WorldWideScience

Sample records for shirley basin wyoming

  1. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  2. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    Science.gov (United States)

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  3. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  4. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  5. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  6. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  7. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)

    1974-01-01

    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  8. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  9. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    Science.gov (United States)

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  10. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  11. Reimagining a solitary landscape: Tracing communities of care in Exodus 1-2 and the film Shirley Adams

    OpenAIRE

    van der Walt, Charlene; Terblanche, Judith

    2016-01-01

    The 2009 film, Shirley Adams, directed by the South African director, Oliver Hermanus, depicts Shirley as the lone caregiver to her son, a victim of gang violence on the Cape Flats (South Africa) which rendered him physically disabled and emotionally scared. The film is used as a lens to explore the inter sectionality of poverty, violence, gender, class, race, and disability within the South African society. The film's intimate portrayal of Shirley in her efforts to care for her son leaves th...

  12. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D

    Science.gov (United States)

    Gray, S.T.; Fastie, C.L.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii) and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June-June) precipitation spanning 1260-1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past ???750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15-20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Nin??a events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Nin??o events). ?? 2004 American Meteorological Society.

  13. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    International Nuclear Information System (INIS)

    Prensky, S.E.

    1986-01-01

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  14. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  15. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)

    1979-01-01

    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  16. Preliminary study of uranium favorability of upper cretaceous, paleocene, and lower eocene rocks of the Bighorn Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Hesse, S.L.; Dunagan, J.F. Jr.

    1978-02-01

    This report presents an evaluation of the uranium favorability of continental sediments of the Upper Cretaceous Lance, Paleocene Polecat Bench, and lower Eocene Willwood Formations in the Bighorn Basin of Wyoming and Montana, an intermontane structural basin of Laramide age. Previous work dealing with the Bighorn Basin was reviewed, and field investigations were carried out in the spring and summer of 1976. Subsurface data were collected and results of surface and subsurface investigations were evaluated with respect to uranium favorability. Precambrian plutonic and metamorphic rocks and Tertiary tuffaceous rocks in the Bighorn Basin and bordering uplifts are considered insignificant as source rocks, although the Wiggins Formation (White River equivalent) cannot be evaluated as a possible source because of a lack of data. Potential host rocks locally show only limited favorability. Lithology of strata exposed along the western and southern basin margins is more favorable than that of rocks in the central and eastern parts of the basin, but there is little organic material, pyrite, or other reducing agents in these rocks. Strata of the Lance, Polecat Bench, and Willwood Formations in the Bighorn Basin are considered generally unfavorable for sandstone uranium deposits

  17. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  18. Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art

    Science.gov (United States)

    Thompson, Geoffrey

    2011-01-01

    This viewpoint appeared in its original form as the catalogue essay that accompanied the exhibition "Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art," curated by the author for Gallery 2110, Sacramento, CA, and the 2010 Annual Conference of the American Art Therapy Association. The exhibition featured 17 artworks by…

  19. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  20. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  1. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    Science.gov (United States)

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  2. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    Science.gov (United States)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  3. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    Science.gov (United States)

    Nichols, D.J.; Brown, J.L.; Attrep, M.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  4. Study to integrate NURE data

    International Nuclear Information System (INIS)

    Golabi, K.; Lamont, A.

    1978-09-01

    Objective of this study is to develop a framework for integrating the NURE information into a measure of uranium favorability for a given geological area or to estimate the amount of U ore contained within a sandstone formation. Parameters describing the geologic history and structure of a potential sandstone host formation are used as input variables to a material balance model of U flow. Radiometric and hydrogeochemical information are combined with the geologic studies to achieve better estimates of U resources. The method is applied to the Shirley Basin and Gas Hills mining districts in Wyoming; the estimates are expressed as probability distributions. 22 figures, 3 tables

  5. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin

    Science.gov (United States)

    Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.

  6. Exploration and discovery of the Pine Ridge uranium deposits, Powder River Basin, Wyoming, USA

    International Nuclear Information System (INIS)

    Doelger, M.

    2014-01-01

    The Pine Ridge uranium deposits are named for a newly identified area between the Pumpkin Buttes and Southern Powder River Basin (PRB) mining districts. This regional prospect, covering nine contiguous townships, is northwest of the Cameco Smith Ranch mine and west of the Uranium One Allemand-Ross project in Converse County, Wyoming. Surface mapping and 350+ measured sections of well exposed outcrops have identified 250 target sandstones and contributed to a model of the complex braided stream channel architecture within the Eocene Watsatch and Paleocene Fort Union Formations. The uranium-bearing sandstones occur in 3- D bundles of vertically aggrading river systems flowing into the PRB from distant uranium source areas of the Granite Mountains to the west and the northern Laramie Range to the south. Large volumes of mudstone overbank and swamp facies separate the individual river systems laterally, resulting in greater vertical reservoir continuity from sandstones stacking. At least five major paleo river systems have been identified and named. High organic content, within the host formations, and rising veils of hydrocarbon gases from underlying oil and gas deposits have resulted in classic roll front uranium deposits in individual sandstones and intervals. Mineralization in stacked sandstone bundles several hundred feet thick show a crescent-shaped distribution within the shallow mineralized interval “attic”, the “cellar” at the base of the alteration cell, and the furthest basin-ward “front door”. World-class uranium resource potential has been identified along 208 miles of redox boundary string length mapped from the 1522 control points consisting of outcrop data, pre-existing uranium drilling, oil and gas wells, and proprietary drilling in 2012 and 2013 by Stakeholder. All data is managed in ARC VIEW GIS with 3-D capability, which will be demonstrated. Very few restrictions apply to the project area. Uranium holes are permitted solely by the

  7. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-09-13

    ... consistent decision-making process. The 2009 Strategy further established control colonies to address human... 7th, 8th, 9th, and 10th. October 7: Douglas, Wyoming--Douglas National Guard Armory--315 Pearson Road...

  8. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    Science.gov (United States)

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  9. Radioecological investigations of uranium mill tailings systems. Progress report, September 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1980-01-01

    The initial 13 months of this program have been devoted to staffing, development of a radiochemistry capability, development of a mill tailings reclamation study, studies on hydraulic properties of soils, initiation of plant uptake studies, preparation for metabolic studies with deer and antelope, and sample collections. Through the addition of new personnel and equipment, we are rapidly developing analytical capabilities for 238 U, 230 Th, 226 Ra, 210 Pb and 210 Po in matrices such as soil, water, plant material, and animal tissues. A 4 acre study site was developed in cooperation with the Pathfinder Mines Corp. at the Shirley Basin Uranium Mine in Wyoming. The study site is designed for investigations on the influence of various kinds and thicknesses of mill tailings soil covers on the integrity of reclaimed tailings and inherent radionuclides. Studies on the hydraulic properties of various soil materials were conducted and data analysis is in progress. Plots and procedures for conducting plant uptake studies on uranium and progeny were established and long-term investigations have been initiated. A colony of tame mule deer and pronghorn antelope has been developed for studies on the uptake and retention of 210 Pb and 210 Po. Numerous collections of soil, vegetation and water from the Shirley Basin Uranium Mine environs were conducted and radiochemical assay is in progress

  10. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  11. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  12. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  13. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  14. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1978-01-01

    Paleocurrent maps of the fluvial lower Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium- and hydrocarbon-exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains, as in the channel-sandstone bodies deposited in Eocene time by a 40-kilometer segment of the eastward-flowing paleo-Wind River that exended westward from near the town of Powder River on the east edge of the basin. Channel-sandstone bodies with a Granite Mountains source occur south of this segment of the paleo-Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district, but the channel-sandstone bodies between the Gas Hills district and the 40-kilometer segment of the paleo-Wind River may also be mineralized. This area includes the southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel-sandstone bodies derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the paleo-Wind River in Paleocene time flowed eastward and had approximately the same location as the eastward-flowing paleo-Wind River of Eocene time. The channel-sandstone bodies of the paleo-Wind Rivers are potential hydrocarbon reservoirs, particularly where they are underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation. If leaks of sulfur-containing gas have created a reducing environment in the Eocene paleo-Wind River channel-sandstone bodies, then I speculate that the areas of overlap of the channel-sandstone bodies and natural-gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits

  15. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1975-01-01

    Paleocurrent maps of the fluvial early Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium and hydrocarbon exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains as in the channel sandstones deposited by the 25-mile segment of the Eocene Wind River extending westward from near the town of Powder River on the east edge of the basin. Channel sandstones with a Granite Mountain source occur south of this segment of the Eocene Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district but channel sandstones between the Gas Hills district and the 25-mile segment of the Eocene Wind River are potentially mineralized. This area includes the entire southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel sandstones derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the Paleocene Wind River flowed eastward and had approximately the same location as the eastward-flowing Eocene Wind River. If leaks of sulfur-containing gas have created a reducing environment in the Eocene Wind River channel sandstones, then I speculate that the areas of overlap of the channel sandstones and natural gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits. The channel sandstones of the Paleocene and Eocene Wind Rivers are potential hydrocarbon reservoirs, particularly where underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation

  16. Wyoming geo-notes No. 2

    International Nuclear Information System (INIS)

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables

  17. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    Science.gov (United States)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  18. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  19. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  20. Wyoming : ITS/CVO business plan

    Science.gov (United States)

    1997-12-01

    Commercial Vehicle Operations (CVO) in Wyoming are among the safest and most efficient in the United States. This Business Plan recognizes the successes of Wyoming CVO and proposes seven elements to keep Wyoming a trucking leader. The Plan recommends...

  1. Do container volume, site preparation, and field fertilization affect restoration potential of Wyoming big sagebrush?

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; Kent G. Apostol; Olga. A. Kildisheva; Amy L. Ross-Davis; Kas Dumroese

    2016-01-01

    Land management practices, invasive species expansion, and changes in the fire regime greatly impact the distribution of native plants in natural areas. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a keystone species in the Great Basin, has seen a 50% reduction in its distribution. For many dryland species, reestablishment efforts have...

  2. Typical aqueous rare earth element behavior in co-produced Brines, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles; Quillinan, Scott [UNIVERSIty of Wyoming; McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-24

    Normalization of Rare Earth Elements (REEs) is important to remove the distracting effects of the Oddo–Harkins rule and provide a meaningful baseline. Normalizations for rocks are well developed and include chondritic meteorites, UCC, PM, PAAS, and NASC. However normalizations for aqueous REEs are limited to oceanic regions such as the North Pacific Deep Water or North Atlantic Surface Water. This leaves water in contact with continental lithologies without a suitable normalization. We present a preliminary continental aqueous REE normalization derived from 38 deep basin hydrocarbon brines in Wyoming. The REEs in these waters are seven orders of magnitude more dilute than NASC but with significant europium enrichment. Gromet 1984 reports NASC Eu/Eu* is 0.2179, whereas in the normalization offered here, Eu/Eu* is 3.868. These waters also are free from the distracting reduction-oxidation cerium behavior found in ocean normalizations. Because these samples exhibit both the uniform behavior of NASC and the absolute concentration of seawater, a normalization based upon them offers a unique combination of the advantages of both. We used single-peak gaussian analysis to quantify the mean values for each REE and estimate the distribution variability. Additional sample collection during the last year revealed that the Powder River Basin (PRB) is atypical relative to the other sampled basins of Wyoming. Those other basins are the Wind River Basin (WRB) Green River Basin (GRB) and Wamsutter Area (WA). A pre-normalization gadolinium anomaly (Gd/Gd*) of between 4 and 23 with a mean of 11.5, defines the PRB samples. Other basins in this study range from 1 to 7 with a mean of 2.8. Finally, we present a preliminary model for ligand-based behavior of REEs in these samples. This model identifies bicarbonate, bromide, and chloride as forming significant complexes with REEs contributing to REE solubility. The ligand model explains observed REEs in the sampled Cretaceous and

  3. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  4. 50 years of change at 14 headwater snowmelt-dominated watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2017-12-01

    Wyoming is a headwater state contributing to the water resources of four major US basins: Columbia River, Colorado River, Great Basin, and Missouri River. Most of the annual precipitation in this semi-arid state is received at high elevations as snow. Water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs - all depends on the variable and potentially changing annual snowmelt. Thus, characterizing snowmelt and snowmelt-dominated runoff variability and change at high-elevation headwater watersheds in Wyoming is of utmost importance. Next to quantifying variability and changes in total precipitation, snow-water equivalent (SWE), annual runoff and low flows at 14 selected and representative high-elevation watersheds during the previous 50 years, we also explore past watershed disturbances. Wildfires, forest management (e.g. timber harvest), and recent bark beetle outbakes have altered the vegetation and potentially the hydrology of these high-elevation watersheds. We present a synthesis and trend analysis of 49-75 complete water years (wy) of daily streamflow data for 14 high-elevation watersheds, 25-36 complete wy of daily SWE and precipitation data for the closest SNOTEL stations, and spatiotemporal data on burned areas for 20 wy, tree mortality for 18 wy, timber harvest during the 20th century, as well as overview on legacy tie-drive related distrbances. These results are discussed with respect to the differing watershed characteristics in order to present a spectrum of possible hydrologic responses. The importance of our work lies in extending our understanding of snowmelt headwater annual runoff and low-flow dynamics in Wyoming specifically. Such regional synthesis would inform and facilitate water managers and planners both at local state-wide level, but also in the intermountain US West.

  5. Uranium isotopes in groundwater: their use in prospecting for sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1977-01-01

    The relative abundances of dissolved 238 U and its daughter 234 U appear to be greatly affected as the uranium is transported downdip in sandstone aquifers. In an actively forming uranium accumulation at a reducing barrier, an input of 234 U occurs in proximity to the isotopically non-selective precipitation of uranium from the water. The result is a downdip water much lower in uranium concentration but relatively enriched in 234 U. The measurement of isotopic as well as concentration changes may increase the effectiveness of hydrogeochemical exploration of uranium. The investigation includes the uranium isotopic patterns in aquifers associated with known uranium orebodies in the Powder River and Shirley Basins, Wyoming, and Karnes County, Texas, USA. In addition, the Carrizo sandstone aquifer of Texas was studied in detail and the presence of an uranium accumulation inferred

  6. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  7. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  8. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  9. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Science.gov (United States)

    2013-12-24

    ...: Approximately 135 miles of transmission line Require a 125 foot right-of-way Construction of wood or steel H... lands, and state lands in Wyoming. The line would be constructed on wood or steel H-frame structures for...

  10. Biogeochemistry of Produced Water from Unconventional Wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Drogos, D. L.; Nye, C.; Quillinan, S.; Urynowicz, M. A.; Wawrousek, K.

    2017-12-01

    Microbial activity in waters associated with unconventional oil and gas reservoirs is poorly described but can profoundly affect management strategies for produced water (PW), frac fluids, and biocides. Improved identification of microbial communities is required to develop targeted solutions for detrimental microbial activity such as biofouling and to exploit favorable activity such as microbial induced gas production. We quantified the microbial communities and inorganic chemistry in PW samples from cretaceous formations in six unconventional oil and gas wells in the Powder River Basin in northeast Wyoming. The wells are horizontal completions in the Frontier, Niobrara, Shannon, and Turner formations at depths of 10,000 to 12,000 feet, with PW temperatures ranging from 93oF to 130oF. Biocides utilized in frac fluids primarily included glutaraldehyde and Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC), with first production occurring in 2013. Geochemical results for PW are: pH 6.5 to 6.9; alkalinity (as CaCO3) 219 to 519 ppm; salinity 13,200 to 22,300 ppm; and TDS 39,364 to 62,725 ppm. Illumina MiSeq 16S rRNA sequencing identified the majority of communities in PW are related to anaerobic, thermophilic, halophilic, chemoheterotrophic, and chemoorganotrophic bacteria, including Thermotoga, Clostridiaceae, Thermoanaerobacter, Petrotoga, Anaerobaculum, Clostridiales, Desulfomicrobium, and Halanaerobiaceae. These findings are important for identification of biogeochemical reactions that affect the organic-inorganic-microbial interactions among reservoir rocks, formation waters, and frac fluids. Better understanding of these biogeochemical reactions would allow producers to formulate frac fluids and biocides to encourage beneficial microbial phenomena such as biogenic gas production while discouraging detrimental effects such as biofouling.

  11. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1972-01-01

    The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.

  12. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  13. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    Science.gov (United States)

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic

  14. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  15. Oil and Gas Development in Southwestern Wyoming - Energy Data and Services for the Wyoming Landscape Conservation Initiative (WLCI)

    Science.gov (United States)

    Biewick, Laura

    2009-01-01

    The purpose of this report is to explore current oil and gas energy development in the area encompassing the Wyoming Landscape Conservation Initiative. The Wyoming Landscape Conservation Initiative is a long-term science-based effort to ensure southwestern Wyoming's wildlife and habitat remain viable in areas facing development pressure. Wyoming encompasses some of the highest quality wildlife habitats in the Intermountain West. At the same time, this region is an important source of natural gas. Using Geographic Information System technology, energy data pertinent to the conservation decision-making process have been assembled to show historical oil and gas exploration and production in southwestern Wyoming. In addition to historical data, estimates of undiscovered oil and gas are included from the 2002 U.S. Geological Survey National Assessment of Oil and Gas in the Southwestern Wyoming Province. This report is meant to facilitate the integration of existing data with new knowledge and technologies to analyze energy resources development and to assist in habitat conservation planning. The well and assessment data can be accessed and shared among many different clients including, but not limited to, an online web-service for scientists and resource managers engaged in the Initiative.

  16. 76 FR 34815 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-06-14

    ... Revegetation Success Standards listed by post-mine land use categories. Wyoming also proposed to combine the... document. B. Minor Wording, Editorial, Punctuation, Grammatical, and Recodification Changes to Previously Approved Regulations Wyoming proposed minor wording, editorial, punctuation, grammatical, and...

  17. Stratigraphy and structure of the northern and western flanks of the Black Hills Uplift, Wyoming, Montana, and South Dakota

    International Nuclear Information System (INIS)

    Robinson, C.S.; Mapel, W.J.; Bergendahl, M.H.

    1981-01-01

    This report describes the stratigraphy and structure of an area of about 5000 square miles in northeastern Wyoming and adjacent parts of Montana and South Dakota. The area includes the northern end and part of the western side of the Black Hills Uplift and the adjoining part of the Powder River Basin. About 11,000 ft of sedimentary rocks ranging in age from Mississippian to Early Tertiary are exposed in the area, not including surficial deposits of Tertiary (.) and Quaternary age. Oil is produced from several fields on the wet side of the Black Hills Uplift in Wyoming. Bentonite is mined at many places. The Fort Union and Wasatch Formations contain large reserves of sub-bituminous coal, and Lakota Formation contains some bituminous coal

  18. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    Science.gov (United States)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  19. 76 FR 80310 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-12-23

    ... violator system or AVS,'' ``Control or controller,'' ``Notice of violation,'' and ``Own, owner or ownership... related AVS entry requirements); and Chapter 16, Section 2(h) and (j) (notification requirements related to Wyoming's enforcement regulations and AVS entry requirements). Wyoming also addresses four...

  20. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  1. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  2. Characterization of Crushed Base Materials in Wyoming

    Science.gov (United States)

    2017-08-01

    To improve the pavement design and construction in Wyoming, the Wyoming Department of Transportation (WYDOT) is adopting the Mechanistic-Empirical Pavement Design Guide (MEPDG). A full implementation of MEPDG requires the characterization of local cr...

  3. Geology of the Pumpkin Buttes Area of the Powder River Basin, Campbell and Johnson Counties, Wyoming

    Science.gov (United States)

    Sharp, William Neil; White, Amos McNairy

    1956-01-01

    About 200 uranium occurrences have been examined in the Pumpkin Buttes area, Wyoming. Uranium minerals are visible at most of these places and occur in red and buff sandstone lenses in the Wasatch formation of Eocene age. The uranium minerals are disseminated in buff sandstone near red sandstone, and also occur in red sandstone in manganese oxide concretions and uraninite concretions.

  4. Wyoming's uranium industry: status, impacts, and trends

    International Nuclear Information System (INIS)

    1978-01-01

    The Mineral Division of the Wyoming Department of Economic Planning and Development (DEPAD) commissioned a study in July 1978 of the uranium industry in Wyoming. The study was conducted for the purposes of determining the status, impacts, and future activities of the uranium industry in the State; and to assist in establishing a data base for monitoring programs and related planning activities by State and federal agencies. Another objective of the study was to enhance understanding of the uranium industry in Wyoming by public officials, industrial leaders, and the general public

  5. Assessment of undiscovered conventional oil and gas resources in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Brownfield, Michael E.; Le, Phuong A.; Klett, Timothy R.; Gaswirth, Stephanie B.; Finn, Thomas M.; Marra, Kristen R.; Leathers-Miller, Heidi M.

    2018-02-16

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 26 million barrels of oil and 700 billion cubic feet of gas in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah.

  6. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  7. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    Science.gov (United States)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  8. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  9. Development of Lower Mississippian cyclic carbonates, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Elrich, M.; Read, J.F.

