WorldWideScience

Sample records for shock accelerated thin

  1. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-01-01

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure

  2. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  3. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P.; Auroux, E. [Laboratoire de Combustion et de Detonique (UPR 9028 CNRS), ENSMA, BP 109, Teleport 2, Chasseneuil du Poitou, 86960 Futuroscope Cedex (France)

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  4. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  5. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  6. Particle acceleration in modified shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  7. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  8. Reaction effects in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references

  9. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  10. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  11. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  12. Turbulent energy generated by accelerations and shocks

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1986-01-01

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs

  13. Particle acceleration and shock wave structure

    International Nuclear Information System (INIS)

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  14. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  15. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  16. Role of drifts in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Decker, R.B.

    1988-01-01

    The role played by shock-associated drifts during the diffusive acceleration of charged particles at collisionless MHD shocks is evaluated. In the rest frame of the shock, the total energy gained by a particle is shown to result from two coupled acceleration mechanisms, the usual first-order Fermi mechanism and the drift mechanism. When averaged over a distribution of particles, the ratio of the drift-associated energy gain to the total energy is found to be independent of the total energy at a given theta1 (the angle between the shock normal and the unperturbed upstream magnetic field) in agreement with theoretical predictions. No evidence is found for drift-associated deceleration, suggesting that drifts always augment acceleration. 35 references

  17. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  18. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  19. Effects of Shock and Turbulence Properties on Electron Acceleration

    Science.gov (United States)

    Qin, G.; Kong, F.-J.; Zhang, L.-H.

    2018-06-01

    Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.

  20. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  1. Electron acceleration in a wavy shock front

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Karlický, Marian

    2011-01-01

    Roč. 531, July (2011), A55/1-A55/8 ISSN 0004-6361 R&D Projects: GA AV ČR(CZ) IAA300030701; GA MŠk(CZ) ME09009; GA ČR GA205/09/0170; GA ČR GAP209/10/1680 Grant - others:EU(XE) EC FP7 SWIFF 263340 Institutional research plan: CEZ:AV0Z10030501 Keywords : shock waves * acceleration of particles * magnetic fields * solar radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  2. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  3. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  4. Resonant ion acceleration by collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Ohsawa, Y.

    1985-01-01

    Resonant ion acceleration ( the ν/sub rho/xΒ acceleration ) in laminar magnetosonic shock waves is studied by theory and simulation. Theoretical analysis based on a two-fluid model shows that, in laminar shocks, the electric field strength in the direction of the wave normal is about (m/sub i/m/sub e/) 1 2 times large for quasi-perpendicular shocks than that for the quasi-parallel shocks, which is a reflection of the fact that the width of quasi-perpendicular shocks is much smaller than that of the quasi-parallel shocks. Trapped ions can be accelerated up to the speed about ν/sub A/(m/sub i/m/sub e/) 1 2(M/sub A/-1) 3 2 in quasi-perpendicular shocks. Time evolution of self-consistent magnetosonic shock waves is studied by using a 2-12 dimensional fully relativistic, fully electromagnetic particle simulation with full ion and electron dynamics. Even a low-Mach-number shock wave can significantly accelerate trapped ions by the ν/sub rho/xΒ acceleration. The resonant ion acceleration occurs more strongly in quasi-perpendicular shocks, because the magnitude of this acceleration is proportional to the electric field strength

  5. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  6. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  7. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  8. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  9. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  10. Radiography for a Shock-accelerated Liquid Layer

    International Nuclear Information System (INIS)

    P. Meekunnasombat J.G. Oakley/inst M.H. Anderson R. Bonazza

    2005-01-01

    This program supported the experimental study of the interaction of planar shock waves with both solid structures (a single cylinder or a bank of cylinders) and single and multiple liquid layers. Objectives of the study included: characterization of the shock refraction patterns; measurements of the impulsive loading of the solid structures; observation of the response of the liquid layers to shock acceleration; assessment of the shock-mitigation effects of single and multiple liquid layers. The uploaded paper is intended as a final report for the entire funding period. The poster described in the paper won the Best Poster Award at the 25 International Symposium on Shock Waves

  11. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  12. The acceleration of cosmic ray by shock waves

    International Nuclear Information System (INIS)

    Axford, W.I.; Leer, E.; Skadron, G.

    1977-01-01

    The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)

  13. Acceleration of cosmic rays in SNR shock waves

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Markiewicz, W.J.; Voelk, H.J.

    1988-01-01

    The time dependence of the energy density of cosmic rays accelerated in the outer shock of a supernova is studied in simple nonlinear models. The solutions are classified in their dependence on the parameters of the system. (orig.)

  14. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  15. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  16. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  17. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  18. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  19. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  20. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  1. Monte Carlo study of neutrino acceleration in supernova shocks

    International Nuclear Information System (INIS)

    Kazanas, Demosthenes; Ellison, D.C.; National Aeronautics and Space Administration, Greenbelt, MD

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities rho>10 13 g cm -3 at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse

  2. Cosmic-ray acceleration at stellar wind terminal shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Forman, M.A.; Axford, W.I.

    1985-01-01

    Steady-state, spherically symmetric, analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, gradients, and flow patterns of particle modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law Galactic spectra. The solutions obtained apply in the test particle limit in which the cosmic rays do not modify the background flow. The solutions show a characteristic power-law momentum spectrum for accelerated particles and a more complex spectrum of particles that are decelerated in the stellar wind. The power-law spectral index depends on the compression ratio of the shock and on the modulation parameters characterizing propagation conditions in the upstream and downstream regions of the shock. Solutions of the transport equations for the total density N (integrated over all energies), pressure P/sub c/, and energy flux F/sub c/ of Galactic cosmic rays interacting with a stellar wind and shock are also studied. The density N(r) increases with radius r, and for strong shocks with large enough modulation parameters, there may be a significant enhancement of the pressure of weakly relativistic particles near the shock compared to the cosmic-ray background pressure P/sub infinity/. The emergent energy flux at infinity is of the order of 4π R 2 V 1 P/sub infinity/ (V 1 is wind velocity upstream of the shock, R is shock radius)

  3. Shock drift acceleration in the presence of waves

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  4. Particle injection and cosmic ray acceleration at collisionless parallel shocks

    International Nuclear Information System (INIS)

    Quest, K.B.

    1987-01-01

    The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs

  5. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  6. Time-dependent diffusive acceleration of test particles at shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))

    1991-07-15

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).

  7. Time-dependent diffusive acceleration of test particles at shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1991-01-01

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)

  8. Experimental and numerical investigation of reactive shock-accelerated flows

    Energy Technology Data Exchange (ETDEWEB)

    Bonazza, Riccardo [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm2). Specific goals were to quantify the effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.

  9. Experimental and numerical investigation of reactive shock-accelerated flows

    International Nuclear Information System (INIS)

    Bonazza, Riccardo

    2016-01-01

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25x25 cm"2). Specific goals were to quantify the effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.

  10. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  11. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  12. Performance evaluation of thin wearing courses through scaled accelerated trafficking.

    Science.gov (United States)

    2014-01-01

    The primary objective of this study was to evaluate the permanent deformation (rutting) and fatigue performance of : several thin asphalt concrete wearing courses using a scaled-down accelerated pavement testing device. The accelerated testing : was ...

  13. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  14. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    Science.gov (United States)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  15. Surfing and drift acceleration at high mach number quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Amano, T.

    2008-01-01

    Electron acceleration in high Mach number collisionless shocks relevant to supernova remnant is discussed. By performing one- and two-dimensional particle-in-cell simulations of quasi-perpendicular shocks, we find that energetic electrons are quickly generated in the shock transition region through shock surfing and drift acceleration. The electron energization is strong enough to account for the observed injection at supernova remnant shocks. (author)

  16. Complex flow morphologies in shock-accelerated gaseous flows

    Science.gov (United States)

    Kumar, S.; Vorobieff, P.; Orlicz, G.; Palekar, A.; Tomkins, C.; Goodenough, C.; Marr-Lyon, M.; Prestridge, K. P.; Benjamin, R. F.

    2007-11-01

    A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF 6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D=1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies.

  17. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  18. Shock-drift accelerated electrons and n-distribution

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Karlický, Marian

    2016-01-01

    Roč. 591, July (2016), A127/1-A127/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-19376S; GA ČR GA15-17490S; GA ČR GAP209/12/0103 Grant - others:EC(XE) 295272; EC(XE) 606862 Program:FP7; FP7 Institutional support: RVO:67985815 Keywords : shock waves * acceleration of particles * Sun flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  19. Experimental particle acceleration by water evaporation induced by shock waves

    Science.gov (United States)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  20. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    Science.gov (United States)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  1. Shock-Wave Acceleration of Protons on OMEGA EP

    Science.gov (United States)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2015-11-01

    Recent experimental results using shock-wave acceleration (SWA) driven by a CO2 laser in a H2 gas-jet plasma have shown the possibility of producing proton beams with energy spreads emission from a UV ablated material. The desired characteristics optimal for SWA are met: (a) peak plasma density is overcritical for the 1- μm main pulse and (b) the plasma profile exponentially decays over a long scale length on the rear side. Results will be shown using a 4 ω probe to experimentally characterize the plasma density profile. Scaling from simulations of the SWA mechanism shows that ion energies in the range of 100 MeV/amu are achievable with a focused a0 of 5 from the OMEGA EP Laser System. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Analytic study of 1D diffusive relativistic shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  3. The application of front tracking to the simulation of shock refractions and shock accelerated interface mixing

    International Nuclear Information System (INIS)

    Sharp, D.H.; Grove, J.W.; Yang, Y.; Boston, B.; Holmes, R.; Zhang, Q.; Glimm, J.

    1993-01-01

    The mixing behavior of two or more fluids plays an important role in a number of physical processes and technological applications. The authors consider two basic types of mechanical (i.e., non-diffusive) fluid mixing. If a heavy fluid is suspended above a lighter fluid in the presence of a gravitational field, small perturbations at the fluid interface will grow. This process is known as the Rayleigh-Taylor instability. One can visualize this instability in terms of bubbles of the light fluid rising into the heavy fluid, and fingers (spikes) of the heavy fluid falling into the light fluid. A similar process, called the Richtmyer-Meshkov instability occurs when an interface is accelerated by a shock wave. These instabilities have several common features. Indeed, Richtmyer's approach to understanding the shock induced instability was to view that process as resulting from an acceleration of the two fluids by a strong gravitational field acting for a short time. Here, the authors report new results on the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Highlights include calculations of Richtmyer-Meshkov instabilities in curved geometries without grid orientation effects, improved agreement between computations and experiments in the case of Richtmyer-Meshkov instabilities at a plane interface, and a demonstration of an increase in the Rayleigh-Taylor mixing layer growth rate with increasing compressibility, along with a loss of universality of this growth rate. The principal computational tool used in obtaining these results was a code based on the front tracking method

  4. Particle magnetic moment conservation and resonance in a pure magnetohydrodynamic shock and field inclination influence on diffusive shock acceleration

    International Nuclear Information System (INIS)

    Lieu, R.; Quenby, J.J.

    1990-01-01

    Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs

  5. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  6. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang, E-mail: kongx@sdu.edu.cn; Chen, Yao, E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan, E-mail: guofan.ustc@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  7. Application of electron accelerator for thin film in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono, Dadang

    2004-01-01

    Electron accelerator is widely used for the crosslinking of wire and cable insulation, the treatment of heat shrinkable products, precuring of tire components, and the sterilization of medical products. Research and development the use of electron accelerator for thin film in Indonesia covered radiation curing of surface coating, crosslinking of poly (butylenes succinate), crosslinking of wire, cable and heat shrinkable, sterilization of wound dressing, and prevulcanization of tire. In general, comparing with conventional method, electron beam processing have some advantages, such as, less energy consumption, much higher production rate, processing ability at ambient temperature and environmental friendly. Indonesia has a great potential to develop the application of electron accelerator, due to the remarkable growth industrial sector, the abundant of natural resources and the increasing demand of the high quality products. This paper describes the activities concerning with R and D, and application of electron accelerator for processing of thin film. (author)

  8. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  9. Ion acceleration at the earth's bow shock: A review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different population of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compresive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e. those near 100 keV) are accelerated at the shock or in the broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  10. Ion acceleration at the earth's bow shock: a review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different populations of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compressive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e., those near 100 keV) are accelerated at the shock or in broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  11. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  12. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  13. The role of magnetic loops in particle acceleration at nearly perpendicular shocks

    Science.gov (United States)

    Decker, R. B.

    1993-01-01

    The acceleration of superthermal ions is investigated when a planar shock that is on average nearly perpendicular propagates through a plasma in which the magnetic field is the superposition of a constant uniform component plus a random field of transverse hydromagnetic fluctuations. The importance of the broadband nature of the transverse magnetic fluctuations in mediating ion acceleration at nearly perpendicular shocks is pointed out. Specifically, the fluctuations are composed of short-wavelength components which scatter ions in pitch angle and long-wavelength components which are responsible for a spatial meandering of field lines about the mean field. At nearly perpendicular shocks the field line meandering produces a distribution of transient loops along the shock. As an application of this model, the acceleration of a superthermal monoenergetic population of seed protons at a perpendicular shock is investigated by integrating along the exact phase-space orbits.

  14. First-order Fermi acceleration of the diffuse ion population near the earth's bow shock

    Science.gov (United States)

    Forman, M. A.

    1981-01-01

    The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.

  15. ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Mazelle, Christian X. [IRAP, Université Paul Sabatier Toulouse III-CNRS, 31028 Toulouse Cedex 4 (France)

    2016-03-20

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  16. RAPID COSMIC-RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto; Kirk, John G., E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: john.kirk@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2015-08-10

    Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio u{sub s} of the shock speed to the particle speed roughly equals the ratio 1/η of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for ηu{sub s} ≈ 1, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of the diffusive shock acceleration theory. These results provide a theoretical basis for the 30 year old conjecture that a supernova exploding into the wind of a Wolf–Rayet star may accelerate protons to an energy exceeding 10{sup 15} eV.

  17. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Stawarz, Ł. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2017-07-10

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.

  18. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  19. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Cotter, Cory, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2017-01-20

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.

  20. Shock-acceleration of a pair of gas inhomogeneities

    Science.gov (United States)

    Navarro Nunez, Jose Alonso; Reese, Daniel; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2014-11-01

    A shock wave moving through the interstellar medium distorts density inhomogeneities through the deposition of baroclinic vorticity. This process is modeled experimentally in a shock tube for a two-bubble interaction. A planar shock wave in nitrogen traverses two soap-film bubbles filled with argon. The two bubbles share an axis that is orthogonal to the shock wave and are separated from one another by a distance of approximately one bubble diameter. Atomization of the soap-film by the shock wave results in dispersal of droplets that are imaged using Mie scattering with a laser sheet through the bubble axis. Initial condition images of the bubbles in free-fall (no holder) are taken using a high-speed camera and then two post-shock images are obtained with two laser pulses and two cameras. The first post-shock image is of the early time compression stage when the sphere has become ellipsoidal, and the second image shows the emergence of vortex rings which have evolved due to vorticity depostion by the shock wave. Bubble morphology is characterized with length scale measurements.

