinational therapeutic effect would be stronger than using shock wave alone. The study purpose was to utilize the synergistic effect of shock wave and topical corticosteroid in treatment of plantar fasciitis. Materials and Methods: Patients in both groups (n = 40) received four sessions of shock wave with the same protocol at weekly intervals. At 30 min before each session, we used an occlusive dressing of topical clobetasol for the intervention group and Vaseline oil for the control group. Pain severity was assessed with visual analog scale (VAS) and modified Roles and Maudsley score (RMS) at baseline and 1 month and 3 months after intervention. Plantar fascia (PF) thickness was measured with ultrasonography at baseline and 3 months after intervention. Results: One month after intervention, VAS morning showed significant improvement in intervention group (P = 0.006) and RMS showed better improvement in intervention group (P = 0.026). There was no significant difference between the two groups after 3 months in RMS or VAS score. PF thickness was decreased significantly in both groups, but it was not significant between the two groups (P = 0.292). Conclusions: This combinational therapy yielded earlier pain reduction and functional improvement than using shock wave alone; topical corticosteroid could enhance the effectiveness of shockwave in short-term in the treatment of recalcitrant plantar fasciitis. PMID:29862211

  16. Enhancement of the Effectiveness of Extracorporeal Shock Wave Therapy with Topical Corticosteroid in Treatment of Chronic Plantar Fasciitis: A Randomized Control Clinical Trial

    Directory of Open Access Journals (Sweden)

    Babak Vahdatpour

    2018-01-01

    Full Text Available Background: Chronic recalcitrant plantar fasciitis is a disabling condition. We presumed if shock wave could increase the permeability of skin and facilitate penetration of topical corticosteroid through the skin; the combinational therapeutic effect would be stronger than using shock wave alone. The study purpose was to utilize the synergistic effect of shock wave and topical corticosteroid in treatment of plantar fasciitis. Materials and Methods: Patients in both groups (n = 40 received four sessions of shock wave with the same protocol at weekly intervals. At 30 min before each session, we used an occlusive dressing of topical clobetasol for the intervention group and Vaseline oil for the control group. Pain severity was assessed with visual analog scale (VAS and modified Roles and Maudsley score (RMS at baseline and 1 month and 3 months after intervention. Plantar fascia (PF thickness was measured with ultrasonography at baseline and 3 months after intervention. Results: One month after intervention, VAS morning showed significant improvement in intervention group (P = 0.006 and RMS showed better improvement in intervention group (P = 0.026. There was no significant difference between the two groups after 3 months in RMS or VAS score. PF thickness was decreased significantly in both groups, but it was not significant between the two groups (P = 0.292. Conclusions: This combinational therapy yielded earlier pain reduction and functional improvement than using shock wave alone; topical corticosteroid could enhance the effectiveness of shockwave in short-term in the treatment of recalcitrant plantar fasciitis.

  17. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  18. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  19. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  20. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M

    2012-09-12

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  1. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M; Trillo, S; Fratalocchi, Andrea

    2012-01-01

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  2. Experimental Shock Damage Risk Assessment for New Generation TAS-B Plasmic Propulsion Unit

    Science.gov (United States)

    Garnier, J.; De Fruytier, C.

    2014-06-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-B to qualify the PPU Mk2 unit in regards of increased shock levels.This unit supplies and controls two Plasma Thrusters used for satellite orbit keeping and attitude control. The PPU Mk2 unit mechanical design is based on a modular architecture. The different modules are mounted on a baseplate insuring thermal spreading and improved equipment flatness. The unit dimensions are 390 x 190 x 190 mm3 for a total mass of 11.5 kg.The PPU Mk2 contains several components sensitive to shock like specific inductors, transformers and relays. Due to an increasing of the shock specification in regards of the previous generation of PPU, it has been proposed to assess the good withstanding of these components and in order to mitigate the risks on the Qualification Model, a preliminary shock test has been performed on a Structural Model. This model is fully representative of the flight equipment in terms of mechanical interfaces and has been designed to have the same mechanical behaviour (same mass and main modes). Critical components have been embedded in this structural model in order to test their shock withstanding. Preliminary to this Structural Model, qualification at sensitive components levels has been performed through vibrations, shocks (half-sine) and thermal cycling. Evolution of the electrical main parameters has been followed to detect any degradation of the performance during this test campaigns.Then, the structural model has been instrumented to acquire the global behaviour of the equipment. Success criteria have been defined concerning mechanical behaviour before and after shocks, admissible electrical variations, visual inspections.After calibration phasis of the test bench, the shock test of the PPU Mk2 SM has been successfully conducted. The good test results allowed applying these shock levels confidently on the PPU Mk2 EQM model.

  3. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  5. The Shock and Vibration Digest. Volume 13, Number 3

    Science.gov (United States)

    1981-03-01

    Matehal Structural ElemenU with Material Damping M.M. Wallace and C.W. Bert The Univ. of Oklahoma, Norman , OK, Shock Vib. Bull., U.S. Naval Res...Vibration Kxtremal Control Strategy D.O. Smallwood and D.L. Gregory Sandid Labs., Albuquerque, NM, Shock Vib. Bull., U.S. Ndvdl Res. Lab.. Proc., No...Smailey.AJ 656,700 Smallwood , D.0 683 Smith, D.R 517 Smith, I.M 655 Smith, S 534 Smith,! 622 Smolka.S.A 714 Solo.V 711 Sonnonburg, P.N 576

  6. Finite element predictions of active buckling control of stiffened panels

    Science.gov (United States)

    Thompson, Danniella M.; Griffin, O. H., Jr.

    1993-04-01

    Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.

  7. A Modified Model Reference Adaptive Control for a Single Motor of Latch Type Control Element Drive Mechanism

    International Nuclear Information System (INIS)

    Park, Bae Jeong

    2016-01-01

    A modified Model Reference Adaptive Control (MRAC) for a single motor of latch type Control Element Drive Mechanism (CEDM) is described herein. The CEDM has complicated dynamic characteristics including electrical, mechanical, and magnetic effects. The previous control system has utilized a Proportional-Integral (PI) controller, and the control performance is limited according to nonlinear dynamic characteristics and environmental conditions. The modified MRAC using system identification (ID) technique improves the control performance in the operating condition such as model parameter variation and environmental condition change. The modified MRAC using the identified reference model with feed-forward gain and 180Hz noise reduction filter presents better performance under normal and/or abnormal condition. The simplified reference model can make H/W implementation more practical on the viewpoint of less computation and good performance. Actually, the CEDM controller shall be capable of controlling 101 control element assemblies (CEAs) individually in the nuclear power plant. Because the load conditions and the environmental condition around the 101 CEAs are all different minutely, the proposed modified MRAC can be a good practice. The modified MRAC controller will be applied in the real nuclear power plant later and this will overcome some weak point of PI controller

  8. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  9. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  10. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    OpenAIRE

    DeRuntz Jr., John A.

    2005-01-01

    The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA). Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equa...

  12. First-order Fermi acceleration of the diffuse ion population near the earth's bow shock

    Science.gov (United States)

    Forman, M. A.

    1981-01-01

    The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.

  13. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Science.gov (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  14. Propagation and dispersion of shock waves in magnetoelastic materials

    Science.gov (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  15. A COMPARISON OF ELEMENTAL ABUNDANCE RATIOS IN SEP EVENTS IN FAST AND SLOW SOLAR WIND REGIONS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Tylka, A. J.; Reames, D. V.