    1989-03-01

    The Lower Mississippian Lodgepole/Madison formations of Wyoming and Montana consist of a 20 to 300-m upward-shallowing sequence of cyclic slope/basin, deep-ramp to shallow-ramp carbonate deposits. Shallow-ramp cycles (1-3 m) are composed of cross-bedded oolitic grainstone and pellet grainstone, overlain by rare algal laminite caps. Deep-ramp cycles (1-10 m) are characterized by thin-bedded, substorm-wave-base limestone/shale, nodular limestone/shale, and storm-deposited limestone overlain by hummocky cross-stratified grainstone caps. Average periods of the cycles range from 35,000 to 110,000 years. Slope/basin deposits are 10 to 20-cm thick couplets of even-bedded, micritic limestone and shale. Computer modeling of the cycles incorporates fluctuating sea level, subsidence, depth-dependent sedimentation, lag time, and platform slope. Data from spectral analysis (basin/slope couplets), Fischer plots (shallow-ramp cycles), computer modeling, and field data suggest (1) subsidence rates across the 700-km wide platform range from 0.01 m/k.y. to 0.12 m/k.y., (2) high-frequency (10/sup 4/-10/sup 5/ years) sea level fluctuations with 15 to 25-m amplitudes affected the platform, and (3) shallow-ramp slopes were less than 2 cm/km and deep-ramp slopes were greater than 10 cm/km. Computer models produce stratigraphic sections (one-dimensional models) that graphically illustrate how input parameters interact through time to produce the cyclic stratigraphic section.

  10. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    Science.gov (United States)

    Wilson, Anna B.

    2015-10-20

    Wyoming has led the nation as the producer of uranium ore since 1995 and contains the largest reserves of any state. Approximately one third of Wyoming’s total production came from deposits in, or immediately adjacent to, the Wyoming Landscape Conservation Initiative (WLCI) study area in the southwestern corner of the state including all of Carbon, Lincoln, Sublette, Sweetwater, Uinta, and parts of southern Fremont Counties. Conventional open-pit and underground mining methods were employed in the study area until the early 1990s. Since the early 1990s, all uranium mining has been by in-situ recovery (also called in-situ leach). It is estimated that statewide remaining resources of 141,000 tonnes of uranium are about twice the 84,000 tonnes of uranium that the state has already produced.

  11. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  12. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  13. Preliminary report on the geology of uranium deposits in the Browns Park Formation in Moffat County, Colorado, and Carbon County, Wyoming

    International Nuclear Information System (INIS)

    Ormond, A.

    1957-06-01

    Uranium was first discovered in the Browns Park Formation in 1951 in the Miller Hill area of south-central Wyoming. Since that time economically important deposits in this formation have been discovered and developed in the Poison Basin of south-central Wyoming and in the Maybell area of northwest Colorado. The Browns Park is the youngest formation (Miocene) in the region and overlies older rocks with angular unconformity. The formation consists of a basal conglomerate, fluviatile, lacustrine, and eolian sandstones, and locally a few thin beds of clay, tuff, and algal limestone. The sandstones are predominantly fine- to medium-grained and consist of quartz grains, scattered black chert grains, and interstitial clay. The uranium deposits are of the sandstone-impregnation type and are not confined to specific stratigraphic horizons. The important ore minerals are autunite and uranophane in oxidized sandstones, and uraninite and coffinite in unoxidized sandstones. Uranium is often associated with limonite and calcium carbonate in concretionary forms. Woody material, thought to play an important part in the deposition of uranium in many sandstone-type deposits, is not present in the deposits of the Browns Park Formation. However, organic carbon in the form of petroleum and petroleum residues has been observed in association with uranium in both the Poison Basin and the Maybell areas

  14. Snowmelt-induced subsurface and overland flows in a hillslope in Noname Watershed, Laramie River Basin, Wyoming

    Science.gov (United States)

    Rogers, T.; Ohara, N.

    2015-12-01

    Only few field observations have been implemented using surface and sub-surface trenches to investigate snowmelt-induced hillslope runoffs in mountainous regions. Hillslope trenches may be one of the most direct ways to measure subsurface and overland flow during winter and spring seasons. In July 2014, a 10 meter long trench was constructed with hand tools through glacial till on a south facing hillslope in the Noname Watershed, Medicine Bow National Forest, Wyoming, where heavy equipment and motorized vehicles were restricted. This trench measures subsurface and overland flow for a 610 square meters catchment which has an average slope of 25 degrees. This water-collecting trench is equipped with 4 soil-moisture and temperature sensors to detect the presence of unsaturated flow. Field observations from the trench showed that diurnal oscillation of snowmelt seemed to control the overland flow between the snow and soil surface. The water inputs to the hillslope, including rainfall, evaporation, and snowmelt rates, were estimated from the energy balance computations using the observed meteorological data at the site. Using the water input data, the lateral flow component through the deeper soil or weathered bedrock layer was also quantified by the mass balance in the catchment. This study provides one of key field activities for Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) project.

  15. Confusion and Chaos at the Top: The Impact of Shirley Porter and the Transgression of the Political and Managerial Boundaries within the London Borough of Westminster

    Directory of Open Access Journals (Sweden)

    Andy ASQUITH

    2007-10-01

    Full Text Available During the 1980s Westminster City Council and its then Leader, Shirley Porter were hailed as being model examples of local government in action. The picture portrayed in this article is one of chaos and confusion within the strategic leadership of the authority as the managerial/ political interface was constantly ignored by Porter as she sought to implement her own agenda.

  16. Wyoming's Early Settlement and Ethnic Groups, Unit IV.

    Science.gov (United States)

    Robinson, Terry

    This unit on Wyoming's early settlement and ethnic groups provides concepts, activities, stories, charts, and graphs for elementary school students. Concepts include the attraction Wyoming held for trappers; the major social, economic, and religious event called "The Rendezvous"; the different ethnic and religious groups that presently…

  17. Wyoming DOE EPSCoR

    Energy Technology Data Exchange (ETDEWEB)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  18. 78 FR 63243 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Science.gov (United States)

    2013-10-23

    ... Wyoming's ``A Landscape Discussion on Energy Law in Wyoming,'' and follow-up to previous meetings. On..., November 13, ``A Landscape Discussion on Energy Law in Wyoming'' begins at 8:00 a.m. Members of the public... and the Federal Advisory Committee Act of 1972, the U.S. Department of the Interior, Bureau of Land...

  19. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  20. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  1. Breaking the glass ceiling: an interview with Dr. Shirley Graves, a pioneering woman in medicine.

    Science.gov (United States)

    Ahmed, Zulfiqar; Mai, Christine L; Elder, Badrea; Rodriguez, Samuel; Yaster, Myron

    2014-04-01

    Shirley Graves M.D., D.Sc. (honorary) (1936), Professor Emeritus of Anesthesiology and Pediatrics at the University of Florida, was one of the most influential women in medicine in the 1960 and 1970s, a time when the medical profession was overwhelmingly male-dominated. In today's society, it is hard to believe that only 50 years ago, women were scarce in the field of medicine. Yet Dr. Graves was a pioneer in the fields of pediatric anesthesia and pediatric critical care medicine. She identifies her development of the pediatric intensive care unit and her leadership in the Division of Pediatric Anesthesia at the University of Florida as her defining contributions. Through her journal articles, book chapters, national and international lectures, and leadership in the American Society of Anesthesiology and the Florida Society of Anesthesiology, she inspired a generation of men and women physicians to conquer the unthinkable and break through the glass ceiling. © 2014 John Wiley & Sons Ltd.

  2. Digital representation of oil and natural gas well pad scars in southwest Wyoming: 2012 update

    Science.gov (United States)

    Garman, Steven L.; McBeth, Jamie L.

    2015-01-01

    The recent proliferation of oil and natural gas energy development in the Greater Green River Basin of southwest Wyoming has accentuated the need to understand wildlife responses to this development. The location and extent of surface disturbance that is created by oil and natural gas well pad scars are key pieces of information used to assess the effects of energy infrastructure on wildlife populations and habitat. A digital database of oil and natural gas pad scars had previously been generated from 1-meter (m) National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7-million hectare (ha) (19,026,700 acres) region of southwest Wyoming. Scars included the pad area where wellheads, pumps, and storage facilities reside and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. This report updates the digital database for the five counties of southwest Wyoming (Carbon, Lincoln, Sublette, Sweetwater, Uinta) within the Wyoming Landscape Conservation Initiative (WLCI) study area and for a limited portion of Fremont, Natrona, and Albany Counties using 2012 1-m NAIP imagery and 2012 oil and natural gas well permit information. This report adds pad scars created since 2009, and updates attributes of all pad scars using the 2012 well permit information. These attributes include the origination year of the pad scar, the number of active and inactive wells on or near each pad scar in 2012, and the overall status of the pad scar (active or inactive). The new 2012 database contains 17,404 pad scars of which 15,532 are attributed as oil and natural gas well pads. Digital data are stored as shapefiles projected to the Universal Transverse Mercator (zones 12 and 13) coordinate system. These data are available from the U.S. Geological Survey (USGS) at http://dx.doi.org/10

  3. Asset management for Wyoming counties : volume I, II, III.

    Science.gov (United States)

    2011-08-01

    Vol. 1: In the fall of 2003, the Wyoming Department of Transportation (WYDOT) and the Wyoming T2/LTAP Center (T2/LTAP) began planning an asset management program to assist counties impacted by oil and gas drilling with management of their road system...

  4. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  5. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  6. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  7. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  8. Effect of fungicides on Wyoming big sagebrush seed germination

    Science.gov (United States)

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  9. Spatial mapping and attribution of Wyoming wind turbines

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  10. Distributions of air pollutants associated with oil and natural gas development measured in the Upper Green River Basin of Wyoming

    Directory of Open Access Journals (Sweden)

    R.A. Field

    2015-10-01

    Full Text Available Abstract Diffusive sampler monitoring techniques were employed during wintertime studies from 2009 to 2012 to assess the spatial distribution of air pollutants associated with the Pinedale Anticline and Jonah Field oil and natural gas (O&NG developments in the Upper Green River Basin, Wyoming. Diffusive sampling identified both the extent of wintertime ozone (O3 episodes and the distributions of oxides of nitrogen (NOx, and a suite of 13 C5+ volatile organic compounds (VOC, including BTEX (benzene, toluene, ethylbenzene and xylene isomers, allowing the influence of different O&NG emission sources to be determined. Concentration isopleth mapping of both diffusive sampler and continuous O3 measurements show the importance of localized production and advective transport. As for O3, BTEX and NOx mixing ratios within O&NG development areas were elevated compared to background levels, with localized hotspots also evident. One BTEX hotspot was related to an area with intensive production activities, while a second was located in an area influenced by emissions from a water treatment and recycling facility. Contrastingly, NOx hotspots were at major road intersections with relatively high traffic flows, indicating influence from vehicular emissions. Comparisons of observed selected VOC species ratios at a roadside site in the town of Pinedale with those measured in O&NG development areas show that traffic emissions contribute minimally to VOCs in these latter areas. The spatial distributions of pollutant concentrations identified by diffusive sampling techniques have potential utility for validation of emission inventories that are combined with air quality modeling.

  11. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  12. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  13. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  14. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2010-02-01

    ... Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park Service... funerary objects in the possession and control of the University of Wyoming, Anthropology Department, Human... of Wyoming, Anthropology Department, Human Remains Repository professional staff in consultation with...

  15. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... in the possession and control of the University of Wyoming Anthropology Department, Human Remains... made by University of Wyoming, Anthropology Department, Human Remains Repository, professional staff in...

  16. Field guide to Muddy Formation outcrops, Crook County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.

    1993-11-01

    The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

  17. Employment Discrimination Based on Sexual Orientation and Gender Identity in Wyoming

    OpenAIRE

    Mallory, Christy; Sears, Brad

    2015-01-01

    About 8,900 LGBT workers in Wyoming are not explicitly protected from discrimination under state or federal laws. Discrimination against LGBT employees in Wyoming has recently been documented in surveys, court cases, and other sources. Many corporate employers and public opinion in the state support protections for LGBT people in the workplace. If sexual orientation and gender identity were added to existing statewide non-discrimination laws, four more complaints would be filed in Wyoming eac...

  18. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers

    Science.gov (United States)

    Haynes, J. Chris; Stripling, Christopher T.

    2014-01-01

    School-based agricultural education programs provide contextualized learning environments for the teaching of core academic subject matter. This study sought to examine the mathematics efficacy and professional development needs of Wyoming agricultural education teachers related to teaching contextualized mathematics. Wyoming agricultural…

  20. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    . Considering only detections using the CAL, triazine pesticides were detected much more frequently than all other pesticide classes, and the number of different pesticides classified as triazines was the largest of all classes. More pesticides were detected at concentrations greater than the CSALs in water from wells sampled in the fall (28 different pesticides) than in the spring (21 different pesticides). Many pesticides were detected infrequently as nearly one-half of pesticides detected in the fall and spring at concentrations greater than the CSALs were detected only in one well. Using the CSALs for pesticides analyzed for in 11 or more wells, only five pesticides (atrazine, prometon, tebuthiuron, picloram, and 3,4-dichloroaniline, listed in order of decreasing detection frequency) were each detected in water from more than 5 percent of sampled wells. Atrazine was the pesticide detected most frequently at concentrations greater than the CSAL. Concentrations of detected pesticides generally were small (less than 1 microgram per liter), although many infrequent detections at larger concentrations were noted. All detected pesticide concentrations were smaller than U.S. Environmental Protection Agency (USEPA) drinking-water standards or applicable health advisories. Most concentrations were at least an order of magnitude smaller; however, many pesticides did not have standards or advisories. The largest percentage of pesticide detections and the largest number of different pesticides detected were in samples from wells located in the Bighorn Basin and High Plains/ Casper Arch geographic areas of north-central and southeastern Wyoming. Prometon was the only pesticide detected in all eight geographic areas of the State. Pesticides were detected much more frequently in samples from wells located in predominantly urban areas than in samples from wells located in predominantly agricultural or mixed areas. Pesticides were detected distinctly less often in sa

  1. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  2. Radioecological investigations of uranium mill tailings systems: Final report for the period September 1, 1979 through April 30, 1987

    International Nuclear Information System (INIS)

    Whicker, F.W.; Ibrahim, S.A.

    1987-01-01

    This document is the final report on studies of the integrity and transport of uranium and radioactive progeny in active and reclaimed uranium mill tailings. The overall program was designed to provide basic information on the radioecology of 238 U, 230 Th, 226 Ra, 210 Pb and 210 Po, responses of plants and animals to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported were conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The research was motivated originally by the general lack of knowledge on the transport of uranium and its radioactive daughter products through the environment, particularly through food chains in the immediate environs of uranium production operations. The work was also motivated by the relatively high contribution of uranium mining and milling to the radiation exposure of the general population from the nuclear fuel cycle

  3. K.S. Maniam, Jhumpa Lahiri, Shirley Lim: A Reflection of Culture and Identity

    Directory of Open Access Journals (Sweden)

    Hardev Kaur Jujar Singh

    2012-07-01

    Full Text Available “I do not want my house to be walled in on all sides and my windows to be stuffed. I want the culture of all lands to be blown about my house as freely as possible. But I refuse to be blown off my feet by any”—Mahatma Gandhi. With these sayings by Gandhiji, one will be able to understand why, even in a borderless world where the diffusion of races and culture happens all the time, and many would simply accept without restraint, the cultures and identity of their adopted land, there remain some writers who, despite being part of a new land, are still deeply influenced by their motherland and various aspects of life that are distinctive and peculiar to their motherland. The writers concerned in this paper are K.S Maniam, Shirley Lim and Jhumpa Lahiri. All these writers have nationalities not of their motherland, but somehow, their writings are usually immersed with the thoughts and culture of their motherland. In this study, we will examine the strong influences imbedded in these writers of the culture of their motherland despite being in their new land. We will also portray how some of the characters assimilate in their new land, whereas some still have a sense of belonging towards their motherland.

  4. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1 0 x 2 0 NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within the northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects

  5. Draft environmental impact statement. Bison basin project, Fremont County, Wyoming

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Construction and operation of leach uranium mine and recovery plant designed to produce one million lb of U 3 O 8 per year at a rate not to exceed 400,000 lb/y in Fremont County, Wyoming are proposed. The project site would consist of 761 acres lying 50 miles south of Riverton and 30 miles southwest of Jeffery City. The in situ leach process, implemented to mine ore contained in the Laney member of the Green River formation, would involve use of sodium carbonate-bicarbonate solution and an oxidizing agent injected and recovered through a complex of well patterns. Each well pattern would consist of six injection wells surrounding a central production well. Only about 40 acres would be mined, while another 13.5 acres would be excavated for equipment foundations and evaporation ponds. Recycling of mined formation water through a reverse osmosis cleanup system and placing it back into the formation after mining was complete would restore the groundwater system to its former potential. Solid wastes produced by the mining process would be removed to a licensed disposal site. Positive Impacts: Uranium ore produced by the mine and refined by the plant would aid in meeting demand for this resource which is estimated to double to a level of 15,000 tons per year within the next 5 years and to reach 45,000-50,000 tons per year by 1990. Some monetary benefits would accrue to local communities due to local expenditures resulting from construction and operation. Negative Impacts: Project activities would result in displacement of livestock grazing practices from 57 acres of land. Some local deterioration of groundwater quality would be expected, and approximately 240 acre-feet of groundwater would be removed from the aquifer permanently. Radon-222 and other small radioactive emissions would result from the solution mining process

  6. Prevalence of and risk factors associated with ovine progressive pneumonia in Wyoming sheep flocks.

    Science.gov (United States)

    Gerstner, Shelley; Adamovicz, Jeffrey J; Duncan, John V; Laegreid, William W; Marshall, Katherine L; Logan, James R; Schumaker, Brant A

    2015-10-15

    To determine the prevalence of antibodies against small ruminant lentivirus (SRLV), the causative agent of ovine progressive pneumonia (OPP), and to identify risk factors associated with OPP in Wyoming sheep flocks. Cross-sectional study. 1,415 sheep from 54 flocks in Wyoming. Flocks were surveyed as part of the National Animal Health Monitoring System (NAHMS) 2011 sheep study. Serum samples obtained from sheep in Wyoming were analyzed for anti-SRLV antibodies by use of a competitive-inhibition ELISA. The prevalence of seropositive animals overall and within each flock was calculated. Respective associations between flock OPP status and various demographic and management variables were assessed. The estimated prevalence of sheep seropositive for anti-SRLV antibodies and OPP-infected flocks in Wyoming was 18.0% and 47.5%, respectively. Within OPP-infected flocks, the prevalence of seropositive sheep ranged from 3.9% to 96%. Flocks maintained on nonfenced range were more likely to be infected with OPP than were flocks maintained on fenced range (OR, 3.4; 95% confidence interval, 1.1 to 10.7). The estimated prevalence of OPP-infected flocks in Wyoming did not vary substantially from that at the regional or national level reported in the NAHMS 2001 sheep study. Compared with results of the NAHMS 2011 sheep study, Wyoming producers were more familiar with OPP than were other US sheep producers, but only 61% of Wyoming producers surveyed reported being very or somewhat familiar with the disease. Results indicated that OPP is prevalent in many Wyoming sheep flocks, which suggested that continued efforts are necessary to increase producer knowledge about the disease and investigate practices to minimize economic losses associated with OPP.

  7. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  8. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  9. Geothermal energy in Wyoming: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  10. Environmental audit: Fossil energy sites in Wyoming

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the results of the Comprehensive Baseline Environmental Audit completed for Selected Fossil Energy Sites in Wyoming. During this Audit, facilities, field sites, and activities were investigated and inspected in several areas of Wyoming that are considered to be representative of offsite work falling under the purview of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. Department of Energy (DOE) personnel at METC and at the Liquid Fuels Technology Branch (LFTB) in Laramie, Wyoming were interviewed as were DOE contractors and Federal and state regulators. Extensive document review was also a key part of this Audit. The on-site portion of the Audit occurred in Morgantown from May 18 to 22, 1992, and throughout Wyoming from May 26 through June 10, 1992. EH-24 carries out independent assessments of DOE facilities and DOE-funded off-site activities as part of the Assistant Secretary's Environmental Audit Program. That program is designed to evaluate the status of facilities and activities regarding compliance with environmental laws, regulations, DOE Directives, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Audit stresses the fact that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations with the exception of the National Environmental Policy Act (NEPA), which is beyond the purview of EH-24. Specifically included within this Audit were Air, Soils/Sediment/Biota, Surface Water/Drinking Water, Groundwater, Waste Management, Toxic and Chemical Materials, Quality Assurance, Radiation, Inactive Waste Sites, and Environmental Management

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  12. Banking Wyoming big sagebrush seeds

    Science.gov (United States)

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  13. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  14. Wyoming CV Pilot Traveler Information Message Sample

    Data.gov (United States)

    Department of Transportation — This dataset contains a sample of the sanitized Traveler Information Messages (TIM) being generated by the Wyoming Connected Vehicle (CV) Pilot. The full set of TIMs...

  15. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming

  16. Economics and a novel voltage conversion technique associated with exporting Wyoming's energy by HVDC transmission

    Science.gov (United States)

    Xu, Kaili

    Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also

  17. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  18. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    Science.gov (United States)

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  19. Wyoming's "Education Reform & Cost Study."

    Science.gov (United States)

    Meyer, Joseph B.

    A history of education in the state of Wyoming, along with a description of recent legislative initiatives, are presented in this paper. It opens with statewide reorganizations begun in the 1960s that unified school districts and equalized property valuation. A decade later a court order ruled the system inequitable and new laws provided for a…

  20. 76 FR 36040 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-06-21

    ... SMCRA, clarify ambiguities, and improve operational efficiency. This document gives the times and locations that the Wyoming program and proposed amendment to that program are available for your [[Page... is available for you to read at the locations listed above under ADDRESSES. III. Public Comment...