  1. Ion acceleration by radiation pressure in thin and thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Andrea, E-mail: macchi@df.unipi.i [CNR/INFM/polyLAB, Pisa (Italy); Dipartimento di Fisica ' Enrico Fermi' , Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Benedetti, Carlo, E-mail: Carlo.Benedetti@bo.infn.i [Dipartimento di Fisica, Universita di Bologna and INFN, Via Irnerio 46, I-40126 Bologna (Italy)

    2010-08-01

    Radiation Pressure Acceleration (RPA) by circularly polarized laser pulses is emerging as a promising way to obtain efficient acceleration of ions. We briefly review theoretical work on the topic, aiming at characterizing suitable experimental scenarios. We discuss the two reference cases of RPA, namely the thick target ('Hole Boring') and the (ultra)thin target ('Light Sail') regimes. The different scaling laws of the two regimes, the related experimental challenges and their suitability for foreseen applications are discussed.

  2. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    International Nuclear Information System (INIS)

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  3. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    Science.gov (United States)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  4. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  5. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  6. Shock mitigation for the PFLs at the SATURN accelerator

    International Nuclear Information System (INIS)

    Craven, R.E.

    1997-06-01

    Accelerometer measurements were made on the SATURN pulse forming lines (PFL) to determine the mechanism responsible for severe metal deformation around the water switch openings and cracking of welded seams. A reason for this problem and a solution were established. A simple shock mitigating pad under the support stand for the PFL provides more than adequate protection from shock damage and will greatly extend the useful life of the power flow sections of SATURN

  7. First order and second order fermi acceleration of energetic charged particles by shock waves

    International Nuclear Information System (INIS)

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  8. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    Directory of Open Access Journals (Sweden)

    I. M. Robinson

    2005-07-01

    Full Text Available We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003 and Li et al. (2003 which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons.

    Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections – Space plasma physics (Transport processes

  9. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Giacalone, J. [Department of Planetary Sciences, University of Arizona, Tucson, AZ (United States)

    2017-10-20

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean and an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.

  10. Particle acceleration at quasi-perpendicular shock waves: Theory and observations at 1 AU

    International Nuclear Information System (INIS)

    Parker, L. Neergaard; Zank, G. P.; Hu, Q.

    2014-01-01

    The injection of particles into the diffusive shock acceleration mechanism at highly perpendicular (where θ Bn > 70°) interplanetary shocks is investigated. This extends the previous study of Neergaard Parker and Zank which focused on the injection problem at quasi-parallel interplanetary shocks. We use observations at 1 AU to construct upstream Maxwellian and κ-distributions that are then diffusively accelerated by the shock, thus yielding the downstream accelerated particle distribution. We compare the theoretical accelerated particle distribution to observations at 1 AU using Advanced Composition Explorer data. We classify our results for quasi-perpendicular shocks into three subcategories: those with ratios of the theoretical spectral index to observed power law of >1, ∼ 1, and <1, and compare the magnetic power spectral density plots of these categories. We find that in general the assumed upstream particle distribution that best fits the energetic particle observations is best represented by a κ-distribution, with κ = 4. The magnetic field fluctuations were representative of quasi-perpendicular shocks and showed no particular bias toward our spectral ratio subcategories. The subcategory with spectral ratio <0.9 yielded the largest injection energies for all groups. In all but two of the cases in this study, there were enough particles in the solar wind thermal core to account for the accelerated distribution, thereby giving a lower limit to the required injection energy needed to diffusively accelerate particles at a quasi-perpendicular interplanetary shock. In the remaining two cases, an additional population of particles was required to match the appropriate amplitude of the spectral index. For these cases, we used a low energy (1-50 keV) v –5 spectrum advocated by Fisk and Gloeckler.

  11. On the stability of shocks modified by particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C.; Falle, S.A.E.G.

    1986-11-15

    It is shown, using a two-fluid approximation, that sound waves in a gas containing cosmic rays can be amplified if the scale height of the cosmic rays is less than a critical scale of order of the ratio of the cosmic-ray diffusion coefficient to the gas sound speed. The non-linear development has been calculated numerically and it is found that sound waves can grow into strong gas shocks. The instability is likely to have important effects on cosmic-ray modified shocks.

  12. On the stability of shocks modified by particle acceleration

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Falle, S.A.E.G.

    1986-01-01

    It is shown, using a two-fluid approximation, that sound waves in a gas containing cosmic rays can be amplified if the scale height of the cosmic rays is less than a critical scale of order of the ratio of the cosmic-ray diffusion coefficient to the gas sound speed. The non-linear development has been calculated numerically and it is found that sound waves can grow into strong gas shocks. The instability is likely to have important effects on cosmic-ray modified shocks. (author)

  13. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  14. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    K.-H. Trattner

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  15. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    M. Scholer

    1999-05-01

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  16. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    Science.gov (United States)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  17. Acceleration of galactic cosmic rays in shock waves

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1981-06-01

    The old problem of the origin of cosmic rays has triggered off fresh interest owing to the discovery of a new model which enables a lot of energy to be transferred to a small number of particles on the one hand and the discovery of the coronal environment in which this transfer occurs, on the other. In this paper, interest is taken in the galactic cosmic rays and an endeavour is made to find out if the model can reveal the existence of cosmic rays over a wide energy range. The existence of an energy break, predicted by the model, was recognized fairly early but, in the literature, it varies from 30 GeV ro 10 6 GeV according to the authors. A study has been made of the two main causes of an energy break: the sphericity of the shock and the life time of the shock wave [fr

  18. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the “pump mechanism”), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the

  19. Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators

    CERN Document Server

    Costa Pinto, P; Chiggiato, P; Neupert, H; Shaposhnikova, E N; Taborelli, M; Vollenberg, W; Yin Vallgren, C

    2011-01-01

    Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods...

  20. The applications of electron accelerator. Liquid, thin film and gases

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Kamaruddin Hashim; Zulkafli Ghazali

    2004-01-01

    As indicated by the results of this study, low energy electron beam accelerator of 200 keV to 500 keV can be utilized to irradiate thin hydrogel film in the range of 60 to 500 μm thickness. However, the industrial applications of this technology will depend on its applications. For thin films, cosmetic use such as faced mask is possible. The production of sago hydrogel for cosmetic used is in the process of commercialization in Malaysia. As for electron beam treatment of industrial wastewater in particular the effluent from the textile industry is still at infancy. Further work is necessary in order to have a base line data before the commercialization is taken place. Malaysia has also embarked on the electron beam treatment of flue gases and has completed the semi-pilot scale study by using 1.0 MeV electron accelerator voltage and 400 cum flue gas generated from diesel generator. This study was conducted together with the TNB Research, the research institute belongs to the electrical power company in Malaysia. For technology transfer and commercialization, MINT is planned to promote this technology to Independent Power Producers (IPP) in Malaysia. (author)

  1. Cosmic ray acceleration by shock waves in a diffusion medium. Research of high energies

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1982-06-01

    The problem of galactic cosmic-ray acceleration is presented with the study of a new acceleration mechanism by supernova shock waves in a diffusive medium. The question is: do supernova shocks have enough time to accelerate cosmic rays beyond 10 4 -10 5 GeV. A firm upper limit to the energy that can be acquired by particles is established and it is considered that the mean free path of the particle has its lowest possible value and the most favorable model of supernova evolution. The diffusion coefficients which are relevant for the determination of the high energy cut off are investigated. The effect of the spatial dependence of the diffusion coefficient on the rate of acceleration of particles is examined. A more realistic cut off energy is calculated. We find E max = 2 10 4 GeV [fr

  2. Accelerated pavement testing of thin RCC over soil cement pavements

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2016-05-01

    Full Text Available Three full-scale roller compacted concrete (RCC pavement sections built over a soil cement base were tested under accelerated pavement testing (APT. The RCC thicknesses varied from 102 mm (4 in. to 152 mm (6 in. and to 203 mm (8 in., respectively. A bi-directional loading device with a dual-tire load assembly was used for this experiment. Each test section was instrumented with multiple pressure cells and strain gages. The objective was to evaluate the structural performance and load carrying capacity of thin RCC-surfaced pavements under accelerated loading. The APT results generally indicated that all three RCC pavement sections tested in this study possessed very high load carrying capacity; an estimated pavement life in terms of equivalent single axle load (ESAL for the thinnest RCC section (i.e., RCC thickness of 102 mm evaluated was approximately 19.2 million. It was observed that a fatigue failure would be the primary pavement distress type for a thin RCC pavement under trafficking. Specifically, the development of fatigue cracking was found to originate from a longitudinal crack at the edge or in the center of a tire print, then extended and propagated, and eventually merged with cracks of other directions. Instrumentation results were used to characterize the fatigue damage under different load magnitudes. Finally, based on the APT performance of this experiment, two fatigue models for predicting the fatigue life of thin RCC pavements were developed. Keywords: Roller compacted concrete, APT, Pavement performance, Non-destructive testing, Fatigue analysis

  3. Experimental measurement of unsteady drag on shock accelerated micro-particles

    Science.gov (United States)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  4. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    Science.gov (United States)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  5. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  6. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  7. Improvements in or relating to the protection of thermoelectric devices against shocks and accelerations

    International Nuclear Information System (INIS)

    Brown, M.H.; Myatt, J.

    1979-01-01

    Heart pacemakers are protected against shock and acceleration by surrounding the heat source, but not in contact with the source or the thermoelectric unit, with a plurity of spring fingers. These arrest the radioactive source in the event of movement on its resilient mounting of the thermoelectric unit relative to the casing in excess of a predetermined amount. (UK)

  8. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-05-10

    In this paper, we present the first formulation of the theory of nonlinear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification, and the magnetic dynamical effects on the shock are also included. The main new aspect of this study, however, consists of accounting for charge exchange and the ionization of a neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated with the so-called neutral return flux, namely the return of hot neutrals from the downstream region to upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer cosmic ray acceleration efficiency in supernova remnants showing Balmer emission: the broad Balmer line, which is due to charge exchange of hydrogen atoms with hot ions downstream of the shock, is shown to become narrower as a result of the energy drainage into cosmic rays, while the narrow Balmer line, due to charge exchange in the cosmic-ray-induced precursor, is shown to become broader. In addition to these two well-known components, the neutral return flux leads to the formation of a third component with an intermediate width: this too contains information on ongoing processes at the shock.

  9. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  10. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  11. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard x-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona. This problem is discussed

  12. The acceleration rate of cosmic rays at cosmic ray modified shocks

    Science.gov (United States)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  13. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  14. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  15. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  16. Collisionless shock formation and the prompt acceleration of solar flare ions

    Science.gov (United States)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  17. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    Science.gov (United States)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  18. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  19. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1983-01-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)

  20. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.

  1. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.Oc.

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.

  2. Dominant acceleration processes of ambient energetic protons (E>= 50 keV) at the bow shock: conditions and limitations

    International Nuclear Information System (INIS)

    Anagnostopoulos, G.C.; Sarris, E.T.

    1983-01-01

    Energetic proton (Esub(p)>= 50 keV) and magnetic field observations during crossings of the Earth's Bow Shock by the IMP-7 and 8 spacecraft are incorporated in this work in order to examine the effect of the Bow Shock on a pre-existing proton population under different ''interplanetary magnetic field-Bow Shock'' configurations, as well as the conditions for the presence of the Bow Shock associated energetic proton intensity enhancements. The presented observations indicate that the dominant process for the efficient acceleration of ambient energetic particles to energies exceeding approximately 50 keV is by ''gradient-B'' drifting parallel to the induced electric field at quasi-perpendicular Bow Shocks under certain well defined limitations deriving from the finite and curved Bow Shock surface. It is shown that the proton acceleration at the Bow Shock is most efficient for high values of the upstream magnetic field (in general B 1 > 8#betta#), high upstream plasma speed and expanded Bow Shock fronts, as well as for direction of the induced electric field oriented almost parallel to the flanks of the Bow Shock, i.e. when the drift distance of protons parallel to the electric field at the shock front is considerably smaller than the local radius of curvature of the Bow Shock. The implications of the presented observations of Bow Shock crossings as to the source of the energetic proton intensity enhancements are discussed. (author)

  3. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  4. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    Science.gov (United States)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  5. Understanding the radio spectral indices of galaxy cluster relics by superdiffusive shock acceleration

    Science.gov (United States)

    Zimbardo, Gaetano; Perri, Silvia

    2018-06-01

    Galaxy cluster merger shocks are the likely source of relativistic electrons, but many observations do not fit into the standard acceleration models. In particular, there is a long-standing discrepancy between the radio derived Mach numbers M_radio and the Mach numbers derived from X-ray measurements, M_X. Here, we show how superdiffusive electron transport and superdiffusive shock acceleration (SSA) can help to solve this problem. We present a heuristic derivation of the superlinear time growth of the mean square displacement of particles, ⟨Δx2⟩∝tβ, and of the particle energy spectral index in the framework of SSA. The resulting expression for the radio spectral index α is then used to determine the superdiffusive exponent β from the observed values of α and of the compression ratio for a number of radio relics. Therefore, the fact that M_radio>M_X can be explained by SSA without the need to make assumptions on the energy spectrum of the seed electrons to be re-accelerated. We also consider the acceleration times obtained in the diffusive case, based both on the Bohm diffusion coefficient and on the quasilinear diffusion coefficient. While in the latter case the acceleration time is consistent with the estimated electron energy loss time, the former case it is much shorter.

  6. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  7. Strong ion accelerating by collisionless magnetosonic shock wave propagating perpendicular to a magnetic field

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu.

    1984-12-01

    A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)

  8. Vorticity generation and evolution in shock-accelerated density-stratified interfaces

    International Nuclear Information System (INIS)

    Yang, X.; Chern, I.; Zabusky, N.J.; Samtaney, R.; Hawley, J.F.

    1992-01-01

    The results of direct numerical simulations of inviscid planar shock-accelerated density-stratified interfaces in two dimensions are presented and compared with shock tube experiments of Haas [(private communication, 1988)] and Sturtevant [in Shock Tubes and Waves, edited by H. Gronig (VCH, Berlin, 1987), p. 89] . Heavy-to-light (''slow/fast or s/f) and light-to-heavy (''fast/slow,'' or f/s) gas interfaces are examined and early-time impulsive vorticity deposition and the evolution of coherent vortex structures are emphasized and quantified. The present second-order Godunov scheme yields excellent agreement with shock-polar analyses at early time. A more physical vortex interpretation explains the commonly used (i.e., linear paradigm) designations of ''unstable'' and ''stable'' for the f/s and s/f interfaces, respectively. The later time events are Rayleigh--Taylor like and can be described in terms of the evolution of a vortex layer (large-scale translation and rotation): asymmetric tip vortex ''roll-up'' and ''binding;'' layer ''instability;'' convective mixing; and baroclinic vorticity generation from secondary shock--interface interactions

  9. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  10. A Critical Shock Mach Number for Particle Acceleration in the Absence of Pre-existing Cosmic Rays: M = √5

    NARCIS (Netherlands)

    Vink, J.; Yamazaki, R.