    2009-01-01

    The solar energetic (E > 1 MeV nucleon -1 ) particles (SEPs) observed in gradual events at 1 AU are assumed to be accelerated by coronal/interplanetary shocks from ambient thermal or suprathermal seed particles. If so, then the elemental abundances of SEPs produced in different solar wind (SW) stream types (transient, fast, and slow) might be systematically distinguished from each other. We look for these differences in SEP energy spectra and in elemental abundance ratios (including Mg/Ne and Fe/C, which compare low/high first ionization potential elements), in a large number of SEP time intervals over the past solar cycle. The SW regions are characterized by the three-component stream classification of Richardson et al. Our survey shows no significant compositional or energy spectral differences in the 5-10 MeV nucleon -1 range for SEP events of different SW stream types. This result extends the earlier finding that SEP events are observed frequently in fast SW streams, although their higher Alfven and SW flow speeds should constrain SEP production by coronal mass ejection-driven shocks in those regions. We discuss the implications of our results for shock seed populations and cross-field propagation.

  16. Issue At Point: Until Electric Shocks Are Legal

    Science.gov (United States)

    Buddenhagen, R. G.

    1971-01-01

    Examined are two alternatives to the use of electric shock to control destructive or repugnant behaviors in severely retarded or schizophrenic children: continued use of noncorporal punishment, and widescale application of appropriately arranged contingencies of positive reinforcement. (KW)

  17. Active and passive damping based on piezoelectric elements -controllability issues-

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.

    2001-01-01

    Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient

  18. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Kang, Zhitao; Summers, Christopher J. [Phosphor Technology Center of Excellence, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); Bansihev, Alexandr A.; Christensen, James M.; Dlott, Dana D. [School of Chemical Sciences and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Breidenich, Jennifer; Scripka, David A.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Zhou, Min, E-mail: min.zhou@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2016-01-04

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  19. The simplified interaction tool for efficient and accurate underwater shock analysis of naval ships

    NARCIS (Netherlands)

    Aanhold, J.E. van; Trouwborst, W.; Vaders, J.A.A.

    2014-01-01

    In order to satisfy the need for good quality UNDEX response estimates of naval ships, TNO developed the Simplified Interaction Tool (SIT) for underwater shock analysis. The SIT is a module of user routines linked to LS-DYNA, which generates the UNDEX loading on the wet hull of a 3D finite element

  20. Outputs of shock-loaded small piezoceramic disks

    International Nuclear Information System (INIS)

    Charest, Jacques A.; Mace, Jonathan Lee

    2002-01-01

    Thin small-diameter polycrystalline Lead-Zirconate-Titanate piezoceramic disks were shock loaded in the D33 orientation over a stress range of 0.1-30 GPa. Their electrical outputs were discharged into 50 Ω viewing resistors, producing typically 0.15 μs quasi-triangular impulses ranging from 50-700 V. The gas gun flat plate impact approach and the high explosives (HE) plane wave lens approach were used to load piezoceramic elements. These piezoceramic elements consisted of 0.25 mm thick and 1.32 mm diameter disks that were ultrasonically machined from 25 mm piezocrystal disks of type APC 850, commercially produced by American Piezo Ceramic Inc. To facilitate our experiments, the piezoceramic elements were coaxially mounted at the tip of a 2.35 mm diameter brass tube, an arrangement that is commercialized by Dynasen, Inc. under the name Piezopin of model CA-1136. Simple calculations on the electrical outputs produced by these piezoceramic disks reveal electrical outputs in excess of 3000 W. Such short bursts of electrical energy have the potential for numerous applications where critical timing is needed to observe fast transient events

  1. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    Science.gov (United States)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  2. Cures for the shock instability: Development of a shock-stable Roe scheme

    CERN Document Server

    Kim, S S; Rho, O H; Kyu-Hong, S

    2003-01-01

    This paper deals with the development of an improved Roe scheme that is free from the shock instability and still preserves the accuracy and efficiency of the original Roe's Flux Difference Splitting (FDS). Roe's FDS is known to possess good accuracy but to suffer from the shock instability, such as the carbuncle phenomenon. As the first step towards a shock-stable scheme, Roe's FDS is compared with the HLLE scheme to identify the source of the shock instability. Through a linear perturbation analysis on the odd-even decoupling problem, damping characteristic is examined and Mach number-based functions f and g are introduced to balance damping and feeding rates, which leads to a shock-stable Roe scheme. In order to satisfy the conservation of total enthalpy, which is crucial in predicting surface heat transfer rate in high-speed steady flows, an analysis of dissipation mechanism in the energy equation is carried out to find out the error source and to make the proposed scheme preserve total enthalpy. By modif...

  3. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  4. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation

    Science.gov (United States)

    Zhang, Ran; Wang, Xu; Liu, Zhenwei

    2018-03-01

    A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.

  5. Blood autotransfusion outcomes compared with Ringer lactate infusion in dogs with hemorrhagic shock induced by controlled bleeding

    Directory of Open Access Journals (Sweden)

    Mansour Safaei

    2011-01-01

    Conclusions: Crystalloid during the first hours after treatment of hemorrhagic shock may be better than autologous blood as preferred treatment, while autotransfusion showed its benefits some hours after. This finding can be used to develop better strategies for treatment of hemorrhagic shock.

  6. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  7. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  8. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  9. PELTIER ELEMENTS

    CERN Document Server

    Tani, Laurits

    2015-01-01

    To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.

  10. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  11. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  12. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  13. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  14. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  15. Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter-defibrillator in swine

    Science.gov (United States)

    KILLINGSWORTH, CHERYL R.; MELNICK, SHARON B.; LITOVSKY, SILVIO H.; IDEKER, RAYMOND E.; WALCOTT, GREGORY P.

    2013-01-01

    Background A subcutaneous implantable cardioverter defibrillator (S-ICD) could ease placement and reduce complications of transvenous ICDs, but requires more energy than transvenous ICDs. Therefore we assessed cardiac and chest wall damage caused by the maximum energy shocks delivered by both types of clinical devices. Methods During sinus rhythm, anesthetized pigs (38±6 kg) received an S-ICD (n = 4) and five 80-Joule (J) shocks, or a transvenous ICD (control, n = 4) and five 35-J shocks. An inactive S-ICD electrode was implanted into the same control pigs to study implant trauma. All animals survived 24-hours. Troponin I and creatine kinase muscle isoenzyme (CK-MM) were measured as indicators of myocardial and skeletal muscle injury. Histopathological injury of heart, lungs, and chest wall was assessed using semi-quantitative scoring. Results Troponin I was significantly elevated at 4- and 24-hours (22.6±16.3 and 3.1±1.3 ng/ml; baseline 0.07±0.09 ng/ml) in control pigs but not in S-ICD pigs (0.12±0.11 and 0.13±0.13 ng/ml; baseline 0.06±0.03 ng/ml). CK-MM was significantly elevated in S-ICD pigs after shocks (6544±1496 and 9705±6240 U/L; baseline 704±398 U/L) but not in controls. ECG changes occurred post-shock in controls but not in S-ICD pigs. The myocardium and lungs were histologically normal in both groups. Subcutaneous injury was greater in S-ICD compared to controls. Conclusion Although CK-MM suggested more skeletal muscle injury in S-ICD pigs, significant cardiac, lung, and chest wall histopathological changes were not detected in either group. Troponin I data indicate significantly less cardiac injury from 80-J S-ICD shocks than 35-J transvenous shocks. PMID:23713608

  16. Rippled shock front solutions for testing hydrodynamic stability simulations

    International Nuclear Information System (INIS)

    Munro, D.H.

    1989-01-01

    The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength

  17. Microprocessor-controlled time domain reflectometer for dynamic shock position measurements

    International Nuclear Information System (INIS)

    Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.