  1. 78 FR 13004 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-02-26

    ... (definitions related to ownership and control including ``Applicant violator system or AVS,'' ``Control or... information, review of permit history, review of compliance history, and related AVS entry requirements); and... and AVS entry requirements). Wyoming also proposes to add a provision which allows for variable...

  2. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  3. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  4. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... Anthropology Department, Human Remains Repository, Laramie, WY. The human remains and associated funerary... the human remains was made by University of Wyoming, Anthropology Department, Human Remains Repository...

  5. 76 FR 3926 - Notice and Request for Comments: LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant...

    Science.gov (United States)

    2011-01-21

    ... Dakota, and Wyoming Migrant Service Areas Beginning April 1, 2011 AGENCY: Legal Services Corporation. ACTION: Notice and Request for Comments--LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant... Wyoming migrant service areas: MNV, MSD, and MWY, effective April 1, 2011, because any eligible migrant...

  6. High wind warning system for Bordeaux, Wyoming.

    Science.gov (United States)

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  7. 78 FR 16204 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-03-14

    ... efficiency. This document gives the times and locations that the Wyoming program and proposed amendment to... penalties). The full text of the program amendment is available for you to read at the locations listed... hearing, contact the person listed under FOR FURTHER INFORMATION CONTACT. We will arrange the location and...

  8. 77 FR 55529 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2012-09-10

    ... background information is also available online at http://www.fws.gov/mountain-prairie/species/mammals/wolf... allowing the Wyoming Game and Fish Commission (WGFC) to diminish Wyoming's Wolf Trophy Game Management Area... minimum levels. In early 2011, we began discussions with Wyoming seeking to develop a strategy to address...

  9. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  10. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  11. Fens and their rare plants in the Beartooth Mountains, Shoshone National Forest, Wyoming

    Science.gov (United States)

    Bonnie Heidel; Walter Fertig; Sabine Mellmann-Brown; Kent E. Houston; Kathleen A. Dwire

    2017-01-01

    Fens are common wetlands in the Beartooth Mountains on the Shoshone National Forest, Clarks Fork Ranger District, in Park County, Wyoming. Fens harbor plant species found in no other habitats, and some rare plants occurring in Beartooth fens are found nowhere else in Wyoming. This report summarizes the studies on Beartooth fens from 1962 to 2009, which have contributed...

  12. WYOMING MENTAL ABILITY SURVEY, 1957-58.

    Science.gov (United States)

    LINFORD, VELMA

    A STATEWIDE PROGRAM WAS INITIATED IN WYOMING FOR THE PURPOSES OF DISCOVERING THE EXTENT OF MENTAL RETARDATION AMONG ELEMENTARY AND SECONDARY STUDENTS IN THE STATE, DETERMINING WHERE THE MENTALLY RETARDED ARE FOUND, AND PLANNING AN EDUCATIONAL PROGRAM FOR THEM. GROUP MENTAL TESTS WERE APPLIED TO 67,620 CHILDREN WHICH REPRESENTED 91.8 PERCENT OF THE…

  13. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  14. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  15. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  16. Woody fuels reduction in Wyoming big sagebrush communities

    Science.gov (United States)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  17. pour le trimestre qui a pris fin le 30 juin 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    30 juin 2013 ... Conseil des gouverneurs du CRDI. Le mandat des gouverneurs suivants a pris fin le 27 mai 2013 : Margaret Biggs, d'Ottawa, en Ontario;. Faith Mitchell, de Washington, aux États-Unis; Elizabeth Parr-Johnston, de Chester Basin, en Nouvelle-Écosse; Gordon Shirley, de Kingston, en Jamaïque; l'honorable ...

  18. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  19. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Science.gov (United States)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  20. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

  1. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    International Nuclear Information System (INIS)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment

  2. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features

  3. Rancher and farmer quality of life in the midst of energy development in southwest Wyoming

    Science.gov (United States)

    Allen, Leslie; Montag, Jessica; Lyon, Katie; Soileau, Suzanna; Schuster, Rudy

    2014-01-01

    Quality of life (QOL) is usually defined as a person’s general well-being, and may include individual perceptions of a variety of factors such family, work, finances, local community services, community relationships, surrounding environment, and other important aspects of their life, ultimately leading to life satisfaction. Energy development can have an effect on QOL components for rural residents. Southwest Wyoming is a rural area with a history of ranching and farming which continues today. This area has also seen a “boom” of increasing wind, solar, oil and gas energy developments over the past decade. Wyoming Department of Agriculture, as part of the Wyoming Landscape Conservation Initiative (WLCI), sponsored research to examine the effect of energy development on ranchers’ and farmers’ quality of life.

  4. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  5. 78 FR 23951 - Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming

    Science.gov (United States)

    2013-04-23

    ... meeting is open to the public. ADDRESSES: The meeting will be held at the Wyoming Oil and Gas Conservation... Right Lease Applications in New Mexico held by Ark Land Company, for competitive bidding rights in Wyoming, pursuant to 43 CFR part 3435. 5. Discussion on updating the Data Adequacy Standards for the...

  6. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  7. Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  8. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  9. Greater sage-grouse population trends across Wyoming

    Science.gov (United States)

    Edmunds, David; Aldridge, Cameron L.; O'Donnell, Michael; Monroe, Adrian

    2018-01-01

    The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, we modeled density-independent and -dependent population growth across multiple spatial scales relevant to management and conservation (Core Areas [habitat encompassing approximately 83% of the sage-grouse population on ∼24% of surface area in Wyoming], local Working Groups [7 regional areas for which groups of local experts are tasked with implementing Wyoming's statewide sage-grouse conservation plan at the local level], Core Area status (Core Area vs. Non-Core Area) by Working Groups, and Core Areas by Working Groups). Our goal was to determine the influence of fine-scale population trends (Core Areas) on larger-scale populations (Working Group Areas). We modeled the natural log of change in population size ( peak M lek counts) by time to calculate the finite rate of population growth (λ) for each population of interest from 1993 to 2015. We found that in general when Core Area status (Core Area vs. Non-Core Area) was investigated by Working Group Area, the 2 populations trended similarly and agreed with the overall trend of the Working Group Area. However, at the finer scale where Core Areas were analyzed separately, Core Areas within the same Working Group Area often trended differently and a few large Core Areas could influence the overall Working Group Area trend and mask trends occurring in smaller Core Areas. Relatively close fine-scale populations of sage-grouse can trend differently, indicating that large-scale trends may not accurately depict what is occurring across the landscape (e.g., local effects of gas and oil fields may be masked by increasing

  10. Meaning, knowledge and experience in the self-contained intertextuality of Shirley Jackson’s The intoxicated

    Directory of Open Access Journals (Sweden)

    Gustavo Vargas Cohen

    2012-01-01

    Full Text Available Antes de entender a contribuição de Shirley Jackson para a literatura americana e mundial, é necessário entender certos aspectos da vida e da obra da escritora. O presente texto deseja apresentar esta importante escritora do século vinte a luz de sua literatura e, em sequência, comentar o que ainda está por ser considerado um dos traços mais marcantes de seu legado artístico, i.e., a intertextualidade auto-contida presente em seus textos. Esta pode apenas ser percebida por intermédio do conhecimento adquirido através da leitura do coletivo de suas obras. O objetivo do presente texto é ajudar na desmitificação da noção de superficialidade que paira sobre as obras da escritora. A intenção é auxiliar na determinação de que diversas camadas de significados latentes podem ser acessadas por meio da experiência adquirida via o conhecimento fornecido pelo ciclo que seus textos individuais formam. Para atingir esta meta, o presente empreendimento intenciona, em primeiro lugar, selecionar a apresentar aspectos relevantes da vida da escritora que serão importantes para a compreensão de sua dimensão literária. Em Segundo lugar, a ideia de interpretação através do reconhecimento intertextual será abordada e discutida, juntamente com outros aspectos relevantes e, em terceiro lugar, um exemplo da rede cíclica da obra da escritora será aludido brevemente utilizando-se o conto The Intoxicated, oriundo da coleção de 1949 chamada The Lottery and Other Stories (2005.

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  12. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  13. 77 FR 25664 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2012-05-01

    ..., Wyoming clarified that the buffer would be applied solely within Wyoming's portion of the population in... 2 gray wolves, and specify that each permit can only apply to a specified limited geographic or... source of take is limited in time and geography. Similarly, State regulations indicate that purported...

  14. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  15. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  16. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    Science.gov (United States)

    Wilson, J.F.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  17. Digital Learning Compass: Distance Education State Almanac 2017. Wyoming

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Wyoming. The sample for this analysis is comprised of all active, degree-granting…

  18. 78 FR 56769 - Genesee & Wyoming Inc.-Corporate Family Transaction Exemption

    Science.gov (United States)

    2013-09-13

    ... unnecessary intermediate subsidiaries, which will save unnecessary accounting and corporate maintenance. This... Inc.--Corporate Family Transaction Exemption Genesee & Wyoming Inc. (GWI), a noncarrier holding company, filed a verified notice of exemption under 49 CFR 1180.2(d)(3) for a corporate family transaction...

  19. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Science.gov (United States)

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  20. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  1. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals

  2. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  3. Distribution and pathogenicity of Batrachochytrium dendrobatidis in boreal toads from the grand teton area of western wyoming

    Science.gov (United States)

    Murphy, P.J.; St-Hilaire, S.; Bruer, S.; Corn, P.S.; Peterson, C.R.

    2009-01-01

    The pathogen Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis, has been linked to amphibian population declines and extinctions worldwide. Bd has been implicated in recent declines of boreal toads, Bufo boreas boreas, in Colorado but populations of boreal toads in western Wyoming have high prevalence of Bd without suffering catastrophic mortality. In a field and laboratory study, we investigated the prevalence of Bd in boreal toads from the Grand Teton ecosystem (GRTE) in Wyoming and tested the pathogenicity of Bd to these toads in several environments. The pathogen was present in breeding adults at all 10 sites sampled, with a mean prevalence of 67%. In an experiment with juvenile toadlets housed individually in wet environments, 106 zoospores of Bd isolated from GRTE caused lethal disease in all Wyoming and Colorado animals within 35 days. Survival time was longer in toadlets from Wyoming than Colorado and in toadlets spending more time in dry sites. In a second trial involving Colorado toadlets exposed to 35% fewer Bd zoospores, infection peaked and subsided over 68 days with no lethal chytridiomycosis in any treatment. However, compared with drier aquaria with dry refuges, Bd infection intensity was 41% higher in more humid aquaria and 81% higher without dry refuges available. Our findings suggest that although widely infected in nature, Wyoming toads may escape chytridiomycosis due to a slight advantage in innate resistance or because their native habitat hinders Bd growth or provides more opportunities to reduce pathogen loads behaviorally than in Colorado. ?? 2009 International Association for Ecology and Health.

  4. Habitat and nesting biology of Mountain Plovers in Wyoming

    Science.gov (United States)

    Plumb, R.E.; Anderson, S.H.; Knopf, F.L.

    2005-01-01

    Although previous research has considered habitat associations and breeding biology of Mountain Plovers in Wyoming at discrete sites, no study has considered these attributes at a statewide scale. We located 55 Mountain Plover nests in 6 counties across Wyoming during 2002 and 2003. Nests occurred in 2 general habitat types: grassland and desert-shrub. Mean estimated hatch date was 26 June (n = 31) in 2002 and 21 June (n = 24) in 2003. Mean hatch date was not related to latitude or elevation. Hatch success of nests was inferred in 2003 by the presence of eggshell fragments in the nest scrape. Eggs in 14 of 22 (64%) known-fate nests hatched. All grassland sites and 90% of desert sites were host to ungulate grazers, although prairie dogs were absent at 64% of nest sites. Nest plots had less grass coverage and reduced grass height compared with random plots. More than 50% of nests occurred on elevated plateaus. The Mountain Plover's tendency to nest on arid, elevated plateaus further substantiates claims that the bird is also a disturbed-prairie species.

  5. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    Science.gov (United States)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  6. Connected vehicle pilot deployment program phase 2, data management plan - Wyoming

    Science.gov (United States)

    2017-04-10

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  7. TESS Follow-up Observing Programs at the University of Wyoming

    Science.gov (United States)

    Jang-Condell, Hannah; Kasper, David; Kar, Aman; Sorber, Rebecca; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kobulnicky, Henry A.; Pierce, Michael; Pilachowski, Catherine A.

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS), launched in Spring 2018, will detect thousands of new exoplanet candidates. These candidates will need to be vetted by ground-based observatories to rule out false positives. The Observatories at the University of Wyoming are well-positioned to take active roles in TESS Follow-Up Observing Program (TFOP) Working Groups. The 0.6-m Red Buttes Observatory has already demonstrated its capability to do precision photometric monitoring of transiting exoplanet targets as a participant in the Kilodegree Extremely Little Telescope Follow-Up Network (KELT-FUN). A new echelle spectrograph, Fiber High-Resolution Echelle (FHiRE), being built for the 2.3-m Wyoming InfraRed Observatory (WIRO), will enable precision radial velocity measurements of exoplanet candidates. Over 180 nights/year at both observatories will be available to our team to undertake follow-up observations of TESS Objects of Interest (TOIs). We anticipate making significant contributions to new exoplanet discoveries in the era of TESS.

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  10. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M L [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M [Wyoming State Government, Cheyenne, WY (United States)

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  11. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    International Nuclear Information System (INIS)

    Matthews, M.L.

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement

  12. Middle Rockies Ecoregion: Chapter 5 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Middle Rockies Ecoregion—characterized by steep, high-elevation mountain ranges and intermountain valleys—is a disjunct ecoregion composed of three distinct geographic areas: the Greater Yellowstone area in northwest Wyoming, southwest Montana, and eastern Idaho; the Bighorn Mountains in north-central Wyoming and south-central Montana; and the Black Hills in western South Dakota and eastern Wyoming (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion covers approximately 90,160 km2 (34,881 mi2), and its three distinct geographic sections are bordered by several other ecoregions (fig. 1). The Yellowstone section abuts the Montana Valley and Foothill Prairies and the Northern Rockies Ecoregions to the north, the Snake River Basin and the Central Basin and Range Ecoregions to the west, and the Wyoming Basin Ecoregion to the south and east. The Bighorn Mountains section lies between the Wyoming Basin Ecoregion to the west and the Northwestern Great Plains Ecoregion to the east, and it abuts the Montana Valleys and Foothill Prairies Ecoregion to the north. The Black Hills section is entirely surrounded by the Northwestern Great Plains Ecoregion. The Continental Divide crosses the ecoregion from the southeast along the Wind River Range, through Yellowstone National Park, and west along the Montana-Idaho border. On both sides of the divide, topographic relief causes local climate variability, particularly the effects of aspect, exposure to prevailing wind, thermal inversions, and rain-shadow effects, that are reflected in the wide variety of flora and fauna within the ecoregion (Ricketts and others, 1999).

  13. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  14. Investigating the Multicultural Competency of a Sample of Wyoming Educators

    Science.gov (United States)

    Kern, Stacey L.

    2016-01-01

    The literature on disproportionality indicates a generally held belief that disproportionality endures, in part, because of the lack of multicultural competency in today's educators. Yet, there is a dearth of empirical evidence to support this belief. This study examined the multicultural competency of a sample of Wyoming educators in order to…

  15. Food habits of Northern Goshawks nesting in south central Wyoming

    Science.gov (United States)

    John R. Squires

    2000-01-01

    Northern Goshawks (Accipiter gentiles) nesting in south central Wyoming consumed at least 33 species of prey; 14 were mammals and 19 were birds. Based on percent occurrence in regurgitated pellets, dominant (>10% frequency) prey species included: red squirrel (Tamiasciurus hudsonicus; present in 50% of pellets), Northern Flicker (Colaptes auratus; 34...

  16. Application of NURE data to the study of crystalline rocks in the Wyoming uranium province

    International Nuclear Information System (INIS)

    Rush, S.M.; Anderson, J.R.; Bennett, J.E.

    1983-03-01

    The Wyoming uranium province study is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. The ultimate objective of the entire project is the integration of NURE and other data sources to develop a model for a uranium province centered in Wyoming. This paper presents results of the first phase of the Wyoming uranium province study, which comprises characterization of the crystalline rocks of the study area using NURE hydrogeochemical and stream-sediment data, aerial radiometric and magnetic data, and new data generated for zircons from intrusive rocks in the study area. The results of this study indicate that the stream-sediment, aerial radiometric, aerial magnetic, and zircon data are useful in characterization of the crystalline rocks of the uranium province. The methods used in this project can be applied in two ways toward the recognition of a uranium province: (1) to locate major uranium deposits and occurrences, and (2) to generally identify different crystalline rock types, particularly those that could represent significant uranium source rocks. 14 figures, 8 tables

  17. Radon and aerosol release from open-pit uranium mining

    International Nuclear Information System (INIS)

    Thomas, V.W.; Nielson, K.K.; Mauch, M.L.

    1982-08-01

    The quantity of 222 Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and 226 Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall

  18. Geology of the Carnegie museum dinosaur quarry site of Diplodocus carnegii, Sheep Creek, Wyoming

    Science.gov (United States)

    Brezinski, D.K.; Kollar, A.D.

    2008-01-01

    The holotype of Diplodocus carnegii Hatcher, 1901, consists of a partial skeleton (CM 84) that was recovered, along with a second partial skeleton of the same species (CM 94), from the upper 10 m of the Talking Rock facies of the Brushy Basin Member of the Morrison Formation exposed along Bone Quarry Draw, a tributary of Sheep Creek in Albany County, Wyoming. A composite measured section of the stratigraphic interval exposed adjacent to the quarry indicates that the Brushy Basin Member in this area is a stacked succession of lithofacies consisting of hackly, greenish gray, calcareous mudstone and greenish brown, dense, fine-grained limestone. The more erosion resistant limestone layers can be traced over many hundreds of meters. Thus, these strata do not appear to represent a highly localized deposit such as a stream channel, oxbow lake, or backwater pond. The Sheep Creek succession is interpreted as representing a clastic-dominated lake where high turbidity and sediment influx produced deposition of calcareous mudstone. During drier periods the lake's turbidity decreased and limestone and dolomite precipitation replaced mud deposition. Microkarsting at the top of some limestone/ dolomite layers suggests subaerial deposition may have prevailed during these dry episodes. The quarry of D. carnegii was excavated within the top strata of one of the numerous intervals of hackly, greenish gray, calcareous mudstone that represent an ephemeral freshwater lake. The quarry strata are directly overlain by 0.3 m of dolomite-capped limestone that was deposited shortly after interment of D. carnegii in the lake mudstones. The close vertical proximity of the overlying limestone to the skeleton's stratigraphic: level suggests that the animal's carcass may have been buried beneath the drying lake deposits during a period of decreased rainfall.

  19. Mitigation Strategies to Reduce Truck Crash Rates on Wyoming Highways

    Science.gov (United States)

    2017-05-04

    M Mahdi Rezapour Mashhadi (ORCID iD: 0000-0003-0774-737X); Promothes Saha, Ph.D., P.E. (ORCID iD: 0000-0003-3298-8327); Trenna Terrill (ORCID iD: 0000-0002-5239-6380); Khaled Ksaibati, Ph.D., P.E. (ORCID iD: 0000-0003-3532-6839) Wyoming has one of th...

  20. Management and Development of the Western Resources Project

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown

    2009-03-09

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  1. Instructional Design of Entrepreneurship Courses: Interview Research of Wyoming BRAVO! Entrepreneurs

    Science.gov (United States)

    Kolb, Belinda J.

    2010-01-01

    This qualitative study investigated the opportunity recognition process of Wyoming BRAVO! Entrepreneur (WBE) Award winners or nominees, in order to better inform the learner analysis and organizational strategy components of instructional design, specifically with respect to entrepreneurship courses. This study may be of significance to post…

  2. Health hazard evaluation report HETA 92-0361-2343, M-I Drilling Fluids, Greybull, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Van Gilder, T.J.; Robinson, L.

    1993-08-01

    In response to a request from the state epidemiologist in Wyoming, an investigation was begun of two cases of acute, febrile hepatitis in employees of M-I Drilling Fluids (SIC-1459), Greybull, Wyoming. The two cases of hepatitis were caused by Coxiella-burnetii, the rickettsia which causes Q-fever. A survey of 39 workers using a self-administered questionnaire and a blood test revealed seven workers with serologic evidence of infection. Three showed evidence of recent infection and four showed evidence of past infection. The major risk factor identified through the questionnaire data was sheep ownership. Risk factors suggestive of either recent or past infection included working outdoors, operating heavy equipment, and hunting.

  3. Possible Involvement of Permian Phosphoria Formation Oil as a Source of REE and Other Metals Associated with Complex U-V Mineralization in the Northern Bighorn Basin?