    2014-01-01

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M > √5. The reason is that for M ≤ √5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain.

  11. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    International Nuclear Information System (INIS)

    Robbins, D.L.; Kelly, A.M.; Alexander, D.J.; Hanrahan, R.J.; Snow, R.C.; Gehr, R.J.; Rupp, Ted Dean; Sheffield, S.A.; Stahl, D.B.

    2001-01-01

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurements of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.

  12. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of

  13. Local effects in flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2006-01-01

    'Full text:' There is enough evidence that flow conditions play the dominant role locally in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, which can be low or high, flow conditions determine the local distribution of wall thinning. This relationship is not new and recent accurate measurements of FAC rate of a plant feeder bend confirm that the relationship between flow local conditions expressed by local mass transfer coefficient and FAC rate in CANDU feeder bends is close. There is also a lot of other direct and indirect, experimental and laboratory evidence about this relationship. This knowledge can be useful for minimizing inspection, predicting new locations for inspection, predicting the location with the highest FAC rate for a given piping component, e.g., feeder element, and determining what components or feeders and to what extent they should be replaced. It applies also to heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local flow parameters. For FAC, the most important flow parameter is mass transfer coefficient. The mass transfer coefficient describes the intensity of the transport of corrosion products from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate. It could also be used in planning experiments because time-varying surface roughness can explain the time-dependence of FAC rates. The paper presents plant and laboratory evidence about the relationship. In addition, it shows correlations for mass transfer coefficient in components that are highly susceptible to FAC. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  14. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  15. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  16. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  17. ACCELERATION IN PERPENDICULAR RELATIVISTIC SHOCKS FOR PLASMAS CONSISTING OF LEPTONS AND HADRONS

    International Nuclear Information System (INIS)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-01-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law ∝t α with α in the range 1/3 2 . Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  18. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  19. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  20. Time-dependent shock acceleration of energetic electrons including synchrotron losses

    International Nuclear Information System (INIS)

    Fritz, K.; Webb, G.M.

    1990-01-01

    The present investigation of the time-dependent particle acceleration problem in strong shocks, including synchrotron radiation losses, solves the transport equation analytically by means of Laplace transforms. The particle distribution thus obtained is then transformed numerically into real space for the cases of continuous and impulsive injections of particles at the shock. While in the continuous case the steady-state spectrum undergoes evolution, impulsive injection is noted to yield such unpredicted features as a pile-up of high-energy particles or a steep power-law with time-dependent spectral index. The time-dependent calculations reveal varying spectral shapes and more complex features for the higher energies which may be useful in the interpretation of outburst spectra. 33 refs

  1. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  2. High energy emission of supernova sn 1987a. Cosmic rays acceleration in mixed shocks

    International Nuclear Information System (INIS)

    Lehoucq, Roland

    1992-01-01

    In its first part, this research thesis reports the study of the high energy emission of the sn 1987 supernova, based on a Monte Carlo simulation of the transfer of γ photons emitted during disintegration of radioactive elements (such as "5"6Ni, "5"6Co, "5"7Co and "4"4Ti) produced during the explosion. One of the studied problems is the late evolution (beyond 1200 days) of light curvature which is very different when it is powered by the radiation of a central object or by radioactivity. The second part reports the study of acceleration of cosmic rays in two-fluid shock waves in order to understand the different asymmetries noticed in hot spots of extragalactic radio-sources. This work comprises the resolution of structure equations of a shock made of a conventional fluid and a relativistic one, in presence or absence of a magnetic field [fr

  3. Formation of GEMS from shock-accelerated crystalline dust in Superbubbles

    International Nuclear Information System (INIS)

    Westphal, A; Bradley, J P

    2004-01-01

    Interplanetary dust particles (IDPs) contain enigmatic sub-micron components called GEMS (Glass with Embedded Metal and Sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS; they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca and Fe (relative to solar abundances), most have normal (solar) oxygen isotopic compositions, they exhibit a strikingly narrow size distribution (0.1-0.5 (micro)m diameter), and some of them contain ''relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble, and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury and Ellison have proposed that galactic cosmic rays originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for galactic cosmic rays. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last thirty years

  4. Design of the hydraulic shock absorbers characteristics using the acceleration of the sprung mass

    Directory of Open Access Journals (Sweden)

    Polach P.

    2007-10-01

    Full Text Available The force-velocity characteristics of the air-pressure-controlled shock absorbers produced in BRANO a.s. were designed on the basis of the relative deflections of the air springs. These characteristics are verified by means of another approach – the acceleration of the sprung mass criterion. The reference vehicle is the same as in the previous case – the SOR C 12 intercity bus. The bus multibody models created in the alaska simulation tool are used for the designed characteristics verification. The results of both approaches are compared.

  5. An approach to incorporate the detonation shock dynamics into the calculation of explosive acceleration of metals

    International Nuclear Information System (INIS)

    Li Qingzhong; Sun Chengwei; Zhao Feng; Gao Wen; Wen Shanggang; Liu Wenhan

    1999-11-01

    The generalized geometrical optics model for the detonation shock dynamics (DSD) has been incorporated into the two dimensional hydro-code WSU to form a combination code ADW for numerical simulation of explosive acceleration of metals. An analytical treatment of the coupling conditions at the nodes just behind the detonation front is proposed. The experiments on two kinds of explosive-flyer assemblies with different length/diameter ratio were carried out to verify the ADW calculations, where the tested explosive was HMX or TATB based. It is found that the combination of DSD and hydro-code can improve the calculation precision, and has advantages in larger meshes and less CPU time

  6. ANALYSIS OF IMPACT OF CHANGING THE SHOCK ABSORBER RESISTANCE FACTOR ON ACCELERATING THE VEHICLE SPRUNG MASS

    Directory of Open Access Journals (Sweden)

    P. Rozhkov

    2017-12-01

    Full Text Available The change of acceleration of the vehicle sprung mass while changing the coefficient of resistance of the adaptive pendant shock absorber has been analyzed. Presentation of disturbing influence is taken as a harmonic function containing the initial phase. Solution of the system of differential equations is carried out taking into account the initial conditions. The mathematical modeling of the impact of the vehicle sprung mass vibrations at various moments of time of forming the actuating signal on the change of the coefficient of resistance allowed to formulate requirements to the system of adaptive suspension control.

  7. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

    Science.gov (United States)

    Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong

    2017-07-01

    The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

  8. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.

    Science.gov (United States)

    Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît

    2016-06-14

    Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A numerical study of shock-acceleration of a diffuse helium cylinder. Revision 1

    International Nuclear Information System (INIS)

    Greenough, J.A.; Jacobs, J.W.

    1995-08-01

    The development of a shock-accelerated diffuse Helium cylindrical inhomogeneity is investigated using a new numerical method. The new algorithm is a higher-order Godunov implementation of the so-called multi-fluid equations. This system correctly models multiple component mixtures by accounting for differential compressibility effects. This base integrator is embedded in an implementation of adaptive mesh refinement (AMR) that allows efficient increase in resolution by concentrating the computational effort where high accuracy, or increased resolution, are required. Qualitative and quantitative comparison with previous experimental data is excellent. The simulations show that counter-sign vortex blobs are deposited in the jet core by baroclinic generation of the curved shock wave as it traverses the jet. This vorticity deposition occurs over timescales that scale with the shock passage time (∼ 10microsec). Three phases of development are identified and characterized. The first is the weak deformation (WD) phase, where there is weak distortion of the Helium jet due to weak vorticity induced velocity effects. The second phase is the strong deformation (SD) phase where there is large distortion for the jet and the vortex blobs due to large induced velocity effects. The last is a relaxation/reorganization (RR) phase where the vorticity field is reorganized into point-like vortex pair. This class of problem has applications in such disparate fields as inertial confinement fusion (ICF) and high-speed combustion

  10. A numerical study of shock-acceleration of a diffuse helium cylinder

    International Nuclear Information System (INIS)

    Greenough, J.A.; Bell, J.; Colella, P.

    1995-08-01

    The development of a shock-accelerated diffuse Helium cylindrical inhomogeneity is investigated using a new numerical method. The new algorithm is a higher-order Godunov implementation of the so-called multi-fluid equations. This system correctly models multiple component mixtures by accounting for differential compressibility effects. This base integrator is embedded in an implementation of adaptive mesh refinement (AMR) that allows efficient increase in resolution where the computational effort is concentrated where high accuracy, or increased resolution, are required. Qualitative and quantitative comparison with previous experimental data is excellent. The simulations show that counter-sign vortex blobs are deposited in the jet core by baroclinic generation of the curved shock wave as it traverses the jet. This vorticity deposition occurs over timescales that scale with the shock passage time (∼ 10μsec). Three phases of development are identified and characterized. The first is the weak deformation (WD) phase, where there is weak distortion of the Helium jet due to weak vorticity induced velocity effects. The second phase is the strong deformation (SD) phase where there is large distortion for the jet and the vortex blobs due to large induced velocity effects. The last is a relaxation/reorganization (RR) phase where the vorticity field reorganizes into point-like vortex pair

  11. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  12. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. I. NEUTRAL RETURN FLUX AND ITS EFFECTS ON ACCELERATION OF TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, P.; Morlino, G.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States)

    2012-08-20

    A collisionless shock may be strongly modified by the presence of neutral atoms through the processes of charge exchange between ions and neutrals and ionization of the latter. These two processes lead to exchange of energy and momentum between charged and neutral particles both upstream and downstream of the shock. In particular, neutrals that suffer a charge exchange downstream with shock-heated ions generate high-velocity neutrals that have a finite probability of returning upstream. These neutrals might then deposit heat in the upstream plasma through ionization and charge exchange, thereby reducing the fluid Mach number. A consequence of this phenomenon, which we refer to as the neutral return flux, is a reduction of the shock compression factor and the formation of a shock precursor upstream. The scale length of the precursor is determined by the ionization and charge-exchange interaction lengths of fast neutrals moving toward upstream infinity. In the case of a shock propagating in the interstellar medium, the effects of ion-neutral interactions are especially important for shock velocities <3000 km s{sup -1}. Such propagation velocities are common among shocks associated with supernova remnants, the primary candidate sources for the acceleration of Galactic cosmic rays. We then investigate the effects of the return flux of neutrals on the spectrum of test particles accelerated at the shock. We find that, for shocks slower than {approx}3000 km s{sup -1}, the particle energy spectrum steepens appreciably with respect to the naive expectation for a strong shock, namely, {proportional_to}E{sup -2}.

  13. Shock Acceleration of Electrons and Synchrotron Emission from the Dynamical Ejecta of Neutron Star Mergers

    Science.gov (United States)

    Lee, Shiu-Hang; Maeda, Keiichi; Kawanaka, Norita

    2018-05-01

    Neutron star mergers (NSMs) eject energetic subrelativistic dynamical ejecta into circumbinary media. Analogous to supernovae and supernova remnants, the NSM dynamical ejecta are expected to produce nonthermal emission by electrons accelerated at a shock wave. In this paper, we present the expected radio and X-ray signals by this mechanism, taking into account nonlinear diffusive shock acceleration (DSA) and magnetic field amplification. We suggest that the NSM is unique as a DSA site, where the seed relativistic electrons are abundantly provided by the decays of r-process elements. The signal is predicted to peak at a few 100–1000 days after the merger, determined by the balance between the decrease of the number of seed electrons and the increase of the dissipated kinetic energy, due to the shock expansion. While the resulting flux can ideally reach the maximum flux expected from near-equipartition, the available kinetic energy dissipation rate of the NSM ejecta limits the detectability of such a signal. It is likely that the radio and X-ray emission are overwhelmed by other mechanisms (e.g., an off-axis jet) for an observer placed in a jet direction (i.e., for GW170817). However, for an off-axis observer, to be discovered once a number of NSMs are identified, the dynamical ejecta component is predicted to dominate the nonthermal emission. While the detection of this signal is challenging even with near-future facilities, this potentially provides a robust probe of the creation of r-process elements in NSMs.

  14. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    Science.gov (United States)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  15. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    International Nuclear Information System (INIS)

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  16. Ablative acceleration of thin foil targets by intense proton beams

    International Nuclear Information System (INIS)

    Miyamoto, S.; Ozaki, T.; Imasaki, K.; Higaki, S.; Nakai, S.

    1981-01-01

    A focused proton beam of up to 2 x 10 10 w/cm 2 was obtained using pinch-reflex ion diode connected to Reiden IV generator. Experiments of beam target interaction have been done using thin foil targets. In this power range the interaction was explained classically. The experimental dependence of ablation pressure on proton beam intensity was obtained as P sub(a) = 3 x 10 -3 I sup(0.7) bar (I in w/cm 2 ). (author)

  17. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  18. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  19. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J

    2015-01-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  20. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  1. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    International Nuclear Information System (INIS)

    Watanabe, Shun; Yoneda, Kimitoshi

    2013-01-01

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  2. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?

    International Nuclear Information System (INIS)

    Hillas, A M

    2005-01-01

    Diffusive shock acceleration at the outer front of expanding supernova remnants has provided by far the most popular model for the origin of galactic cosmic rays, and has been the subject of intensive theoretical investigation. But several problems loomed at high energies-how to explain the smooth continuation of the cosmic-ray spectrum far beyond 10 14 eV, the very low level of TeV gamma-ray emission from several supernova remnants, and the very low anisotropy of cosmic rays (seeming to conflict with the short trapping times needed to convert a E -2 source spectrum into the observed E -2.7 spectrum of cosmic rays). However, recent work on the cosmic ray spectrum (especially at KASCADE) strongly indicates that about half of the flux does turn down rather sharply near 3 x 10 15 V rigidity, with a distinct tail extending to just beyond 10 17 V rigidity; whilst a plausible description (Bell and Lucek) of the level of self-generated magnetic fields at the shock fronts of young supernova remnants implies that many SNRs in varying environments might very well generate spectra extending smoothly to just this 'knee' position, and a portion of the exploding red supergiants could extend the spectrum approximately as needed. At low energies, recent progress in relating cosmic ray compositional details to modified shock structure also adds weight to the belief that the model is working on the right lines, converting energy into cosmic rays very efficiently where injection can occur. The low level of TeV gamma-ray flux from many young SNRs is a serious challenge, though it may relate to variations in particle injection efficiency with time. The clear detection of TeV gamma rays from SNRs has now just begun, and predictions of a characteristic curved particle spectrum give a target for new tests by TeV observations. However, the isotropy seriously challenges the assumed cosmic-ray trapping time and hence the shape of the spectrum of particles released from SNRs. There is

  3. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  4. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    Science.gov (United States)

    Pusztai, I.; TenBarge, J. M.; Csapó, A. N.; Juno, J.; Hakim, A.; Yi, L.; Fülöp, T.

    2018-03-01

    The existence and properties of low Mach-number (M≳ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of the electron-to-ion temperature ratio and the presence of impurities on both the maximum shock potential and the Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.