    1980-01-01

    Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements

  18. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  19. Inferior vena cava obstruction and shock

    Directory of Open Access Journals (Sweden)

    Megri Mohammed

    2018-01-01

    Full Text Available Shock is one of the most challenging life-threatening conditions with high mortality and morbidity; the outcomes are highly dependent on the early detection and management of the condition. Septic shock is the most common type of shock in the Intensive Care Unit. While not as common as other subsets of shock, obstructive shock is a significant subtype due to well defined mechanical and pathological causes, including tension pneumothorax, massive pulmonary embolism, and cardiac tamponade. We are presenting a patient with obstructive shock due to inferior vena cava obstruction secondary to extensive deep venous thrombosis. Chance of survival from obstructive shock in our patient was small; however, there was complete and immediate recovery after treatment of the obstruction on recognizing the affected vessels. This case alerts the practicing intensivist and the emergency medicine physician to consider occlusion of the great vessels other than the pulmonary artery or aorta as causes of obstructive shock.

  20. Organ distribution of radiolabeled enteric Escherichia coli during and after hemorrhagic shock

    International Nuclear Information System (INIS)

    Redan, J.A.; Rush, B.F.; McCullough, J.N.; Machiedo, G.W.; Murphy, T.F.; Dikdan, G.S.; Smith, S.

    1990-01-01

    Translocation of intestinal bacteria to the blood during hemorrhagic shock (HS) has been confirmed in rats and humans. The current study was designed to trace the path of translocated intestinal bacteria in a murine HS model. Thirty-one rats were gavaged with 1,000,000 counts of viable 14C oleic acid-labeled Escherichia coli. Forty-eight hours later the animals were bled to 30 mmHg until either 80% of their maximal shed blood was returned or 5 hours of shock had elapsed and they were resuscitated with Ringer's lactate as previously described. Control animals were cannulated but not shocked. Eight rats immediately after shock and resuscitation, 6 rats 24 hours after shock, 3 rats 48 hours after shock, and 4 animals that died in shock had their heart, lung, liver, spleen, kidney, and serum harvested, cultured, and radioactive content measured. Translocated enteric bacteria are found primarily in the lung immediately after shock with redistribution to the liver and kidney 24 hours later. Animals surviving to 48 hours were capable of eliminating the majority of the bacteria from their major organ systems. Positive cultures for E. coli were also found in the blood, lung, liver, and kidney. We speculate that the inflammatory response stimulated by the bacteria in these organs may contribute to the multiple-organ failure syndrome seen after HS

  1. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Science.gov (United States)

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    Science.gov (United States)

    Hubbard, Harvey H. (Editor)

    1993-01-01

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.

  3. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  4. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    Science.gov (United States)

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  6. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  7. Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm

    Science.gov (United States)

    Kakandikar, Ganesh; Nandedkar, Vilas

    2018-02-01

    Drawing or forming is a process normally used to achieve a required component form from a metal blank by applying a punch which radially draws the blank into the die by a mechanical or hydraulic action or combining both. When the component is drawn for more depth than the diameter, it is usually seen as deep drawing, which involves complicated states of material deformation. Due to the radial drawing of the material as it enters the die, radial drawing stress occurs in the flange with existence of the tangential compressive stress. This compression generates wrinkles in the flange. Wrinkling is unwanted phenomenon and can be controlled by application of a blank-holding force. Tensile stresses cause thinning in the wall region of the cup. Three main types of the errors occur in such a process are wrinkling, fracturing and springback. This paper reports a work focused on the springback and control. Due to complexity of the process, tool try-outs and experimentation may be costly, bulky and time consuming. Numerical simulation proves to be a good option for studying the process and developing a control strategy for reducing the springback. Finite-element based simulations have been used popularly for such purposes. In this study, the springback in deep drawing of an automotive Shock Absorber Cup is simulated with finite element method. Taguchi design of experiments and analysis of variance are used to analyze the influencing process parameters on the springback. Mathematical relations are developed to relate the process parameters and the resulting springback. The optimization problem is formulated for the springback, referring to the displacement magnitude in the selected sections. Genetic Algorithm is then applied for process optimization with an objective to minimize the springback. The results indicate that a better prediction of the springback and process optimization could be achieved with a combined use of these methods and tools.

  8. IL-1B rs16944 polymorphism is related to septic shock and death.

    Science.gov (United States)

    Jiménez-Sousa, María Ángeles; Medrano, Luz M; Liu, Pilar; Almansa, Raquel; Fernández-Rodríguez, Amanda; Gómez-Sánchez, Esther; Rico, Lucía; Heredia-Rodríguez, María; Gómez-Pesquera, Estefanía; Tamayo, Eduardo; Resino, Salvador

    2017-01-01

    IL-1β is a primary mediator of systemic inflammatory response syndrome (SIRS) and it may lead to shock septic. Our aim was to analyse whether IL-1B rs16944 polymorphism is associated with the onset of septic shock and death after major surgery. We performed a case-control study on 467 patients who underwent major cardiac or abdominal surgery. Of them, 205 patients developed septic shock (cases, SS group) and 262 patients developed SIRS (controls, SIRS group). The primary outcome variables were the development of septic shock and death within 90 days after diagnosis of septic shock. The IL-1B rs16944 polymorphism was genotyped by Sequenom's MassARRAY platform. The association analysis was performed under a recessive genetic model (AA vs. GG/GC). The frequency of septic shock was higher in patients with IL-1B rs16944 AA genotype than in patients with IL-1B rs16944 GG/AG genotype when all patients were taken into account (63·6% vs. 41·8%; P = 0·006), cardiac surgery (52·2% vs. 33·3%; P = 0·072) and abdominal surgery (76·2% vs. 50·2%; P = 0·023). However, the IL-1B rs16944 AA genotype was only associated with higher likelihood of septic shock in the analysis of all population [adjusted odds ratio (aOR) = 2·26 (95%CI = 1·03; 4·97; P = 0·042], but not when it was stratified by cardiac surgery (P = 0·175) or abdominal surgery (P = 0·467). Similarly, IL-1B rs16944 AA genotype was also associated with higher likelihood of septic shock-related death in all population [aOR = 2·67 (95%CI = 1·07; 4·97); P = 0·035]. IL-1B rs16944 AA genotype seems to be related to the onset of septic shock and death in patients who underwent major surgery. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Directory of Open Access Journals (Sweden)

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  10. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  11. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  12. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  13. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  14. A biomedical application of PIXE. Studies of track elements in human hair, in control and hyperactive children

    International Nuclear Information System (INIS)

    Shakir, N.S.

    1987-07-01

    Hair samples from hyperactive and control children have been analyzed for their trace elemental contents by PIXE. The main elements examined are S, K, Ca, Fe, Co, Ni, Cu, Zn, Se, Br, Hg and Pb. The significant difference between the elements in control population and in patients suffering from pathological conditions are examined. Investigations of the possible linear and multiple correlations between elements in each population are made. The work indicates that some elements do exhibit variation with pathological state. (author). 5 refs, 5 figs, 6 tabs

  15. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  16. Deposition of elemental sulfur in city gate Pressure Control Valves (PCVs)

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Thiago C. do; Veiga, Leandro S. da; Silva, Marcos J.M. da; Lemos, Marcelo C. de; Goncalves, Luciane T. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Deposition of elemental sulfur has been observed in city gate pressure control valves (PCV s), a phenomenon that causes operational problems in these facilities. This article discusses the problems caused by this deposition, especially in pilots of pressure control valves. While passing through PCV s, the flow of natural gas is subjected to a sharp drop in temperature due to the reduction of pressure (Joule-Thompson). When this happens, the elemental sulfur that is in balance with the flow of natural gas is deposited inside the PCV s and the obstacles ahead. Since PCV s are self-operated and use natural gas as the working fluid, the elemental sulfur is also deposited in the pilots as well. Elemental sulfur in powder form has very small particles - around 20 {mu}m - that prevent the perfect operation of the small moving parts of pilots. Because of this, the affected pilot cannot operate the PCV satisfactorily to regulate the pressure of the natural gas supplied to the customer. There are two possible consequences of this situation: when the customer increases consumption, the pressure will decline to less than below the limit established under the supply contract, which can lead to fines; and the pressure can rise above the limit tolerated by pipes, which can lead to dangerous ruptures. (author)

  17. Digital remote control system for power supplies of particle channel magnetooptical elements

    International Nuclear Information System (INIS)

    Vetrov, P.B.; Ermolina, G.P.; Kuznetsov, V.S.; Mojbenko, A.N.