    Directory of Open Access Journals (Sweden)

    Anita L. Moore-Nall

    2017-11-01

    Full Text Available The origin of V, U, REE and other metals in the Permian Phosphoria Formation have been speculated and studied by numerous scientists. The exceptionally high concentrations of metals have been interpreted to reflect fundamental transitions from anoxic to oxic marine conditions. Much of the oil in the Bighorn Basin, is sourced by the Phosphoria Formation. Two of the top 10 producing oil fields in Wyoming are located approximately 50 km west of two abandoned U-V mining districts in the northern portion of the basin. These fields produce from basin margin anticlinal structures from Mississippian age reservoir rock. Samples collected from abandoned U-V mines and prospects hosted in Mississippian aged paleokarst in Montana and Wyoming have hydrocarbon residue present and contain anomalous high concentrations of many metals that are found in similar concentrations in the Phosphoria Formation. As, Hg, Mo, Pb, Tl, U, V and Zn, often metals of environmental concern occur in high concentrations in Phosphoria Formation samples and had values ranging from 30–1295 ppm As, 0.179–12.8 ppm Hg, 2–791 ppm Mo, <2–146 ppm Pb, 10–490 ppm Tl, 907–86,800 ppm U, 1240–18,900 ppm V, and 7–2230 ppm Zn, in mineralized samples from this study. The REE plus Y composition of Madison Limestone- and limestone breccia hosted-bitumen reflect similar patterns to both mineralized samples from this study and to U.S. Geological Survey rock samples from studies of the Phosphoria Formation. Geochemical, mineralogical and field data were used to investigate past theories for mineralization of these deposits to determine if U present in home wells and Hg content of fish from rivers on the proximal Crow Indian Reservation may have been derived from these deposits or related to their mode of mineralization.

  4. 78 FR 21565 - Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE

    Science.gov (United States)

    2013-04-11

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket No. 13-73; RM-11695; DA 13-450] Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE AGENCY: Federal Communications... review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Television. Federal...

  5. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    Science.gov (United States)

    Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R

    2016-01-01

    The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.

  6. Home on the Range: Host Families for Developmental Disabilities in Wyoming.

    Science.gov (United States)

    Walling, Teresa; Potts, Bridget; Fortune, Jon; Cobb, Ginny L.; Fortune, Barbara

    This report describes the outcomes of a Wyoming program that provides host families for individuals with developmental disabilities. Host families work with certified Medicaid providers of home and community-based services for people with developmental disabilities and provide residential habilitation to an adult who is accepted as a member of…

  7. A crocodylian trace from the Lance Formation (Upper Cretaceous) of Wyoming

    DEFF Research Database (Denmark)

    Falkingham, Peter L; Milàn, Jesper; Manning, Philip L

    2010-01-01

    A 1.5-m-long double sinusoidal trace from the Lance Formation of Wyoming, U.S.A, is attributed a crocodylian origin. The trace forms part of a diverse tracksite containing dinosaur and bird tracks. The double sinusoidal nature of the trace is suggested to have originated from the dual undulatory...

  8. Wyoming big sagebrush: Efforts towards development of target plants for restoration

    Science.gov (United States)

    Kayla R. Herriman

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis) is a dominant shrub throughout much of the interior western United States. It is a key component of sagebrush steppe ecosystems, which have been degraded due to European settlement, improper land use, and changing fire regimes resulting from the invasion of exotic...

  9. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  10. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    Science.gov (United States)

    Smith, Kurt T.; Beck, Jeffrey L.; Pratt, Aaron C.

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse ( Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  11. U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.

    2009-01-01

    Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.

  12. DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING

    Science.gov (United States)

    Traces of DNA may preserve on ancient stone tools. We examined 24 chipped stone artifacts recovered from the Bugas-Holding site in northwestern Wyoming for the presence of DNA residues, and we compared DNA preservation in bones and stone tools from the same stratigraphic context...

  13. A Study of Informal Learning among University of Wyoming Extension Educators

    Science.gov (United States)

    Skrabut, Stanley A.

    2013-01-01

    University of Wyoming Extension educators are often hired because of their subject matter expertise; yet, they must still develop education skills as well as learn to use various and ever-changing technologies. This research was conducted to understand what impact guided instruction on informal learning concepts and methods had on UW Extension…

  14. CCR Certification Form for Wyoming or EPA R8 Tribal Community Water Systems

    Science.gov (United States)

    The CCR Certification Form can be used to certify that community water systems in Wyoming or on Tribal Lands in EPA Region 8 have completed and distributed their annual Consumer Confidence Report (CCR) or water quality report.

  15. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  16. Wyoming uranium miners set sights on higher production

    International Nuclear Information System (INIS)

    White, L.

    1975-01-01

    The rising price of U 3 O 8 due to current shortage of supply and stiff environmental regulations on the uranium mining serve as grounds for caution in assessing the future of the uranium industry. Some projections of the need for doubled uranium production in the next 5 years have sparked much exploration and mining in Wyoming. Currently working or near-working mining operations are discussed briefly. The discussions are divided as to the company carrying out the operation-- from Exxon to small drilling contractors

  17. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    Science.gov (United States)

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  18. Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.

    Science.gov (United States)

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  19. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  20. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1 0 x 2 0 NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures

  1. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  2. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  3. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  4. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  5. Wyoming uranium mining and milling. A wage and employment survey, 1982

    International Nuclear Information System (INIS)

    1982-06-01

    The results of a wage and employment survey of Wyoming's mining industry are reported. Data were collected to: enumerate the number of workers in selected occupational categories; determine the average straight-line hourly wage in each occupational category; determine the number of workers covered by a collective bargaining agreement in each occupational category; and review the employer contributions to employee fringe benefits

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Rawlings quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 454 water samples and 1279 sediment samples from the Rawlins Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-81(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  8. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  9. Introduction to uranium geology of the Kaycee area in Johnson county, Wyoming

    International Nuclear Information System (INIS)

    Li Wuwei

    2004-01-01

    The geology of the Kaycee uranium deposit is introduced in three aspects: regional setting, stratigraphy and structure. At the same time, uranium and vanadium mineralization of significant economic potential have been reported in the sandstones and conglomerates from Paleocene to Eocene period in the eastern and northeastern part of Kaycee, Wyoming. (authors)

  10. Radioecological investigations of uranium-mill-tailings systems. Second technical progress report, October 1, 1980-September 30, 1981

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1981-01-01

    This document provides a status report on studies which address some of the problems and questions regarding the integrity and transport of uranium and certain radioactive progeny in active and reclaimed uranium mill tailings. The studies reported are being conducted at Pathfinder Mines Corporation's Shirley Basin Uranium Mine, located in a remote area of Carbon County in southeastern Wyoming. A considerable amount of effort, especially during the first few years of the study, must relate to basic characterization of the general environs as well as of specific study plots. Such characterization, which is essential for interpretation of analytical results for radionuclides, involves investigation of climate, soils, underground water, vegetation, and animals. Early results of such characterization work are reported herein. This investigation includes as a major component, studies relating to disposal of mill tailings by earthern covers. Of interest are the effects of various types and thicknesses of covers on radon emanation, ambient gamma radiation, biological incorporation of radionuclides, stability of soil and plant communities and physical migration of radioactivity. This report also summarizes work relating to levels of 230 Th, 226 Ra and 210 Po in water, soils and vegetation from background (uncontaminated) sites, from areas near the tailings pond, and from reclaimed overburden areas. Another major activity is the investigation of specific mechanisms which lead to contamination of vegetation with radionuclides. The processes of root uptake and aerial deposition are under study through a variety of designed experiments and sampling schemes. A small-scale study on the metabolism of 210 Po by mule deer and antelope is also reported

  11. Radioecological investigations of uranium mill tailing systems. Sixth technical progress report, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    Whicker, F.W.; Ibrahim, S.A.

    1985-01-01

    This report provides a status report on studies of the integrity and transport of several radionuclides in active and reclaimed uranium mill tailings. The program is designed to provide basic information on the radioecology of uranium and progeny, responses of native biota to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported are being conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The intent has been to quantitatively evaluate the release of important radionuclides from active and reclaimed uranium mill tailings and their entry into the food chain. An experimental plot was developed in which a uniform slab of tailings was covered with various depths of earthen materials and seeded with native range vegetation. Performance of this vegetation is monitored annually. The ability of roots to function in or near buried tailings is under long-term study as well. Experiments on radon flux versus overburden depth have been conducted and these are continuing with emphasis on understanding the role of soil moisture and climatic variables. Experimental colonies of prairie dogs were introduced to the tailings reclamation plot. The resulting disruptive effects in terms of soil movement, transport of radionuclides and the impact on radon emanation have been studied and reported

  12. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  13. Climate change and the future of freshwater fisheries

    Science.gov (United States)

    Daniel J. Isaak

    2014-01-01

    My first awareness of the importance that climate has for fish came during my summer field seasons as a Ph.D. student at the University of Wyoming. While conducting electrofishing surveys in the climatically diverse Salt River basin along the mountainous border between Wyoming and Idaho, I observed spatial patterns in species distributions and abundance that strongly...

  14. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA

    Science.gov (United States)

    W. H. Moir; Shannon G. Rochelle; A. W. Schoettle

    1999-01-01

    We report tree seedling (mostly Picea engelmannii, some Abies lasiocarpa, very infrequent Pinus contorta) invasion into meadows at upper timberline in the Snowy Range, Wyoming, from 1994 to 1996. We used gradient analysis to relate this to environmental patterns, particularly plant community structure (as aggregates of plant life-forms) and persistence of snowpack in...

  15. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    Directory of Open Access Journals (Sweden)

    Jonathan B Dinkins

    Full Text Available The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m, while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%. Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m. Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available

  16. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    International Nuclear Information System (INIS)

    Smellie, J.

    2001-12-01

    transportation as they were forming. Chemical alteration of the ash has occurred in the presence of circulating mineral-rich groundwaters which, in the Mowry Sea environment, were brackish and partially reducing. Under these initial aqueous conditions the newly-formed bentonite appears to have been at equilibrium, and subsequent rapid deposition of impervious mud/silt has served to isolate the bentonite from alteration during the continued palaeo-evolution of the Mowry Sea basin. Based on available evidence, it would appear in general that most of the Wyoming bentonites scientifically studied have undergone no major post-depositional alteration unless exposed to surface/near-surface weathering processes. Moreover, because of their physico-chemical isolation since deposition, it is not possible to study the effects of post-formational alteration of the bentonites under varying aqueous conditions and chemistry during the palaeo-evolution of the Mowry Sea basin in Cretaceous times. The bentonites are, therefore, a good natural analogue of long-term stability in a closed system, but there is insufficient information to evaluate their long-term behaviour in an open system in contact with brackish to saline waters

  17. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J [Conterra AB (Sweden)

    2001-12-01

    transportation as they were forming. Chemical alteration of the ash has occurred in the presence of circulating mineral-rich groundwaters which, in the Mowry Sea environment, were brackish and partially reducing. Under these initial aqueous conditions the newly-formed bentonite appears to have been at equilibrium, and subsequent rapid deposition of impervious mud/silt has served to isolate the bentonite from alteration during the continued palaeo-evolution of the Mowry Sea basin. Based on available evidence, it would appear in general that most of the Wyoming bentonites scientifically studied have undergone no major post-depositional alteration unless exposed to surface/near-surface weathering processes. Moreover, because of their physico-chemical isolation since deposition, it is not possible to study the effects of post-formational alteration of the bentonites under varying aqueous conditions and chemistry during the palaeo-evolution of the Mowry Sea basin in Cretaceous times. The bentonites are, therefore, a good natural analogue of long-term stability in a closed system, but there is insufficient information to evaluate their long-term behaviour in an open system in contact with brackish to saline waters.

  18. Short-term regeneration dynamics of Wyoming big sagebrush at two sites in northern Utah

    Science.gov (United States)

    The herbicide tebuthiuron has been used historically to control cover of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis - complete taxonomic designation), a widespread shrub across the western United States, with the intent of increasing herbaceous plant cover. Although the tebuthiur...

  19. Shirley Basin Uranium Mill. Environmental report to accompany source material license application

    International Nuclear Information System (INIS)

    1975-12-01

    This document summarizes all of the environmental monitoring conducted by Utah. This Environmental Report consequently supplements and updates the information presented in the Source Material License application of August 18, 1970 and the Final Environmental Statement (FES) of December 1974. Water and air quality, liquid waste management, soil/vegetation monitoring, and reclamation are covered

  20. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  1. Learning from Distance Faculty: A Faculty Needs Assessment at the University of Wyoming

    Science.gov (United States)

    Kvenild, Cassandra; Bowles-Terry, Melissa

    2011-01-01

    Distance educators have special library needs. This article discusses the results of a library needs assessment of distance instructors at the University of Wyoming. Access to resources, use of library instructional services, barriers to distance library use, and perceived gaps in service are all addressed. Follow-up actions, based on survey…

  2. Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.

    Science.gov (United States)

    Boyd, Chad S; Davies, Kirk W

    2012-09-01

    The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.

  3. Protecting the Geyser Basins of Yellowstone National Park: Toward a New National Policy for a Vulnerable Environmental Resource

    Science.gov (United States)

    Barrick, Kenneth A.

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world’s remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone’s geysers extend well beyond the Park borders, and onto two “Known Geothermal Resource Areas”—Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a “Geyser Protection Area” (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone’s geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area’s “wicked” public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world’s few remaining geyser basins.

  4. Checklist of copepods (Crustacea: Calanoida, Cyclopoida,Harpacticoida) from Wyoming, USA, with new state records

    Science.gov (United States)

    Presentation of a comprehensive checklist of the copepod fauna of Wyoming, USA with 41 species of copepods; based on museum specimens, literature reviews, and active surveillance. Of these species 19 were previously unknown from the state. This checklist includes species in the families Centropagida...

  5. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Wyoming portions of the Driggs, Preston, and Ogden NTMS Quadrangles

    International Nuclear Information System (INIS)

    Broxton, D.E.; Nunes, H.P.

    1978-04-01

    This report describes work done in the Wyoming portions of the Driggs and Preston, Wyoming/Idaho, and the Ogden, Wyoming/Utah, National Topographic Map Series (NTMS) quadrangles (1 : 250,000 scale) by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The HSSR is designed to identify areas having higher than normal concentrations of uranium in ground waters, surface waters, and water-transported sediments. During the fall of 1976, 1108 water samples and 1956 sediment samples were taken from 1999 locations by a private contractor within the Wyoming portion of Driggs, Preston, and Ogden quadrangles. An additional 108 water samples and 128 sediment samples were collected in the Grand Teton National Park during the fall of 1977 by staff members from the LASL. All of the samples were collected and treated according to standard specifications described in Appendix A. Uranium concentrations were determined at the LASL using standard analytical methods and procedures, also described briefly in Appendix A. Appendixes B-I through B-III and C-I through C-III are listings of all field and analytical data for the water and sediment samples, respectively. Appendixes D-I and D-II provide keys to codes used in the data listings. Statistical data describing the mean, range, and standard deviations of uranium concentrations are summarized by quadrangle and sample source-type in Tables I through III

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. Overview of Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  8. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  9. Book review: Implementing the Endangered Species Act on the Platte Basin water commons

    Science.gov (United States)

    Sherfy, Mark H.

    2014-01-01

    The Platte River is a unique midcontinent ecosystem that is world-renowned for its natural resources, particularly the spectacular spring concentrations of migratory birds, such as sandhill cranes (Grus canadensis), ducks, and geese. The Platte River basin also provides habitat for four federally listed endangered or threatened species—interior least tern (Sternula antillarum athalassos), piping plover (Charadrius melodus), whooping crane (G. americana), and pallid sturgeon (Scaphirhynchus albus)—that require specific hydrological conditions in order for habitat to be suitable. Flows on the Platte River are subject to regulation by a number of dams, and it is heavily relied upon for irrigation in Colorado, Wyoming, and Nebraska. Accordingly, it also has become a political battleground for the simple reason that the demand for water exceeds supply. David Freeman’s book takes a detailed look at water-use issues on the Platte River, focusing on how implementation of the Endangered Species Act influences decision-making about water allocations. 

  10. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.

  11. Predicting occupancy for pygmy rabbits in Wyoming: an independent evaluation of two species distribution models

    Science.gov (United States)

    Germaine, Stephen S.; Ignizio, Drew; Keinath, Doug; Copeland, Holly

    2014-01-01

    Species distribution models are an important component of natural-resource conservation planning efforts. Independent, external evaluation of their accuracy is important before they are used in management contexts. We evaluated the classification accuracy of two species distribution models designed to predict the distribution of pygmy rabbit Brachylagus idahoensis habitat in southwestern Wyoming, USA. The Nature Conservancy model was deductive and based on published information and expert opinion, whereas the Wyoming Natural Diversity Database model was statistically derived using historical observation data. We randomly selected 187 evaluation survey points throughout southwestern Wyoming in areas predicted to be habitat and areas predicted to be nonhabitat for each model. The Nature Conservancy model correctly classified 39 of 77 (50.6%) unoccupied evaluation plots and 65 of 88 (73.9%) occupied plots for an overall classification success of 63.3%. The Wyoming Natural Diversity Database model correctly classified 53 of 95 (55.8%) unoccupied plots and 59 of 88 (67.0%) occupied plots for an overall classification success of 61.2%. Based on 95% asymptotic confidence intervals, classification success of the two models did not differ. The models jointly classified 10.8% of the area as habitat and 47.4% of the area as nonhabitat, but were discordant in classifying the remaining 41.9% of the area. To evaluate how anthropogenic development affected model predictive success, we surveyed 120 additional plots among three density levels of gas-field road networks. Classification success declined sharply for both models as road-density level increased beyond 5 km of roads per km-squared area. Both models were more effective at predicting habitat than nonhabitat in relatively undeveloped areas, and neither was effective at accounting for the effects of gas-energy-development road networks. Resource managers who wish to know the amount of pygmy rabbit habitat present in an

  12. Adapting to Mother Nature's changing climatic conditions: Flexible stocking for enhancing profitability of Wyoming ranchers

    Science.gov (United States)

    Ranching is a dynamic business in which profitability is impacted by changing weather and climatic conditions. A ranch-level model using a representative ranch in southeastern Wyoming was used to compare economic outcomes from growing season precipitation scenarios of: 1) historical precipitation da...

  13. Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities

    Science.gov (United States)

    More frequent wildfires and incidences of mega-fires have increased the pressure for fuel treatments in sagebrush (Artemisia) communities. Winter grazing has been one of many fuel treatments proposed for Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle and A. Young) communitie...

  14. Interseasonal movements of greater sage-grouse, migratory behavior, and an assessment of the core regions concept in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Aldridge, Cameron L.; Doherty, Kevin E.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Swanson, Christopher C.; Walker, Brett L.

    2012-01-01

    Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was

  15. Wyoming bentonite trona and uranium: a wage and employment survey 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Wyoming Department of Labor and Statistics simultaneously initiated wage and employment surveys of the state's bentonite, trona, and uranium mining industries during February 1985. This data has been compiled in a directory which determines: (1) the number of workers in selected occupational categories, (2) the average straight-time hourly wage in each occupational category, (3) the number of workers covered by a collective bargaining agreement in each occupational category; and (4) employer paid fringe benefits

  16. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  17. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  18. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  19. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  20. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  1. Are We Having Fun Yet? Hitting the Moving Target of Program Choice, Wyoming, USA.

    Science.gov (United States)

    Heinlein, Ken B.; Campbell, Edward M.; Fortune, Jon; Severance, Don; Fortune, Barbara

    The changes in what people with developmental disabilities wanted and got for living and daytime settings in South Dakota and Wyoming during 1988 were compared to what they wanted and received in 2000. Although the percentage of people in their desired setting rose, there were substantial changes in the types of settings recommended over the…

  2. Historic range of variability for upland vegetation in the Medicine Bow National Forest, Wyoming

    Science.gov (United States)

    Gregory K. Dillon; Dennis H. Knight; Carolyn B. Meyer

    2005-01-01

    An approach for synthesizing the results of ecological research pertinent to land management is the analysis of the historic range of variability (HRV) for key ecosystem variables that are affected by management activities. This report provides an HRV analysis for the upland vegetation of the Medicine Bow National Forest in southeastern Wyoming. The variables include...

  3. 77 FR 30467 - Approval and Promulgation of Implementation Plans; State of Washington; Regional Haze State...

    Science.gov (United States)

    2012-05-23

    ... coal from the Power River Basin in Wyoming. Powder River Basin coal has a higher heat content requiring less fuel for the same heat extraction, as well as a lower nitrogen and sulfur content than coal from... Available Retrofit Technology (BART) determination for the TransAlta Centralia Generation LLC coal-fired...

  4. Final environmental statement related to the Wyoming Mineral Corporation Irigaray uranium solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-09-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of up to 10 to 20 years with known ore deposits and the current level of solution mining technology. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation as proposed by the staff. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 of water will be withdrawn from the ore zone aquifer. 43 figs, 52 tables

  5. Late Pleistocene and Holocene paleoclimate and alpine glacier fluctuations recorded by high-resolution grain-size data from an alpine lake sediment core, Wind River Range, Wyoming, USA

    Science.gov (United States)

    Thompson Davis, P.; Machalett, Björn; Gosse, John

    2013-04-01

    Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.

  6. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    Science.gov (United States)

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and

  7. Wyoming Landscape Conservation Initiative—A case study in partnership development

    Science.gov (United States)

    D'Erchia, Frank

    2016-10-21

    The Wyoming Landscape Conservation Initiative (WLCI) is a successful example of collaboration between science and natural resource management at the landscape scale. In southwestern Wyoming, expanding energy and mineral development, urban growth, and other changes in land use over recent decades, combined with landscape-scale drivers such as climate change and invasive species, have presented compelling challenges to resource managers and a diverse group of Federal, State, industry, and non-governmental organizations, as well as citizen stakeholders. To address these challenges, the WLCI was established as a collaborative forum and interagency partnership to develop and implement science-based conservation actions. About a decade after being established, this report documents the establishment and history of the WLCI, focusing on the path to success of the initiative and providing insights and details that may be useful in developing similar partnerships in other locations. Not merely retrospective, the elements of the WLCI that are presented herein are still in play, still evolving, and still contributing to the resolution of compelling conservation challenges in the Western United States.The U.S. Geological Survey has developed many successful longstanding partnerships, of which the WLCI is one example.“As the Nation’s largest water, earth, and biological science and civilian mapping agency, the U.S. Geological Survey collects, monitors, analyzes, and provides scientific understanding about natural resource conditions, issues, and problems. The diversity of our scientific expertise enables us to carry out large-scale, multi-disciplinary investigations and provide impartial scientific information to resource managers, planners, and other customers” (U.S. Geological Survey, 2016).