  5. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  6. INTERSTELLAR PICKUP ION ACCELERATION IN THE TURBULENT MAGNETIC FIELD AT THE SOLAR WIND TERMINATION SHOCK USING A FOCUSED TRANSPORT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Junye; Roux, Jakobus A. le; Arthur, Aaron D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q -Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape ( q -value) and the standard deviation ( σ -value) of the q -Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  7. Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.

    Science.gov (United States)

    Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham

    2017-08-01

    Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  9. Neutron-decay Protons from Solar Flares as Seed Particles for CME-shock Acceleration in the Inner Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ronald J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Ko, Yuan-Kuen, E-mail: ronald.murphy@nrl.navy.mil, E-mail: yuan-kuen.ko@nrl.navy.mil [Code 7680, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-09-01

    The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s{sup −1} shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from the Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.

  10. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    International Nuclear Information System (INIS)

    Bischoff, A. J.; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-01-01

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe_7_0Pd_3_0 ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  11. A thin-shock-layer solution for nonequilibrium, inviscid hypersonic flows in earth, Martian, and Venusian atmospheres

    Science.gov (United States)

    Grose, W. L.

    1971-01-01

    An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.

  12. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  13. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, M.; Orlando, S.; Bocchino, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Acero, F. [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Dubner, G. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Decourchelle, A., E-mail: miceli@astropa.unipa.it [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France)

    2014-02-20

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N {sub H} derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N {sub H} variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.

  14. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    International Nuclear Information System (INIS)

    Miceli, M.; Orlando, S.; Bocchino, F.; Acero, F.; Dubner, G.; Decourchelle, A.

    2014-01-01

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N H variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years

  15. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  16. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  17. Laser Radiation Pressure Acceleration of Monoenergetic Protons in an Ultra-Thin Foil

    Science.gov (United States)

    Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald Z.; Shukla, Padma K.

    2009-11-01

    We present theoretical and numerical studies of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The stability of the foil is investigated by direct Vlasov-Maxwell simulations for different sets of laser-plasma parameters. It is found that the foil is stable, due to the trapping of both electrons and ions in the thin laser-plasma interaction region, where the electrons are trapped in a potential well composed of the ponderomo-tive potential of the laser light and the electrostatic potential due to the ions, and the ions are trapped in a potential well composed of the inertial potential in an accelerated frame and the electrostatic potential due to the electrons. The result is a stable double layer, where the trapped ions are accelerated to monoenergetic energies up to 100 MeV and beyond, which makes them suitable for medical applications cancer treatment. The underlying physics of trapped and untapped ions in a double layer is also investigated theoretically and numerically.

  18. A Thin Lens Model for Charged-Particle RF Accelerating Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model are presented.

  19. Analysis of uranium and thorium thin targets irradiated at the PSI accelerator

    International Nuclear Information System (INIS)

    Wenger, H.U.; Botta, F.; Chawla, R.; Daum, M.; Gavillet, D.; Hegedues, F.; Ingold, F.; Kopajtic, Z.; Ledergerber, G.; Linder, H.P.; Roellin, S.; Wichser, J.; Wyss, F.

    1997-01-01

    The aim of the ATHENA programme at PSI is to provide experimental data for the validation of theoretical models in nucleon-meson transport codes used for accelerator-based transmutation studies. Emphasis is placed on the mass yield distribution of spallation and fission products for irradiated thin actinide targets. This paper presents results of an irradiation experiment carried out with 238 UO 2 and 232 ThO 2 . Isobaric production cross-sections of fission and spallation products based on mass spectrometric measurements and γ-spectroscopy are compared with calculations carried out using the HETC code and the RAL high-energy fission model. (author) 6 figs., 8 refs

  20. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  1. Charged-particle acceleration through laser irradiation of thin foils at Prague Asterix Laser System

    International Nuclear Information System (INIS)

    Torrisi, Lorenzo; Cutroneo, Maria; Cavallaro, Salvatore; Musumeci, Paolo; Calcagno, Lucia; Wolowski, Jerzy; Rosinski, Marcin; Zaras-Szydlowska, Agnieszka; Ullschmied, Jiri; Krousky, Eduard; Pfeifer, Miroslav; Skala, Jiri; Velyhan, Andreiy

    2014-01-01

    Thin foils, 0.5–50 μm in thickness, have been irradiated in vacuum at Prague Asterix Laser System in Prague using 10 15–16  W cm −2 laser intensity, 1315 nm wavelength, 300 ps pulse duration and different focal positions. Produced plasmas from metals and polymers films have been monitored in the forward and backward directions. Ion and electron accelerations have been investigated by using Thomson parabola spectrometer, x-ray streak camera, ion collectors and SiC semiconductor detectors, the latter employed in time-of-flight configuration. Ion acceleration up to about 3 MeV per charge state was measured in the forward direction. Ion and electron emissions were detected at different angles as a function of the irradiation conditions. (paper)

  2. Proceedings of the FNCA 2003 workshop on application of electron accelerator. Radiation system for thin film

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2004-06-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and co-hosted by Malaysian Institute for Nuclear Technology Research (MINT) and Japan Atomic Energy Research Institute (JAERI). It was held at the Legend Hotel, Kuala Lumpur, Malaysia from 18 to 22 August 2003. The Workshop was attended by 28 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam, and 5 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 87 participants. Total of 19 papers including Seminar lectures, invited papers on film treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The flue gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 19 of the presented papers are indexed individually. (J.P.N.)

  3. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    Science.gov (United States)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  4. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    Science.gov (United States)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  5. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    Science.gov (United States)

    2016-10-01

    injury conditions (blast and acceleration vs acceleration alone) undergo neurobehavioral and histopathological assessments to comprehensively... reversal . To facilitate mid-air blasts, a release mechanism was devised. Balls were attached to the bail of the mechanism. The blast wave would cause

  6. Spot size dependence of laser accelerated protons in thin multi-ion foils

    International Nuclear Information System (INIS)

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-01-01

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10 8 protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen

  7. Enhanced proton acceleration by ultrashort laser pulse interaction with nanostructured thin films

    International Nuclear Information System (INIS)

    Mondal, Angana; Dalui, Malay; Tata, Sheroy; Sarkar, Subhrangshu; Jha, Jagannath; Lad, Amit; Krishnamurthy, M.; Ayyub, P.; Wang, W m; Sheng, Z m

    2015-01-01

    Enhancement of local electromagnetic field in nanostructured targets as opposed to plain polished targets has been experimentally observed and studied. This increase in field strength leads to enhanced hot electron generation, which gives rise to highly energetic ions through Target Normal Sheath Acceleration. As the laser energy coupled to the electrons increases, the sheath magnitude is expected to increase, leading to an enhancement in ion acceleration. We investigate energy enhancements in ions generated as a result of intense femtosecond laser interaction with nanostructured thin film targets, comprising 2 μm Ta foil coated with 100-200 nm diameter Ta clusters. The optimum nanoparticle size of 100 nm corresponding to maximum laser energy absorption has been predetermined through PIC simulations. The accelerated ions have been studied using Thompson parabola spectrometer at a laser intensity of 15 x 10 19 W/cm 2 at the TIFR high contrast 100 TW Ti:Sapphire laser facility. The proton cut-off energy is observed to increase rapidly with increasing cluster density till a saturation is reached. The enhancement in the proton cut-off energy is observed to be three-fold as compared to the proton cut-off energy for unstructured foils. (author)

  8. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    Science.gov (United States)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  9. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    International Nuclear Information System (INIS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-01-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I_0 = 3 × 10"2"0" W/cm"2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  10. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.; Shen, X. F.; You, W. Y. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  11. Fluid-structure-interaction analysis for welded pipes with flow-accelerated corrosion wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Ding, Y., E-mail: lan.sun@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The flow-accelerated corrosion (FAC) entrance effect results in enhanced wall thinning immediately downstream of a weld if the weld connects an upstream FAC-resistant material with a downstream less resistant material. The weld regions, especially those with local repairs, are susceptible to cracking due to the high residual stresses induced by fabrication. The combined effects of the FAC entrance effect and high stresses at a weld might compromise the structural integrity of the piping and lead to a failure. Weld degradation by FAC entrance effect has been observed at nuclear and fossil power plants. This paper describes an application using fluid-structure-interaction (FSI) modelling to study the combined effects of FAC wall thinning, weld residual stresses, and in-service loads on welded structures. Simplified cases analyzed were based on CANDU outlet feeder conditions. The analysis includes the flow and mass transfer modelling of the FAC entrance effect using computational fluid dynamics (CFD) and nonlinear structural analyses of the welded structures with wall thinning and an assumed weld residual stress and strain distribution. The FSI analyses were performed using ANSYS Workbench, an integrated platform that enables the coupling of CFD and structural analysis solutions. The obtained results show that the combination of FAC, weld residual stresses, in-service loads (including the internal pressure) and (or) extreme loads could cause high stresses and affect the integrity of the welded pipes. The present work demonstrated that the FSI modelling can be used as an effective approach to assess the integrity of welded structures. (author)

  12. Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell

    Science.gov (United States)

    Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.

    2018-05-01

    The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.

  13. Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain

    Energy Technology Data Exchange (ETDEWEB)

    Prestridge, K.; Rightley, P.M.; Vorobieff, P. [Los Alamos Nat. Lab., NM (United States). Dynamic Exp. Div.; Benjamin, R.F.; Kurnit, N.A.

    2000-10-01

    We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF{sub 6}) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF{sub 6} with a small ({proportional_to}10{sup -5}) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The ''dynamic imaging camera'' images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, ''PIV camera,'' has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using particle image velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 x 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. (orig.)

  14. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    Science.gov (United States)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  15. Shadowgraph studies of laser-assisted non-thermal structuring of thin layers on flexible substrates by shock-wave-induced delamination processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre, E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Smausz, Tomi [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamas [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, Martin; Zimmer, Klaus [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Hopp, Bela [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The shock-wave-induced film delamination (SWIFD) is a laser patterning process. • The SWIFD process of CIGS solar cells was studied by shadowgraph measurements. • The study presented that SWIFD allows the structuring of CIGS solar cells. • The dynamics of the delamination process was analyzed. - Abstract: The laser-assisted microstructuring of thin films especially for electronic applications without damaging the layers or the substrates is a challenge for the laser micromachining techniques. The laser-induced thin-film patterning by ablation of the polymer substrate at the rear side that is called ‘SWIFD’ – shock-wave-induced film delamination patterning has been demonstrated. This study focuses on the temporal sequence of processes that characterize the mechanism of this SWIFD process on a copper indium gallium selenide (CIGS) solar cell stacks on polyimide. For this purpose high-speed shadowgraph experiments were performed in a pump probe experimental set-up using a KrF excimer laser for ablating the rear side of the polyimide substrate and measuring the shock wave generation at laser ablation of the polymer substrate as well as the thin-film delamination. The morphology and size of the thin-film structures were studied by scanning electron microscopy (SEM). Furthermore, the composition after the laser treatment was analyzed by energy dispersive X-ray (EDX) spectroscopy. The shadowgraph experiments allow the time-dependent identification and evaluation of the shock wave formation, substrate bending, and delamination of the thin film in dependence on the laser parameters. These results will contribute to improve the physical understanding of the laser-induced delamination effect for thin-film patterning.

  16. Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Colombant, D.G.; Karasik, M.; Pawley, C.J.; Serlin, V.; Schmitt, A.J.; Weaver, J.L.; Gardner, J.H.; Phillips, L.; Aglitskiy, Y.; Chan, Y.; Dahlburg, J.P.; Klapisch, M.

    2002-01-01

    Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X rays originating from the high-Z layer heat the underlying lower-Z plastic target material and cause large buffering plasma to form between the layer and the accelerated target. This long-scale plasma apparently isolates the target from laser nonuniformity and accounts for the observed large reduction in laser imprint. With onset of the higher intensity main pulse, the high-Z layer expands and the laser light is transmitted. This technique will be useful in reducing laser imprint in pellet implosions and thereby allow the design of more robust targets for high-gain laser fusion

  17. Observation of energy-time dispersed ion structures in the magnetosheath by CLUSTER: possible signatures of transient acceleration processes at shock

    Directory of Open Access Journals (Sweden)

    P. Louarn

    Full Text Available We analyse energy-time dispersed ion signatures that have been observed by CLUSTER in the dayside magnetosheath. These events are characterized by sudden increases in the ion flux at energies larger than 10 keV. The high energy ions (30 keV are first detected, with the transition to the low energy ions (5 keV lasting about 100 s. These injections are often associated with transient plasma structures of a few minutes in duration, characterized by a hotter, less dense plasma and a diverted flow velocity, thus presenting similarities with "hot flow anomalies". They also involve modifications of the magnetic field direction, suggesting that the shock interacts with a solar wind discontinuity at the time of the event. The injections can originate from the magnetosphere or the shock region. Studying in detail a particular event, we discuss this last hypothesis. We show that the observed energy/time dispersion can be explained by combining a time-of-flight effect with a drift of the source of energetic particles along the shock. We propose that the acceleration results from a Fermi process linked to the interaction of the discontinuity with a quasi-perpendicular shock. This model explains the observed pitch-angle selection of the accelerated particles. The Fermi process acting on the beam of ions reflected from the shock appears to be sufficiently efficient to accelerate over short time scales (less than 30 s particles at energies above 30 keV.

    Key words. Magnetospheric physics (solar-wind-magnetosphere interaction; magnetosheath – Space plasma physics (shock waves

  18. Resonant absorption effects induced by polarized laser ligth irradiating thin foils in the tnsa regime of ion acceleration

    International Nuclear Information System (INIS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-01-01

    Thin foils were irradiated by short pulsed lasers at intensities of 10 16−19 W/cm 2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed

  19. Dosimetry and monitoring of thin X-ray beam produced by linear particle accelerator, for application in radiography

    International Nuclear Information System (INIS)

    Campos, J.C.F. de.

    1986-01-01

    The dosimetry and monitoring characteristics of thin X-ray beams, and the application of 4MeV linear particle accelerator to radiosurgery are studied. An addition collimation system, consisted of 3 lead collimators, which allows to obtain thin beams of 6,10 and 15 mm of diameter, was fabricated. The stereo taxic system, together with modifications in dispositives, provide the accuracy required in volum-targed location. The dosimetric informations were determined with silicon detector inserted into water simulator. The isodose curves for each beam, and total isodoses simulating the treatment were established using radiographic emulsions in conditions which reproduce real circunstances of pacient irradiation. (M.C.K.) [pt

  20. Thin film studies toward improving the performance of accelerator electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Md Abdullah [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-05-31

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10-13 Torr L s-1 cm-2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10-13 Torr L s-1 cm-2 following an initial 90 °C bake and 2(±20) x 10-16 Torr L s-1 cm-2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify

  1. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    Science.gov (United States)

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  2. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres of ponderosa pine (Pinus ponderosa forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment and modest when compared to mean annual runoff from the study watersheds (0-3%. Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  3. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Science.gov (United States)

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  4. Mass transfer effects in feeder flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2008-01-01

    Flow conditions play a dominant role in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, flow conditions determine the local distribution of wall thinning. Recent plant data of feeders and laboratory tests confirms that there is a close relationship between local flow conditions, expressed by mass transfer coefficient, and FAC rate in CANDU feeder bends. The knowledge of local effects can be useful for minimizing the number of inspected components, predicting the location of the highest FAC rate for a given piping component, and determining what components or feeders should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local mass transfer parameters. For FAC where the flow is dominant, the FAC rate is proportional to mass flux of ferrous ions. The mass flux is the product of the mass transfer coefficient and the concentration difference, or degree of saturation. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate in the mass-transfer controlled FAC. The degree of saturation reduces the mass flux, thus reducing the FAC rate. This effect can be significant in long piping, e.g., in outlet feeders. The paper presents plant and laboratory evidence for the relationship between local mass transfer conditions and the FAC rate. It shows correlations for mass transfer coefficient in components that are highly susceptible to FAC and most important flow parameters that affect mass transfer coefficient. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  5. Validation of the CQUAD4 element for vibration and shock analysis of thin laminated composite plate structure

    Science.gov (United States)

    Lesar, Douglas E.