    1986-01-01

    Current control of magnetooptical elements of accelerator particle channels is based on control of reference voltage of current stabilizers. Advent of industrial multidigit (12 bits) integral analog-to-digital converters permitted to develop simple digital sources of reference voltage. A digital control system of 30 spatially remoted power supplies of magnetooptical elements of particle channels on the basis of the ''Elektronika-60'' microcomputer is described. The microcomputer is connected by the standard communication line (20 mA) with the SM-4 computer. The ''Summa'' crate is connected with the microcomputer through the branch driver. Digit data are transmitted by the multibranch trunk of sequential communication (Manchester-2 code) at the rate of 0.5 Mband. Feedback was realized by connection of analog signals through the distributed commutator to the measuring line with a digital voltmeter

  18. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    Science.gov (United States)

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  19. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  20. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  1. Application of Underwater Shock Wave Focusing to the Development of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi

    1993-05-01

    This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.

  2. Drotrecogin alfa (activated) in adults with septic shock.

    NARCIS (Netherlands)

    Ranieri, V.M.; Thompson, B.T.; Barie, P.S.; Dhainaut, J.F.; Douglas, I.S.; Finfer, S.; Gardlund, B.; Marshall, J.C.; Rhodes, A.; Artigas, A.; Payen, D.; Tenhunen, J.; Al-Khalidi, H.R.; Thompson, V.; Janes, J.; Macias, W.L.; Vangerow, B.; Williams, M.D.; Pickkers, P.; Raemaekers, J.M.; et al.,

    2012-01-01

    BACKGROUND: There have been conflicting reports on the efficacy of recombinant human activated protein C, or drotrecogin alfa (activated) (DrotAA), for the treatment of patients with septic shock. METHODS: In this randomized, double-blind, placebo-controlled, multicenter trial, we assigned 1697

  3. Corticosteroids in the treatment of dengue shock syndrome.

    Science.gov (United States)

    Rajapakse, Senaka; Rodrigo, Chaturaka; Maduranga, Sachith; Rajapakse, Anoja Chamarie

    2014-01-01

    Dengue infection causes significant morbidity and mortality in over 100 countries worldwide, and its incidence is on the rise. The pathophysiological basis for the development of severe dengue, characterized by plasma leakage and the "shock syndrome" are poorly understood. No specific treatment or vaccine is available, and careful monitoring and judicious administration of fluids forms the mainstay of management at present. It is postulated that vascular endothelial dysfunction, induced by cytokine and chemical mediators, is an important mechanism of plasma leakage. Although corticosteroids are potent modulators of the immune system, their role in pharmacological doses in modulating the purported immunological effects that take place in severe dengue has been a subject of controversy. The key evidence related to the role of corticosteroids for various manifestations of dengue are reviewed here. In summary, there is currently no high-quality evidence supporting the beneficial effects of corticosteroids for treatment of shock, prevention of serious complications, or increasing platelet counts. Non-randomized trials of corticosteroids given as rescue medication for severe shock have shown possible benefit. Nonetheless, the evidence base is small, and good-quality trials are lacking. We reiterate the need for well-designed and adequately powered randomized controlled trials of corticosteroids for the treatment of dengue shock.

  4. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  5. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  6. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  7. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  8. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  9. Inappropriate shocks in the subcutaneous ICD

    DEFF Research Database (Denmark)

    Olde Nordkamp, Louise R A; Brouwer, Tom F; Barr, Craig

    2015-01-01

    shocks have been reported. METHODS: We analyzed the incidence, predictors and management of inappropriate shocks in the EFFORTLESS S-ICD Registry, which collects S-ICD implantation information and follow-up data from clinical centers in Europe and New Zealand. RESULTS: During a follow-up of 21 ± 13...... xyphoid to V6) reduced the risk. Reprogramming or optimization of SVT treatment after the first clinical event of inappropriate shock was successful in preventing further inappropriate shocks for cardiac oversensing and SVT events. CONCLUSIONS: Inappropriate shocks, mainly due to cardiac oversensing...

  10. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    Science.gov (United States)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10controlled by the value of the shock-precursor parameter, {Psi}=Q/vs, where Q is the ionization parameter of the UV photons escaping upstream. This parameter determines both the temperature and the degree of ionization of the gas entering the shock. In increasing velocity, the shock solution regimes are cold neutral precursors (vs<~40km/s), warm neutral precursors (40<~vs<~75km/s), warm partly ionized precursors (75<~vs<~120km/s), and fast shocks in which the preshock gas is in photoionization equilibrium and is fully ionized. The main effect of a magnetic field is to push these velocity ranges to higher values and to limit the postshock compression. In order to facilitate comparison with observations of shocks, we provide a number of convenient scaling relationships for parameters, such as postshock temperature, compression factors, cooling lengths, and Hβ and X-ray luminosity. (4 data files).

  11. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  12. Massive retroperitoneal haemorrhage after extracorporeal shock wave lithotripsy (ESWL).

    Science.gov (United States)

    Inoue, Hiromasa; Kamphausen, Thomas; Bajanowski, Thomas; Trübner, Kurt

    2011-01-01

    A 76-year-old male suffering from nephrolithiasis developed a shock syndrome 5 days after extracorporal shock wave lithotripsy (ESWL). CT scan of the abdomen showed massive haemorrhage around the right kidney. Although nephrectomy was performed immediately, the haemorrhage could not be controlled. Numerous units of erythrocytes were transfused, but the patient died. The autopsy revealed massive retroperitoneal haemorrhage around the right kidney. The kidney showed a subcapsular haematoma and a rupture of the capsule. The right renal artery was dissected. The inferior vena cava was lacerated. Accordingly, a hemorrhagic shock as the cause of death was determined, which might mainly have resulted from the laceration of the inferior vena cava due to ESWL. ESWL seems to be a relatively non-invasive modality, but one of its severe complications is perirenal hematoma. The injuries of the blood vessels might have been caused by excessive shock waves. Subsequently, anticoagulation therapy had been resumed 3 days after EWSL, which might have triggered the haemorrhage. Physicians should note that a haemorrhage after an ESWL can occur and they should pay attention to the postoperative management in aged individuals especially when they are under anticoagulation therapy.

  13. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  14. Geomorphology: the Shock of the Familiar

    Science.gov (United States)

    Dietrich, W. E.

    2008-12-01

    Everyone experiences landscapes and has a sense about how they work: water runs down hill, it erodes and carries sediments, and that's about it, right? Introductory earth science text books are uniformly qualitative about the field, and leave one with little sense of wonder, and certainly not "shock". But four shocks occur if one peels away the first impressions. First, landscapes are surprisingly similar: the same forms are repeated in virtually all environments, including under the ocean and on other planets. Second, we lack theory and mechanistic observations to answer many simple first-order questions, e.g. what controls the width of a river, how does rock type control hillslope form and erosion rate, or, is there a topographic signature of life. Third, there are unexpected connections between surface erosion, deep earth processes, and climate. And fourth, the field itself, despite having been a subject of study for well over 100 years, is currently experiencing a revolution of ideas and discoveries through new tools, observatories, centers, journals, books, contributions of researchers from other disciplines, and from a significant hiring of young researchers in geomorphology. Deep messages await discovery in the simple landforms surrounding us.

  15. Human performance: An essential element in materials control and accountability

    International Nuclear Information System (INIS)

    Haber, S.B.; Allentuck, J.

    1996-01-01

    The importance of the role of human performance in the successful and effective operation of many activities throughout many industries has been well documented. Most closely related to the materials control and accountability area is the work in human factors that has been ongoing in the U.S. nuclear industry since the Three Mile Island Nuclear Power Plant accident in 1979. Research related to the role of human reliability, human-system interface, and organization and management influences has been and is still being conducted to identify ways to enhance the safe and effective operation of nuclear facilities. This paper will discuss these human performance areas and how they relate to the materials control and accountability area. Particular attention will be focussed on the notion of open-quotes safety cultureclose quotes and how it can be defined and measured for understanding the values and attitudes held by individuals working in the materials control area. It is widely believed that the culture of an organization, which reflects the expectations and values of the management of an organization, is a key element to the operation of that organization. The human performance element is one which has not received a great deal of consideration in the materials control and accountability area and yet it will be demonstrated that it is an essential component to ensure the success of safeguards activities

  16. Significance of production of peptide leukotrienes in murine traumatic shock

    International Nuclear Information System (INIS)

    Craft, D.V.; Lefer, D.J.; Hock, C.E.; Lefer, A.M.

    1986-01-01

    The authors studied the formation of a leukotriene metabolite in plasma and bile during traumatic shock. Anesthetized rats subjected to Noble-Collip drum trauma developed a lethal shock state characterized by a survival time of 1.9 +/- 0.3h, a 4.5-fold increase in plasma cathepsin D activity, and a reduction in mean arterial blood pressure to 45 +/- 2 mmHg compared with 108 +/- 5 mmHg in sham-shock controls. Plasma and bile samples were analyzed by reverse-phase high-pressure liquid chromatography (HPLC) for peptide leukotrienes, and their retention times were confirmed by co-elution with radioactive standards, radioimmunoassay (RIA), and UV spectrophotometry. No leukotrienes or metabolites were found in plasma. The major peptide leukotriene from bile was eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 , which is also produced during endotoxin shock. The metabolite increased nearly sevenfold in traumatic shock compared with sham trauma. The identity of the metabolite was confirmed by UV scan, which revealed a spectrum consistent with a peptide leukotriene and similar to that of previously reported spectra for N-acetyl-LTE 4 . In conclusion, peptide leukotrienes are rapidly cleared from the blood and appear in the bile as N-acetyl-LTE 4 , a metabolite of the peptide leukotrienes. These findings support a role of the peptide leukotrienes in the pathogenesis of traumatic shock

  17. Optically Controlled Reconfigurable Antenna Array Based on E-Shaped Elements

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré Junior

    2014-01-01

    Full Text Available This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5 GHz. A measured gain of 12.5 dBi has been obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

  18. State of the Art Report for Development of Control Element Drive Mechanism of the APR+ Reactor

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Choi, Suhn; Song, Chul Hwa

    2008-10-01

    Recently newly-developed nuclear reactors with increased safety and enhanced performance by developed countries in the nuclear area are competing in the global nuclear market. Several reactors, for example AP600 and AP1000 by Westinghouse Electric Co. in USA, EPR by Areva in Europe, APWR by Mitsubishi Heavy Industry in Japan in the pressurized power reactor, are competing to preoccupy the nuclear market during Nuclear Renaissance. Dedicated control element drive mechanism with enhanced performance and increased safety are developed for these new reactors. And load follow capability is required, and it is estimated that load follow requirement make design requirement of a control element drive mechanism harsh. It is necessary to review the current technical state of a control element drive mechanism. This work is aimed to review the design characteristics of a past and current control element drive mechanism for a nuclear reactor and to check the direction and goal of CEDM design development recently

  19. State of the Art Report for Development of Control Element Drive Mechanism of the APR+ Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Seon; Choi, Suhn; Song, Chul Hwa

    2008-10-15

    Recently newly-developed nuclear reactors with increased safety and enhanced performance by developed countries in the nuclear area are competing in the global nuclear market. Several reactors, for example AP600 and AP1000 by Westinghouse Electric Co. in USA, EPR by Areva in Europe, APWR by Mitsubishi Heavy Industry in Japan in the pressurized power reactor, are competing to preoccupy the nuclear market during Nuclear Renaissance. Dedicated control element drive mechanism with enhanced performance and increased safety are developed for these new reactors. And load follow capability is required, and it is estimated that load follow requirement make design requirement of a control element drive mechanism harsh. It is necessary to review the current technical state of a control element drive mechanism. This work is aimed to review the design characteristics of a past and current control element drive mechanism for a nuclear reactor and to check the direction and goal of CEDM design development recently.

  20. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhaohuan [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States); Ju, Wenhua; Stone, James M., E-mail: zhzhu@physics.unlv.edu [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2016-12-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm{sup −2} in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  1. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    International Nuclear Information System (INIS)

    Zhu, Zhaohuan; Ju, Wenhua; Stone, James M.

    2016-01-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm −2 in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  2. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  3. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  4. Multiple shocks, coping and welfare consequences: natural disasters and health shocks in the Indian Sundarbans.

    Science.gov (United States)

    Mazumdar, Sumit; Mazumdar, Papiya Guha; Kanjilal, Barun; Singh, Prashant Kumar

    2014-01-01

    Based on a household survey in Indian Sundarbans hit by tropical cyclone Aila in May 2009, this study tests for evidence and argues that health and climatic shocks are essentially linked forming a continuum and with exposure to a marginal one, coping mechanisms and welfare outcomes triggered in the response is significantly affected. The data for this study is based on a cross-sectional household survey carried out during June 2010. The survey was aimed to assess the impact of cyclone Aila on households and consequent coping mechanisms in three of the worst-affected blocks (a sub-district administrative unit), viz. Hingalganj, Gosaba and Patharpratima. The survey covered 809 individuals from 179 households, cross cutting age and gender. A separate module on health-seeking behaviour serves as the information source of health shocks defined as illness episodes (ambulatory or hospitalized) experienced by household members. Finding reveals that over half of the households (54%) consider that Aila has dealt a high, damaging impact on their household assets. Result further shows deterioration of health status in the period following the incidence of Aila. Finding suggests having suffered multiple shocks increases the number of adverse welfare outcomes by 55%. Whereas, suffering either from the climatic shock (33%) or the health shock (25%) alone increases such risks by a much lesser extent. The multiple-shock households face a significantly higher degree of difficulty to finance expenses arising out of health shocks, as opposed to their counterparts facing only the health shock. Further, these households are more likely to finance the expenses through informal loans and credit from acquaintances or moneylenders. This paper presented empirical evidence on how natural and health shocks mutually reinforce their resultant impact, making coping increasingly difficult and present significant risks of welfare loss, having short as well as long-run development manifestations.

  5. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  7. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    OpenAIRE

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  8. An Instrumented Glove for Control Audiovisual Elements in Performing Arts

    Directory of Open Access Journals (Sweden)

    Rafael Tavares

    2018-02-01

    Full Text Available The use of cutting-edge technologies such as wearable devices to control reactive audiovisual systems are rarely applied in more conventional stage performances, such as opera performances. This work reports a cross-disciplinary approach for the research and development of the WMTSensorGlove, a data-glove used in an opera performance to control audiovisual elements on stage through gestural movements. A system architecture of the interaction between the wireless wearable device and the different audiovisual systems is presented, taking advantage of the Open Sound Control (OSC protocol. The developed wearable system was used as audiovisual controller in “As sete mulheres de Jeremias Epicentro”, a portuguese opera by Quarteto Contratempus, which was premiered in September 2017.

  9. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  10. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  11. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  12. The Multi-Element Electronstatic Lens Systems for Controlling and Focusing Charged Particle

    International Nuclear Information System (INIS)

    Sise, O.

    2004-01-01

    Particle optics are very close anolog of photon optics and most of the principles of an barged particle beam can be understood by thinking of the particles as rays of light. There are similar behaviours between particle and photon optics in controlling beams of light and charged particles, such as lenses and mirrors. Extensive information about the properties of charged particle optics, from which appropriate systems can be designed for any specific problem. In this way electrostatic lens systems are used to control beams of c/iarged particle with various energy and directions in several fields, for example electron microscopy, cathode ray tubes, ion accelerators and electron impact studies. In an electrostatic lens system quantative information is required over a wide energy range and a zoom-type of optics is needed. If the magnification is to remain constant over a wide range of energies, quite complicated electrostatic lens systems are required, .containing three, four, five, or even more lens elements. We firstly calculated the optical properties of three and four element cylinder electrostatic lenses with the help of the SIMION and LENSYS programs and developed the method for the calculation of the focal properties of five and more element lenses with afocal mode. In this method we used the combination of three and four element lenses to derive focal properties of multi-element lenses and presented this data over a wide range of energy

  13. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  14. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging

    Directory of Open Access Journals (Sweden)

    Barna János

    2012-11-01

    Full Text Available Abstract Background Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1 functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. Results We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1 signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Conclusion Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  15. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  16. Gothic elements in contemporary detective story : Matthew Gregory Lewis and Minette Walters compared

    Directory of Open Access Journals (Sweden)

    Vesna Marinko

    2009-12-01

    Full Text Available One of the most shocking Gothic novels was written by Matthew Gregory Lewis in 1796. His Gothic novel The Monk contains all the typical Gothic elements such as a ruined castle, aggressive villain, women in distress, the atmosphere of terror and horror and a lot more. This article analyses and compares to what extent the Gothic elements of the late 18th century survived in the contemporary detective story The Ice House (1993 written by Minette Walters and how these elements have changed.

  17. Trace-element analysis of Antarctic H chondrites: Chemical weathering and comparisons with their non-Antarctic counterparts

    International Nuclear Information System (INIS)

    Kwok, J.E.

    1986-01-01

    Large numbers of meteorites have been discovered in Antarctica over the last decade (7000 fragments probably representing over 1200 separate events). They are important for their numbers and for their complement of unique or rare specimens; they also have long terrestrial ages (up to 1,000,000 years) compared to non-Antarctic falls (usually < 200 years). We report compositional data for mobile/volatile trace elements Ag, Au, Bi, Cd, Co, Cs, In, Rb, Sb, Se, Te, Ti, U, and Zn in a suite of Antarctic H chondrites. Our data show that heavily oxidized H chondrites are leached of a portion of their trace elements and, therefore, have been chemically compromised by their stay in Antarctica. The less oxidized specimens seem to have retained their chemical integrity. We suggest possibilities for using chemical data to measure the degree of a chondrite's chemical weathering. We compare our data to that obtained previously for non-Antarctic H chondrites (Linger et al., 1986), by petrologic type (H4, H5, H6, H4-6) and shock-loading (moderately shocked facies a-c, heavily shocked facies d-f). Many statistically significant differences are found between non-Antarctic and Victoria Land, Antarctica H chondrites of each petrologic type and of shock facies d-f

  18. Design of the hydraulic shock absorbers characteristics using relative springs deflections at general excitation of the bus wheels

    Directory of Open Access Journals (Sweden)

    Polach P.

    2010-12-01

    Full Text Available The air-pressure-controlled hydraulic shock absorbers of axles’ air suspension are capable of changing their damping forces in dependence on air pressure in air springs. Due to the possibility of improving dynamic properties of all vehicles that use the axles’ air suspension, BRANO a.s., the Czech producer of shock absorbers, developed semi-active air-pressure-controlled hydraulic telescopic shock absorbers. The force-velocity characteristics of the controlled shock absorbers were designed on the basis of relative deflections of the air springs. As a criterion for the design of the optimum characteristics of the controlled shock absorbers the maximum similarity of dynamic responses of multibody models of the SOR C 12 bus for all the considered weights to the dynamic response of the reference multibody model was chosen. Time histories of relative deflections of the axles’ air springs determined during the simulations are compared. Simulations of running over an obstacle with all the wheels were originally chosen (symmetric kinematic excitation of wheels. Verification of the suitability of the designed force-velocity characteristics of the APCSA described in this paper is performed on the basis of the simulations of general kinematic excitation of wheels. Driving on the artificially created test track according to the ŠKODA VÝZKUM methodology was chosen.

  19. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Directory of Open Access Journals (Sweden)

    Asad Rehman

    Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity

  20. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  1. Oil price shocks and economy: an open question

    International Nuclear Information System (INIS)

    Di Marzio, G.

    2006-01-01

    rise almost certainly reflects the strong global economic environment in which it occurs; the main factor mitigating adverse effects has been the sustained and autonomous expansion of the global economy. Large oil price fluctuations produce now smaller effects than in the previous decades; although oil price shocks have continued to Occur, there have been no major episodes of stagflation since the 1970s. Estimates confirm smaller effects of the Current price shock after taking into account the global decline in oil intensity of GDP and a better monetary policy management. Advanced consuming economies have become better adapted to deal with oil price increases and volatility; institutional characteristics of economic systems show simply less rigidities and regulations; the extent of inflation pass through from terms-of-trade shocks has declined in recent years as labour markets have become more flexible; energy-intensive manufacturing industries contribute less than before to real GDP formation. Ali these elements allow far faster adjustment processes. Since 2002 global macro economic conditions have been more favourable than in any previous period, with a primary role developed by monetary policy, whose moderate stance has been allowing far international real interest rates historically low, so sustaining global output growth and demand pressure on oil prices. But the experience subsequent the 1990s does not provide reasons far dismissing the risk that persistent oil price increases will pass through into core inflation, so pushing monetary conditions to change [it

  2. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  3. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  4. Method and apparatus for a nuclear reactor for increasing reliability to scram control elements

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1976-01-01

    A description is given of a method and apparatus for increasing the reliability of linear drive devices of a nuclear reactor to scram the control elements held in a raised position thereby. Each of the plurality of linear drive devices includes a first type of holding means associated with the drive means of the linear drive device and a second type of holding means distinct and operatively dissimilar from the first type. The system of linear drive devices having both types of holding means are operated in such a manner that the control elements of a portion of the linear drive devices are only held in a raised position by the first holding means and the control elements of the remaining portion of linear drive devices are held in a raised position by only the second type of holding means. Since the two types of holding means are distinct from one another and are operatively dissimilar, the probability of failure of both systems to scram as a result of common mode failure will be minimized. Means may be provided to positively detect disengagement of the first type of holding means and engagement of the second type of holding means for those linear drive devices being operative to hold the control elements in a raised position with the second type of holding means

  5. Investigation of control law reconfigurations to accommodate a control element failure on a commercial airplane

    Science.gov (United States)

    Ostroff, A. J.; Hueschen, R. M.

    1984-01-01

    The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot more time to make longer range decisions. This paper presents a baseline design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Non-reconfigured and reconfigured control laws are then evaluated, both analytically and by means of a digital airplane simulation, for three individual control element failures (stabilizer, elevator, spoilers). The simulation results are used to evaluate the effectiveness of the control reconfiguration on tracking ability during the approach and landing phase of flight with severe windshear and turbulence disturbing the airplane dynamics.

  6. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    Science.gov (United States)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase

  7. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  8. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  9. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  10. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  11. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  12. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  13. Do oil shocks predict economic policy uncertainty?

    Science.gov (United States)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  14. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  15. PGAA method for control of the technologically important elements at processing of sulfide ores

    International Nuclear Information System (INIS)

    Kurbanov, B.I.; Aripov, G.A.; Allamuratova, G.; Umaraliev, M.

    2006-01-01

    Full text: Many precious elements (Au, Re, Pt, Pd, Ag, Cu, Ni, Co, Mo) in ores mainly exist in the form of sulfide minerals and the flotation method is often used for processing of such kind of ores. To enhance the efficiency of the process it is very important to carry out the operative control of the elements of interest at various stages of ore processing. In this work the results of studies for developing methods for control of technologically important elements at processing and enrichment sulfide ores, which content the gold, copper, nickel, molybdenum in the ore-processing plants of Uzbekistan. The design of transportable experimental PGAA device on the basis of low-power radionuclide neutron source ( 252 Cf) with neutrons of 2x10 7 neutr/sec allowing to determine element content of the above named ores and their processing products is offered. It is shown that the use of the thermal neutron capture gamma-ray spectrometry in real samples and technological products allows prompt determination of such elements as S, Cu, Ti and others, which are important for flotation of sulfide ores. Efficiency control of the flotation processing of sulfide ores is based on quick determination of the content of sulfur and some other important elements at different stages of the process. It was found that to determine elements the following gamma lines are the most suitable - 840.3 keV for sulfur, 609 keV and 7307 keV for copper and 1381.5 keV, 1498.3 keV and 1585.3 keV for titanium. Based on the measurements of original ores, concentrates of various stages of flotation and flotation slime the possibility for prompt determination of S, Cu and Ti content and thus to get necessary information on the efficiency of the flotation process was shown. (author)

  16. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  17. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  18. Study on the properties of porous magnetorheological elastomers under shock effect

    International Nuclear Information System (INIS)

    Ju, B X; Yu, M; Fu, J; Zheng, X; Yang, Q

    2013-01-01

    As a safe protector, buffer has been widely applied to engineering applications. The properties of cushion materials play a key role in the performance of the buffer under shock loading. Magnetorheological elastomers (MRE) are a kind of novel smart materials and show to have a controllable, field-dependent modulus, which have attracted increasing attentions and broad application prospects. This paper aims to fabricate a new kind of MRE, named as porous MRE, and study on the properties of porous MRE under shock effect in the presence of an external magnetic field. Three kinds of MRE samples based on polyurethane matrix were prepared without external magnetic field, and ammonium bicarbonate was used as foaming agent with content of 0 wt.%, 0.26 wt.%, 0.67 wt.%, respectively. The microstructures of the sample were observed by using a digital microscope, and image processing and analysis was applied to calculate the parameters of porous MRE. A sleeve structure and mass block were used to test the shock performance of porous MRE under shear mode, and an electromagnetic vibration and shock table was used to provide shock signal with half-sine shock signal. The results show that the content of foaming agent has an obvious influence on the microstructures of porous MRE. The porosity of the porous MRE samples increases with increasing of foaming agent content. Moreover, experimental results show that shock energy dissipation capacity is better than that of traditional MRE. This study is expected to provide guidance in the application of MRE in practical devices, such as in buffer devices.

  19. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    Science.gov (United States)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company

  20. Evaluation of thermal shock resistance of cordierite honeycombs

    Indian Academy of Sciences (India)

    A comparative study on thermal shock resistance (TSR) of extruded cordierite honeycombs is presented. TSR is an important property that predicts the life of these products in thermal environments used for automobile pollution control as catalytic converter or as diesel particulate filter. TSR was experimentally studied by ...

  1. Frontal sinuses and head-butting in goats: a finite element analysis.

    Science.gov (United States)

    Farke, Andrew A

    2008-10-01

    Frontal sinuses in goats and other mammals have been hypothesized to function as shock absorbers, protecting the brain from blows during intraspecific combat. Furthermore, sinuses are thought to form through removal of ;structurally unnecessary' bone. These hypotheses were tested using finite element modeling. Three-dimensional models of domesticated goat (Capra hircus) skulls were constructed, with variable frontal bone and frontal sinus morphology, and loaded to simulate various head-butting behaviors. In general, models with sinuses experienced higher strain energy values (a proxy for shock absorption) than did models with unvaulted frontal bones, and the latter often had higher magnitudes than models with solid vaulted frontal bones. Furthermore, vaulted frontal bones did not reduce magnitudes of principal strain on the surface of the endocranial cavity relative to models with unvaulted frontal bones under most loading conditions. Thus, these results were only partially consistent with sinuses, or the bone that walls the sinuses, acting as shock absorbers. It is hypothesized that the keratinous horn sheaths and cranial sutures are probably more important for absorbing blows to the head. Models with sinuses did exhibit a more ;efficient' distribution of stresses, as visualized by histograms in which models with solid frontal bones had numerous unloaded elements. This is consistent with the hypothesis that sinuses result at least in part from the removal of mechanically unnecessary bone.

  2. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    International Nuclear Information System (INIS)

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-01-01

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu

  3. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  4. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  5. Is Distance to the Nearest Registered Public Automated Defibrillator Associated with the Probability of Bystander Shock for Victims of Out-of-Hospital Cardiac Arrest?

    Science.gov (United States)

    Neves Briard, Joel; de Montigny, Luc; Ross, Dave; de Champlain, François; Segal, Eli

    2018-04-01

    Introduction Rapid access to defibrillation is a key element in the management of out-of-hospital cardiac arrests (OHCAs). Public automated external defibrillators (PAEDs) are becoming increasingly available, but little information exists regarding the relation between the proximity to the arrest and their usage in urban areas. This study is a retrospective, observational, cross-sectional analysis of non-traumatic OHCA during a 24-month period in the greater Montreal area (Quebec, Canada). Using logistic regression, bystander shock odds are described with regards to distance from the OHCA scene to the nearest PAED, adjusted for prehospital care arrival delay and time of day, and stratifying for type of location. Out of a total of 2,443 OHCA victims identified, 77 (3%) received bystander PAED shock, 622 (26%) occurred out-of-home, and 743 (30%) occurred during business hours. When controlling for time (business hours versus other hours) and minimum response delay for prehospital care arrival, a marginal negative association was found between bystander shock and distance to the nearest PAED in logged meters (aOR=0.80; CI, 0.64-0.99) for out-of-home cardiac arrests. No significant association was found between distance and bystander shock for at-home arrests. Out-of-home victims had significantly higher odds of receiving bystander shock up to 175 meters of distance to a PAED inclusively (aOR=2.52; CI, 1.07-5.89). For out-of-home cardiac arrests, proximity to a PAED was associated with bystander shock in the greater Montreal area. Strategies aiming to increase accessibility and use of these life-saving devices could further expand this advantage by assisting bystanders in rapidly locating nearby PAEDs. Neves Briard J , de Montigny L , Ross D , de Champlain F , Segal E . Is distance to the nearest registered public automated defibrillator associated with the probability of bystander shock for victims of out-of-hospital cardiac arrest? Prehosp Disaster Med. 2018;33(2):153-159.

  6. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Nikroo, A.; Giraldez, E. [General Atomics, San Diego, California 92186-5608 (United States); Boehly, T. [Laboratory for Laser Energetics, Rochester, New York 14623-1299 (United States)

    2014-09-15

    An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.

  7. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  8. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    Science.gov (United States)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  9. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  10. Special equipment for the fabrication and quality control of nuclear fuel elements

    International Nuclear Information System (INIS)

    Guse, K.; Herbert, W.; Jaeger, K.

    1989-01-01

    For the fabrication of LWR fuel elements, columns are packed of up to 4 m in length, consisting of fuel pellets with different uranium enrichment, their weight and total length to be measured prior to further processing to fuel rods. An automated column packing device has been developed for this purpose. The packing jobs and other tasks are computer-controlled, measured data are stored and are printed out for quality documentation. The forces in the springs of fuel spacers of LWR fuel elements are to be measured and compared with the standard requirements, deviations to be documented. For this task, another computer-controlled, automated device has been developed for measuring the spring forces at all required positions after positioning and fixation of the spacers. (orig./DG) [de

  11. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  12. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  13. Insights into chondrule formation process and shock-thermal history of the Dergaon chondrite (H4-5

    Directory of Open Access Journals (Sweden)

    D. Ray

    2017-05-01

    Full Text Available The Dergaon fall represents a shock-melted H4-5 (S5 ordinary chondrite which includes at least ten textural varieties of chondrules and belongs to the high chondrule-matrix ratio type. Our study reveals that the chondrules are of diverse mineralogy with variable olivine-pyroxene ratios (Type II, igneous melt textures developed under variable cooling rates and formed through melt fractionations from two different melt reservoirs. Based on the experimental analogues, mineralogical associations and phase compositions, it is suggested that the Dergaon chondrules reflect two contrasting environments: a hot, dust-enriched and highly oxidized nebular environment through melting, without significant evaporation, and an arrested reducing environment concomitant with major evaporation loss of alkali and highly volatile trace elements. Coexistence of chlorapatite and merrillite suggests formation of the Dergaon matrix in an acidic accretionary environment. Textural integration and chemical homogenization occurred at ∼1 atmospheric pressure and a mean temperature of 765 °C mark the radiogenic thermal event. Equilibrated shock features (olivine mosaicism, diaplectic plagioclase, polycrystalline troilite due to an impact-induced thermal event reflect a shock pressure >45 GPa and temperature of 600 °C. By contrast, the local disequilibrium shock features (silicate melt veins comprising of olivine crystallites, troilite melt veins and metal droplets correspond to a shock pressure up to 75 GPa and temperature >950 °C.

  14. Why the Nature of Oil Shocks Matters

    International Nuclear Information System (INIS)

    Archanskaia, Elizaveta; Hubert, Paul; Creel, Jerome

    2009-03-01

    This article studies the impact of oil shocks on the macro-economy in two ways insofar unexploited in the literature. The analysis is conducted at the global level, and it explicitly accounts for the potentially changing nature of oil shocks. Based on an original world GDP series and a grouping of oil shocks according to their nature, we find that oil supply shocks negatively impact world growth, contrary to oil demand shocks, pro-cyclical in their nature. This result is robust at the national level for the US. Furthermore, endogenous monetary policy is shown to have no counter-cyclical effects in the context of an oil demand shock. (authors)

  15. The microphysics of collisionless shock waves

    DEFF Research Database (Denmark)

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active ga...

  16. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  17. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  18. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  19. Electric shock and electrical fire specialty

    International Nuclear Information System (INIS)

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  20. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  1. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  2. Diagnostic and prognostic value of procalcitonin in patients with septic shock.

    Science.gov (United States)

    Clec'h, Christophe; Ferriere, Françoise; Karoubi, Philippe; Fosse, Jean P; Cupa, Michel; Hoang, Philippe; Cohen, Yves

    2004-05-01

    To determine whether procalcitonin is a reliable diagnostic and prognostic marker in septic shock compared with nonseptic shock. Prospective controlled trial. Intensive care unit of the Avicenne Teaching Hospital, Bobigny, France. All patients admitted to our intensive care unit over a 12-month period with clinical evidence of shock. None. Echocardiography or pulmonary artery flotation catheter measurements were used to assess hemodynamics, and multiple specimens were obtained for microbiological studies. Standard criteria were used to diagnose septic shock. Serum concentrations of procalcitonin, C-reactive protein, and lactate were determined on the day of shock onset (day 1) and on days 3, 7, and 10. Seventy-five patients were included, 62 in the septic shock group and 13 in the cardiogenic shock group. Serum procalcitonin on day 1 was significantly higher in patients with than without septic shock (median, 14 [0.3-767] ng/mL vs. 1 [0.5-36] ng/mL, p < .01). A cutoff value of 1 ng/mL had 95% sensitivity and 54% specificity for separating patients with and without sepsis. C-reactive protein failed to discriminate between these two groups. Among patients with sepsis, procalcitonin concentrations were significantly higher in those who died than in the survivors, at all four measurement time points (median, 16 [0.15-767] ng/mL vs. 6 [0.2-123] ng/mL, p = .045 on day 1; 6.5 [0.3-135] ng/mL vs. 1.05 [0.11-53] ng/mL, p = .02 on day 10). A cutoff value of 6 ng/mL on day 1 separated patients who died from those who survived with 87.5% sensitivity and 45% specificity. C-reactive protein was not helpful for predicting mortality. Serum lactate was a nonspecific prognostic marker. These data indicate that procalcitonin may be a valuable early diagnostic and prognostic marker in patients with septic shock.

  3. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  4. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  5. A level set approach for shock-induced α-γ phase transition of RDX

    Science.gov (United States)

    Josyula, Kartik; Rahul; De, Suvranu

    2018-02-01

    We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.

  6. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  7. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  8. Deformation response of Zr after shock-loading

    International Nuclear Information System (INIS)

    Song, S.G.; Gray, G.T. III, and; Lopez, M.F.

    1996-01-01

    The post-shock stress-strain response and microstructural evolution of Zr shock-loaded to 7 GPa were investigated. A Bauschinger effect in the room temperature reload stress-strain behavior due to shock-loading has been observed following yielding. Deformation twinning is shown to play a more important role than slip during post-shock plastic deformation and work hardening. The work hardening rate of the shock-prestrained specimens is less temperature sensitive than that of annealed Zr. The underlying microstructures responsible for the Bauschinger effect and the differences in work hardening behavior are characterized. A new type of dense dislocation arrangement occurring during the shock-wave deformation of Zr is discussed. copyright 1996 American Institute of Physics

  9. Experimental study of micro-shock tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ouk; Kim, Gyu Wan; Rasel, Md. Alim Iftakhar [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Kim, Heuy Dong [Fire Research Center, Korea Institute of Civil Engineering and Building Technology, Hwasung (Korea, Republic of)

    2015-03-15

    The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3 mm to 6 mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

  10. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  11. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  12. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    Science.gov (United States)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  13. Vorticity dynamics after the shock-turbulence interaction

    Science.gov (United States)

    Livescu, D.; Ryu, J.

    2016-05-01

    The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms=10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.

  14. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  15. Shock wave science and technology reference library. Vol. 4. Heterogeneous detonation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan (ed.) [Defence Research and Development Canada, Suffield, AB (Canada)

    2009-07-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov). Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for graduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems. (orig.)

  16. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  17. Characterization and modification of cavitation pattern in shock wave lithotripsy

    Science.gov (United States)

    Arora, Manish; Ohl, Claus Dieter; Liebler, Marko

    2004-01-01

    The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a method to modify the cavitation pattern by timing two consecutive pressure waves at variable delays. It is found that the spatial and temporal dynamics of the cavitation bubble can be varied in large ranges. The ability to control cavitation dynamics allows discussing strategies for improvement of medical and biological applications of shock waves such as cell membrane poration and stone fragmentation.

  18. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  19. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  20. Finite element analysis of actively controlled smart plate with patched actuators and sensors

    Directory of Open Access Journals (Sweden)

    M. Yaqoob Yasin

    Full Text Available The active vibration control of smart plate equipped with patched piezoelectric sensors and actuators is presented in this study. An equivalent single layer third order shear deformation theory is employed to model the kinematics of the plate and to obtain the shear strains. The governing equations of motion are derived using extended Hamilton's principle. Linear variation of electric potential across the piezoelectric layers in thickness direction is considered. The electrical variable is discretized by Lagrange interpolation function considering two-noded line element. Undamped natural frequencies and the corresponding mode shapes are obtained by solving the eigen value problem with and without electromechanical coupling. The finite element model in nodal variables are transformed into modal model and then recast into state space. The dynamic model is reduced for further analysis using Hankel norm for designing the controller. The optimal control technique is used to control the vibration of the plate.