  8. Greenback cutthroat trout (Oncorhynchus clarkii stomias): A technical conservation assessment

    Science.gov (United States)

    Michael K. Young

    2009-01-01

    Greenback cutthroat trout (Oncorhynchus clarkii stomias) was once presumably distributed throughout the colder waters of the South Platte and Arkansas River basins in Colorado and southeastern Wyoming. Primarily a fluvial species, greenback cutthroat trout may have occupied 10,614 to 13,231 km of streams above 1,800 m in these basins. Nevertheless,...

  9. DANCEMAKING IN UNEXPECTED PLACES: MOLDOVAN MUSIC AND VERTICAL DANCE IN WYOMING

    Directory of Open Access Journals (Sweden)

    GARNETT RODNEY

    2016-06-01

    Full Text Available Since 1998, vertical dance at the University of Wyoming has been an active catalyst for interactions among choreographers and dancers, composers and musical performers, audiences, rock climbers, and others. Outdoor performances at an impressive geologic formation have consistently drawn large audiences, and allowed choreographer and performer Margaret Wilson to consider the ways that vertical dancers come to embody widely varying environments through heightened sensitivity, improvisation, and other processes of “tuning in” (Hunter 2015: 181 to the world around them. In 2013, as I stood on a high ledge on the massive Vedauwoo rock formation in Wyoming, I found that the sound of Moldovan nai naturally became a part of our outdoor environment as it echoed off of the rocks and projected out into the forest. Our pianist had begun to embody an effective sense of how to collaborate with dancers and their movement having accompanied their classes for many years. Nai easily became an integral part of her musical compositions. Musicians who are more closely focused on devices such as instruments, sheet music, and microphones have been less able to improvise and interact spontaneously with the sensory world of vertical dance. Listening closely to create their best sound makes them less sensitive to distant aural, visual, and sensory phenomena that would allow them to embody their environment along with other performers and their audiences. In seeking to better adapt to variable vertical dance settings, I found that Moldovan nai is especially well-suited for collaborating with other instruments and dancers in vertical dance environments. Moldovan melodies and rhythms have also become an important element of both outdoor and indoor vertical dance performances in Wyoming. The broader movement, of playing panflute is more like dancing than the smaller movements required for playing transverse flutes. In addition, the social essence of learning and

  10. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Surdam, Ronald C. [Univ. of Wyoming, Laramie, WY (United States); Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States); Campbell-Stone, Erin [Univ. of Wyoming, Laramie, WY (United States); Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States); Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States); Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States); Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States); Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Mallick, Subhashis [Univ. of Wyoming, Laramie, WY (United States); McLaughlin, Fred [Univ. of Wyoming, Laramie, WY (United States); Myers, James [Univ. of Wyoming, Laramie, WY (United States); Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States)

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  11. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  12. Endemic chronic wasting disease causes mule deer population decline in Wyoming.

    Directory of Open Access Journals (Sweden)

    Melia T DeVivo

    Full Text Available Chronic wasting disease (CWD is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus, mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces shirasi in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ. Mule deer were captured from 2010-2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ = 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  13. Endemic chronic wasting disease causes mule deer population decline in Wyoming

    Science.gov (United States)

    DeVivo, Melia T.; Edmunds, David R.; Kauffman, Matthew J.; Schumaker, Brant A.; Binfet, Justin; Kreeger, Terry J.; Richards, Bryan J.; Schatzl, Hermann M.; Cornish, Todd

    2017-01-01

    Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces shirasi) in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ). Mule deer were captured from 2010–2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old) deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ= 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  14. Nichols Ranch In-Sutu Leach Uranium Mine Wyoming, USA – A Case History

    International Nuclear Information System (INIS)

    Catchpole, G.; Thomas, Glenda

    2014-01-01

    Company Incorporated in 1999 under the name Carleton Ventures Corp. In 2005 Changed name to Uranerz Energy Corporation and adopted the following Business Model: acquire quality uranium properties with the potential of being mined using the ISL extraction method with the objective of achieving uranium production as soon as practical. Focus on production; not grass roots exploration. Primary target area for property acquisition - western U.S.A., specifically Texas and Wyoming

  15. Chapter 2. The Intermountain setting

    Science.gov (United States)

    E. Durant McArthur; Sherel K. Goodrich

    2004-01-01

    This book is intended to assist range managers throughout the Intermountain West (fig. 1). The areas of greatest applicability are the Middle and Southern Rocky Mountains, Wyoming Basin, Columbia and Colorado Plateaus, and much of the basin and range physiographic provinces of Fenneman (1981) or about 14° latitude, from the Mohave, Sonoran, and Chihuahuan...

  16. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  17. The 3D Elevation Program: summary for Wyoming

    Science.gov (United States)

    Carswell, William J.

    2015-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Wyoming, elevation data are critical for geologic resource assessment and hazard mitigation, flood risk management, water supply an quality, natural resources conservation, agriculture and precision farming, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.

  18. Seasonal movement and spatial distribution of the sheep ked (Diptera: Hippoboscidae) on Wyoming lambs.

    Science.gov (United States)

    Legg, D E; Kumar, R; Watson, D W; Lloyd, J E

    1991-10-01

    When populations of adult sheep ked, Melophagus ovinus (L.), infesting unshorn lambs were monitored at the University of Wyoming Paradise Farm during 1986, we determined the body regions on which keds would be found at various times of the year and their seasonal population trends for optimal sampling. Results suggested that ked populations were consistently greater on the ribs than on any other area of the lamb. No significant differences were detected for ked populations between sides of a lamb. Distinct and similar ked population trends over time occurred only in the rib, thigh, shoulder, hind leg, belly, and hind flank areas of the lambs, suggesting that a significant seasonal migration did not occur. Analyses for seasonal population fluctuations indicated that ked populations increased in the winter and spring, decreased in summer and then increased again in the fall. Thus, sampling for keds in the rib area at shearing, which begins in March in Wyoming and runs through mid-April, would be an opportune time to detect keds. At other times of the year, the rib area should be inspected for presence of sheep ked.

  19. Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, J.H.; Roth, B.; Kihm, A.J.

    1997-08-11

    Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

  20. 76 FR 52377 - Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc...

    Science.gov (United States)

    2011-08-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc., and TSI, Inc., Order of Suspension of Trading... Commission that there is a lack of current and accurate information concerning the securities of Grant Life...

  1. Final Environmental Assessment for Stormwater Drainage Project on F. E. Warren Air Force Base, Wyoming

    Science.gov (United States)

    2005-05-01

    Taxidea taxus), raccoon (Procyon lotor hirtus), porcupine (Erethizon dorsatum), red fox (Vulpes vulpes), coyote (Canus latrans), and Wyoming ground...squirrel (Spermophilus elegans). A relatively large herd of pronghorn antelope inhabits the base. Although the pronghorn on the installation are a...part of the larger Iron Mountain herd , most reside on the installation year-round. The Storm Water Drainage Project, Draft Environmental Assessment

  2. 78 FR 79004 - Notice of Availability of the Wyoming Greater Sage-Grouse Draft Land Use Plan Amendments and...

    Science.gov (United States)

    2013-12-27

    ...-rearing and winter concentration areas. General Habitat--Areas of seasonal or year-round habitat outside of priority habitat. Connectivity Habitat--Areas identified as broader regions of connectivity... habitat identified by the Wyoming Game and Fish Department: Core Habitat--Areas identified as having the...

  3. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  4. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  5. Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU

    Science.gov (United States)

    Canterna, R.; Beck, K.; Hickman, M. A.

    1996-05-01

    The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.

  6. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  7. Analysis of Costs of Services/Supports for People with Developmental Disabilities for Nebraska, South Dakota, and Wyoming, USA.

    Science.gov (United States)

    Campbell, Edward M.; Fortune, Jon; Severance, Donald; Holderegger, John; Fortune, Barbara

    A database was assembled from data collected on all people served by the Developmental Disabilities divisions of Nebraska, South Dakota, and Wyoming, including state institutions and state-funded programs (n=5,928). Information included provider expenditures associated with each individual, allocations made by individual reimbursement rates,…

  8. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  9. 76 FR 61781 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2011-10-05

    ... gray wolf reintroductions in central Idaho and in Yellowstone National Park (YNP). The Yellowstone... Wolves to Yellowstone National Park and Central Idaho (EIS) reviewed wolf recovery in the NRM region and... Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming...

  10. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  11. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Kauffman, Matthew J.; Huber, Christopher C.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Norkin, Tamar; Sanders, Lindsey E.; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2016-09-28

    This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was

  12. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  13. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Allen, M.F. (University of Wyoming, Laramie, WY (USA))

    1980-01-01

    The % root infection of {ital Agropyron smithii} and {ital A. intermedium} by vesicular-arbuscular mycorrhizae was measured and spoil spores were counted in six reclaimed stripmine sites in Wyoming. On 2- and 3-yr old sites % infection and spore counts were c. 50% or less than native prairie levels. Spore counts of a 3-yr old disked prairie site were not different from the undisturbed prairie level, but infection was significantly lower. Spore counts of the reclimed sites were not highly correlated with % root infection. Five of seven annuals which colonized the reclaimed and disked sites were non-mycorrhizal. 43 refs., 3 tabs.

  14. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  15. Climate change on the Shoshone National Forest, Wyoming: a synthesis of past climate, climate projections, and ecosystem implications

    Science.gov (United States)

    Janine Rice; Andrew Tredennick; Linda A. Joyce

    2012-01-01

    The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...

  16. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  17. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  18. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  19. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  20. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2013 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    This is the sixth report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by USGS for addressing specific management needs identified by WLCI partners. In FY2013, there were 25 ongoing and new projects conducted by the USGS. These projects fall into 8 major categories: (1) synthesizing and analyzing existing data to describe (model and map) current conditions on the landscape; (2) developing models for projecting past and future landscape conditions; (3) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (4) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (5) managing and making accessible the large number of databases, maps, and other products being developed; (6) helping to integrate WLCI outcomes with future habitat enhancement and research projects; (7) coordinating efforts among WLCI partners; and (8) providing support to WLCI decision-makers and assisting with overall evaluation of the WLCI program. The two new projects initiated in FY2013 address (1) important agricultural lands in southwestern Wyoming, and (2) the influence of energy development on native fish communities. The remaining activities entailed our ongoing efforts to compile data, model landscape conditions, monitor trends in habitat conditions, conduct studies of wildlife responses to energy development, and upgrade Web-based products in support of both individual and overall WLCI efforts. Milestone FY2013 accomplishments included completing the development of a WLCI inventory and monitoring framework and the associated monitoring strategies, protocols, and analytics; and initial development of an Interagency Inventory and Monitoring Database, which will be accessible through the Monitoring page of the WLCI Web site at http://www.wlci.gov/monitoring. We also completed the initial phase of

  1. Pleistocene glaciation of the Jackson Hole area, Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Good, John M.; Jaworowski, Cheryl

    2018-01-24

    Pleistocene glaciations and late Cenozoic offset on the Teton fault have played central roles in shaping the scenic landscapes of the Teton Range and Jackson Hole area in Wyoming. The Teton Range harbored a system of mountain-valley glaciers that produced the striking geomorphic features in these mountains. However, the comparatively much larger southern sector of the Greater Yellowstone glacial system (GYGS) is responsible for creating the more expansive glacial landforms and deposits that dominate Jackson Hole. The glacial history is also inextricably associated with the Yellowstone hotspot, which caused two conditions that have fostered extensive glaciation: (1) uplift and consequent cold temperatures in greater Yellowstone; and (2) the lowland track of the hotspot (eastern Snake River Plain) that funneled moisture to the Yellowstone Plateau and the Yellowstone Crescent of High Terrain (YCHT).The penultimate (Bull Lake) glaciation filled all of Jackson Hole with glacial ice. Granitic boulders on moraines beyond the south end of Jackson Hole have cosmogenic 10Be exposure ages of ~150 thousand years ago (ka) and correlate with Marine Isotope Stage 6. A thick loess mantle subdues the topography of Bull Lake moraines and caps Bull Lake outwash terraces with a reddish buried soil near the base of the loess having a Bk horizon that extends down into the outwash gravel. The Bull Lake glaciation of Jackson Hole extended 48 kilometers (km) farther south than the Pinedale, representing the largest separation of these two glacial positions in the Western United States. The Bull Lake is also more extensive than the Pinedale on the west (22 km) and southwest (23 km) margins of the GYGS but not on the north and east. This pattern is explained by uplift and subsidence on the leading and trailing “bow-wave” of the YCHT, respectively.During the last (Pinedale) glaciation, mountain-valley glaciers of the Teton Range extended to the western edge of Jackson Hole and built

  2. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  3. Two-dimensional coherence analysis of magnetic and gravity data from the Casper Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences

  4. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  5. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    Science.gov (United States)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  6. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  7. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Science.gov (United States)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  8. Research and Development Concerning Coalbed Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good

  9. Evaluation of wetland creation and waterfowl use in conjunction with abandoned mine lands in northeast Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    McKistry, M C; Anderson, S H [University of Wyoming, Laramie, WY (United States)

    1994-12-01

    During 1991 and 1992, we studied 92 wetlands, including open water (ponds) and emergent communities, created as a result of Wyoming Abandoned Mine Lands` (AML) reclamation efforts in northeast Wyoming. Through these activities, over 300 wetlands were filled, reclaimed, created, or otherwise modified. For mitigation purposes wetlands to be filled or modified were first evaluated using a Wetland Habitat Value (WHV) Model. Using the model, wetland losses were mitigated by increasing the WHV of some wetlands or by creating new wetlands elsewhere. We evaluated model performance in offsetting wetland loss and how well the model predicted waterfowl use. We also compared post-reclamation wetland sizes to those predicted by engineering plans and submitted for Section 404 permit approval. In our study, predicted WHVs were overestimated at 100% of the wetlands for which pre-reclamation WHVs were available (n8). The most commonly overestimated variables were size, fraction of emergent cover, adjacent upland cover, and the number of bays and peninsulas. We obtained preconstruction size estimates for 64 of the original 80 wetlands. Fifty five of 64 wetlands were smaller than pre-reclamation engineering goals. The WHV Model accurately predicted use of wetlands by migrating and breeding canada geese (Branta canadensis), migrating dabbling ducks, and migrating diving ducks.

  10. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    Science.gov (United States)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  11. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  12. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  13. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  14. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required

  15. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  16. Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 μR/hr. The corresponding rate for the former mill area was 97 μR/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of 226 Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 μR/hr

  17. Headcut Erosion in Wyoming's Sweetwater Subbasin.

    Science.gov (United States)

    Cox, Samuel E; Booth, D Terrance; Likins, John C

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m-the generally available standard resolution for land management-and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m(-1) channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  18. Draft environmental statement. Wyoming Mineral Corporation, Irigaray solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-04-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of 10 to 20 years with known ore deposits and the current level of solution mining technology. Environmental impacts and adverse effects are summarized. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 (1000 acre-ft) of water will be withdrawn from the ore zone aquifer. This water will be conveyed to the onsite waste ponds for evaporation. An estimated 4.2 x 10 5 m 3 (340 acre-ft) of groundwater is expected to temporarily contain increased concentrations of radioactive and toxic elements during the operation of each 4-ha (10-acre) well field. Restoration should return this water to a condition that is consistent with its premining use (or potential use). There will be no discharge of liquid effluents from the Irigaray project. Atmospheric effluents will be within acceptable limits. The dose rates of radionuclides in the air at the nearest ranches from the plant site are tabulated. The Irigaray project proposes the production and utilization of 500,000 lb per year of uranium resources. The Irigaray project will not produce any significant socioeconomic impact on the local area because of the small number of employees that will be employed at the project

  19. 78 FR 29379 - BLM Director's Response to the Appeal by the Governors of Utah and Wyoming of the BLM Assistant...

    Science.gov (United States)

    2013-05-20

    ... Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management (BLM) in Colorado... Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming, which..., Lakewood, CO 80215 or Mitchell Leverette, BLM Division Chief, Solid Minerals, 202-912-7113, ( [email protected

  20. Relationships between gas field development and the presence and abundance of pygmy rabbits in southwestern Wyoming

    Science.gov (United States)

    Germaine, Stephen; Carter, Sarah; Ignizio, Drew A.; Freeman, Aaron T.

    2017-01-01

    More than 5957 km2 in southwestern Wyoming is currently covered by operational gas fields, and further development is projected through 2030. Gas fields fragment landscapes through conversion of native vegetation to roads, well pads, pipeline corridors, and other infrastructure elements. The sagebrush steppe landscape where most of this development is occurring harbors 24 sagebrush-associated species of greatest conservation need, but the effects of gas energy development on most of these species are unknown. Pygmy rabbits (Brachylagus idahoensis) are one such species. In 2011, we began collecting three years of survey data to examine the relationship between gas field development density and pygmy rabbit site occupancy patterns on four major Wyoming gas fields (Continental Divide–Creston–Blue Gap, Jonah, Moxa Arch, Pinedale Anticline Project Area). We surveyed 120 plots across four gas fields, with plots distributed across the density gradient of gas well pads on each field. In a 1 km radius around the center of each plot, we measured the area covered by each of 10 gas field infrastructure elements and by shrub cover using 2012 National Agriculture Imagery Program imagery. We then modeled the relationship between gas field elements, pygmy rabbit presence, and two indices of pygmy rabbit abundance. Gas field infrastructure elements—specifically buried utility corridors and a complex of gas well pads, adjacent disturbed areas, and well pad access roads—were negatively correlated with pygmy rabbit presence and abundance indices, with sharp declines apparent after approximately 2% of the area consisted of gas field infrastructure. We conclude that pygmy rabbits in southwestern Wyoming may be sensitive to gas field development at levels similar to those observed for greater sage-grouse, and may suffer local population declines at lower levels of development than are allowed in existing plans and policies designed to conserve greater sage-grouse by limiting

  1. Copper Mountain, Wyoming, intermediate-grade uranium resource assessment project. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Madson, M.E.; Ludlam, J.R.; Fukui, L.M.

    1982-11-01

    Intermediate-grade uranium resources were delineated and estimated for Eocene and Precambrian host rock environments in the 39.64 mi 2 Copper Mountain, Wyoming, assessment area. Geologic reconnaissance and geochemical, geophysical, petrologic, borehole, and structural data were interpreted and used to develop a genetic model for uranium mineralization in these environments. Development of a structural scoring system and application of computer graphics in a high-confidence control area established the basis for estimations of uranium resources in the total assessment area. 8 figures, 5 tables

  2. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  3. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  4. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  5. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2010 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura; Blecker, Steven W.; Boughton, Gregory K.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Diffendorfer, Jay E.; Fedy, Bradley C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Holloway, JoAnn; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.

    2011-01-01

    This is the third report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described activities for 2007 and 2008, and the second report covered work activities for FY09. This third report covers work activities conducted in FY2010, and it continues the 2009 approach of reporting on all the individual activities to help give WLCI partners and other readers the full scope of what has been accomplished. New in this year's report is an additional section for each work activity that outlines the work planned for the following fiscal year. In FY2010, there were 35 ongoing/expanded, completed, or new projects conducted under the five major multi-disciplinary science and technical-assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. The three new work activities were to (1) compile existing water data for the entire WLCI region and (2) develop regional curves (statistical models) for relating bankfull-channel geometry and discharge to drainages in the WLCI region, both of which will help guide long-term monitoring of water resources; and (3) initiate a groundwater-monitoring network to evaluate potential effects of energy-development activities on groundwater quality where groundwater is an important source of public/private water supplies. Results of the FY2009 work to develop methods for assessing soil organic matter and mercury indicated that selenium and arsenic levels may be elevated in the Muddy Creek Basin; thus, the focus of that activity was shifted in FY2010 to evaluate biogeochemical cycling of elements in the basin. In FY2010, two ongoing activities were expanded with the addition of more sampling plots: (a) the study of how greater sage-grouse (Centrocercus urophasianus) use vegetation-treatment areas (sites added to

  6. Depth of the base of the Jackson aquifer, based on geophysical exploration, southern Jackson Hole, Wyoming, USA

    Science.gov (United States)

    Nolan, Bernard T.; Campbell, David L.; Senterfit, Robert M.

    A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100-600ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200ft (61m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100ft (30m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700ft (210m) in the west, near the town of Wilson, Wyoming. Résumé Une campagne géophysique a été entreprise pour préciser la profondeur du mur de l'aquifère dans le secteur sud de Jackson Hole (Wyoming, États-Unis). Des mesures audio-magnétotelluriques (audio MT) sur 77 sites de ce secteur ont fourni des logs de résistivitéélectrique du sous-sol ; les variations de la lithologie en fonction de la profondeur en ont été déduites. Un niveau géoélectrique à 100-600ohm.m, dénommé "aquifère de Jackson", a servi à définir des dépôts superficiels quaternaires saturés en eau et non consolidés. La profondeur médiane de la base de l'aquifère de Jackson est de l'ordre de 61m, à partir des 62 sites ayant fourni suffisamment de données de résistivité. Les valeurs audio MT mesur

  7. 77 FR 7178 - Notice of Correction to Notice of Intent To Prepare Environmental Impact Statements and...