    1992-01-01

    The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship

  6. Accelerated testing for studying pavement design and performance (FY 2004) : thin bonded rigid overlay on PCCP and HMA (CISL experiment no. 13).

    Science.gov (United States)

    2009-03-01

    The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) : of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays. Four : pavement structures...

  7. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated

  8. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  9. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    Science.gov (United States)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  10. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  11. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  12. Thinning shock and response to fertilizer less than expected in young Douglas-fir stand at Wind River Experimental Forest.

    Science.gov (United States)

    Dean S. DeBell; Constance A. Harrington; John. Shumway

    2002-01-01

    Three thinning treatments (thinned to 3.7 by 3.7 m, thinned to 4.3 by 4.3 m, and an unthinned control treatment with nominal spacing averaging 2.6 by 2.6 m) were installed in a 10-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation growing on a low-quality site at the Wind River Experimental Forest in southwest Washington. Two...

  13. Confinement - assisted shock-wave-induced thin-film delamination (SWIFD) of copper indium gallium diselenide (CIGS) on a flexible substrate

    Science.gov (United States)

    Lorenz, Pierre; Zagoranskiy, Igor; Ehrhardt, Martin; Han, Bing; Bayer, Lukas; Zimmer, Klaus

    2017-12-01

    The laser structuring of CIGS (copper indium gallium (di)selenide) solar cell material without influence and damaging the functionality of the active layer is a challenge for laser methods The shock-wave-induced thin-film delamination (SWIFD) process allows structuring without thermal modifications due to a spatial separation of the laser absorption from the functional layer removal process. In the present study, SWIFD structuring of CIGS solar cell stacks was investigated. The rear side of the polyimide was irradiated with a KrF-Excimer laser. The laser-induced ablation process generates a traverse shock wave, and the interaction of the shock wave with the layer-substrate interface results in a delamination process. The effect of a water confinement on the SWIFD process was studied where the rear side of the substrate was covered with a ∼2 mm thick water layer. The resultant surface morphology was analysed and discussed. At a sufficient number of laser pulses N and laser fluences Φ, the CIGS layer can be selectively removed from the Mo back contact. The water confinement, as well as the increasing laser beam size A0 and N, results in the reduction of the necessary minimal laser fluence Φth. Further, the delaminated CIGS area increased with increasing Φ, N, and A0.

  14. Stability of cylindrical thin shell wormhole during evolution of universe from inflation to late time acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2015-03-16

    In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.

  15. Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2005-01-01

    Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in

  16. Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

    International Nuclear Information System (INIS)

    Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.

    1984-01-01

    A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)

  17. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  18. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Makowski, J.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Torrisi, A.

    2016-01-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 10 19 W/cm 2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ∼ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum ( E pmax ) and the mean (( E p )) proton energy on |Δ x | is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m E pmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = −100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness E p changed only within ∼ 40% and the highest proton energies reached 2.4 MeV.

  19. A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples

    Directory of Open Access Journals (Sweden)

    M. Sticchi

    2015-07-01

    Full Text Available Laser Shock Peening is a fatigue enhancement treatment using laser energy to induce compressive Residual Stresses (RS in the outer layers of metallic components. This work describes the variations of introduced RS-field with peen size and coverage for thin metal samples treated with under-water-LSP. The specimens under investigation were of aluminium alloy AA2024-T351, AA2139-T3, AA7050-T76 and AA7075-T6, with thickness 1.9 mm. The RS were measured by using Hole Drilling with Electronic Speckle Pattern Interferometry and X-ray Diffraction. Of particular interest are the effects of the above mentioned parameters on the zero-depth value, which gives indication of the amount of RS through the thickness, and on the value of the surface compressive stresses, which indicates the magnitude of induced stresses. A 2D-axisymmetrical Finite Element model was created for a preliminary estimation of the stress field trend. From experimental results, correlated with numerical and analytical analysis, the following conclusions can be drawn: increasing the spot size the zero-depth value increases with no significant change of the maximum compressive stress; the increase of coverage leads to significant increase of the compressive stress; thin samples of Al-alloy with low Hugoniot Elastic Limit (HEL reveal deeper compression field than alloy with higher HEL value.

  20. Contributions to the study of astrophysical plasmas. From accretion-ejection flows to particle acceleration in shocks

    International Nuclear Information System (INIS)

    Casse, Fabien

    2013-01-01

    After having outlined that the study of turbulence is a point of convergence between mathematics and physics, and that magnetic turbulence is omnipresent in astrophysical plasmas and also present in the interstellar medium, in stars and in their environment, in accretion disks, at the vicinity of shocks, and so on, the author proposes an overview of his research works which started with a research thesis on magnetised accretion disks and transport of relativistic particles in a magnetic turbulence. So, in this report for an accreditation to supervise research (HDR), he first focuses on physics of systems in accretion, and particularly on magnetised accretion-ejection structures. He evokes his work on a stationary modelling of these structures, on magnetohydrodynamics digital simulation of these systems, and on some instabilities in accretion disks and their interest in astrophysics. In a second part, the author reports his works on numerical assessment of coefficients of spatial diffusion of cosmic rays in a magnetic turbulence, and the description of multi-scale environments such as supernovae debris or different regions of extra-galactic jets.

  1. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  2. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  3. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  4. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  5. Studying shocks in model astrophysical flows

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  6. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  7. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  8. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  9. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  10. Large superconducting detector magnets with ultra thin coils for use in high energy accelerators and storage rings

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-08-01

    The development of a new class of large superconducting solenoid magnets is described. High energy physics on colliding beam machines sometimes require the use of thin coil solenoid magnets. The development of these magnets has proceeded with the substitution of light materials for heavy materials and by increasing the current density in the coils. The Lawrence Berkeley Laboratory has developed a radical approach to the problem by having the coil operate at very high current densities. This approach and its implications are described in detail

  11. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics. Relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2011-01-01

    Systematic approaches to evaluate flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. First, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with two coupled models: 1.static electrochemical analysis and 2.dynamic oxide layer growth analysis. The anodic current density and the electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram. The ferrous ion release rate, determined by the anodic current density, was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic oxide layer growth model and then its value was used as input in the electrochemistry model. It was confirmed that the calculated results (corrosion rate and ECP) based on the coupled models were in good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP.

  12. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (3), relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Systematic approaches for evaluating flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. Firstly, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis. Anodic current density and electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram and ferrous ion release rate determined by the anodic current density was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic double oxide layer model and then was applied as input for the electrochemistry model. It was confirmed that the calculated results based on the coupled models resulted good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP. (author)

  13. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  14. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  15. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  16. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  17. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    Science.gov (United States)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  18. Recent progress in particle acceleration from the interaction between thin-foil targets and J-KAREN laser pulses

    Science.gov (United States)

    Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao; Ogura, Koichi; Esirkepov, Timur Zh; Tanimoto, Tsuyoshi; Yogo, Akifumi; Hori, Toshihiko; Sagisaka, Akito; Fukuda, Yuji; Kanasaki, Masato; Kiriyama, Hiromitsu; Shimomura, Takuya; Tanoue, Manabu; Nakai, Yoshiki; Sasao, Hajime; Sasao, Fumitaka; Kanazawa, Shuhei; Kondo, Shuji; Matsumoto, Yoshihiro; Sakai, Seiji; Brenner, Ceri; Neely, David; Bulanov, Sergei V.; Kondo, Kiminori

    2012-07-01

    From the interaction between the high-contrast (˜more than 1010) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of ˜1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder. From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of ˜10 mrad. The number of protons included in the bunch is >106.

  19. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  20. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (1), major features of coupled analysis and application for evaluation of wall thinning rate

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Six calculation steps have been prepared for predicting flow accelerated corrosion (FAC) occurrence and evaluating wall thinning rate. (1) Flow pattern and temperature in each elemental volume along the flow path are obtained with a 1D plant system code, (2) Corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path are calculated with a hydrazine-oxygen reaction code, (3) Precise flow patterns and mass transfer coefficients at the structure surface are calculated with a 3D CFD code, (4) Danger zones are evaluated by combining major FAC parameters, (5) Wall thinning rates are calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone, and then, (6) Residual life and effects of countermeasures can be evaluated. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model, and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of the oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. The calculated results of the coupled models had been compared with the data measured at operating Boiling Water Reactor (BWR) plants and it was demonstrated that the calculated results had good agreements with the measured ones. 6 step-evaluation procedures for liquid droplet impingement (LDI) were also proposed. (author)

  1. The ''injection problem'' for quasiparallel shocks

    International Nuclear Information System (INIS)

    Zank, G. P.; Rice, W. K. M.; le Roux, J. A.; Cairns, I. H.; Webb, G. M.

    2001-01-01

    For a particle to be accelerated diffusively at a shock by the first-order Fermi acceleration mechanism, the particle must be sufficiently energetic that it can scatter across all the micro- and macrostructure of the shock, experiencing compression between the converging upstream and downstream states. This is the well-known ''injection problem.'' Here the interaction of ions with the ramp of a quasiparallel shock is investigated. Some ions incident on the shock experience specular reflection, caused either by the cross-shock electrostatic potential or by mirroring as the magnetic field is bent and compressed through the ramp. Scattering of reflected ions by self-generated and pre-existing turbulence in the region upstream of the shock then acts to trap backstreaming ions and return them to the ramp, where some experience further reflections. Such repeated reflections and scattering energize a subpopulation of ions up to energies sufficiently large that they can be diffusively shock accelerated. Two ion distributions are considered: pickup ions which are assumed to be described by a shell distribution, are thermal solar wind ions which may be described by a kappa distribution. Injection efficiencies are found analytically to be very high for pickup ions and much lower for thermal solar wind ions, suggesting that this injection mechanism, stochastic reflected ion or SRI acceleration, is a natural precursor for the acceleration of the anomalous cosmic ray component at a quasiparallel shock. While significantly less efficient, SRI acceleration is also viable for thermal solar wind ions described by a kappa distribution

  2. Effect of the electron transport through thin slabs on the simulation of linear electron accelerators of use in therapy: A comparative study of various Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain)], E-mail: mvilches@ugr.es; Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain); Guerrero, R. [Servicio de Radiofisica, Hospital Universitario ' San Cecilio' , Avda. Dr. Oloriz, 16, E-18012 Granada (Spain); Anguiano, M.; Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used.

  3. Effect of the electron transport through thin slabs on the simulation of linear electron accelerators of use in therapy: A comparative study of various Monte Carlo codes

    International Nuclear Information System (INIS)

    Vilches, M.; Garcia-Pareja, S.; Guerrero, R.; Anguiano, M.; Lallena, A.M.

    2007-01-01

    When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used

  4. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  5. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  6. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  7. In vivo confocal laser microscopy of morphologic changes after small incision lenticule extraction with accelerated cross-linking (SMILE Xtra) in patients with thin corneas and high myopia.

    Science.gov (United States)

    Zhou, Yugui; Liu, Manli; Zhang, Ting; Zheng, Hua; Sun, Yuan; Yang, Xiaonan; Weng, Shengbei; Lin, Haiqin; Liu, Quan

    2018-01-01

    To evaluate the microstructural modifications and safety of small incision lenticule extraction combined with accelerated cross-linking (SMILE Xtra) in high myopia and thin corneas by means of in vivo confocal microscopy (IVCM) and 3D-OCT after a 6-month follow-up. Forty-three eyes with high myopia and thin corneas were enrolled. All eyes underwent SMILE procedure. After the lenticule was extracted, 0.25% riboflavin was injected into the interface and allowed to diffuse for 60 s. The eye was irradiated with UVA radiation of 30 mW/cm 2 for 90 s through the cap. The total energy delivered was 2.7 J/cm 2 . Morphologic modifications of corneal architecture were evaluated prior to SMILE Xtra and 7 days, 1, 3, and 6 months after SMILE by in vivo confocal microscopy (IVCM) and 3D-OCT. The corneal epithelial cells showed slight damage until 3 months postoperatively. The subepithelial nerve plexus decreased but no absence within the treatment zone at the first week after treatment, recolonized at 3 months postoperatively, and had mostly recovered at the 6 months postoperative but remained less than its normal baseline state. Keratocytes were absent in the surgical interface area, and the presence of strong reflective particles and cicatricial reaction in the anterior stroma were observed during the entire 6-month examination period. Increased hyperreflectivity was observed from the cap side at a depth of 60 µm to stroma bed at a depth of 388 µm through 6 months. The depth of the demarcation line in 40 eyes (93.0%) was at a mean depth of 296.12 ± 47.86 μm (range, 211-388 μm). No particular change between preoperative and postoperative corneal endothelium was observed. Confocal microscopy showed increased hyperreflectivity in the SMILE Xtra eyes, and no changes in corneal endothelium. We confirmed the safety of the SMILE Xtra but recognize that larger and longer-term studies of SMILE Xtra are necessary.

  8. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  9. Electron Acceleration in Supernovae and Millimeter Perspectives

    Directory of Open Access Journals (Sweden)

    Keiichi Maeda

    2014-12-01

    Full Text Available Supernovae launch a strong shock wave by the interaction of the expanding ejecta and surrounding circumstellar matter (CSM. At the shock, electrons are accelerated to relativistic speed, creating observed synchrotron emissions in radio wavelengths. In this paper, I suggest that SNe (i.e., < 1 year since the explosion provide a unique site to study the electron acceleration mechanism. I argue that the eciency of the acceleration at the young SN shock is much lower than conventionally assumed, and that the electrons emitting in the cm wavelengths are not fully in the Diffusive Shock Acceleration (DSA regime. Thus radio emissions from young SNe record information on the yet-unresolved 'injection' mechanism. I also present perspectives of millimeter (mm observations of SNe - this will provide opportunities to uniquely determine the shock physics and the acceleration efficiency, to test the non-linear DSA mechanism and provide a characteristic electron energy scale with which the DSA start dominating the electron acceleration.