    Science.gov (United States)

    2012-02-10

    ... Forest Plan (1990) [cir] Wyoming--Medicine Bow National Forest Plan (2004) Great Basin Region [cir] Idaho... Supplemental EISs, extends the scoping period, and adds 11 Forest Service Land Management Plans (LMPs) to this... Region. The added Forest Service LMPs include: Rocky Mountain Region [cir] Colorado--Routt National...

  8. Coxiella burnetii, the agent of Q fever, in domestic sheep flocks from Wyoming, United States.

    Science.gov (United States)

    Loftis, Amanda D; Reeves, Will K; Miller, Myrna M; Massung, Robert F

    2012-03-01

    Coxiella burnetii, the agent of Q fever, is an intracellular bacterial pathogen. It has a nearly cosmopolitan distribution. We conducted a serological survey of domestic sheep herds for infections with C. burnetii in Wyoming following reports of abortion and open ewes. Based on the serologic evidence, there was no link between reproductive problems and exposure to C. burnetii. However, the overall prevalence of C. burnetii in WY sheep was 7%, which indicates that the agent is present in the environment and could pose a threat to public health.

  9. The Double Bind: The next Generation

    Science.gov (United States)

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  10. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Bergfeld, D.; Evans, William C.; Lowenstern, J. B.; Hurwitz, S.

    2012-01-01

    Brimstone Basin, a remote area of intense hydrothermal alteration a few km east of the Yellowstone Caldera, is rarely studied and has long been considered to be a cold remnant of an ancient hydrothermal system. A field campaign in 2008 confirmed that gas emissions from the few small vents were cold and that soil temperatures in the altered area were at background levels. Geochemical and isotopic evidence from gas samples (3He/4He ~ 3RA, δ13C-CO2 ~ − 3‰) however, indicate continuing magmatic gas input to the system. Accumulation chamber measurements revealed a surprisingly large diffuse flux of CO2 (~ 277 t d-1) and H2S (0.6 t d-1). The flux of CO2 reduces the 18O content of the overlying cold groundwater and related stream waters relative to normal meteoric waters. Simple isotopic modeling reveals that the CO2 likely originates from geothermal water at a temperature of 93 ± 19 °C. These results and the presence of thermogenic hydrocarbons (C1:C2 ~ 100 and δ13C-CH4 = − 46.4 to − 42.8‰) in gases require some heat source at depth and refute the assumption that this is a “fossil” hydrothermal system.

  11. Drainage basins features and hydrological behaviour river Minateda basin

    International Nuclear Information System (INIS)

    Alonso-Sarria, F.

    1991-01-01

    Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

  12. Management considerations

    Science.gov (United States)

    Steven T. Knick; Steven E. Hanser; Matthias Leu; Cameron L. Aldridge; Scott E. Neilsen; Mary M. Rowland; Sean P. Finn; Michael J. Wisdom

    2011-01-01

    We conducted an ecoregional assessment of sagebrush (Artemisia spp.) ecosystems in the Wyoming Basins and surrounding regions (WBEA) to determine broad-scale species-environmental relationships. Our goal was to assess the potential influence from threats to the sagebrush ecosystem on associated wildlife through the use of spatially explicit...

  13. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  14. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    Science.gov (United States)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases

  15. Measuring the effectiveness of conservation: a novel framework to quantify the benefits of sage-grouse conservation policy and easements in Wyoming.

    Directory of Open Access Journals (Sweden)

    Holly E Copeland

    Full Text Available Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus, a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance "core" habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14-29% (95% CI: 4-46%. However, a conservation strategy that includes the "core area" policy and $250 million in targeted easements could reduce these losses to 9-15% (95% CI: 3-32%, cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines

  16. Site qualification studies of the UCG-SDB at North Knobs, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.E.; Krajewski, S.A.; Ahner, P.F.; Avasthi, J.M.; Dolde, M.E.; Greenman, C.A.; Miranda, J.E.

    1979-01-01

    The site qualification program for the North Knobs UCG site near Rawlins, Wyoming has been completed. This site will be the location for the field tests of Underground Coal Gasification of Steeply Dipping Beds undertaken by Gulf Research and Development Company for DOE in a cost shared contract. Site characterization included a comprehensive geotechnical analysis along with vegetation, historical, and archeological studies. The G coal seam chosen for these tests is a subbituminous B coal with a true seam thickness of 22 feet and has thin coal benches above and below the main seam. The water table is at 90 feet below the surface. Hydrologic studies have defined the seam as an aquiclude (non-aquifer). The site is deemed restorable to regulatory requirements. Evaluation of this site indicates total acceptability for the three-test program planned by GR and DC.

  17. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  18. Sampling and analyses report for December 1992 semiannual postburn sampling at the RMI UCG Site, Hanna, Wyoming

    International Nuclear Information System (INIS)

    Lindblom, S.R.

    1993-03-01

    During December 1992, groundwater was sampled at the site of the November 1987--February 1988 Rocky Mountain 1 underground coal gasification test near Hanna, Wyoming. The groundwater in near baseline condition. Data from the field measurements and analyzes of samples are presented. Benzene concentrations in the groundwater are below analytical detection limits (<0.01 mg/L) for all wells, except concentrations of 0.016 mg/L and 0.013 mg/L in coal seam wells EMW-3 and EMW-1, respectively

  19. 76 FR 33019 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2011-06-07

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e... Wilson Drilling Pad 1, ABR-201103014, Lemon Township, Wyoming County, Pa.; Consumptive Use of up to 2.000...

  20. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    Science.gov (United States)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  1. Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming

    Directory of Open Access Journals (Sweden)

    Binod Pokharel

    2017-02-01

    Full Text Available This study describes a downslope wind storm event observed over the Medicine Bow range (Wyoming, USA on 11 January 2013. The University of Wyoming King Air (UWKA made four along-wind passes over a five-hour period over the mountain of interest. These passes were recognized as among the most turbulent ones encountered in many years by crew members. The MacCready turbulence meter aboard the UWKA measured moderate to severe turbulence conditions on each pass in the lee of the mountain range, with eddy dissipation rate values over 0.5 m2/3 s−1. Three rawinsondes were released from an upstream location at different times. This event is simulated using the non-hydrostatic Weather Research and Forecast (WRF model at an inner- domain resolution of 1 km. The model produces a downslope wind storm, notwithstanding some discrepancies between model and rawinsonde data in terms of upstream atmospheric conditions. Airborne Wyoming Cloud Radar (WCR vertical-plane Doppler velocity data from two beams, one pointing to the nadir and one pointing slant forward, are synthesized to obtain a two-dimensional velocity field in the vertical plane below flight level. This synthesis reveals the fine-scale details of an orographic wave breaking event, including strong, persistent downslope acceleration, a strong leeside updraft (up to 10 m·s−1 flanked by counter-rotating vortices, and deep turbulence, extending well above flight level. The analysis of WCR-derived cross-mountain flow in 19 winter storms over the same mountain reveals that cross-mountain flow acceleration and downslope wind formation are difficult to predict from upstream wind and stability profiles.

  2. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  3. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  4. Sagebrush-associated species of conservation concern

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Matthias Leu; Steven T. Knick; Michael J. Wisdom

    2011-01-01

    Selection of species of concern is a critical early step in conducting broad-scale ecological assessments for conservation planning and management. Many criteria can be used to guide this selection, such as conservation status, existing knowledge base, and association with plant communities of interest. In conducting the Wyoming Basins Ecoregional Assessment (WBEA), we...

  5. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods

    Directory of Open Access Journals (Sweden)

    Dick Apronti

    2016-12-01

    Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.

  6. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  7. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    Science.gov (United States)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  9. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  10. K-Basins design guidelines

    International Nuclear Information System (INIS)

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines

  11. U-Th-Pb systematics of precambrian rocks in the Laramie Mountains, Wyoming

    International Nuclear Information System (INIS)

    Nkomo, I.T.; Rosholt, J.N.; Dooley, J.R. Jr.

    1979-01-01

    Uranium, thorium and lead concentrations and the isotopic composition of whole-rock samples of granite from the Laramie Mountains, Wyoming, suggest intrusion of the granite no later than 2530 +- 80 m.y. ago. The uranium in surface samples is present in amounts that are insufficient to account for the observed lead isotopic composition. However, some core samples of heavily fractured rock show an extreme isotopic disequilibrium between 238 U and 206 Pb. Their uranium concentrations are generally far in excess (up to 60%) of average amounts required to support the measured lead-206. Radioactive disequilibrium measurements indicate that large amounts of uranium were gained by these fractured rocks during the last 150,000 years. Lead data on K-feldspar separated from the rocks analyzed suggest that lead has been assimilated by these minerals since time of crystallization. 8 figures, 6 tables

  12. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates

    International Nuclear Information System (INIS)

    Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen

    2013-01-01

    To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (ρ = 0.78; p = 0.003) and annual FMeHg basin yield (ρ = 0.66; p = 0.026). Improved correlation (ρ = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered. - Highlights: ► National scale mercury assessments integrate small scale study results. ► Basin scale differences and representativeness of fluvial mercury samples are concerns. ► Wetland area, not basin size, predicts inter-basin methylmercury variability. ► Time-weighted methylmercury estimates improve the prediction of mercury in basin fish. - Fluvial methylmercury concentration correlates with wetland area not basin scale and time-weighted estimates better predict basin top predator mercury than discrete sample estimates.

  13. Serological survey for diseases in free-ranging coyotes (Canis latrans) in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Gese, E M; Schultz, R D; Johnson, M R; Williams, E S; Crabtree, R L; Ruff, R L

    1997-01-01

    From October 1989 to June 1993, we captured and sampled 110 coyotes (Canis latrans) for various diseases in Yellowstone National Park, Wyoming (USA). Prevalence of antibodies against canine parvovirus (CPV) was 100% for adults (> 24 months old), 100% for yearlings (12 to 24 months old), and 100% for old pups (4 to 12 months old); 0% of the young pups (Yellowstone National Park, with CPV influencing coyote pup survival during the first 3 months of life; eight of 21 transmitted pups died of CPV infection in 1992. The potential impact of these canine pathogens on wolves (C. lupus) reintroduced to Yellowstone National Park remains to be documented.

  14. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    Science.gov (United States)

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    Finding ecologically and economically effective ways to establish matrix species is often critical for restoration success. Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) historically dominated large areas of western North America, but has been extirpated from many areas by large wildfires; its re-establishment in these areas often requires active management. We evaluated the performance (survival, health) and economic costs of container and bare-root stock based on operational plantings of more than 1.5 million seedlings across 2 200 ha, and compared our plantings with 30 other plantings in which sagebrush survival was tracked for up to 5 yr. Plantings occurred between 2001 and 2007, and included 12 combinations of stock type, planting amendment, and planting year.We monitored 10 500 plants for up to 8 yr after planting. Survival to Year 3 averaged 21% and was higher for container stock (30%) than bare-root stock (17%). Survival did not differ among container stock plantings, whereas survival of bare-root stock was sometimes enhanced by a hydrogel dip before planting, but not by

  15. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  16. Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings after transplanting

    Science.gov (United States)

    Bill Eugene Davidson

    2015-01-01

    Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...

  17. The economics of fuel management: Wildfire, invasive plants, and the dynamics of sagebrush rangelands in the western United States

    Science.gov (United States)

    Michael H. Taylor; Kimberly Rollins; Mimako Kobayashi; Robin J. Tausch

    2013-01-01

    In this article we develop a simulation model to evaluate the economic efficiency of fuel treatments and apply it to two sagebrush ecosystems in the Great Basin of the western United States: the Wyoming Sagebrush Steppe and Mountain Big Sagebrush ecosystems. These ecosystems face the two most prominent concerns in sagebrush ecosystems relative to wildfire: annual grass...

  18. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Science.gov (United States)

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  19. Role of fuel upgrading for industry and residential heating

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W. [Western Research Inst., Laramie, WY (United States); Gentile, R.H. [KFx Atlantic Partners, Arlington, VA (United States)

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  20. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  1. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  2. Black-footed ferret areas of activity during late summer and fall at Meeteetse, Wyoming

    Science.gov (United States)

    Fagerstone, K.A.; Biggins, D.E.

    2011-01-01

    Radiotelemetry was used during 1983 and 1984 to collect information on short-term areas of activity for black-footed ferrets (Mustela nigripes) near Meeteetse, Wyoming. This population ultimately provided ferrets for the captive-breeding program that bred and released offspring into the wild since 1991. We fitted 5 adult ferrets and 13 juveniles with radiotransmitters and followed their movements during late summer and fall. Adult males had 7-day areas of activity that were >6 times as large as those of adult females. Activity areas of adult males varied little in coverage or location on a weekly basis, but females sequentially shifted their areas. Unlike juvenile females, juvenile males tended to leave their natal colonies. ?? 2011 American Society of Mammalogists.

  3. Measurement of quantitative species diversity on reclaimed coal mine lands: A brief overview of the Wyoming regulatory proposal

    International Nuclear Information System (INIS)

    Vincent, R.B.

    1998-01-01

    The Wyoming Land Quality Division (LQD) Coal Rules and Regulations require mine operators to specify quantitative procedures for evaluating postmining species diversity and composition. Currently, permit commitments range from deferring to commit to a quantitative procedure until some future date to applying various similarity/diversity indices for comparison of reclaimed lands to native vegetation communities. Therefore, the LQD began trying to develop a standardized procedure to evaluate species diversity and composition, while providing operator flexibility. Review of several technical publications on the use of similarity and diversity indices, and other measurement techniques indicate that a consensus has not been reached on which procedure is most appropriate for use on reclaimed mine lands. In addition, implementation of many of the recommended procedures are not practical with regards to staff and data limitations. As a result, the LQD has developed an interim procedure, based on site-specific baseline data, to evaluate postmining species diversity and composition success with respect to bond release requests. This paper reviews many of the recommended procedures, outlines some of the pros and cons, and provides a specific example of how the proposed interim procedure was applied to an actual coal mine permit. Implementation of this or a similar procedure would allow for site-specific standardization of permits and regulatory requirements, thus reducing review time and reducing some of the subjectivity surrounding a component of the Wyoming bond release requirements

  4. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    Science.gov (United States)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  5. Hydric soils and the relationship to plant diversity within reclaimed stream channels in semi-arid environments

    International Nuclear Information System (INIS)

    Schladweiler, B.K.; Rexroat, S.; Benson, S.

    1999-01-01

    Wetlands are especially important in semi-arid environments, such as the Powder River Basin of northeastern Wyoming, where water is a limiting factor for living organisms. Within this coal mining region of northeastern Wyoming, jurisdictional wetlands are mapped according to the US Army Corps of Engineers 1987 delineation procedure. Within the coal mining region of northeastern Wyoming, little or no full-scale mitigation or reconstruction attempts of jurisdictional wetland areas have been made until recently. Based on the importance of wetlands in a semi-arid environment and lack of information on existing or reconstructed areas, the specific objectives of the 1998 fieldwork were: (1) To define the pre-disturbance ecological state of hydric soils within jurisdictional sections of stream channels on two coal permit areas in northeastern Wyoming, and (2) To determine the effect that hydric soil parameters have on plant community distribution and composition within the two coal permit areas. Undisturbed sections of stream channels and disturbed sections of reconstructed or modified stream channels at the Rawhide Mine and Buckskin Mine, located north of Gillette, Wyoming, were selected for the study. Soils field and laboratory information and field vegetation cover were collected during 1998 within native stream channels and disturbed stream channels that had been reclaimed at each mine. Soils laboratory information is currently preliminary and included pH, electrical conductivity and sodium adsorption ratio. Results and statistical comparisons between soils and vegetation data will be presented

  6. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  7. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    enthalpy of immersion, and isotherms of adsorption - desorption has been done for Wyoming montmorillonite saturated by Mg 2+ , Ca 2+ , Na + and K + . Smectite water-vapor pressure isotherms represent the total concentration of H 2 O taken up the sample which is distributed among the interlayers, the outer surfaces of particles and the open pore space in the sample. In order to retrieve standard state thermodynamic properties for smectite hydration and dehydration from such data, the amount of H 2 O in excess of that in the interlayer must be assessed and subtracted from the total amount taken up by the clay sample. Berend et al. (1995), Cases et al. (1992, 1997) provide careful measurements of recovering waters in both processes (hydration and dehydration) on Wyoming saturated by monovalent and divalent cations. Despite the fact that neither the hydration, nor the dehydration isotherm necessarily represents the equilibrium state of the system, the two isotherms together can be considered to bracket the equilibrium values of Xhs and the activity of H 2 O. Paired hydration and dehydration isotherm in the one hand and enthalpy of immersion in the other hand, which constitute the limits of these brackets can be regressed to assess standard state thermodynamic parameters (enthalpy and entropy) for the hydration- dehydration process. Experimental enthalpies of hydration are used in the determination of ΔH deg. hyd. W H1 and W H2 by the minimization technique. For the adsorption-desorption isotherms, the determination of parameters ΔS deg. hyd. W S1 and W S2 are obtained by minimizing the difference between measured sets of data (relative humidity and number of adsorbed interlayer water) and calculated ones. For each Wyoming saturated with one cation, six parameters are requested and characterize the standard state thermodynamic properties of hydration between smectite and interlayer H 2 O. Relations between hydration parameters ΔH deg. hyd. and ΔS deg. hyd. in the one hand

  8. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    The Magdalena-Cauca macrobasin covers 24% of the land area of Colombia, and provides more than half of the country's economic potential. The basin is also home a large proportion of Colombia's biodiversity. These conflicting demands have led to problems in the basin, including a dramatic fall in fish populations, additional flooding (such as the severe nationwide floods caused by the La Niña phenomenon in 2011), and habitat loss. It is generally believed that the solution to these conflicts is to manage the basin in a more integrated way, and bridge the gaps between decision-makers in different sectors and scientists. To this end, inter-ministerial agreements are being formulated and a decision support system is being developed by The Nature Conservancy Colombia. To engage stakeholders in this process SimBasin, a "serious game", has been developed. It is intended to act as a catalyst for bringing stakeholders together, an illustration of the uncertainties, relationships and feedbacks in the basin, and an accessible introduction to modelling and decision support for non-experts. During the game, groups of participants are led through a 30 year future development of the basin, during which they take decisions about the development of the basin and see the impacts on four different sectors: agriculture, hydropower, flood risk, and environment. These impacts are displayed through seven indicators, which players should try to maintain above critical thresholds. To communicate the effects of uncertainty and climate variability, players see the actual value of the indicator and also a band of possible values, so they can see if their decisions have actually reduced risk or if they just "got lucky". The game works as a layer on top of a WEAP water resources model of the basin, adapted from a basin-wide model already created, so the fictional game basin is conceptually similar to the Magdalena-Cauca basin. The game is freely available online, and new applications are being

  9. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  10. Relating petroleum system and play development to basin evolution: West African South Atlantic basins

    NARCIS (Netherlands)

    Beglinger, S.E.; Doust, H.; Cloetingh, S.A.P.L.

    2012-01-01

    Sedimentary basins can be classified according to their structural genesis and evolutionary history and the latter can be linked to petroleumsystem and playdevelopment. We propose an approach in which we use the established concepts in a new way: breaking basins down into their natural basin cycle

  11. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    International Nuclear Information System (INIS)

    1995-05-01

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS)

  12. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  13. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation.

  14. Testing of man-made overland-flow and wetlands systems for the treatment of discharged waters from oil and gas production operations in Wyoming

    International Nuclear Information System (INIS)

    Caswell, P.C.; Gelb, D.; Marinello, S.A.; Emerick, J.C.; Cohen, R.R.H.

    1992-01-01

    The quality of produced and discharged waters is of increasing concern as the overall quality of potable waters within many regions of the country becomes a critical issue. The impact of discharged waters on the downstream water quality, as well as the flora and fauna within a discharge zone, is dependent on the quality of the water ultimately released into the system. In many regions of the country, discharge permits are being re-evaluated and sometimes recalled due to the actual and perceived impact upon surface and subsurface waters, particularly those providing water utilized by the human population. The engineering, design and testing of a system to treat produced waters from oil operations in Wyoming is addressed in this study. This work was designed and performed by students and faculty in the Environmental Science and Engineering and Petroleum Engineering departments at the Colorado School of Mines. The system consists of overland flow units and a constructed wetlands unit. The system units can be independently evaluated. The water is drawn from active settling ponds above the test site. Produced waters are actively being discharged into the drainage basin. Waters flowing through the test units are likewise discharged after treatment. The system has been operational since June, 1991 and monthly sampling and testing will continue through March, 1992. Initial results having been very promising. Aeration, precipitation and bacterial activity in the overland flow and wetland units appears to nearly eliminate the sulfide problem present and significantly reduce the released radium concentration. These are the constituents of major concern although testing for other chemicals of concern, including hydrocarbon content is also analyzed

  15. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  16. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  17. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  18. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  19. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  20. Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    Science.gov (United States)

    Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.

    2018-03-01

    A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  1. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    Science.gov (United States)

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  2. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  3. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  4. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    International Nuclear Information System (INIS)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits

  5. Immobilization of Wyoming bears using carfentanil and xylazine.

    Science.gov (United States)

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  6. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  7. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  8. Final environmental statement related to the Minerals Exploration Company, Sweetwater Uranium Project (Sweetwater County, Wyoming). Docket No. 40-8584

    International Nuclear Information System (INIS)

    1978-12-01

    The proposed action is the issuance of a Source Material License to Minerals Exploration Company (MEC) for the construction and operation of the proposed Sweetwater Uranium Mill in Sweetwater County, Wyoming, with a nominal capacity of 3000 tons (2.7 x 10 6 kg) per day of uranium ore. As part of this proposal, the applicant proposes also to construct a heap leaching and resin ion-exchange facility to extract uranium from low-grade ores and mine water. Conditions for the protection of the environment are set forth

  9. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    Science.gov (United States)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  10. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  11. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  12. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  13. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development

    DEFF Research Database (Denmark)

    Brozena, J.M.; Childers, V.A.; Lawver, L.A.

    2003-01-01

    In 1998 and 1999, new aerogeophysical surveys of the Arctic Ocean's Eurasia Basin produced the first collocated gravity and magnetic measurements over the western half of the basin. These data increase the density and extend the coverage of the U.S. Navy acromagnetic data from the 1970s. The new...... data reveal prominent bends in the isochrons that provide solid geometrical constraints for plate reconstructions. Tentative identification of anomaly 25 in the Eurasia Basin links early basin opening to spreading in the Labrador Sea before the locus of spreading in the North Atlantic shifted...... to the Norwegian-Greenland Sea. With the opening of the Labrador Sea, Greenland began similar to200 km of northward movement relative to North America and eventually collided with Svalbard, Ellesmere Island, and the nascent Eurasia ocean basin. Both gravity and magnetic data sets reconstructed to times prior...

  14. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  15. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J. [Waste Technology Group, British Nuclear Fuels PLC, Risley, Warrington (United Kingdom); Huffman, L. [Power Resources Inc., Highland Uranium Mine, Glenrock, Wyoming (United States)

    2000-07-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O{sub 2} and CO{sub 2}, within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  16. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    Science.gov (United States)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  17. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  18. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  19. Quantification and Postglacial evolution of an inner alpine sedimentary basin (Gradenmoos Basin, Hohe Tauern)

    International Nuclear Information System (INIS)

    Götz, J.

    2012-01-01

    The overall objective of this thesis is the quantification of sediment storage and the reconstruction of postglacial landscape evolution within the glacially overdeepened Gradenmoos Basin (subcatchment size: 4.1 km 2 ; basin floor elevation: 1920 m) in the central Gradenbach catchment (Schober Range, Hohe Tauern, Austrian Alps). Following the approach of denudation-accumulation-systems, most reliable results are obtained (1) if sediment output of a system can be neglected for an established period of time, (2) if sediment storage can be assessed with a high level of accuracy, (3) if the onset of sedimentation and amounts of initially stored sediments are known, and (4) if sediment contributing areas can be clearly delimited. Due to spatial scale and topographic characteristics, all mentioned aspects are fulfilled to a high degree within the studied basin. Applied methods include surface, subsurface and temporal investigations. Digital elevation data is derived from terrestrial laserscanning and geomorphologic mapping. The quantification of sediment storage is based on core drillings, geophysical methods (DC resistivity, refraction seismic, and ground penetrating radar), as well as GIS and 3D modelling. Radiocarbon dating and palynological analyses are additionally used to reconstruct the postglacial infilling progress of the basin. The study reveals that a continuous postglacial stratigraphic record is archived in the basin. As proposed by Lieb (1987) timing of basin deglaciation could be verified to late-Egesen times by means of radiocarbon ages (oldest sample just above basal till: 10.4 ka cal. BP) and first palynologic results. Lateglacial oscillations seem to have effectively scoured the basin, leaving only a shallow layer of basal till. The analysis of postglacial sedimentation in the basin is further improved by the existence of a former lake in the basin lasting for up to 7500 years until approx. 3.7 ka cal. BP. Both, the stratigraphic (fine, partly

  20. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    Science.gov (United States)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust

  1. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  2. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    Science.gov (United States)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of

  3. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  4. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  5. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  6. Health hazard evaluation determination report HE-80-71-703, Bear Creek Uranium Company, Douglas, Wyoming

    International Nuclear Information System (INIS)

    Gunter, B.J.

    1980-06-01

    An environmental survey was conducted in February 1980 to evaluate exposure to CRC, a cleaning solvent containing perchloroethylene (127184), (PCE) and 1,1,1-trichloroethane (71556) (TCE) at Bear Creek Uranium Company (SIC-1094) in Wyoming. The survey was requested by the company safety engineer. Breathing zone and general room air samples were collected and analyzed. One mine electrician was exposed to 6,500 milligrams per cubic meter (mg/cu m) (PCE recommended OSHA limit is 690mg/cu m). Of the 7 samples of TCE, none exceeded the OSHA standard of 1900mg/cu m. Overexposure did occur when workers used the solvent in confined areas. The authors concluded that a health hazard existed when the solvent was used on confined spaces, and they recommend improved work practices

  7. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    Science.gov (United States)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS

  8. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  9. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Wyoming. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  11. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  12. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  13. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  14. Prevalence of antibodies to Neospora caninum, Sarcocystis neurona, and Toxoplasma gondii in wild horses from central Wyoming.

    Science.gov (United States)

    Dubey, J P; Mitchell, S M; Morrow, J K; Rhyan, J C; Stewart, L M; Granstrom, D E; Romand, S; Thulliez, P; Saville, W J; Lindsay, D S

    2003-08-01

    Sarcocystis neurona, Neospora caninum, N. hughesi, and Toxoplasma gondii are 4 related coccidians considered to be associated with encephalomyelitis in horses. The source of infection for N. hughesi is unknown, whereas opossums, dogs, and cats are the definitive hosts for S. neurona, N. caninum, and T. gondii, respectively. Seroprevalence of these coccidians in 276 wild horses from central Wyoming outside the known range of the opossum (Didelphis virginiana) was determined. Antibodies to T. gondii were found only in 1 of 276 horses tested with the modified agglutination test using 1:25, 1:50, and 1:500 dilutions. Antibodies to N. caninum were found in 86 (31.1%) of the 276 horses tested with the Neospora agglutination test--the titers were 1:25 in 38 horses, 1:50 in 15, 1:100 in 9, 1:200 in 8, 1:400 in 4, 1:800 in 2, 1:1,600 in 2, 1:3,200 in 2, and 1:12,800 in 1. Antibodies to S. neurona were assessed with the serum immunoblot; of 276 horses tested, 18 had antibodies considered specific for S. neurona. Antibodies to S. neurona also were assessed with the S. neurona direct agglutination test (SAT). Thirty-nine of 265 horses tested had SAT antibodies--in titers of 1:50 in 26 horses and 1:100 in 13. The presence of S. neurona antibodies in horses in central Wyoming suggests that either there is cross-reactivity between S. neurona and some other infection or a definitive host other than opossum is the source of infection. In a retrospective study, S. neurona antibodies were not found by immunoblot in the sera of 243 horses from western Canada outside the range of D. virginiana.

  15. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  16. Draft environmental statement related to the Union Carbide Corporation, Gas Hills Uranium Project (Natrona County, Wyoming)

    International Nuclear Information System (INIS)

    1979-01-01

    The proposed action is the renewal of Source Material License SUA-648 issued for the operation of the Gas Hills Uranium Project in Wyoming, near Moneta. The project is an acid leach, ion-exchange, and solvent-extraction uranium ore processing mill at an increased capacity of 500,000 tons per year and the construction of two heap leach facilities in Natrona and Fremont Counties for initial processing of low-grade ore. After analysis of environmental impacts and adverse effects, it is the proposed position of NRC that the license be renewed subject to conditions relating to stabilization of the tailings, reclamation, environmental monitoring, evaluation of any future activity not evaluated by NRC, archeological survey, analysis of unexpected harmful effects, and decommissioning

  17. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    Science.gov (United States)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  18. Positively essential: traditional birth attendants in Malawi.

    Science.gov (United States)

    Stronge, Shirley

    2011-06-01

    One of the biggest challenges for healthcare professionals working in developing countries is the lack of trained personnel to carry out much needed health care provision. Shirley Stronge worked as a nurse/midwife tutor in a rural area in the north of Malawi. Millennium Development Goals four and five have focused our attention on the care required by mothers and newborns. Shirley has chosen to reflect on the role of Traditional Birth Attendants in the north of Malawi and their positive impact on maternity services in this area.

  19. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  20. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  1. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  2. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  3. 76 FR 53400 - Black Hills National Forest, SD; Thunder Basin National Grassland, WY; Teckla-Osage-Rapid City...

    Science.gov (United States)

    2011-08-26

    ...: Approximately 135 miles of transmission line. Require a 125 foot right-of-way. Construction of wood or steel H... in Wyoming. The line would be constructed on wood or steel H-frame structures for most of its length...

  4. STRATIGRAPHIC EVOLUTION, PALEOENVIRONMENTS AND HYDROCARBON POTENTIALS OF THE BENUE/DAHOMEY BASINS, NIGERIAN AND POTIGUAR/CEARA BASINS, NE BRAZIL

    International Nuclear Information System (INIS)

    Akande, S.O; Adekeye, O.A.; Oj, O.J; Erdtmann, B.D.; Koutsokous, E.I.

    2004-01-01

    The stratigraphy, facies relationship and paleoenvironment of selected West African and the Brazillian rift basins permit the recognition of at least two major petroleum systems apart from the prolific Niger Delta petroleum system. The Lower Cretaceous fluivio-lacustrine petroleum system and Upper Cretaceous to Lower Tertiary, marine dominated petroleum system. Our combined studies of the stratigraphic, structural framework, paleoenvironment and time-space relationships of the petroleum systems in the Benue/Dahomey and the Potiguar/Ceara basins indicated that rifting and subsequent drifting during the opening of the South Atlantic controlled subsidence, sediment deposition and facies associations in individual basins. Whereas in the Potiguar/Ceara basins, the best developed source rocks are within the Neomacin-Aptian fluvio- lacustrine sequence of the Pendencia and Alagamar Formations which generated reserved hydrocarbon in the Acu Formation, empirical evidence for this petroleum system in the contiguous Benue/Dahomey basins are only based on the geochemical characteristics of the lower parts of the Bima Formation and the Abeokuta Group. In contrast, the Upper Cretaceous-Lower Tertiary marine petroleum system, which is constrained by poor development of reservoirs in the Potiguar/Ceara basin is productive in the Benue/Dahomey basins where source rocks, reservoir and sealing facies occur at this interval. Considering the recent hydrocarbon discoveries of the East Niger basin, the Doba (southern Chad), the Muglad basin (southern Sudan) sourced from the fluvio-lacustrine rift sequences, we suggest that this petroleum system needs more detailed exploration and has some potentials in the Benue/Dahomey frontier basins

  5. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume II. Palo Duro basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and high variable precipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  6. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea)

    Science.gov (United States)

    Pellen, Romain; Aslanian, Daniel; Rabineau, Marina; Leroux, Estelle; Gorini, Christian; Silenziario, Carmine; Blanpied, Christian; Rubino, Jean-Loup

    2017-04-01

    The present-day compartmented Mediterranean physiography is inherited from the last 250 Ma kinematic plate evolution (Eurasian, Africa, Iberic and Nubia plates) which implied the formation of orogenic chains, polyphased basins, and morphological - geodynamic thresholds. The interactions between these entities are strongly debated in the North-Western Mediterranean area. Several Neogene reconstructions have been proposed for the Valencia basin depending of the basin segmentation where each model imply a different subsidence, sedimentary, and palaeo-environmental evolution. Our study propose a new kinematic model for the Valencia Basin (VB) that encompasses the sedimentary infill, vertical movement and basin segmentation. Detailed analyses of seismic profiles and boreholes in the VB reveal a differentiated basin, the Minorca Basin (MB), lying between the old Mesozoic Valencia Basin sensu strico (VBss) and the young Oligocene Liguro-Provencal Basin (LPB) (Pellen et al., 2016). The relationship between these basins is shown through the correlation of four Miocene-to-present-day megasequences. The Central and North Balearic Fracture Zones (CFZ and NBFZ) that border the MB represent two morphological and geodynamical thresholds that created an accommodation in steps between the three domains. Little to no horizontal Neogene movements have been found for the Ibiza and Majorca Islands and imply a vertical "sag" subsidence. In contrast, the counterclockwise movement of the Corso-Sardinian blocks induced a counterclockwise movement of the Minorca block towards the SE along the CFZ and NBFZ, during the exhumation of lower continental crust in the LPB. The South-Eastward Minorca block translation stops when the first atypical oceanic crust occurs. The influence of the Neogene Betic compressional phase is thus limited to the VBss on the basis of a different MB origin. This new understanding places the AlKaPeCa blocks northeastward of the present-day Alboran Area. Both NW-SE and

  7. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    Science.gov (United States)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  8. Hydrologic Sub-basins of Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  9. Spatial mapping and attribution of Wyoming wind turbines, 2012

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  10. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  11. Data resources for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA)

    Science.gov (United States)

    Assal, Timothy J.; Garman, Steven L.; Bowen, Zachary H.; Anderson, Patrick J.; Manier, Daniel J.; McDougal, Robert R.

    2012-01-01

    The data contained in this report were compiled, modified, and analyzed for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA). The WLCI is a long-term science based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale in southwest Wyoming while facilitating responsible energy development through local collaboration and partnerships. The IA is an integrated synthesis and analysis of WLCI resource values based on best available data and information collected from multiple agencies and organizations. It is a support tool for landscape-scale conservation planning and evaluation, and a data and analysis resource that can be used for addressing specific management questions. The IA analysis was conducted using a Geographic Information System in a raster (that is, a grid) environment using a cell size of 30 meters. To facilitate the interpretation of the data in a regional context, mean values were summarized and displayed at the subwatershed unit (WLCI subwatersheds were subset from the National Hydrography Dataset, Hydrologic Unit Code 12/Level 6). A dynamic mapping platform, accessed via the WLCI webpage at http://www.wlci.gov is used to display the mapped information, and to access underlying resource values that were combined to produce the final mapped results. The raster data used in the IA are provided here for use by interested parties to conduct additional analyses and can be accessed via the WLCI webpage. This series contains 74 spatial data sets: WLCI subwatersheds (vector) and 73 geotiffs (raster) that are segregated into the major categories of Multicriteria Index (including Resource Index and Condition), Change Agents, and Future Change. The Total Multicriteria Index is composed of the Aquatic Multicriteria Index and the Terrestrial Multicriteria Index. The Aquatic Multicriteria Index is composed of the Aquatic Resource Index and the Aquatic Condition. The Aquatic Resource Index is composed of the

  12. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 μR/hr, the average background exposure rate for the area, to 140 μR/hr. The average exposure rate for the tailings and former mill area was 220 μR/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of 226 Ra in ten holes as a function of depth is presented graphically

  13. Evolution of the Rembrandt impact basin on Mercury.

    Science.gov (United States)

    Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G

    2009-05-01

    MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.

  14. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, A.; D'Elia, L.; Franzese, J. R.; Veiga, G. D.; Hernández, M.

    2013-08-01

    The intraplate fault-block mountains and intermontane deposits of the Gastre Basin, which are recorded more than 550 km east of the Andean trench in central Patagonia, Argentina, are analyzed. The Gastre Basin is one of the largest Patagonian intermontane basins, limited by uplifted blocks strongly oblique to the Andean chain. It was originated by reverse faulting and inversion of pre-existing normal faults associated with a Mesozoic rift basin and defined by older crustal heterogeneities. The deformational event occurred during the middle Miocene, related to a short contractional episode (16.1-14.86 Ma), probably in response to an eastward migration of the Andean fold and thrust belt. During Pliocene to Quaternary times, neither younger fault-block uplifts nor reconfigurations of the basin occurred. Similarities between the study area and other parts of the Patagonian foreland - such as the presence of Miocene reverse or inversion tectonics, as well as the accommodation of the Miocene sedimentary successions - suggest that the Gastre Basin is part of a major late early to middle Miocene broken foreland system (i.e. the Patagonian broken foreland) that exhumed discrete fault-block mountains and generated contemporary basins along more than 950 km parallel to the Andean trench (i.e. between 40°00' and 48°00' south latitude). Based on recent studies on the southern Andean Margin, this continental-scale contractional episode may be the result of a flat-slab subduction segment. Nevertheless, such a hypothesis is very difficult to support when analyzing such a large flat subduction segment along the entire Patagonian trench. This suggests the need to consider alternative flat-slab trigger mechanisms or other factors in the generation of broken foreland systems.

  15. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  16. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  17. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  18. The largest US coal acquisition takes shape

    International Nuclear Information System (INIS)

    Carter, R.A.

    1998-01-01

    The midyear purchase of Arco's US coal properties for 1.14 billion dollars gave Arch coal, Inc. (ACI) a string of surface and underground mines stretching from Wyoming's Powder River Basin to the coalfields of central Utah. The transaction created a new entity, Arch Western Resources LLC. The article describes operations at Black Thunder and Coal Creek surface mines and SUFCO, Skyline, Dugout Canyon and West Elk longwall mines. 4 photos

  19. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  20. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  1. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  2. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  3. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  4. On the significance of ELF basins

    Indian Academy of Sciences (India)

    Unknown

    to complement to chemical intuition (see, e.g., refs. 2, 3). In a mathematically more rigorous way, such regions, ELF basins,4 were defined following the spirit of Bader's Atoms in Molecules (AIM). All points in space which lead to the a given maximum of ELF, by following the gradient of ELF, belong to the same basin. Basins ...

  5. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  6. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  7. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  8. Streamflow characteristics of the Colorado River Basin in Utah through September 1981

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1987-01-01

     This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide

  9. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  10. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. Ex Laws.), to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA

    Science.gov (United States)

    Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow

    2008-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...

  11. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  12. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  13. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  14. Characteristic mega-basin water storage behavior using GRACE.

    Science.gov (United States)

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  15. Analysis of photo linear elements, Laramie Mountains, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  16. Effects of low-density feeding on elk–fetus contact rates on Wyoming feedgrounds

    Science.gov (United States)

    Creech, Tyler G.; Cross, Paul C.; Scurlock, Brandon M.; Maichak, Eric J.; Rogerson, Jared D.; Henningsen, John C.; Creel, Scott

    2012-01-01

    High seroprevalance for Brucella abortus among elk on Wyoming feedgrounds suggests that supplemental feeding may influence parasite transmission and disease dynamics by altering the rate at which elk contact infectious materials in their environment. We used proximity loggers and video cameras to estimate rates of elk-to-fetus contact (the primary source of brucellosis transmission) during winter supplemental feeding. We compared contact rates during high-density and low-density (LD) feeding treatments that provided the same total amount of food distributed over different areas. Low-density feeding led to >70% reductions in total number of contacts and number of individuals contacting a fetus. Proximity loggers and video cameras provided similar estimates of elk–fetus contact rates. Elk contacted fetuses and random control points equally, suggesting that elk were not attracted to fetuses but encountered them incidentally while feeding. The modeled relationship between contact rate and disease prevalence is nonlinear and LD feeding may result in large reductions in brucellosis prevalence, but this depends on the amount of transmission that occurs on and off feedgrounds.

  17. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Remote sensing in uranium exploration

    International Nuclear Information System (INIS)

    Offield, T.W.

    1976-01-01

    New types of multispectral data and computer enhancement of images provide a basis for quantitative analysis of ground reflectance, colour discrimination and removal of illumination-geometry effects, not possible with standard aerial photographs. These methods can be designed to take advantage of spectral characteristics of minerals such as hematite and limonite in attempting to discriminate areas of alteration around mineral deposits. The spectral bands of Landsat are not optimum for this discrimination, but several studies show that enhancement of Landsat images permits effective mapping of altered ground in some areas. Red and yellow ground may be confused, a problem where only one of these colours marks alteration related to mineralization. Altered ground in uranium areas has been successfully defined at Cameron, Arizona and Crooks Gap and the Powder River Basin in Wyoming. The Wyoming studies, described in some detail, resulted in unambiguous discrimination of red alteration at Crooks Gap but only partial distinction of red altered ground from yellow-weathering areas in the Powder River Basin. In South Texas, heavy vegetation severely limits the detection of reflectance differences in geological materials or of structural features. Thermal-infrared images of the Texas area aid in detection and mapping of channel-fill deposits, potential loci of uranium mineralization in the Miocene Catahoula Tuff. (author)

  19. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  20. 105-KE basin pilot run relocation

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1994-01-01

    The purpose of this document is to present the bases for selecting the exact in-facility location for installation of process equipment to support pilot testing activities in the 105-KE Basin at the United States Department of Energy Hanford Site, in southeastern Washington State. The 105-KE Basin was constructed during the early 1950s, as an integralcomponent of the 105-K East reactor building. Similar basins were provided in all Hanford weapons production reactor buildings to receive fuel elements discharged from the reactors and stage them for rail transport to 200 Area fuel reprocessing plants. The 105-KE reactor began operation in 1955. It was shut down in 1971. However, the 105-KE Basin was reactivated several years later to store spent fuel from the N-Reactor basin and permit its continued operation during outages at the Plutonium Uranium Extraction (PUREX) plant in the 200E Area

  1. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  2. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  3. A proposal for an administrative set up of river basin management in the Sittaung River Basin

    OpenAIRE

    Tun, Zaw Lwin; Ni, Bo; Tun, Sein; Nesheim, Ingrid

    2016-01-01

    The purpose of this report is to present a proposal for how an administrative approach based on River Basin Management can be implemented in Myanmar. The Sittaung River Basin has been used as an example area to investigate how the basin can be administered according to the IWRM principles of cooperation between the different sectors and the administrative units, including stakeholder involvement. Ministry of Natural Resource and Environmental Conservation, Myanmar Norwegian Ministry of For...