  10. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  11. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  12. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  13. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  14. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  15. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  16. Fiscal 1974 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on particle non-accelerating growth Si thin film crystal); 1974 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Ryushi hikasoku seichogata silicon usumaku kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    This research aims at development of the technology for producing photovoltaic power generation systems at a cost less than 1/100 of those by current technology. In fiscal 1974, basic study was made on formation technology of particle non-accelerating growth Si thin film crystals. In addition, evaluation was made on formed thin film crystal characteristics, and studies were also made on junction formation for thin film crystals, and on thin film formation and junction formation for indium phosphide compound semiconductor thin films. The research includes (1) study on formation technology for particle non-accelerating growth Si thin film crystals, (2) evaluation on Si thin film crystals, (3) study on junction formation technology for Si thin film crystals, and (4) study on indium phosphide compound semiconductors. Evaluations were made on thin film formation technology by CVD, and on crystallographical and electrical characteristics of the formed thin films. The evaluation results clarified the compatibility between substrates and Si thin films, the formation condition of columnar structure films, and the effect of growth conditions on a carrier density or mobility. (NEDO)

  17. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  18. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  19. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed

  1. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

  2. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

  3. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

  4. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  5. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  6. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  7. Sepsis and Septic Shock Strategies.

    Science.gov (United States)

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  9. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  10. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  11. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    Science.gov (United States)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  12. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  13. Accelerated testing for studying pavement design and performance (FY 2000) : effectiveness of fiber reinforced and plain, ultra-thin concrete overlays on Portland Cement Concrete Pavement (PCCP).

    Science.gov (United States)

    2003-11-01

    The objective of the research was to compare the performance of fiber reinforced and plain PCC concrete overlay when used as a thin non-dowelled overlay on top of a rubblized, distressed concrete pavement. The experiment was conducted at the Accelera...

  14. Shock Spectrum Calculation from Acceleration Time Histories

    Science.gov (United States)

    1980-09-01

    accurate and economical . If the velocity is desired, it can be calculated with Equation A-8b. As it stands it is exact. Approx- imation will be...Washington DC; DAEN-MCE.D (R L Wight) Washington DC; DAEN.MPE-D Washington DC; DAEN- MPU . Washington DC; DARCOM; ERADCOM Tech Supp Dir. (DELSD-L) Ft

  15. Hydromagnetic shock structure in the presence of cosmic rays

    International Nuclear Information System (INIS)

    Drury, L.O.; Voelk, H.J.

    1981-01-01

    The time asymptotic structure of a shock significantly modified by the back-reaction from the diffusive acceleration of cosmic rays is investigated. Making a physically plausible assumption about the diffusion, it is shown that for given upstream conditions and shock speed only a finite odd number of shock structures are possible; an explicit method of determining these is given (in many cases the solution is unique). The results of this nonlinear study are contrasted with those of the linear test-particle theory and shown to confirm the possibility of efficient particle acceleration in shocks

  16. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    International Nuclear Information System (INIS)

    May, Chadd M; Tarver, Craig M

    2014-01-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several Kapton TM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  17. Particle acceleration in the interplanetary space

    International Nuclear Information System (INIS)

    Tverskoj, B.A.

    1983-01-01

    A review on the problem of particle acceleration in the interplanetary space is given. The main lationship attention is paid to the problem of the re/ between the impact- and turbulent acceleration when an undisturbed magnetic field forms not too small angle THETA > 10 deg with the shock wave front. The following conclusions are drawn. Particle acceleration at the shock wave front is manifested in the explicit form, if the shock wave propagates along a homogeneous (in the 11 cm range) solar wind. The criterion of such an acceleration is the exponential distribution function F approximately vsup(-ν) (v is the particle velocity and ν is the accelerated particle spectrum index) in the low energy range and the conservation of this function at considerable distances behind the front. The presence of an additional turbulent acceleration behind the front is manifested in decreasing ν down to approximately 3.5 in the low energy range and in the spectrum evolution behind the front

  18. The Dynamic Quasiperpendicular Shock: Cluster Discoveries

    Czech Academy of Sciences Publication Activity Database

    Krasnoselskikh, V.; Balikhin, M.; Walker, S. N.; Schwartz, S.; Sundkvist, D.; Lobzin, V.; Gedalin, M.; Bale, S. D.; Mozer, F.; Souček, Jan; Hobara, Y.; Comisel, H.

    2013-01-01

    Roč. 178, 2-4 (2013), s. 535-598 ISSN 0038-6308 Institutional support: RVO:68378289 Keywords : collisionless shocks * waves in plasmas * nonstationarity * shock scales * plasma heating and acceleration * wave-particle interactions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.874, year: 2013 http://link.springer.com/article/10.1007%2Fs11214-013-9972-y

  19. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  20. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  1. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  2. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  3. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  4. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  5. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  6. High-energy cosmic-ray acceleration

    OpenAIRE

    Bustamante, M; Carrillo Montoya, G; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi accelera...

  7. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  8. Drift mechanism for energetic charged particles at shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Axford, W.I.; Terasawa, T.

    1983-01-01

    The energy changes of energetic charged particles at a plane shock due to the so-called drift mechanism are analyzed by using the ''adiabatic treatment.'' The analysis shows that for a fast MHD shock, particles lose energy owing to acceleration (curvature) drift in the magnetic field at the shock with the drift velocity being antiparallel to the electric field, and they gain energy owing to gradient drift parallel to the electric field. It is shown that particles with pitch angles aligned along the magnetic field which pass through the shock tend to lose energy owing to acceleration drift, whereas particles with pitch angles nonaligned to the magnetic field gain energy owing to gradient drift. Particles that are reflected by the shock always gain energy. Slow-mode shocks may be similarly analyzed, but in this case curvature drifts give rise to particle energy gains, and gradient drifts result in particle energy losses

  9. Numerical simulation of the structure of collisionless supercritical shocks

    International Nuclear Information System (INIS)

    Lipatov, A.S.

    1990-01-01

    Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs

  10. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Hallouin, M.; Romain, J.P. (GRECO ILM, Laboratoire d' Enegetique et Detonique, ENSMA, 86 - Poitiers (France)); Fabbro, R.; Faral, B. (GRECO ILM, Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91 - Palaiseau (France))

    1984-11-01

    Laser-driven shock pressures up to 5 TPa at 0.26 ..mu..m wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil.

  11. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    International Nuclear Information System (INIS)

    Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.

    1984-01-01

    Laser-driven shock pressures up to 5 TPa at 0.26 μm wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil

  12. PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN

    Energy Technology Data Exchange (ETDEWEB)

    Gurnett, D. A.; Kurth, W. S. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA 52242 (United States); Stone, E. C.; Cummings, A. C. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krimigis, S. M.; Decker, R. B. [Applied Physics Laboratory/JHU, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Ness, N. F. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Burlaga, L. F., E-mail: donald-gurnett@uiowa.edu [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-08-20

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  13. A primary standard for low-g shock calibration by laser interferometry

    Science.gov (United States)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-07-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He-Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s-2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1.

  14. Structural and electrical properties of polycrystalline CdSe thin films, before and after irradiation with 6 MeV accelerated electrons

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, V.A.; Tazlaoanu, C.; Antohe, S.; Scarlat, F.

    2004-01-01

    Structural and electrical properties of polycrystalline CdSe thin films irradiated with high-energy electrons are analyzed. The samples were prepared by vacuum deposition of CdSe powder onto optical glass substrate. Their structure and the temperature dependence of the electrical resistance were determined, both before and after irradiation with 6 MeV electrons at fluencies up to 10 16 electrons/cm 2 . There were no measurable changes in the crystalline structure of the films after irradiation. Electrical properties are controlled by the defect level of donor type, possibly a selenium vacancy, with two ionizing states having ionization energies of about 0.40 eV and 0.22 eV, respectively. The major effect of the irradiation is to increase significantly the concentration of these defects. (authors)

  15. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  16. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  17. Cosmic Ray Acceleration in Supernova Remnants

    International Nuclear Information System (INIS)

    O'C Drury, Luke

    2005-01-01

    This paper describes some recent developments in our understanding of cosmic ray acceleration in supernova remnant shocks. It is pointed out that while good agreement now exists as to steady nonlinear modifications to the shock structure, there is also growing evidence that the mesoscopic scales may not in fact be steady and that significant instabilities associated with magnetic field amplification may be a feature of strong collisionless plasma shocks. There is strong observational evidence for such magnetic field amplification, and it appears to solve a number of long-standing issues concerned with acceleration of cosmic rays in supernova remnants

  18. Nonequilibrium recombination after a curved shock wave

    Science.gov (United States)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  19. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  20. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  1. Microscale Shock Wave Physics Using Photonic Driver Techniques; TOPICAL

    International Nuclear Information System (INIS)

    SETCHELL, ROBERT E.; TROTT, WAYNE M.; CASTANEDA, JAIME N.; FARNSWORTH JR.,A. V.; BERRY, DANTE M.

    2002-01-01

    This report summarizes a multiyear effort to establish a new capability for determining dynamic material properties. By utilizing a significant reduction in experimental length and time scales, this new capability addresses both the high per-experiment costs of current methods and the inability of these methods to characterize materials having very small dimensions. Possible applications include bulk-processed materials with minimal dimensions, very scarce or hazardous materials, and materials that can only be made with microscale dimensions. Based on earlier work to develop laser-based techniques for detonating explosives, the current study examined the laser acceleration, or photonic driving, of small metal discs (''flyers'') that can generate controlled, planar shockwaves in test materials upon impact. Sub-nanosecond interferometric diagnostics were developed previously to examine the motion and impact of laser-driven flyers. To address a broad range of materials and stress states, photonic driving levels must be scaled up considerably from the levels used in earlier studies. Higher driving levels, however, increase concerns over laser-induced damage in optics and excessive heating of laser-accelerated materials. Sufficiently high levels require custom beam-shaping optics to ensure planar acceleration of flyers. The present study involved the development and evaluation of photonic driving systems at two driving levels, numerical simulations of flyer acceleration and impact using the CTH hydrodynamics code, design and fabrication of launch assemblies, improvements in diagnostic instrumentation, and validation experiments on both bulk and thin-film materials having well-established shock properties. The primary conclusion is that photonic driving techniques are viable additions to the methods currently used to obtain dynamic material properties. Improvements in launch conditions and diagnostics can certainly be made, but the main challenge to future applications

  2. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  3. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  4. Interplanetary shock phenomena beyond 1 AU

    International Nuclear Information System (INIS)

    Smith, E.J.

    1985-01-01

    Attention is given to spatial dependences exhibited by spacecraft measurements obtained between 1 and 30 AU, together with temporal variations occurring between solar activity cycle maxima and minima. At 1-3 AU radial distances, shocks develop in association with the corotating solar wind streams characterizing solar minimum and accelerate solar wind evolution with distance while heating the solar wind and generating waves and turbulence. At solar maximum, shocks are observed more frequently at 1 AU but still in association with transient solar events; acceleration leading to energetic storm particles is observed both within and beyond 1 AU. The superimposed effect of large numbers of intense shocks may be responsible for the solar cycle modulation of galactic cosmic rays. 77 references

  5. 33 CFR 183.584 - Shock test.

    Science.gov (United States)

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by... the boat, apply 1000 cycles of 25g vertical accelerations at a rate of 80 cycles or less per minute... manufactured for installation with its center of gravity aft of the half length of the boat, apply 1000 cycles...

  6. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  7. An experimental setup for growth of thin films and advanced sample analysis coupled to the 5 MV tandem accelerator of the Universidad Autonoma de Madrid

    International Nuclear Information System (INIS)

    Rivera, A.; Andrzejewski, R.; Guirao, A.; Gonzalez-Arrabal, R.; Andrzejewska, E.; Gordillo, N.; Prieto, J.E.; Boerma, D.O.

    2006-01-01

    We describe an experimental setup with a unique set of features. It consists of a number of ultra-high vacuum chambers (UHV) connected by transfer rods. It is employed for epitaxial growth of thin films. The surface symmetry of the as-grown samples can be investigated by low energy electron diffraction (LEED) and their composition as well as the atomic positions in external layers can be studied by low energy ion scattering (LEIS) with time-of-flight (TOF). The power of this unique multiple-hit LEIS/TOF equipment is based on the use of a 1D-position sensitive detector. In addition, ions with energies in the MeV range are used to perform Rutherford backscattering with channelling (RBS/channeling) or elastic recoil detection (ERD). Ellipsometry, Kerr effect and resistivity measurements will also be available in situ. The combination of these techniques allows us to extensively characterize grown samples. In addition, high-energy heavy ions are exploited for film modification

  8. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  9. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  10. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    Science.gov (United States)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  11. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  12. Plasma cluster acceleration by means of external magnetic fields

    International Nuclear Information System (INIS)

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  13. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hoffman, N.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bellei, C.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-05-15

    Shock-driven implosions of thin-shell capsules, or “exploding pushers,” generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D{sup 3}He gas fills ranging from pure deuterium to pure {sup 3}He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations.

  14. Shock propagation in a heterogeneous medium

    International Nuclear Information System (INIS)

    Elbaz, D.

    2011-01-01

    In the frame of the inertial confinement fusion in direct drive, the use of foams as ablator allows the reduction of hydrodynamic instabilities created on the target by the direct laser irradiation. The foam is made up of carbon (CH) fibers impregnated of cryogenic deuterium-tritium (DT). In the past, studies have been carried out considering this foam to be a homogeneous medium. Yet, the foam presents heterogeneous features. We study the effects of this heterogeneity on the shock velocity when the laser irradiates the target. Thanks to experimental and numerical studies, we show that the shock propagates faster in the heterogeneous medium than in the homogeneous one with the same averaged density. This velocity gap depends on the presence rate of the CH fibers in the foam, the density ratio, the adiabatic coefficient and the foam geometry. We model the foam by different ways, more and more complex. The shock velocity modification is due to the baroclinicity which, during the interaction between the shock front and the interface, creates a vorticity deposition, responsible for the shock acceleration. Accordingly, an interface, which is plane and perpendicular to the front shock, maximizes the vorticity deposition and increases the velocity gaps between heterogeneous and homogeneous media. We found a correlation between the kinetic energy behind the shock front and the velocities relative difference. We compared our results with two analytical models. However, the system is not closed, so we can't for the moment develop a predictive model. (author) [fr

  15. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  16. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  17. "Light sail" acceleration reexamined.

    Science.gov (United States)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  18. 'Light Sail' Acceleration Reexamined

    International Nuclear Information System (INIS)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-01-01

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  19. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  20. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  1. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    Science.gov (United States)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  2. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  3. Design and testing of a shock absorber for a type I container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.; Jais, M.

    1994-01-01

    A simple method of designing a shock absorber to protect a type B cast-iron container is developed. The results of deformation tests of the structural material (steel pipes) used for the shock absorber are presented. The accelerations and strains measured during the 9m drop tests of the container with the shock absorber are compared with the theoretical results of the calculations for the shock absorber design. ((orig.))

  4. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  5. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  6. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  7. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  8. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  9. Sources and acceleration efficiencies for energetic particles in the heliosphere

    International Nuclear Information System (INIS)

    Kucharek, H; Moebius, E

    2006-01-01

    Shocks at solar wind stream interaction regions, coronal mass ejections and magnetospheric obstacles have long been known for their intimate link with particle acceleration. Much enhanced capabilities to determine mass and charge composition at interplanetary shocks with ACE and SOHO have enabled us to identify sources and acceleration processes for the energetic particles. Both solar wind and interstellar pickup ions are substantial sources for particle acceleration in corotating interaction regions and at coronal mass ejections driven shocks and that flare particles are re-accelerated. Suprathermal distributions, such as pickup ions and pre-existing flare populations are accelerated much more efficiently than particles out of the solar wind. Recent results of the termination shock crossing by Voyager I and the scientific goals of the upcoming IBEX mission will be discussed

  10. Mechanical Properties of Shock-Damaged Rocks

    Science.gov (United States)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  11. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  12. A nova outburst powered by shocks

    Science.gov (United States)

    Li, Kwan-Lok; Metzger, Brian D.; Chomiuk, Laura; Vurm, Indrek; Strader, Jay; Finzell, Thomas; Beloborodov, Andrei M.; Nelson, Thomas; Shappee, Benjamin J.; Kochanek, Christopher S.; Prieto, José L.; Kafka, Stella; Holoien, Thomas W.-S.; Thompson, Todd A.; Luckas, Paul J.; Itoh, Hiroshi

    2017-10-01

    Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky1. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf, which is reprocessed through the ejected material2-5. Recent studies using the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt γ-ray emission6,7. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories for the study of the unknown efficiency of particle acceleration in shocks. Here, we report γ-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in γ-rays. The γ-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf8. The ratio of γ-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be around 0.005, favouring hadronic models for the γ-ray emission9. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Curved Radio Spectra of Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  15. Shock wave interactions with detonable clouds

    International Nuclear Information System (INIS)

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  16. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  17. Fiscal 1974 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on Si thin film crystal by particle acceleration growth); 1974 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Ryushi kasoku seichogata silicon usumaku kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This research includes (1) basic study on formation technology of Si thin film crystals by particle acceleration growth, (2) basic study on junction formation technology for Si thin film crystals, and (3) basic study on GaAs compound semiconductors by pyrolysis method. In the 1st research, the thin film formation equipment was prepared for formation of charged Si particles from monosilane and solid Si in inert gas plasma by high-frequency excitation, and its expected characteristics were confirmed through its operation test. Basic data of Si thin films were also obtained by electron beam diffraction and Auger electron spectroscopy. In the 2nd research, study was made on junction formation systems for thin films, and the idea of a continuous thin film formation system was obtained for junction formation. In the 3rd research, development of p-type GaAs epitaxial technology was promoted, and it was confirmed that various p-type GaAs compound semiconductors of 10{sup 12}-10{sup 18}cm{sup -3} in impurity concentration are obtained by controlling a ratio of trimetylgallium gas to arsine gas. (NEDO)

  18. Some new results on shock chemistry in IC 443

    International Nuclear Information System (INIS)

    DeNoyer, L.K.; Frerking, M.A.

    1981-01-01

    We have made new observations of CO, 13 CO, SiO, SO, H 2 CO, HCO + , N 2 H + , CS, OCS, HCN, and OH in the shocked clouds of IC 443. At position IC 443 B, we find (a) the shocked CO is optically thin, (b) the HCO + /CO abundance ratio is 4--9 x 10 -4 , a tenfold enhancement over normal interstellar clouds, (c) HCN/CO = 1--3 x 10 -4 and CS/CO = 2--3 x 10 -4 , consistent with abundances found in ordinary clouds, (d) no enhancements of SO or SiO as occur in Orion KL, (e) optically thin preshock OH, confirming a hundredfold enhancement of OH/CO in the shock, and (f) an OH main line anomaly, with T/sub ex/(1667)>T/sub ex/(1665) in the shocked region

  19. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  20. Particle acceleration in the interplanetary medium

    International Nuclear Information System (INIS)

    Engelmann, J.J.

    1987-07-01

    Variations in solar wind properties are dominated by a number of high speed streams. By interacting with the quiet wind, the fast streams give rise in the first case to a travelling shock wave, in the second case to a pair of forward and backward shock waves, by which the interaction region, corotating with the sun, is bounded. Two acceleration mechanisms are invoked to account for the energetic ion flux increases: 1) The first order Fermi process, whereby particles increase their energy by compression between converging magnetic scattering centers, located upstream and downstream of the shock. 2) The shock drift mechanism. The composition and the spectrum of the accelerated ions suggest that they probably originate from the suprathermal tail of the solar wind distribution [fr

  1. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  2. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  3. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  4. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  5. Mechanics of Thin Films

    Science.gov (United States)

    1992-02-06

    and the second geometry was that of squat cylinders (diameter 6.4 mm, height 6.4 mm). These two geometries were tested in thermal shock tests, and a...milder [13]. More recently, Lau, Rahman and stressa nce ntrati, tha n films of lmalla rat ve spc Delale calculated the free edge singularity for stress...thickness of 3 mm); the second geometry was that As an example of the shielding effect of thin films, we of squat cylinders (diameter 6.4 mm, height 6.4

  6. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  7. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  8. Planar shock focusing through perfect gas lens: First experimental demonstration

    International Nuclear Information System (INIS)

    Biamino, Laurent; Mariani, Christian; Jourdan, Georges; Houas, Lazhar; Vandenboomgaerde, Marc; Souffland, Denis

    2014-01-01

    When a shock wave crosses an interface between two materials, this interface becomes unstable and the Richtmyer-Meshkov instability develops. Such instability has been extensively studied in the planar case, and numerous results were presented during the previous workshops. But the Richtmyer-Meshkov (Richtmyer, 1960, 'Taylor Instability in Shock Acceleration of Compressible Fluids,' Commun. Pure Appl. Math., 13(2), pp. 297-319; Meshkov, 1969, 'Interface of Two Gases Accelerated by a Shock Wave,' Fluid Dyn., 4(5), pp. 101-104) instability also occurs in a spherical case where the convergence effects must be taken into account. As far as we know, no conventional (straight section) shock tube facility has been used to experimentally study the Richtmyer-Meshkov instability in spherical geometry. The idea originally proposed by Dimotakis and Samtaney (2006, 'Planar Shock Cylindrical Focusing by a Perfect-Gas Lens,' Phys. Fluid., 18(3), pp. 031705-031708) and later generalized by Vandenboomgaerde and Aymard (2011, 'Analytical Theory for Planar Shock Focusing Through Perfect Gas Lens and Shock Tube Experiment Designs,' Phys. Fluid., 23(1), pp. 016101-016113) was to retain the flexibility of a conventional shock tube to convert a planar shock wave into a cylindrical one through a perfect gas lens. This can be done when a planar shock wave passes through a shaped interface between two gases. By coupling the shape with the impedance mismatch at the interface, it is possible to generate a circular transmitted shock wave. In order to experimentally check the feasibility of this approach, we have implemented the gas lens technique on a conventional shock tube with the help of a convergent test section, an elliptic stereo lithographed grid, and a nitrocellulose membrane. First experimental sequences of Schlieren images have been obtained for an incident shock wave Mach number equal to 1.15 and an air/SF_6-shaped interface. Experimental results indicate that the shock that moves

  9. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  10. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  11. Shock Transmission and Fatigue in Human Running.

    Science.gov (United States)

    Verbitsky, Oleg; Mizrahi, Joseph; Voloshin, Arkady; Treiger, July; Isakov, Eli

    1998-08-01

    The goal of this research was to analyze the effects of fatigue on the shock waves generated by foot strike. Twenty-two subjects were instrumented with an externally attached, lightweight accelerometer placed over the tibial tuberosity. The subjects ran on a treadmill for 30 min at a speed near their anaerobic threshold. Fatigue was established when the end-tidal CO 2 pressure decreased. The results indicated that approximately half of the subjects reached the fatigue state toward the end of the test. Whenever fatigue occurred, the peak acceleration was found to increase. It was thus concluded that there is a clear association between fatigue and increased heel strike-induced shock waves. These results have a significant implication for the etiology of running injuries, since shock wave attenuation has been previously reported to play an important role in preventing such injuries.

  12. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  13. Response of the seated human body to whole-body vertical vibration: discomfort caused by mechanical shocks.

    Science.gov (United States)

    Zhou, Zhen; Griffin, Michael J

    2017-03-01

    The frequency dependence of discomfort caused by vertical mechanical shocks has been investigated with 20 seated males exposed to upward and downward shocks at 13 fundamental frequencies (1-16 Hz) and 18 magnitudes (±0.12 to ±8.3 ms -2 ). The rate of growth of discomfort with increasing shock magnitude depended on the fundamental frequency of the shocks, so the frequency dependence of equivalent comfort contours (for both vertical acceleration and vertical force measured at the seat) varied with shock magnitude. The rate of growth of discomfort was similar for acceleration and force, upward and downward shocks, and lower and higher magnitude shocks. The frequency dependence of discomfort from shocks differs from that of sinusoidal vibrations having the same fundamental frequencies. This arises in part from the frequency content of the shock. Frequency weighting W b in BS 6841:1987 and ISO 2631-1:1997 provided reasonable estimates of the discomfort caused by the shocks investigated in this study. Practitioner Summary: No single frequency weighting can accurately predict the discomfort caused by mechanical shocks over wide ranges of shock magnitude, but vibration dose values with frequency weighting W b provide reasonable estimates of discomfort caused by shocks similar to those investigated in this study with peak accelerations well below 1 g.

  14. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  15. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  16. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  17. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  18. Shock Geometry and Spectral Breaks in Large SEP Events

    Science.gov (United States)

    Li, G.; Zank, G. P.; Verkhoglyadova, Olga; Mewaldt, R. A.; Cohen, C. M. S.; Mason, G. M.; Desai, M. I.

    2009-09-01

    Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)α, with Q being the ion charge in e and A the ion mass in units of proton mass mp . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ|| and κbottom. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs.

  19. Properties of Merger Shocks in Merging Galaxy Clusters

    Science.gov (United States)

    Ha, Ji-Hoon; Ryu, Dongsu; Kang, Hyesung

    2018-04-01

    X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of subclumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we focus on the simulated clusters that undergo almost head-on collisions with mass ratio ∼2. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, , increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, F ϕ , peaks at ∼1 Gyr after their initial launching, or at ∼1–2 Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic-ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with }CR}∼ 3{--}4, compared to the kinetic-energy-weighted Mach number, }φ ∼ 2{--}3. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located on the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.

  20. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  1. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  2. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  3. A primary standard for low-g shock calibration by laser interferometry

    International Nuclear Information System (INIS)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-01-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He–Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s −2  and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1. (paper)

  4. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  5. On the nature of impulsive electron acceleration on solar hard X-ray flares. Pt. 2

    International Nuclear Information System (INIS)

    Hoyng, P.

    1977-01-01

    The suggestion is elaborated that shock wave generated Langmuir waves accelerate electrons in the adjoining plasma. Langmuir wave generation can be achieved in ion-acoustic unstable shocks by induced bremsstrahlung from electrons. A crude model analysis shows the Langmuir waves to have short wavelengths, ( approximately equal to ksub(D)/4), while propagating almost parallel to the shock plane. It is possible that sufficient power in Langmuir waves is generated to explain the observed scale of electron acceleration. (orig./BJ) [de

  6. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  7. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  8. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  9. Part I. Mechanisms of injury associated with extracorporeal shock wave lithotripsy; Part II. Exsolution of volatiles

    Science.gov (United States)

    Howard, Danny Dwayne

    Part I - Shock waves are focused in extracorporeal shock wave lithotripsy (ESWL) machines to strengths sufficient to fracture kidney stones. Substantial side effects-most of them acute-have resulted from this procedure, including injury to soft tissue. The focusing of shock waves through various layers of tissue is a complex process which stimulates many bio-mechano-chemical responses.This thesis presents results of an in vitro study of the initial mechanical stimulus. Planar nitrocellulose membranes of order 10 um thick were used as models of thin tissue structures. Two modes of failure were recorded: Failure due to cavitation collapsing on or near the membranes, and failure induced by altering the structure of shock waves. Tests were done in water at and around F2 to characterize the extent of cavitation damage, and was found to be confined within the focal region, 1.2 cm along the axis of focus.Scattering media were used to simulate the effects of acoustic nonuniformity of tissue and to alter the structure of focusing shock waves. 40 um diameter (average) hollow glass spheres were added to ethylene glycol, glycerine and castor oil to vary the properties of the scattering media. Multiple layer samples of various types of phantom tissue were tested in degassed castor oil to gauge the validity of the scattering media. The scattering media and tissue samples increased the rise time decreased strain rate in a similar fashion. Membranes were damaged by the decreased strain rate and accumulated effects of the altered structure: After about 20 or so shocks immersed in the scattering media and after about 100 shocks behind the tissue samples. The mode of failure was tearing with multiple tears in some cases from about .1 cm to about 3 cm depending of the number of shocks and membrane thickness.Part II - This work examines the exsolution of volatiles-carbon dioxide from water-in a cylindrical test cell under different pressure conditions. Water was supersaturated with

  10. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  11. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  12. Observation of shocks associated with CMEs in 2007

    Science.gov (United States)

    Aryan, H.; Balikhin, M. A.; Taktakishvili, A.; Zhang, T. L.

    2014-03-01

    The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX) and STEREO data by Russell et al. (2009) have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs) takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE) data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  13. Observation of shocks associated with CMEs in 2007

    Directory of Open Access Journals (Sweden)

    H. Aryan

    2014-03-01

    Full Text Available The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX and STEREO data by Russell et al. (2009 have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  14. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  15. Second-stage acceleration in solar flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    A model proposed by Chevalier and Scott to account for cosmic ray acceleration in an expanding supernova remnant is applied to the case of a shock wave injected into the solar corona by a flare. Certain features of solar cosmic rays can be explained by this model. (orig.) [de

  16. Mounted Combat System Crew Shock Loading: Head and Neck Injury Potential Evaluation

    National Research Council Canada - National Science Library

    LaFiandra, Michael E; Zywiol, Harry

    2007-01-01

    ...) ride motion simulator (RMS) was used to simulate the effects of gun firing shock on a Hybrid III instrumented anthropometric test device capable of measuring neck force and torque and head acceleration...

  17. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  18. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  19. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  20. General relativistic study of astrophysical jets with internal shocks

    Science.gov (United States)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2017-08-01

    We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.

  1. Cosmic ray acceleration by stellar wind. Simulation for heliosphere

    International Nuclear Information System (INIS)

    Petukhov, S.I.; Turpanov, A.A.; Nikolaev, V.S.

    1985-01-01

    The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space

  2. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  3. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  4. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  5. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  6. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  7. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  8. Advances in ferroelectric polymers for shock compression sensors

    International Nuclear Information System (INIS)

    Bauer, F.; Moulard, H.; Samara, G.

    1997-01-01

    Our studies of the shock compression response of PVDF polymer are continuing in order to understand the physical properties under shock loading and to develop high fidelity, reproducible, time-resolved dynamic stress gauges. New PVDF technology, new electrode configurations and piezoelectric analysis have resulted in enhanced precision gauges. Our new standard gauges have a precision of better than 1% in electric charge release under shock up to 15 GPa. The piezoelectric response of shock compressed PVDF gauges 1 mm 2 in active area has been studied and yielded well-behaved reproducible data up to 20 GPa. Analysis of the response of these gauges in the open-quotes thin mode regimeclose quotes using a Lagrangian hydrocode will be presented. P(VDF-TrFE) copolymers exhibit unique piezoelectric properties over a wide range of temperature depending on the composition. Their properties and phase transitions are being investigated. Emphasis of the presentation will be on key results and implications

  9. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  10. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  11. Counseling For Future Shock

    Science.gov (United States)

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  12. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  13. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  14. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Science.gov (United States)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  15. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  16. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  17. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Scholer, Manfred [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Masters, Adam [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, Ali H., E-mail: torbjorn.sundberg@gmail.com [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  18. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  19. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  20. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  1. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  2. Conservatism implications of shock test tailoring for multiple design environments

    Science.gov (United States)

    Baca, Thomas J.; Bell, R. Glenn; Robbins, Susan A.

    1987-01-01

    A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item.

  3. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  4. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  5. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  6. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  7. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  8. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  9. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  10. Electron acceleration by wave turbulence in a magnetized plasma

    Science.gov (United States)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  11. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  12. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  13. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levinson, Amir

    2012-01-01

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  14. Particle acceleration near Halley's comet

    International Nuclear Information System (INIS)

    Somogyi, Antal

    1987-01-01

    Vega and Giotto space probes observed energetic ions of cometary origin near Halley's comet. The water molecules evaporating from the cometary nucleus were ionized by the solar UV radiation. These 'standing' ions were accelerated from 1 km/s to a few 1000 km/s. Present paper analyses the possible mechanisms of acceleration based on the data of TUENDE detector (constructed by CRIP, Hungary) working on board of Vega probes. The basic mechanism is the ExB Lorentz acceleration by interplanetary magnetic field and electric field induced by magnetic field frozen into solar wind plasma. It is followed by an acceleration caused by the adiabatic compression of the plasma at shock wave front. These processes can not explain the observed velocity of ions. It is shown that the second order Fermi acceleration which dissipates the ion distribution in the velocity space can lead to the observed velocities. The circumstances required to the occurrence of this process are present at the cometary environment. (D.G.) 2 figs

  15. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Science.gov (United States)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  16. Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry

    International Nuclear Information System (INIS)

    Zhang, Q.; Graham, M.J.; Graham, M.J.

    1997-01-01

    The Richtmyer-Meshkov (RM) instability is an interfacial interface between two fluids of different densities driven by shock waves and plays an important role in the studies of inertial confinement fusion and of supernovas. So far, most of the studies are for RM unstable interfaces driven by weak or intermediate shocks in planar geometry. For experiments conducted at the Nova laser, the unstable material interface is accelerated by very strong shocks. In this Letter, we present scaling laws for the RM unstable interface driven by strong imploding and exploding shocks. copyright 1997 The American Physical Society

  17. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  18. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  19. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  20. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  1. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  2. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  3. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  4. Life Shocks and Homelessness

    Science.gov (United States)

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  5. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  6. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  7. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  8. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  9. Stability of accelerated metal shells

    International Nuclear Information System (INIS)

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  10. Pulsed electromagnetic acceleration

    Science.gov (United States)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  11. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  12. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  13. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  14. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  15. Unlimited ion acceleration by radiation pressure.

    Science.gov (United States)

    Bulanov, S V; Echkina, E Yu; Esirkepov, T Zh; Inovenkov, I N; Kando, M; Pegoraro, F; Korn, G

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  16. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  17. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  18. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  19. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  20. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  1. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  2. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  4. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  7. 3D Printed Shock Mitigating Structures

    Science.gov (United States)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  8. Precursory accelerated Benioff strain in the Aegean area

    Energy Technology Data Exchange (ETDEWEB)

    Papazachos, C.; Papazachos, B. [Thessaloniki Univ., Thessaloniki (Greece). Geophysical Laboratory

    2001-04-01

    Accelerating seismic crustal information due to the occurrence of intermediate magnitude earthquakes leading to the generation of a main shock has recently been considered a critical phenomenon. This hypothesis is tested by the use of a large sample concerning the Aegean area. Elliptical critical regions for fifty-two strong main shocks, which have occurred in the Aegean area since 1930, have been identified by applying a power-law relation between the cumulative Benioff strain and the time to the main rupture. Empirical relations between the parameters of this model have been further improved by the use of a large data sample. The spatial distribution of pre shocks with respect to the main shock is examined and its tectonic significance is pointed out. The possibility of using the results of this work to predict the epicentre, magnitude and time of ensuing main shocks are discussed and further work towards this goal is suggested.

  9. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  10. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  11. First results of transcritical magnetized collisionless shock studies on MSX

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  12. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    Gupta, S.C.; Jyoti, G.; Suresh, N.; Sikka, S.K.; Chidambaram, R.; Agarwal, R.G.; Roy, S.; Kakodkar, A.

    1995-01-01

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N 2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  13. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  14. Acceleration waves in non-ideal magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    R. Singh

    2014-03-01

    Full Text Available The problem of propagation of acceleration waves in an unsteady inviscid non-ideal gas under the influence of magnetic field is investigated. The characteristic solution to the problem in the neighbourhood of leading characteristics has been determined. An evolution equation governing the behaviour of acceleration waves has been derived. It is shown that a linear solution in the characteristic plane exhibits non-linear behaviour in physical plane. The effect of magnetic field on the formation of shock in non-ideal gas flow with planar and cylindrical symmetry is analysed. It is noticed that all compressive waves terminate into a shock wave. Further, we also compare/contrast the nature of solution in ideal and non-ideal magnetogasdynamic regime.

  15. On the stability of bow shocks generated by red supergiants: the case of IRC -10414

    Science.gov (United States)

    Meyer, D. M.-A.; Gvaramadze, V. V.; Langer, N.; Mackey, J.; Boumis, P.; Mohamed, S.

    2014-03-01

    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC -10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of 2, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best-fitting model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC -10414 are ≈50 km s-1 and ≈10-6 M⊙ yr-1, respectively, and that the number density of the local interstellar medium is ≈3 cm-3. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC -10414 must be photoionized.

  16. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  17. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  18. Generation of mesoscale magnetic fields and the dynamics of Cosmic Ray acceleration

    Science.gov (United States)

    Diamond, P. H.; Malkov, M. A.

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays (1018eV ) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves. The generation mechanism is modulational instability of CR generated Alfven wave packets induced, in turn, by scattering off acoustic fluctuations in the shock precursor which are generated by Drury instability.

  19. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  20. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  1. Cosmic Accelerators: Engines of the Extreme Universe

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  2. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  3. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  4. Rayleigh-Taylor stability for a shock wave-density discontinuity interaction

    International Nuclear Information System (INIS)

    Fraley, G.S.

    1981-01-01

    Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given

  5. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  6. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  7. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  8. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  9. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  10. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  11. The Shock Doctrine

    OpenAIRE

    Dionysios K. Solomos; Dimitrios N. Koumparoulis

    2011-01-01

    Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...

  12. Fabrication of 94Zr thin target for RDM lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, Chandan Kumar; Rohilla, Aman; Chamoli, S.K.; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.

    2013-01-01

    The aim of the activity was to make a thin target of isotopically enriched 94 Zr for lifetime measurement experiment to be done with the plunger setup at the Inter University Accelerator Center (IUAC) Delhi

  13. Nonlinear Weibel Instability and Turbulence in Strong Collisionless Shocks

    International Nuclear Information System (INIS)

    Medvedev, Mikhail M.

    2008-01-01

    This research project was devoted to studies of collisionless shocks, their properties, microphysics and plasma physics of underlying phenomena, such as Weibel instability and generation of small-scale fields at shocks, particle acceleration and transport in the generated random fields, radiation mechanisms from these fields in application to astrophysical phenomena and laboratory experiments (e.g., laser-plasma and beam-plasma interactions, the fast ignition and inertial confinement, etc.). Thus, this study is highly relevant to astrophysical sciences, the inertial confinement program and, in particular, the Fast Ignition concept, etc. It makes valuable contributions to the shock physics, nonlinear plasma theory, as well as to the basic plasma science, in general

  14. Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Chi Yong

    2003-01-01

    The present study performed pipe failure tests using 102 mm-Sch. 80 carbon steel pipe with various simulated wall thinning defects, to investigate the effect of axial length of wall thinning and internal pressure on the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The tests were conducted under loading conditions of four-point bending with and without internal pressure. The results showed that a failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Both load carrying capability (LCC) and deformation capability (DC) were depended on stress type in the thinning area and dimensions of thinning defect. For applying tensile stress to the thinned area, the dependence of LCC on the axial length of wall thinning was determined by circumferential thinning angle, and the DC was proportionally increased with increase in axial length of wall thinning regardless of the circumferential angle. For applying compressive stress to thinned area, however, the LCC was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area

  15. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  16. Numerical simulation of shock initiation of Ni/Al multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sraj, Ihab; Knio, Omar M., E-mail: omar.knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, North Carolina 27708 (United States); Specht, Paul E.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Weihs, Timothy P. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  17. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.

    Science.gov (United States)

    Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A

    1993-01-01

    The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.

  18. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  19. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    International Nuclear Information System (INIS)

    Giacalone, J.; Jokipii, J. R.

    2004-01-01

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration

  20. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    International Nuclear Information System (INIS)

    Badziak, J; Rosiński, M; Jabłoński, S; Pisarczyk, T; Chodukowski, T; Parys, P; Rączka, P; Krousky, E; Ullschmied, J; Liska, R; Kucharik, M

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes. (paper)

  1. Calibration of PCB-132 Sensors in a Shock Tube

    Science.gov (United States)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  2. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  3. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    , S Mangles, L O Silva, R Fonseca and P A Norreys Electro-optic shocks from blowout laser wakefields D F Gordon, A Ting, M H Helle, D Kaganovich and B Hafizi Onset of self-steepening of intense laser pulses in plasmas J Vieira, F Fiúza, L O Silva, M Tzoufras and W B Mori Analysis of laser wakefield dynamics in capillary tubes N E Andreev, K Cassou, F Wojda, G Genoud, M Burza, O Lundh, A Persson, B Cros, V E Fortov and C-G Wahlstrom Characterization of the beam loading effects in a laser plasma accelerator C Rechatin, J Faure, X Davoine, O Lundh, J Lim, A Ben-Ismaïl, F Burgy, A Tafzi, A Lifschitz, E Lefebvre and V Malka Energy gain scaling with plasma length and density in the plasma wakefield accelerator P Muggli, I Blumenfeld, C E Clayton, F J Decker, M J Hogan, C Huang, R Ischebeck, R H Iverson, C Joshi, T Katsouleas, N Kirby, W Lu, K A Marsh, W B Mori, E Oz, R H Siemann, D R Walz and M Zhou Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021-1023Wcm-2 Lu-Le Yu, Han Xu, Wei-Min Wang, Zheng-Ming Sheng, Bai-Fei Shen, Wei Yu and Jie Zhang Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses D C Carroll, O Tresca, R Prasad, L Romagnani, P S Foster, P Gallegos, S Ter-Avetisyan, J S Green, M J V Streeter, N Dover, C A J Palmer, C M Brenner, F H Cameron, K E Quinn, J Schreiber, A P L Robinson, T Baeva, M N Quinn, X H Yuan, Z Najmudin, M Zepf, D Neely, M Borghesi and P McKenna Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse S Y Kalmykov, S A Yi, A Beck, A F Lifschitz, X Davoine, E Lefebvre, A Pukhov, V Khudik, G Shvets, S A Reed, P Dong, X Wang, D Du, S Bedacht, R Zgadzaj, W Henderson, A Bernstein, G Dyer, M Martinez, E Gaul, T Ditmire and M C Downer Effects of laser prepulses on laser-induced proton generation D Batani, R Jafer, M Veltcheva, R Dezulian, O Lundh, F Lindau, A

  4. Observation and Control of Shock Waves in Individual Nanoplasmas

    Science.gov (United States)

    2014-03-18

    quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide...and observed ion energies indicates that the hydrodynamic calculations capture the physics of the plasma expansion. The hydrodynamic calculations ...2006). [23] A. Kawabata and R. Kubo , J. Phys. Soc. Jpn. 21, 1765 (1966). [24] M.M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S

  5. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  6. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  7. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  9. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  10. NPPs Secondary Circuit Piping Wall-Thinning Management in China

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zheng Hui

    2012-01-01

    Since 1980s, secondary circuit piping wall-thinning incidents happened in nuclear power plants (NPPs) worldwide. Particularly Surry 2 and Mihama 3 accidents resulted from flow-accelerated corrosion (FAC), unplanned outage, huge fatalities and economic loss pushed whole industry to pay more attention on the wall-thinning problem.

  11. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  12. A model for the acceleration of laser irradiated targets

    International Nuclear Information System (INIS)

    Babonneau, D.; Di Bona, G.; Fortin, X.

    1986-11-01

    Starting from the self-similar propagation of an electronic conduction wave and the consequent ablation pressure, we describe, in a simplified way, the shock ahead of this wave, then the effects of the rarefaction and compression waves which follow the shock emergence at the target rear surface. So, we obtain the temporal evolution of the rear velocity which is compared with the experimental one. For thick targets, the shock alone is able to emerge during the experimental time and consequently gives the velocity vsub(min). For thin targets, besides the shock accumulation mechanism, it is necessary to take into account the electronic heat wave emergence that is to say the ''complete'' ablation of the target which gives the velocity vsub(max)

  13. Superdiffusion of relativistic electrons at supernova remnant shocks

    Science.gov (United States)

    Perri, Silvia

    2018-01-01

    Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.

  14. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  15. Myths of "shock therapy".

    Science.gov (United States)

    Fink, M

    1977-09-01

    The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.

  16. In situ acceleration in extragalactic radio jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  17. The impact of kinetic effects on the properties of relativistic electron–positron shocks

    International Nuclear Information System (INIS)

    Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O

    2012-01-01

    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)

  18. ShockWave science and technology reference library

    CERN Document Server

    2007-01-01

    This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetration. Of the eight chapters in this volume three chapters survey recent, exciting experimental advances in - ultra-short shock dynamics at the atomic and molecular scale (D.S. More, S.D. Mcgrane, and D.J. Funk), - Z accelerator for ICE and Shock compression (M.D. Knudson), and - failure waves in glass and ceramics (S.J. Bless and N.S. Brar). The subsequent four chapters are foundational, and cover the subjects of - equation of state (R. Menikoff), - elastic-plastic shock waves (R. Menikoff), - continuum plasticity (R. M. Brannon), and - numerical methods (D. J. Benson). The last chapter, but not the least, describes a tour de force illustration of today’s computing power in - modeling heterogeneous reactive solids at the grain scale (M.R. Baer). All chapters a...

  19. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  20. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.