  4. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  5. Phase II, Title I, engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Spook Site, Converse County, Wyoming. Services include the performance of core drillings, soil, water and other sample analyses, radiometric measurements to determine areas with radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site geology, hydrology, and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 187,000 tons of tailings at the Spook Site constitutes the main environmental impact, which is negligible. The two alternative actions presented are better fencing of the site in its present state, and placing tailings and contaminated on-site materials and soil in the open-pit mine and covering the resulting pile with 2 ft of overburden materials. The cost estimates for the options are $81,000 and $142,000, respectively

  6. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy (EG& G Services); Kuuskraa, Vello; Billingsley, Randy (Advanced Resources International)

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  7. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene.

    Science.gov (United States)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David

    2017-04-01

    The Aquitaine basin located in south western Europe, is a Pyrenean retro-foreland basin. Two main phases of compression are recorded in this retro-foreland basin during the Pyrenean orogeny. A first upper Cretaceous phase corresponding to the early stage of the orogeny, and a second one usually related to a Pyrenean paroxysmal phase during the middle Eocene. During Paleocene to lower Eocene deformations are less pronounced, interpreted as a tectonically quiet period. The aim of the study is to better constrain the sedimentary system of the Aquitaine basin during this period of Paleocene-lower Eocene, in order to discuss the evolution of the sedimentary architecture in response of the Pyrenean compression. This work is based on a compilation of a large set of subsurface data (wells logs, seismic lines and cores logs) represented by isopachs and facies map. Three main cycles were identified during this structural quiet period: (1) The Danian cycle, is recorded by the aggradation of carbonate reef-rimmed platform. This platform is characterized by proximal facies (oncoid carbonate and mudstone with thalassinoides) to the north, which leads to distal deposit facies southern (pelagic carbonate with globigerina and slump facies) and present a significant thickness variation linked to the platform-slope-basin morphology. (2) The upper Selandian-Thanetian cycle follows a non-depositional/erosional surface associated with a Selandian hiatus. The base of this cycle marked the transition between the last reef rimmed platform and a carbonate ramp. The transgressive cycle is characterized by proximal lagoon facies to the north that leads southward to distal hemipelagic facies interfingered by turbiditic Lowstand System Tracks (LST). The location of these LST is strongly controlled by inherited Danian topography. The regressive cycle ends with a major regression associated with an erosional surface. This surface is linked with a network of canyons in the north, an important

  8. Petroleum systems in rift basins – a collective approach in South-east Asian basins.

    NARCIS (Netherlands)

    Doust, H.; Sumner, D.

    2007-01-01

    This paper synthesizes some of the main conclusions reached in a recent regional review of the Tertiary basins of Southeast Asia, carried out by Shell. Four distinctive types of petroleum systems, correlating with the four main stages of basin evolution (early to late syn-rift and early to late

  9. The Donets Basin (Ukraine/Russia): coalification and thermal history.

    NARCIS (Netherlands)

    Sachsenhofer, R.F.; Privalov, V.A.; Zhykalyak, M.V.; Bueker, C.; Panova, E.A.; Rainer, T.; Shymanovskyy, V.A.; Stephenson, R.A.

    2002-01-01

    The Donets Basin (Donbas) is one of the major late Paleozoic coal basins in the world. The Donbas Foldbelt is an inverted part of the Donets Basin characterized by WNW-ESE-trending folds and faults. The age of basin inversion is under discussion. Large parts of the Donets Basin host anthracite and

  10. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2008 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Baer, Lori Anne; Bristol, R. Sky; Carr, Natasha B.; Chong, Geneva W.; Diffendorfer, Jay E.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Grauch, Richard I.; Homer, Collin G.; Manier, Daniel J.; Kauffman, Matthew J.; Latysh, Natalie; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Nutt, Constance J.; Potter, Christopher; Sawyer, Hall; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2009-01-01

    The Wyoming Landscape Conservation Initiative (WLCI) was launched in 2007 in response to concerns about threats to the State's world class wildlife resources, especially the threat posed by rapidly increasing energy development in southwest Wyoming. The overriding purpose of the WLCI is to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy and other types of development. The WLCI includes partners from Federal, State, and local agencies, with participation from public and private entities, industry, and landowners. As a principal WLCI partner, the U.S. Geological Survey (USGS) provides multidisciplinary scientific and technical support to inform decisionmaking in the WLCI. To address WLCI management needs, USGS has designed and implemented five integrated work activities: (1) Baseline Synthesis, (2) Targeted Monitoring and Research, (3) Integration and Coordination, (4) Data and Information Management, and (5) Decisionmaking and Evaluation. Ongoing information management of data and products acquired or generated through the integrated work activities will ensure that crucial scientific information is available to partners and stakeholders in a readily accessible and useable format for decisionmaking and evaluation. Significant progress towards WLCI goals has been achieved in many Science and Technical Assistance tasks of the work activities. Available data were identified, acquired, compiled, and integrated into a comprehensive database for use by WLCI partners and to support USGS science activities. A Web-based platform for sharing these data and products has been developed and is already in use. Numerous map products have been completed and made available to WLCI partners, and other products are in progress. Initial conceptual, habitat, and climate change models have been developed or refined. Monitoring designs for terrestrial and aquatic indicators have been completed, pilot data have been collected

  11. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstones of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest

  12. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  13. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  14. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  15. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  16. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, P.; Collett, T.S.; Boswell, R.; Cochran, J.R.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; Yadav, U.S.

    history of the Mahanadi Basin is similar to that of the Krishna-Godavari Basin. The Late Jurassic rift structures along the eastern margin of India cut across older NW-SE-trending Permian-Triassic Gondwana grabens including the Mahanadi and Pranhita...-Godavari grabens (Sastri et al., 1981). The Mahanadi graben appears to have a continuation in Antarctica as the Lambert graben (Federov et al., 1982). These structures served to delineate the fluvial drainage system throughout the evolution of the margin...

  17. 77 FR 57580 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Science.gov (United States)

    2012-09-18

    ...; telephone 307-775-6014; email [email protected] . Persons who use a telecommunications device for the deaf (TDD... Basin, and follow up from previous meetings on planning. All RAC meetings are open to the public with...

  18. Overview of uranium exploration, 1974 to 1981

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1981-01-01

    During the seven years covered by this paper, uranium exploration in the United States was concentrated in the vicinity of major producing areas such as the San Juan Basin, the Wyoming Basins, the Texas Coastal Plain, the Paradox Basin, and northeastern Washington. Discoveries announced during the period in the Henry Mountains, Utah, the McDermitt caldera in Nevada and Oregon, and in central Colorado, triggered great increases in exploration in those areas. Exploration expenditures in nonsandstone environments during these seven years amounted to $270 million, or 18% of total exploration expenditures. The short-term exploration picture is grim; much depends on an upswing in the market. However, the authors believe that the long-term outlook is bright, with many promising areas not yet fully explored. Unfortunately, most of these areas will not be explored until uranium market conditions improve greatly

  19. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  20. The Mackenzie Basin impacts study

    International Nuclear Information System (INIS)

    Cohen, S.J.

    1993-01-01

    In 1989, a commitment was made to begin development of a framework for an integrated regional impact assessment of global warming scenarios in the Mackenzie Basin, the most populated region of Canada's north. The project, called Mackenzie Basin Impact Study (MBIS), is led by a multidisciplinary working group from government and non-governmental organizations with interests in the Basin. Objectives of MBIS include defining the direction and magnitude of regional-scale impacts of global warming scenarios on the physical, biological, and human systems of the Basin. MBIS will also identify regional sensitivities to climate, inter-system linkages, uncertainties, policy implications, and research needs. MBIS research activities as of March 1992 are outlined and policy concerns related to global warming are listed. Two new methodologies are being developed by MBIS to address particular economic and policy concerns: a socio-economic resource accounting framework and an integrated land assessment framework. Throughout MBIS, opportunities will be presented for western science and traditional native knowledge to be integrated

  1. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  2. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  3. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    Ruff, E.S.

    1994-10-01

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  4. MicroEcos: Micro-Scale Explorations of Large-Scale Late Pleistocene Ecosystems

    Science.gov (United States)

    Gellis, B. S.

    2017-12-01

    Pollen data can inform the reconstruction of early-floral environments by providing data for artistic representations of what early-terrestrial ecosystems looked like, and how existing terrestrial landscapes have evolved. For example, what did the Bighorn Basin look like when large ice sheets covered modern Canada, the Yellowstone Plateau had an ice cap, and the Bighorn Mountains were mantled with alpine glaciers? MicroEcos is an immersive, multimedia project that aims to strengthen human-nature connections through the understanding and appreciation of biological ecosystems. Collected pollen data elucidates flora that are visible in the fossil record - associated with the Late-Pleistocene - and have been illustrated and described in botanical literature. It aims to make scientific data accessible and interesting to all audiences through a series of interactive-digital sculptures, large-scale photography and field-based videography. While this project is driven by scientific data, it is rooted in deeply artistic and outreach-based practices, which include broad artistic practices, e.g.: digital design, illustration, photography, video and sound design. Using 3D modeling and printing technology MicroEcos centers around a series of 3D-printed models of the Last Canyon rock shelter on the Wyoming and Montana border, Little Windy Hill pond site in Wyoming's Medicine Bow National Forest, and Natural Trap Cave site in Wyoming's Big Horn Basin. These digital, interactive-3D sculpture provide audiences with glimpses of three-dimensional Late-Pleistocene environments, and helps create dialogue of how grass, sagebrush, and spruce based ecosystems form. To help audiences better contextualize how MicroEcos bridges notions of time, space, and place, modern photography and videography of the Last Canyon, Little Windy Hill and Natural Trap Cave sites surround these 3D-digital reconstructions.

  5. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  6. Estimating Stream Discharge of Aboine River Basin of Southeast ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of inter-basin parameters showed that the Aboine drainage basin is basically a flat surface. This ... on the fluvial system and also for predicting the basin output variables. Surface .... outflows of rainwater from the basin as has been done by ...

  7. Geomorphological characterization of endorheic basins in northern Chile

    Science.gov (United States)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  8. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  9. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  10. Two characteristics of planar intertwined basins of attraction

    International Nuclear Information System (INIS)

    Ding Changming

    2012-01-01

    Highlights: ► A new mathematical definition of intertwined basins of attraction is proposed. ► Basins are intertwined iff a limit set of stable manifold contains at least two points. ► Basins are intertwined iff the closure of stable manifold is not arc-connected. ► The intertwining property is preserved by topologically equivalent dynamical systems. - Abstract: In this paper, we investigate the intertwined basins of attraction for planar dynamical systems. We prove that the intertwining property is preserved by topologically equivalent systems. Two necessary and sufficient conditions for a planar system having intertwined basins are given.

  11. Climatic controls on arid continental basin margin systems

    Science.gov (United States)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  12. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  13. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  14. Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover materI), to rema densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  15. Draft environmental statement related to the Western Nuclear, Inc. Split Rock Mill (Fremont County, Wyoming)

    International Nuclear Information System (INIS)

    1978-11-01

    The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock uranium mill near Jeffrey City and the Green Mountain ion-exchange facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area--the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores. Conditions for the protection of the environment include reclamation, tailings, stabilization, archeological survey, monitoring, etc

  16. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  17. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  18. K West basin isolation barrier leak rate test

    International Nuclear Information System (INIS)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-01-01

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals

  19. Hormonal priming, induction of ovulation and in-vitro fertilization of the endangered Wyoming toad (Bufo baxteri

    Directory of Open Access Journals (Sweden)

    Seratt Jessica

    2006-06-01

    Full Text Available Abstract The endangered Wyoming toad (Bufo baxteri is the subject of an extensive captive breeding and reintroduction program. Wyoming toads in captivity rarely ovulate spontaneously and hormonal induction is used to ovulate females or to stimulate spermiation in males. With hormonal induction, ovulation is unreliable and egg numbers are low. The sequential administration of anovulatory doses of hormones (priming has increased egg numbers and quality in both anurans and fish. Consequently, we tested the efficacy of a combination of human Chorionic Gonadotrophin (hCG and Luteinizing Hormone Releasing Hormone analogue (LHRHa administered as one dose, or two or three sequential doses to Bufo baxteri on egg numbers, fertilization and early embryo development. Spawning toads deposited eggs into Simplified Amphibian Ringers (SAR solution to enable controlled in-vitro fertilization (IVF with sperm from hormonally induced male toads. Unprimed females receiving a single mixed normally ovulatory dose of 500 IU hCG plus 4 micrograms of LHRHa produced no eggs. Whereas females primed with this dose and an anovulatory dose (100 IU hCG and 0.8 micrograms of LHRHa of the same hormones, or primed only with an anovulatory dose, spawned after then receiving an ovulatory dose. Higher total egg numbers were produced with two primings than with one priming. Moreover, two primings produced significantly more eggs from each individual female than one priming. The cleavage rate of eggs was not found to differ between one or two primings. Nevertheless, embryo development with eggs from two primings gave a significantly greater percentage neurulation and swim-up than those from one priming. Of the male toads receiving a single dose of 300 IU hCG, 80% produced spermic urine with the greatest sperm concentration 7 hours post-administration (PA. However, peak sperm motility (95% was achieved at 5 hours PA and remained relatively constant until declining 20 hours PA. In

  20. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin

    Science.gov (United States)

    Potter, Ross W. K.; Head, James W.; Guo, Dijun; Liu, Jianzhong; Xiao, Long

    2018-05-01

    The 492 km-diameter Apollo impact basin post-dates, and is located at the inner edge of, the ∼2240 km-diameter South Pole-Aitken (SPA) basin, providing an opportunity to assess the SPA substructure and lateral heterogeneity. Gravity Recovery and Interior Laboratory gravity data suggest an average crustal thickness on the floor of SPA of ∼20 km and within the Apollo basin of ∼5 km, yet remote sensing data reveal no conclusive evidence for the presence of exposed mantle material. We use the iSALE shock physics code to model the formation of the Apollo basin and find that the observational data are best fit by the impact of a 40 km diameter body traveling at 15 km/s into 20-40 km thick crustal material. These results strongly suggest that the Apollo impact occurred on ejecta deposits and collapsed crustal material of the SPA basin and could help place constraints on the location, size and geometry of the SPA transient cavity. The peak ring in the interior of Apollo basin is plausibly interpreted to be composed of inwardly collapsed lower crustal material that experienced peak shock pressures in excess of 35 GPa, consistent with remote sensing observations that suggest shocked plagioclase. Proposed robotic and/or human missions to SPA and Apollo would present an excellent opportunity to test the predictions of this work and address many scientific questions about SPA basin evolution and structure.

  1. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    Science.gov (United States)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  2. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  3. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  4. Origin of uraniferous phosphate beds in Wilkins Peak member of Green River Formation, Wyoming

    International Nuclear Information System (INIS)

    Mott, L.V.; Drever, J.I.

    1983-01-01

    The distribution of uranium and phosphorus was studied in four drill cores from the Wilkins Peak Member of the Green River Formation in Wyoming. Of the studied occurrences of anomalously high uranium concentrations, 13% were associated with localized organic matter, and the remainder were associated with stratiform phosphate-rich beds. The uranium probably substitutes for calcium in apatite in these beds. It is proposed that the apatite forms by replacement of calcite during times of flooding of the normally highly saline lake. The flood waters bring in phosphorus and cause a decrease in both pH and ratio of bicarbonate to phosphate, which favors the replacement. Uranium is incorporated in the apatite as the apatite forms or soon after. No special source, other than weathering of volcanic ash, is required for the phosphorus or the uranium. The uraniferous phosphatic beds do not appear to have any economic potential at the present time. Misleadingly high concentrations of both uranium and phosphorus are observed in outcrop samples as a result of selective leaching of other components

  5. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2015-01-01

    This is the seventh report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by the USGS for addressing specific management needs identified by WLCI partners. In FY2014, there were 26 projects, including a new one that was completed, two others that were also completed, and several that entered new phases or directions. The 26 projects fall into several categories: (1) synthesizing and analyzing existing data to identify current conditions on the landscape and using the data to develop models for projecting past and future landscape conditions; (2) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects.

  6. Relationships between basin architecture, basin closure, and occurrence of sulphide-bearing schists

    DEFF Research Database (Denmark)

    Kalliomäki, Henrik; Torvela, Taija; Moreau, Julien

    2014-01-01

    We present field observations from the Palaeoproterozoic volcano-sedimentary Tampere palaeobasin, where the primary structures have been exceptionally well preserved. We use the observations to construct a new tectonic model for the southeastern margin of the Tampere basin during its inversion...... and subsequent closure. The observed volcano-sedimentary and structural features suggest a change in the local structural style from thick-skinned inversion to thin-skinned thrusting, in order to accommodate the crustal shortening during basin closure. Furthermore, it is suggested that there is a genetic...

  7. Detailed bathymetric surveys in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A.; Ramprasad, T.; George, P.; Jaisankar, S.

    Over 420,000 line kilometers of echo-sounding data was collected in the Central Indian Basin. This data was digitized, merged with navigation data and a detailed bathymetric map of the Basin was prepared. The Basin can be broadly classified...

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Cheyenne NTMS Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Trexler, P.K.

    1978-06-01

    Between June 1976 and October 1977, 1138 water and 600 sediment samples were systematically collected from 1498 locations in the Cheyenne NTMS quadrangle of southeast Wyoming. The samples were analyzed for total uranium at the Los Alamos Scientific Laboratory. The uranium concentration in waters ranged from 0.01 to 296.30 parts per billion (ppB), with a median of 3.19 ppB and a mean of 8.34 ppB. The uranium in sediments ranged from 0.8 to 83.0 parts per million (ppM) with a median of 3.4 ppM and a mean of 4.5 ppM. Arbitrary anomaly thresholds were selected to isolate those water and sediment samples containing uranium concentrations above those of 98% of the population sampled. Using this procedure, 23 water samples above 54.50 ppB and 12 sediment samples above 14.0 ppM were considered anomalous. Several areas appear favorable for further investigation for possible uranium mineralization. High uranium concentrations were detected in waters from the northeast corner of the Cheyenne quadrangle. High uranium concentrations were detected in sediments from locations in the southern and central Laramie Mountains and along the southeast and east-central edges of the study area

  9. Consequences of elevated temperature and pCO 2 on insect folivory at the ecosystem level: perspectives from the fossil record

    OpenAIRE

    Currano, Ellen D.; Laker, Rachel; Flynn, Andrew G.; Fogt, Kari K.; Stradtman, Hillary; Wing, Scott L.

    2016-01-01

    Abstract Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well?preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65?million years (Ma). We al...

  10. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  11. An underground view of the Albuquerque Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.W.; Haase, C.S.; Lozinsky, R.P. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)

    1995-12-31

    Development of valid hydrogeologic models of New Mexico`s ``critical groundwater basins`` has been a long-term objective of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR), a division of New Mexico Tech. The best possible information on basin hydrogeology is needed not only for incorporation in numerical models of groundwater-flow systems, which are necessary for proper management of limited water resources, but also for addressing public concerns relating to a wide range of important environmental issues. In the latter case, a hydrogeologist must be prepared to provide appropriate explanations of why groundwater systems behave physically and chemically as they do in both natural and man-disturbed situations. The paper describes the regional geologic setting, the geologic setting of the Albuquerque Basin, basin- and valley-fill stratigraphy, and the hydrogeologic model of the Albuquerque Basin. 77 refs., 6 figs., 1 tab.

  12. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  13. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  14. Geochemistry of the Late Paleozoic cherts in the Youjiang Basin: Implications for the basin evolution

    Directory of Open Access Journals (Sweden)

    Huang Hu

    2013-10-01

    Full Text Available We analyzed the major and rare earth element compositions of siliceous deposits from the Upper Devonian Liujiang Formation, Lower Carboniferous Luzhai Formation, Lower–Middle Permian Sidazhai Formation and Tapi Formation, which are widely distributed as bedded cherts in the interplatform basinal successions of the Youjiang Basin. The Liujiang Formation and Luzhai Formation cherts generally have high Al/(Al+Fe+Mn values (0.38–0.94 and are non-hydrothermal cherts. These cherts are generally characterized by moderately negative Ce anomalies and high Y/Ho values relatived to PAAS, indicating that the Youjiang Basin might have evolved into an open rift basin during the Late Devonian–Early Carboniferous. The Sidazhai Formation cherts from Ziyun generally have high Al/(Al+Fe+Mn values (0.60–0.78, suggesting negligible contribution from a hydrothermal component. The Sidazhai Formation cherts from Hechi and the Tapi Formation cherts from Malipo generally have low Al/(Al+Fe+Mn values (0.09–0.41, indicating an intense hydrothermal input. Relatived to the Sidazhai Formation cherts, the Tapi Formation cherts have higher Ce/Ce* values (0.68±0.19 and lower Y/Ho values (41.83±13.27, which may be affected by the terrigenous input from the Vietnam Block. The Sidazhai Formation cherts from Ziyun and Hechi exhibit negative Ce anomalies (0.43±0.12, 0.33±0.17, respectively with high Y/Ho values (57.44±16.20, 46.02±4.27, respectively, resembling the geochemical characteristics of open-ocean basin cherts. These cherts were deposited on a passive continental margin adjacent to the Babu branch ocean, which may have contributed to upwelling. Detailed spatial studies on geochemical characteristics of the Late Paleozoic cherts can unravel the evolution of the Youjiang Basin.

  15. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  16. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  17. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  18. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  19. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria

    KAUST Repository

    English, Joseph M.

    2017-05-31

    The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.

  20. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground