WorldWideScience

Sample records for shielding computer codes

  1. Computer code for shielding calculations of x-rays rooms

    International Nuclear Information System (INIS)

    Affonso, R.R.W.; Borges, D. da S.; Lava, D.D.; Moreira, M. de L.; Guimarães, A.C.F.

    2015-01-01

    The building an effective barrier against ionizing radiation present in radiographic rooms requires consideration of many variables. The methodology used for thickness specification of primary and secondary, barrier of a traditional radiographic room, considers the following factors: Use Factor, Occupational Factor, distance between the source and the wall, Workload, Kerma in the air and distance between the patient and the source. With these data it was possible to develop a computer code, which aims to identify and use variables in functions obtained through graphics regressions provided by NCRP-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) report, for shielding calculation of room walls, and the walls of the dark room and adjacent areas. With the implemented methodology, it was made a code validation by comparison of results with a study case provided by the report. The obtained values for thickness comprise different materials such as concrete, lead and glass. After validation it was made a case study of an arbitrary radiographic room.The development of the code resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in september/2011. (authors)

  2. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  3. Study and application of Dot 3.5 computer code in radiation shielding problems

    International Nuclear Information System (INIS)

    Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.

    1983-01-01

    The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt

  4. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  5. Computer code ANISN multiplying media and shielding calculation II. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1990-01-01

    The user manual of the ANISN computer code describing input and output subroutines is presented. ANISN code was developed to solve one-dimensional transport equation for neutron or gamma rays in slab, sphere or cylinder geometry with general anisotropic scattering. The solution technique is the discrete ordinate method. (M.C.K.)

  6. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  7. Abstracts of digital computer code packages. Assembled by the Radiation Shielding Information Center. [Radiation transport codes

    Energy Technology Data Exchange (ETDEWEB)

    McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.

    1976-01-01

    The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package. (RWR)

  8. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art.

  9. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    International Nuclear Information System (INIS)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art

  10. Computer code ANISN multiplying media and shielding calculation 2. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1991-01-01

    The new code CCC-0514-ANISN/PC is described, as well as a ''GENERAL DESCRIPTION OF ANISN/PC code''. In addition to the ANISN/PC code, the transmittal package includes an interactive input generation programme called APE (ANISN Processor and Evaluator), which facilitates the work of the user in giving input. Also, a 21 group photon cross section master library FLUNGP.LIB in ISOTX format, which can be edited by an executable file LMOD.EXE, is included in the package. The input and output subroutines are reviewed. 6 refs, 1 fig., 1 tab

  11. Evaluation of the computer code system RADHEAT-V4 by analysing benchmark problems on radiation shielding

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Naito, Yoshitaka

    1990-11-01

    A computer code system RADHEAT-V4 has been developed for safety evaluation on radiation shielding of nuclear fuel facilities. To evaluate the performance of the code system, 18 benchmark problem were selected and analysed. Evaluated radiations are neutron and gamma-ray. Benchmark problems consist of penetration, streaming and skyshine. The computed results show more accurate than those by the Sn codes ANISN and DOT3.5 or the Monte Carlo code MORSE. Big core memory and many times I/O are, however, required for RADHEAT-V4. (author)

  12. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  13. Radiation transport and shielding information, computer codes, and nuclear data for use in CTR neutronics research and development

    International Nuclear Information System (INIS)

    Santoro, R.T.; Maskewitz, B.F.; Roussin, R.W.; Trubey, D.K.

    1976-01-01

    The activities of the Radiation Shielding Information Center (RSIC) of the Oak Ridge National Laboratory are being utilized in support of fusion reactor technology. The major activities of RSIC include the operation of a computer-based information storage and retrieval system, the collection, packaging, and distribution of large computer codes, and the compilation and dissemination of processed and evaluated data libraries, with particular emphasis on neutron and gamma-ray cross-section data. The Center has acquired thirteen years of experience in serving fission reactor, weapons, and accelerator shielding research communities, and the extension of its technical base to fusion reactor research represents a logical progression. RSIC is currently working with fusion reactor researchers and contractors in computer code development to provide tested radiation transport and shielding codes and data library packages. Of significant interest to the CTR community are the 100 energy group neutron and 21 energy group gamma-ray coupled cross-section data package (DLC-37) for neutronics studies, a comprehensive 171 energy group neutron and 36 energy group gamma-ray coupled cross-section data base with retrieval programs, including resonance self-shielding, that are tailored to CTR application, and a data base for the generation of energy-dependent atomic displacement and gas production cross sections and heavy-particle-recoil spectra for estimating radiation damage to CTR structural components

  14. Radiation transport and shielding information, computer codes, and nuclear data for use in CTR neutronics research and development

    International Nuclear Information System (INIS)

    Santoro, R.T.; Maskewitz, B.F.; Roussin, R.W.; Trubey, D.K.

    1976-01-01

    The activities of the Radiation Shielding Information Center (RSIC) of the Oak Ridge National Laboratory are being utilized in support of fusion reactor technology. The major activities of RSIC include the operation of a computer-based information storage and retrieval system, the collection, packaging, and distribution of large computer codes, and the compilation and dissemination of processed and evaluated data libraries, with particular emphasis on neutron and gamma-ray cross-section data. The Center has acquired thirteen years of experience in serving fission reactor, weapons, and accelerator shielding research communities, and the extension of its technical base to fusion reactor research represents a logical progression. RSIC is currently working with fusion reactor researchers and contractors in computer code development to provide tested radiation transport and shielding codes and data library packages. Of significant interest to the CTR community are the 100 energy group neutron and 21 energy group gamma-ray coupled cross-section data package (DLC-37) for neutronics studies, a comprehensive 171 energy group neutron and 36 energy group gamma-ray coupled cross-section data base with retrieval programs, including resonance self-shielding, that are tailored to CTR application, and a data base for the generation of energy-dependent atomic displacement and gas production cross sections and heavy-particle-recoil spectra for estimating radiation damage to CTR structural components. Since 1964, the Center has been involved in the international exchange of information, encouraged and supported by both government and interagency agreements; and to achieve an equally viable and successful program in fusion research, the reciprocal exchange of CTR data and computing technology is encouraged and welcomed

  15. Development of a computer code for shielding calculation in X-ray facilities

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    The construction of an effective barrier against the interaction of ionizing radiation present in X-ray rooms requires consideration of many variables. The methodology used for specifying the thickness of primary and secondary shielding of an traditional X-ray room considers the following factors: factor of use, occupational factor, distance between the source and the wall, workload, Kerma in the air and distance between the patient and the receptor. With these data it was possible the development of a computer program in order to identify and use variables in functions obtained through graphics regressions offered by NCRP Report-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) for the calculation of shielding of the room walls as well as the wall of the darkroom and adjacent areas. With the built methodology, a program validation is done through comparing results with a base case provided by that report. The thickness of the obtained values comprise various materials such as steel, wood and concrete. After validation is made an application in a real case of radiographic room. His visual construction is done with the help of software used in modeling of indoor and outdoor. The construction of barriers for calculating program resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in September / 2011

  16. Development of a computational code for calculations of shielding in dental facilities

    International Nuclear Information System (INIS)

    Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L.

    2014-01-01

    This paper is prepared in order to address calculations of shielding to minimize the interaction of patients with ionizing radiation and / or personnel. The work includes the use of protection report Radiation in Dental Medicine (NCRP-145 or Radiation Protection in Dentistry), which establishes calculations and standards to be adopted to ensure safety to those who may be exposed to ionizing radiation in dental facilities, according to the dose limits established by CNEN-NN-3.1 standard published in September / 2011. The methodology comprises the use of computer language for processing data provided by that report, and a commercial application used for creating residential projects and decoration. The FORTRAN language was adopted as a method for application to a real case. The result is a programming capable of returning data related to the thickness of material, such as steel, lead, wood, glass, plaster, acrylic, acrylic and leaded glass, which can be used for effective shielding against single or continuous pulse beams. Several variables are used to calculate the thickness of the shield, as: number of films used in the week, film load, use factor, occupational factor, distance between the wall and the source, transmission factor, workload, area definition, beam intensity, intraoral and panoramic exam. Before the application of the methodology is made a validation of results with examples provided by NCRP-145. The calculations redone from the examples provide answers consistent with the report

  17. Abstracts of digital computer code packages. Assembled by the Radiation Shielding Information Center

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.

    1976-01-01

    The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package

  18. Neutron shielding point kernel integral calculation code for personal computer: PKN-pc

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sakamoto, Yukio; Nakane, Yoshihiro; Tomita, Ken-ichi; Kurosawa, Naohiro.

    1994-07-01

    A personal computer version of PKN code, PKN-pc, has been developed to calculate neutron and secondary gamma-ray 1cm depth dose equivalents in water, ordinary concrete and iron for neutron source. Characteristics of PKN code are, to able to calculate dose equivalents in multi-layer three-dimensional system, which are described with two-dimensional surface, for monoenergetic neutron source from 0.01 to 14.9 MeV, 252 Cf fission and 241 Am-Be neutron source quick and easily. In addition to these features, the PKN-pc is possible to process interactive input and to get graphical system configuration and graphical results easily. (author)

  19. Development of a computer code for determining the thickness of shielding used in cardiac angiography techniques

    International Nuclear Information System (INIS)

    Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    The construction of an effective shielding against the interaction of ionizing radiation in X-ray rooms requires consideration of many variables. The methodology used for specification of a primary and secondary shielding thickness of a X-ray room considers the following factors: use factor, occupational factor, distance between the source and the wall, workload, Kerma in the air and distance between the patient and the receptor. The program built from this data, has the objective of identifying and using variables in functions obtained through linear regressions of graphics offered by NCRP Report-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) for the shielding calculation of the room walls as wall dark room and adjacent areas. With the methodology constructed a program validation is done by comparison of results with a base case provided by that report. The values of the thicknesses obtained comprise various materials such as steel, wood and concrete. Once validated an application is made in a real case of X-ray room. His visual construction is done with the help of software used in modeling of interiors and exteriors. The construction of shielding calculating program has the goal of being an easy tool for planning of X-ray rooms in order to meet the established limits by CNEN-NN-3:01 published in September 2011

  20. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1990-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling by Doppler broadened cross-sections. The various self-shielding factors are computer numerically as Lebesgue integrals over the cross-section probability tables

  1. The application of SHIELD-HIT12A computer code to calculate of absorption dose for in vitro and in vivo test in BNCT

    International Nuclear Information System (INIS)

    Yohannes Sardjono; Hamidatul Faqqiyyah; Niels Bassler

    2014-01-01

    The projection of world population growth and increased longevity are leading to a rapid increase in the total number of middle-aged and older adults, with a corresponding increase in the number of deaths caused by non communicable diseases. It is projected that the annual number of deaths due to cardiovascular disease will increase from 17 million in 2008 to 25 million in 2030 with annual cancer deaths increasing from 7.6 million to 13 million. Boron Neutron Capture Therapy is a therapy that utilizes the absorption interaction of Boron-10 with thermal neutron and become He-4 particle and located in cell target and very short half life gamma emission. Studies were carried out to dose distribution in HER-2+ breast cancer therapy by Boron Neutron Capture Therapy (BNCT) using SHIELD Heavy Ion Therapy (HIT12A) T program. The Monte Carlo particle transport code SHIELD-HIT1 is designed to precisely simulate therapeutic beams of protons and ions in biological tissue relevant for ion beam cancer therapy. SHIELD-HIT (Heavy Ion Therapy) evolved from the common SHIELD code that models interactions of hadrons and atomic nuclei in complex extended targets in the energy range up to 1 TeV/nucleon. Through this computer code can be applied to calculate of absorption dose in cell target. (author)

  2. Speed up of MCACE, a Monte Carlo code for evaluation of shielding safety, by parallel computer, (3)

    International Nuclear Information System (INIS)

    Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka; Onodera, Emi; Imawaka, Tsuneyuki; Yoda, Yoshihisa.

    1993-07-01

    The parallel computing of the MCACE code has been studied on two platforms; 1) Shared Memory Type Vector-Parallel Computer Monte-4 and 2) Networked Several Workstations. On the Monte-4, a disk-file has been allocated to collect all results computed by 4 CPUs in parallel, executing the copy of the MCACE code on each CPU. On the workstations under network environment, two parallel models have been evaluated; 1) a host-node model and 2) the model used on the Monte-4 where no software for parallelization has been employed but only standard FORTRAN language. The measurement of computing times has showed that speed up of about 3 times has been achieved by using 4 CPUs of the Monte-4. Further, connecting 4 workstations by network, the computing speed by parallelization has achieved faster than our scalar main frame computer, FACOM M-780. (author)

  3. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  4. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1989-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self- indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling the Doppler broadened cross-section. The various shelf-shielded factors are computed numerically as Lebesgue integrals over the cross-section probability tables. 6 refs

  5. SHREDI a removal diffusion shielding code for x-y and r-z geometries

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.

    1974-01-01

    The SHREDI, a removal diffusion neutron shielding code written in FORTRAN for IBM 370/165, is presented. The code computes neutron fluxes or adjoint fluxes and activations in bidimensional sections of the shield. It is also possible to consider shielding points with the same coordinate (y or z) (monodimensional problems)

  6. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  7. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus

    2012-01-01

    Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed concentra......Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed...

  8. A conceptual gamma shield design using the DRP model computation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Rahman, F A [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The purpose of this investigation is to assess basic areas of concern in the development of reactor shielding conceptual design calculations. A spherical shield model composed of low carbon steel and lead have been constructed to surround a Co-60 gamma point source. two alternative configurations have been considered in the model computation. The numerical calculations have been performed using both the ANISN code and DRP model computation together with the DLC 75-Bugle 80 data library. A resume of results for deep penetration in different shield materials with different packing densities is presented and analysed. The results showed that the gamma fluxes attenuation is increased with increasing distribution the packing density of the shield material which reflects its importance of considering it as a safety parameter in shielding design. 3 figs.

  9. Computed tomography shielding methods: a literature review.

    Science.gov (United States)

    Curtis, Jessica Ryann

    2010-01-01

    To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning. Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield's effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice. Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose. Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.

  10. A code for leakage neutron spectra through thick shields

    International Nuclear Information System (INIS)

    Nagarajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.

    1975-01-01

    An exponential transform Monte Carlo code has been developed for deep penetration of neutrons and the results of leakage neutron spectra of this code have been compared with those of a basic Monte Carlo code for small thickness. The development of the code and optimisation of certain transform parameters are discussed and results are presented for a few thick shields of concrete and water in the context of neutron monitoring in the environs of accelerator and reactor shields. (author)

  11. MARMER, a flexible point-kernel shielding code

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1990-01-01

    A point-kernel shielding code entitled MARMER is described. It has several options with respect to geometry input, source description and detector point description which extend the flexibility and usefulness of the code, and which are especially useful in spent fuel shielding. MARMER has been validated using the TN12 spent fuel shipping cask benchmark. (author)

  12. MARMER, a flexible point-kernel shielding code

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    A point-kernel shielding code entitled MARMER is described. It has several options with respect to geometry input, source description and detector point description which extend the flexibility and usefulness of the code, and which are especially useful in spent fuel shielding. MARMER has been validated using the TN12 spent fuel shipping cask benchmark. (author).

  13. Development of a computational code for calculations of shielding in dental facilities; Desenvolvimento de um codigo computacional para calculos de blindagem em instalacoes odontologicas

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper is prepared in order to address calculations of shielding to minimize the interaction of patients with ionizing radiation and / or personnel. The work includes the use of protection report Radiation in Dental Medicine (NCRP-145 or Radiation Protection in Dentistry), which establishes calculations and standards to be adopted to ensure safety to those who may be exposed to ionizing radiation in dental facilities, according to the dose limits established by CNEN-NN-3.1 standard published in September / 2011. The methodology comprises the use of computer language for processing data provided by that report, and a commercial application used for creating residential projects and decoration. The FORTRAN language was adopted as a method for application to a real case. The result is a programming capable of returning data related to the thickness of material, such as steel, lead, wood, glass, plaster, acrylic, acrylic and leaded glass, which can be used for effective shielding against single or continuous pulse beams. Several variables are used to calculate the thickness of the shield, as: number of films used in the week, film load, use factor, occupational factor, distance between the wall and the source, transmission factor, workload, area definition, beam intensity, intraoral and panoramic exam. Before the application of the methodology is made a validation of results with examples provided by NCRP-145. The calculations redone from the examples provide answers consistent with the report.

  14. Research on Primary Shielding Calculation Source Generation Codes

    Science.gov (United States)

    Zheng, Zheng; Mei, Qiliang; Li, Hui; Shangguan, Danhua; Zhang, Guangchun

    2017-09-01

    Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D) power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT) code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP), CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.

  15. Computer control of shielded cell operations

    International Nuclear Information System (INIS)

    Jeffords, W.R. III.

    1987-01-01

    This paper describes in detail a computer system to remotely control shielded cell operations. System hardware, software, and design criteria are discussed. We have designed a computer-controlled buret that provides a tenfold improvement over the buret currently in service. A computer also automatically controls cell analyses, calibrations, and maintenance. This system improves conditions for the operators by providing a safer, more efficient working environment and is expandable for future growth and development

  16. Testing of the PELSHIE shielding code using Benchmark problems and other special shielding models

    International Nuclear Information System (INIS)

    Language, A.E.; Sartori, D.E.; De Beer, G.P.

    1981-08-01

    The PELSHIE shielding code for gamma rays from point and extended sources was written in 1971 and a revised version was published in October 1979. At Pelindaba the program is used extensively due to its flexibility and ease of use for a wide range of problems. The testing of PELSHIE results with the results of a range of models and so-called Benchmark problems is desirable to determine possible weaknesses in PELSHIE. Benchmark problems, experimental data, and shielding models, some of which were resolved by the discrete-ordinates method with the ANISN and DOT 3.5 codes, were used for the efficiency test. The description of the models followed the pattern of a classical shielding problem. After the intercomparison with six different models, the usefulness of the PELSHIE code was quantitatively determined [af

  17. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  18. μShield : Configurable Code-Reuse Attacks Mitigation For Embedded Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzels, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro; Yan, Zheng; Molva, Refik; Mazurczyk, Wojciech; Kantola, Raimo

    2017-01-01

    Embedded devices are playing a major role in our way of life. Similar to other computer systems embedded devices are vulnerable to code-reuse attacks. Compromising these devices in a critical environment constitute a significant security and safety risk. In this paper, we present μShield, a memory

  19. CONCEPT computer code

    International Nuclear Information System (INIS)

    Delene, J.

    1984-01-01

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated

  20. Computer code FIT

    International Nuclear Information System (INIS)

    Rohmann, D.; Koehler, T.

    1987-02-01

    This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de

  1. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  2. MELCOR computer code manuals

    International Nuclear Information System (INIS)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package

  3. Computer codes in particle transport physics

    International Nuclear Information System (INIS)

    Pesic, M.

    2004-01-01

    Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option

  4. Demonstration study on shielding safety analysis code (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Sadashi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1999-03-01

    Dose evaluation for direct radiation and skyshine from nuclear fuel facilities is one of the environment evaluation items. This evaluation is carried out by using some shielding calculation codes. Because of extremely few benchmark data of skyshine, the calculation has to be performed very conservatively. Therefore, the benchmark data of skyshine and the well-investigated code for skyshine would be necessary to carry out the rational evaluation of nuclear facilities. The purpose of this steady is to obtain the benchmark data of skyshine and to investigate the calculation code for skyshine. In this fiscal year, the followings are investigated; (1) Construction and improvement of a pulsed radiation measurement system due to the gated counting method. (2) Using the system, carried out the radiation monitoring near and in the facility of 45 MeV Linear accelerator installed at Hokkaido University. (3) Simulation analysis of the photo-neutron production and the transport by using the EGS4 and MCNP code. (author)

  5. Validation of the 3D finite element transport theory code EVENT for shielding applications

    International Nuclear Information System (INIS)

    Warner, Paul; Oliveira, R.E. de

    2000-01-01

    This paper is concerned with the validation of the 3D deterministic neutral-particle transport theory code EVENT for shielding applications. The code is based on the finite element-spherical harmonics (FE-P N ) method which has been extensively developed over the last decade. A general multi-group, anisotropic scattering formalism enables the code to address realistic steady state and time dependent, multi-dimensional coupled neutron/gamma radiation transport problems involving high scattering and deep penetration alike. The powerful geometrical flexibility and competitive computational effort makes the code an attractive tool for shielding applications. In recognition of this, EVENT is currently in the process of being adopted by the UK nuclear industry. The theory behind EVENT is described and its numerical implementation is outlined. Numerical results obtained by the code are compared with predictions of the Monte Carlo code MCBEND and also with the results from benchmark shielding experiments. In particular, results are presented for the ASPIS experimental configuration for both neutron and gamma ray calculations using the BUGLE 96 nuclear data library. (author)

  6. Shielding calculations using computer techniques; Calculo de blindajes mediante tecnicas de computacion

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Portilla, M. I.; Marquez, J.

    2011-07-01

    Radiological protection aims to limit the ionizing radiation received by people and equipment, which in numerous occasions requires of protection shields. Although, for certain configurations, there are analytical formulas, to characterize these shields, the design setup may be very intensive in numerical calculations, therefore the most efficient from to design the shields is by means of computer programs to calculate dose and dose rates. In the present article we review the codes most frequently used to perform these calculations, and the techniques used by such codes. (Author) 13 refs.

  7. Shielding Calculations for Positron Emission Tomography - Computed Tomography Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baasandorj, Khashbayar [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Jeongseon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Integrated PET-CT has been shown to be more accurate for lesion localization and characterization than PET or CT alone, and the results obtained from PET and CT separately and interpreted side by side or following software based fusion of the PET and CT datasets. At the same time, PET-CT scans can result in high patient and staff doses; therefore, careful site planning and shielding of this imaging modality have become challenging issues in the field. In Mongolia, the introduction of PET-CT facilities is currently being considered in many hospitals. Thus, additional regulatory legislation for nuclear and radiation applications is necessary, for example, in regulating licensee processes and ensuring radiation safety during the operations. This paper aims to determine appropriate PET-CT shielding designs using numerical formulas and computer code. Since presently there are no PET-CT facilities in Mongolia, contact was made with radiological staff at the Nuclear Medicine Center of the National Cancer Center of Mongolia (NCCM) to get information about facilities where the introduction of PET-CT is being considered. Well-designed facilities do not require additional shielding, which should help cut down overall costs related to PET-CT installation. According to the results of this study, building barrier thicknesses of the NCCM building is not sufficient to keep radiation dose within the limits.

  8. Validation of SCALE code package on high performance neutron shields

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Smuc, T.

    1999-01-01

    The shielding ability and other properties of new high performance neutron shielding materials from the KRAFTON series have been recently published. A comparison of the published experimental and MCNP results for the two materials of the KRAFTON series, with our own calculations has been done. Two control modules of the SCALE-4.4 code system have been used, one of them based on one dimensional radiation transport analysis (SAS1) and other based on the three dimensional Monte Carlo method (SAS3). The comparison of the calculated neutron dose equivalent rates shows a good agreement between experimental and calculated results for the KRAFTON-N2 material.. Our results indicate that the N2-M-N2 sandwich type is approximately 10% inferior as neutron shield to the KRAFTON-N2 material. All values of neutron dose equivalent obtained by SAS1 are approximately 25% lower in comparison with the SAS3 results, which indicates proportions of discrepancies introduced by one-dimensional geometry approximation.(author)

  9. Available computer codes and data for radiation transport analysis

    International Nuclear Information System (INIS)

    Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.

    1975-01-01

    The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  10. Demonstration study on shielding safety analysis code (8)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Sadashi [Hokkaido Univ., Sapporo (Japan)

    2001-03-01

    Dose evaluation for direct radiation and skyshine from nuclear fuel facilities is one of the environment evaluation items. This evaluation is carried out by using some shielding calculation codes. Because of extremely few benchmark data of skyshine, the calculation has to be performed very conservatively. Therefore, the benchmark data of skyshine and the well-investigated code for skyshine would be necessary to carry out the rational evaluation of nuclear facilities. The purpose of this study is to obtain the benchmark data of skyshine and to investigate the calculation code for skyshine. In this fiscal year, the followings are investigated. (1) A {sup 3}He detector and some instruments are added to the former detection system to increase the detection sensitivity in pulsed neutron measurements. Using the new detection system, the skyshine of neutrons from 45 MeV LINAC facility are measured in the distance up to 350 m. (2) To estimate the spectrum of leakage neutron from the facility, {sup 3}He detector with moderators is constructed and the response functions of the detector are calculated using the MCNP simulation code. The leakage spectrum in the facility are measured and unfolded using the SAND-II code. (3) Using the EGS code and/or MCNP code, neutron yields by the photo-nuclear reaction in the lead target are calculated. Then, the neutron fluence at some points including the duct (from which neutrons leaks and is considered to be a skyshine source) is simulated by MCNP MONTE CARLO code. (4) In the distance up to 350 m from the facility, neutron fluence due to the skyshine process are calculated and compared with the experimental results. The comparison gives a fairly good agreement. (author)

  11. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  12. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  13. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  14. Demonstration study on shielding safety analysis code. 7

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Sadashi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    2000-03-01

    Dose evaluation for direct radiation and skyshine from nuclear fuel facilities is one of the environment evaluation items. This evaluation is carried out by using some shielding calculation codes. Because of extremely few benchmark data of skyshine, the calculation has to be performed very conservatively. Therefore, the benchmark data of skyshine and the well-investigated code for skyshine would be necessary to carry out the rational evaluation of nuclear facilities. The purpose of this study is to obtain the benchmark data of skyshine and to investigate the calculation code for skyshine. In this fiscal year, the followings are investigated; (1) To improve the detection sensitivity of pulse neutron measurement, two neutron detectors and some electronic circuits are added to the system constructed last year. (2) To estimate the neutron dose at the distant point from the facility instead of the commercialized rem-counter, a {sup 3}He detector with paraffin moderator is equipped to the system. (3) Using the new detection system, the skyshine of neutrons from 45 MeV LINAC facility was measured in the distance up to 300 m. The results show that the time structure of pulsed neutrons almost disappears at the further points than 150 m. (4) In the distance from 90 m to 300 m ordinal total counting method without gate pulse are applied to detect the neutrons. (5) The experimental results of space dependency up to 300 m is fitted fairly well by the Gui's response function. (author)

  15. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  16. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs

  17. Radiation shielding properties of barite coated fabric by computer programme

    Energy Technology Data Exchange (ETDEWEB)

    Akarslan, F.; Molla, T. [Suleyman Demirel University, Engineering Fac. Textile Dep., Isparta (Turkey); Üncü, I. S. [Suleyman Demirel University, Technological Fac. Electrical-Electronic Eng. Dep., Isparta (Turkey); Kılıncarslan, S., E-mail: seref@tef.sdu.edu.tr [Suleyman Demirel University, Engineering Fac. Civil Eng. Dep., Isparta (Turkey); Akkurt, I. [Suleyman Demirel University, Art and Science Fac., Physics Dep., Isparta (Turkey)

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.

  18. Computer code abstract: NESTLE

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1995-01-01

    NESTLE is a few-group neutron diffusion equation solver utilizing the nodal expansion method (NEM) for eigenvalue, adjoint, and fixed-source steady-state and transient problems. The NESTLE code solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) is desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed

  19. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  20. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...

  1. Translation of ARAC computer codes

    International Nuclear Information System (INIS)

    Takahashi, Kunio; Chino, Masamichi; Honma, Toshimitsu; Ishikawa, Hirohiko; Kai, Michiaki; Imai, Kazuhiko; Asai, Kiyoshi

    1982-05-01

    In 1981 we have translated the famous MATHEW, ADPIC and their auxiliary computer codes for CDC 7600 computer version to FACOM M-200's. The codes consist of a part of the Atmospheric Release Advisory Capability (ARAC) system of Lawrence Livermore National Laboratory (LLNL). The MATHEW is a code for three-dimensional wind field analysis. Using observed data, it calculates the mass-consistent wind field of grid cells by a variational method. The ADPIC is a code for three-dimensional concentration prediction of gases and particulates released to the atmosphere. It calculates concentrations in grid cells by the particle-in-cell method. They are written in LLLTRAN, i.e., LLNL Fortran language and are implemented on the CDC 7600 computers of LLNL. In this report, i) the computational methods of the MATHEW/ADPIC and their auxiliary codes, ii) comparisons of the calculated results with our JAERI particle-in-cell, and gaussian plume models, iii) translation procedures from the CDC version to FACOM M-200's, are described. Under the permission of LLNL G-Division, this report is published to keep the track of the translation procedures and to serve our JAERI researchers for comparisons and references of their works. (author)

  2. Development of EASYQAD version β: A Visualization Code System for QAD-CGGP-A Gamma and Neutron Shielding Calculation Code

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung

    2007-01-01

    EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system

  3. Development of Point Kernel Shielding Analysis Computer Program Implementing Recent Nuclear Data and Graphic User Interfaces

    International Nuclear Information System (INIS)

    Kang, Sang Ho; Lee, Seung Gi; Chung, Chan Young; Lee, Choon Sik; Lee, Jai Ki

    2001-01-01

    In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShield utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc

  4. The RETRAN-03 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.

    1991-01-01

    The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed

  5. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  6. Shieldings for X-ray radiotherapy facilities calculated by computer

    International Nuclear Information System (INIS)

    Pedrosa, Paulo S.; Farias, Marcos S.; Gavazza, Sergio

    2005-01-01

    This work presents a methodology for calculation of X-ray shielding in facilities of radiotherapy with help of computer. Even today, in Brazil, the calculation of shielding for X-ray radiotherapy is done based on NCRP-49 recommendation establishing a methodology for calculating required to the elaboration of a project of shielding. With regard to high energies, where is necessary the construction of a labyrinth, the NCRP-49 is not very clear, so that in this field, studies were made resulting in an article that proposes a solution to the problem. It was developed a friendly program in Delphi programming language that, through the manual data entry of a basic design of architecture and some parameters, interprets the geometry and calculates the shields of the walls, ceiling and floor of on X-ray radiation therapy facility. As the final product, this program provides a graphical screen on the computer with all the input data and the calculation of shieldings and the calculation memory. The program can be applied in practical implementation of shielding projects for radiotherapy facilities and can be used in a didactic way compared to NCRP-49.

  7. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  8. Microgravity computing codes. User's guide

    Science.gov (United States)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  9. CREST : a computer program for the calculation of composition dependent self-shielded cross-sections

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1977-01-01

    A computer program CREST for the calculation of the composition and temperature dependent self-shielded cross-sections using the shielding factor approach has been described. The code includes the editing and formation of the data library, calculation of the effective shielding factors and cross-sections, a fundamental mode calculation to generate the neutron spectrum for the system which is further used to calculate the effective elastic removal cross-sections. Studies to explore the sensitivity of reactor parameters to changes in group cross-sections can also be carried out by using the facility available in the code to temporarily change the desired constants. The final self-shielded and transport corrected group cross-sections can be dumped on cards or magnetic tape in a suitable form for their direct use in a transport or diffusion theory code for detailed reactor calculations. The program is written in FORTRAN and can be accommodated in a computer with 32 K work memory. The input preparation details, sample problem and the listing of the program are given. (author)

  10. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  11. H0 precessor computer code

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Floyd, R.A.

    1981-05-01

    A spin precessor using H - to H 0 stripping, followed by small precession magnets, has been developed for the LAMPF 800-MeV polarized H - beam. The performance of the system was studied with the computer code documented in this report. The report starts from the fundamental physics of a system of spins with hyperfine coupling in a magnetic field and contains many examples of beam behavior as calculated by the program

  12. Application of MCNP code in shielding calculation of minitype fast reactor

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2008-01-01

    An accurate shielding calculation model has been set up for the minitype sodium-cooled fast reactor (MFR) based on MCNP code and particular calculation of its primary shielding parameters has been carried out. The results indicate that the photon and neutron flux density of MFR has rapidly fallen to a low-level. The material for the shielding layer outside of main container is primarily of carbon steel, which can be design as a shielding structure satisfying the safety code. The sodium activation in primary circuit is extremely limited and it is simple to shield from. Both the output of helium in reflector and burn up of boron-10 in control rod are very small. These materials can be used for several cycle lives. (authors)

  13. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  14. An accuracy estimation on neutron penetration calculation through concrete shield with PALLAS codes using bunched component nuclides of concrete

    International Nuclear Information System (INIS)

    Sasamoto, Nobuo; Kotegawa, Hiroshi

    1984-11-01

    In order to improve computational efficiency of PALLAS code, an accuracy is estimated on the neutron penetration calculation through a concrete shield, using bunched component nuclides of concrete. The calculated fast neutron flux is observed to depend weakly on how the nuclides are bunched. Contrary to this, the calculated thermal neutron fluxes are strongly dependent on the manner of bunching, mainly due to the fact that iron cross section has exceptionally large negative sensitivity to thermal neutron flux. (author)

  15. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  16. Computation of the Genetic Code

    Science.gov (United States)

    Kozlov, Nicolay N.; Kozlova, Olga N.

    2018-03-01

    One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.

  17. The Monte Carlo method for shielding calculations analysis by MORSE code of a streaming case in the CAORSO BWR power reactor shielding (Italy)

    International Nuclear Information System (INIS)

    Zitouni, Y.

    1987-04-01

    In the field of shielding, the requirement of radiation transport calculations in severe conditions, characterized by irreducible three-dimensional geometries has increased the use of the Monte Carlo method. The latter has proved to be the only rigorous and appropriate calculational method in such conditions. However, further efforts at optimization are still necessary to render the technique practically efficient, despite recent improvements in the Monte Carlo codes, the progress made in the field of computers and the availability of accurate nuclear data. Moreover, the personal experience acquired in the field and the control of sophisticated calculation procedures are of the utmost importance. The aim of the work which has been carried out is the gathering of all the necessary elements and features that would lead to an efficient utilization of the Monte Carlo method used in connection with shielding problems. The study of the general aspects of the method and the exploitation techniques of the MORSE code, which has proved to be one of the most comprehensive of the Monte Carlo codes, lead to a successful analysis of an actual case. In fact, the severe conditions and difficulties met have been overcome using such a stochastic simulation code. Finally, a critical comparison between calculated and high-accuracy experimental results has allowed the final confirmation of the methodology used by us

  18. Self-shielding models of MICROX-2 code: Review and updates

    International Nuclear Information System (INIS)

    Hou, J.; Choi, H.; Ivanov, K.N.

    2014-01-01

    Highlights: • The MICROX-2 code has been improved to expand its application to advanced reactors. • New fine-group cross section libraries based on ENDF/B-VII have been generated. • Resonance self-shielding and spatial self-shielding models have been improved. • The improvements were assessed by a series of benchmark calculations against MCNPX. - Abstract: The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. The MICROX-2 code has been updated to expand its application to advanced reactor concepts and fuel cycle simulations, including generation of new fine-group cross section libraries based on ENDF/B-VII. In continuation of previous work, the MICROX-2 methods are reviewed and updated in this study, focusing on its resonance self-shielding and spatial self-shielding models for neutron spectrum calculations. The improvement of self-shielding method was assessed by a series of benchmark calculations against the Monte Carlo code, using homogeneous and heterogeneous pin cell models. The results have shown that the implementation of the updated self-shielding models is correct and the accuracy of physics calculation is improved. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by ∼0.1% and ∼0.2% for the homogeneous and heterogeneous pin cell models, respectively, considered in this study

  19. Development of EASYQAD version β. A visualization code system for gamma and neutron shielding calculations

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Kim, Soon Young; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Jong Kyung

    2008-01-01

    EASYQAD version β was developed by MATLAB GUI (Graphical User Interface) as a visualization code system based on QAD-CGGP-A point-kernel code for convenient shielding calculations of gammas and neutrons. It consists of four graphic interface modules including GEOMETRY, INPUT, OUTPUT, and SHIELD. These modules were compiled in C++ programming language by using the MATLAB Compiler Toolbox to form a stand-along code system that can be run on the Windows XP operating system without MATLAB installation. In addition, EASYQAD version β has user-friendly graphical interfaces and, additionally, many useful functions in comparison with QAD- CGGP-A such as common material library, line and grid detectors, and multi-group energy calculations so as to increase its applicability in the field of radiation shielding analysis. It is a powerful tool for non-experts to analyze easily the shielding problems without special training. Therefore, EASYOAD version β is expected to contribute effectively to the development of radiation shielding analysis by providing users in medical and industrial fields with an efficient radiation shielding code. (author)

  20. Verification of using SABINE-3.1 code for calculations of radioactive inventory in reactor shield

    International Nuclear Information System (INIS)

    Moukhamadeev, R.; Suvorov, A.

    2000-01-01

    This report presents the results of calculations of radioactive inventory and doses of activation radiation for the International Benchmark Calculations of Radioactive Inventory for Fission Reactor Decommissioning, IAEA, and measurements of activation doses in shield of WWER-440 (Armenian NPP), using one-dimension modified code SABINE-3.1. For decommissioning of NPP it is very important to evaluate in correct manner radioactive inventory in reactor construction and shield materials. One-dimension code SABINE-3.1 (removing-diffusion method for neutron calculation) was modified to perform calculation of radioactive inventory in reactor shield materials and dose from activation photons behind them. These calculations are carried out on the base of nuclear constant system ABBN-78 and new library of activation data for a number of long-lived isotopes, prepared by authors on the base of [9], which present at shield materials as microimpurities and manage radiation situation under the decay more than 1 year. (Authors)

  1. Shielding analysis of high level waste water storage facilities using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Yabuta, Naohiro [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    2001-01-01

    The neutron and gamma-ray transport analysis for the facility as a reprocessing facility with large buildings having thick shielding was made. Radiation shielding analysis consists of a deep transmission calculation for the concrete wall and a skyshine calculation for the space out of the buildings. An efficient analysis with a short running time and high accuracy needs a variance reduction technique suitable for all the calculation regions and structures. In this report, the shielding analysis using MCNP and a discrete ordinate transport code is explained and the idea and procedure of decision of variance reduction parameter is completed. (J.P.N.)

  2. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  3. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  4. Development of point Kernel radiation shielding analysis computer program implementing recent nuclear data and graphic user interfaces

    International Nuclear Information System (INIS)

    Kang, S.; Lee, S.; Chung, C.

    2002-01-01

    There is an increasing demand for safe and efficient use of radiation and radioactive work activity along with shielding analysis as a result the number of nuclear and conventional facilities using radiation or radioisotope rises. Most Korean industries and research institutes including Korea Power Engineering Company (KOPEC) have been using foreign computer programs for radiation shielding analysis. Korean nuclear regulations have introduced new laws regarding the dose limits and radiological guides as prescribed in the ICRP 60. Thus, the radiation facilities should be designed and operated to comply with these new regulations. In addition, the previous point kernel shielding computer code utilizes antiquated nuclear data (mass attenuation coefficient, buildup factor, etc) which were developed in 1950∼1960. Subsequently, the various nuclear data such mass attenuation coefficient, buildup factor, etc. have been updated during the past few decades. KOPEC's strategic directive is to become a self-sufficient and independent nuclear design technology company, thus KOPEC decided to develop a new radiation shielding computer program that included the latest regulatory requirements and updated nuclear data. This new code was designed by KOPEC with developmental cooperation with Hanyang University, Department of Nuclear Engineering. VisualShield is designed with a graphical user interface to allow even users unfamiliar to radiation shielding theory to proficiently prepare input data sets and analyzing output results

  5. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  6. Implementation and display of Computer Aided Design (CAD) models in Monte Carlo radiation transport and shielding applications

    International Nuclear Information System (INIS)

    Burns, T.J.

    1994-01-01

    An Xwindow application capable of importing geometric information directly from two Computer Aided Design (CAD) based formats for use in radiation transport and shielding analyses is being developed at ORNL. The application permits the user to graphically view the geometric models imported from the two formats for verification and debugging. Previous models, specifically formatted for the radiation transport and shielding codes can also be imported. Required extensions to the existing combinatorial geometry analysis routines are discussed. Examples illustrating the various options and features which will be implemented in the application are presented. The use of the application as a visualization tool for the output of the radiation transport codes is also discussed

  7. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  8. Comparison of different methods for shielding design in computed tomography

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Arandjic, D.; Kosutic, D.

    2011-01-01

    The purpose of this work is to compare different methods for shielding calculation in computed tomography (CT). The BIR-IPEM (British Inst. of Radiology and Inst. of Physics in Engineering in Medicine) and NCRP (National Council on Radiation Protection) method were used for shielding thickness calculation. Scattered dose levels and calculated barrier thickness were also compared with those obtained by scatter dose measurements in the vicinity of a dedicated CT unit. Minimal requirement for protective barriers based on BIR-IPEM method ranged between 1.1 and 1.4 mm of lead demonstrating underestimation of up to 20 % and overestimation of up to 30 % when compared with thicknesses based on measured dose levels. For NCRP method, calculated thicknesses were 33 % higher (27-42 %). BIR-IPEM methodology-based results were comparable with values based on scattered dose measurements, while results obtained using NCRP methodology demonstrated an overestimation of the minimal required barrier thickness. (authors)

  9. Improvement of Monte Carlo code A3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Miyake, Y.; Ohmura, M.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G.E.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3 MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for a concrete cask streaming problem and a PWR dosimetry problem. (author)

  10. New improvements in the self-shielding formalism of the Apollo-2 code

    International Nuclear Information System (INIS)

    Coste, M.; Tellier, H.; Ribon, P.; Raepsaet, V.; Van der Gucht, C.

    1993-01-01

    One important modelization of a transport code working on a coarse energy mesh is the self-shielding. The French transport code APPOLO 2, developed at the Commissariat a l'Energie Atomique, uses a self-shielding formalism based on a double equivalence. First a homogenization gives the reaction rates in a heterogeneous geometry, and then a multigroup equivalence gives, once the reaction rates are known, the self-shielded cross-sections. The homogenization is a very sensitive part because it is the one which requires physical modelizations. We have added a new model which allows us to treat numerous narrow resonances statistically distributed in the same group of the multigroup mesh. It is important to notice that for a narrow resonance isolated in a group, that new model is equivalent to the previous narrow resonance model (NR)

  11. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  12. A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tao, Chau Van; Loan, Truong Thi Hong; Nhon, Mai Van; Chuong, Huynh Dinh; Au, Bui Hai [Vietnam National Univ., Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics

    2012-12-15

    The accuracy of the coincidence-summing corrections in gamma spectrometry depends on the total efficiency calibration that is hardly obtained over the whole energy as the required experimental conditions are not easily attained. Monte Carlo simulations using MCNP5 code was performed in order to estimate the affect of the shielding to total efficiency. The effect of HPGe response are also shown. (orig.)

  13. Process of cross section generation for radiation shielding calculations, using the NJOY code

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1986-10-01

    The process of multigroup cross sections generation for radiation shielding calculations, using the NJOY code, is explained. Photon production cross sections, processed by the GROUPR module, and photon interaction cross sections processed by the GAMINR are given. These data are compared with the data produced by the AMPX system and published data. (author) [pt

  14. New Improvements in Mixture Self-Shielding Treatment with APOLLO2 Code

    International Nuclear Information System (INIS)

    Coste-Delclaux, M.

    2006-01-01

    Full text of the presentation follows: APOLLO2 is a modular multigroup transport code developed at the CEA in Saclay (France). Previously, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Recently, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The goal of this paper is to describe the improvements on the self-shielding treatment of a resonant mixture and to present, as an application, the calculation of the ATRIUM-10 BWR benchmark. We will conclude by some prospects on remaining work in the self-shielding domain. (author)

  15. Reactor safety computer code development at INEL

    International Nuclear Information System (INIS)

    Johnsen, G.W.

    1985-01-01

    This report provides a brief overview of the computer code development programs being conducted at EG and G Idaho, Inc. on behalf of US Nuclear Regulatory Commission and the Department of Energy, Idaho Operations Office. Included are descriptions of the codes being developed, their development status as of the date of this report, and resident code development expertise

  16. Generating Importance Map for Geometry Splitting using Discrete Ordinates Code in Deep Shielding Problem

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Young Ouk

    2016-01-01

    When we use MCNP code for a deep shielding problem, we prefer to use variance reduction technique such as geometry splitting, or weight window, or source biasing to have relative error within reliable confidence interval. To generate importance map for geometry splitting in MCNP calculation, we should know the track entering number and previous importance on each cells since a new importance is calculated based on these information. If a problem is deep shielding problem such that we have zero tracks entering on a cell, we cannot generate new importance map. In this case, discrete ordinates code can provide information to generate importance map easily. In this paper, we use AETIUS code as a discrete ordinates code. Importance map for MCNP is generated based on a zone average flux of AETIUS calculation. The discretization of space, angle, and energy is not necessary for MCNP calculation. This is the big merit of MCNP code compared to the deterministic code. However, deterministic code (i.e., AETIUS) can provide a rough estimate of the flux throughout a problem relatively quickly. This can help MCNP by providing variance reduction parameters. Recently, ADVANTG code is released. This is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 v1.60

  17. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  18. Implatation of MC2 computer code

    International Nuclear Information System (INIS)

    Seehusen, J.; Nair, R.P.K.; Becceneri, J.C.

    1981-01-01

    The implantation of MC2 computer code in the CDC system is presented. The MC2 computer code calculates multigroup cross sections for tipical compositions of fast reactors. The multigroup constants are calculated using solutions of PI or BI approximations for determined buckling value as weighting function. (M.C.K.) [pt

  19. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  20. A point kernel shielding code, PKN-HP, for high energy proton incident

    Energy Technology Data Exchange (ETDEWEB)

    Kotegawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-06-01

    A point kernel integral technique code PKN-HP, and the related thick target neutron yield data have been developed to calculate neutron and secondary gamma-ray dose equivalents in ordinary concrete and iron shields for fully stopping length C, Cu and U-238 target neutrons produced by 100 MeV-10 GeV proton incident in a 3-dimensional geometry. The comparisons among calculation results of the present code and other calculation techniques, and measured values showed the usefulness of the code. (author)

  1. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  2. The SWAN/NPSOL code system for multivariable multiconstraint shield optimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1995-01-01

    SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN's optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN's optimization capability

  3. COG10, Multiparticle Monte Carlo Code System for Shielding and Criticality Use

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: COG is a modern, full-featured Monte Carlo radiation transport code which provides accurate answers to complex shielding, criticality, and activation problems. COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://www-phys.llnl.gov/N_Div/COG/. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, path-length stretching, point detectors, scattered direction biasing, and forced collisions. Criticality - For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation - COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems - COG can solve coupled problems involving neutrons, photons, and electrons. 2 - Methods:COG uses Monte Carlo methods to solve the Boltzmann transport equation for particles traveling through arbitrary 3-dimensional geometries. Neutrons, photons

  4. Computation of the bounce-average code

    International Nuclear Information System (INIS)

    Cutler, T.A.; Pearlstein, L.D.; Rensink, M.E.

    1977-01-01

    The bounce-average computer code simulates the two-dimensional velocity transport of ions in a mirror machine. The code evaluates and bounce-averages the collision operator and sources along the field line. A self-consistent equilibrium magnetic field is also computed using the long-thin approximation. Optionally included are terms that maintain μ, J invariance as the magnetic field changes in time. The assumptions and analysis that form the foundation of the bounce-average code are described. When references can be cited, the required results are merely stated and explained briefly. A listing of the code is appended

  5. A Source Term Calculation for the APR1400 NSSS Auxiliary System Components Using the Modified SHIELD Code

    International Nuclear Information System (INIS)

    Park, Hong Sik; Kim, Min; Park, Seong Chan; Seo, Jong Tae; Kim, Eun Kee

    2005-01-01

    The SHIELD code has been used to calculate the source terms of NSSS Auxiliary System (comprising CVCS, SIS, and SCS) components of the OPR1000. Because the code had been developed based upon the SYSTEM80 design and the APR1400 NSSS Auxiliary System design is considerably changed from that of SYSTEM80 or OPR1000, the SHIELD code cannot be used directly for APR1400 radiation design. Thus the hand-calculation is needed for the portion of design changes using the results of the SHIELD code calculation. In this study, the SHIELD code is modified to incorporate the APR1400 design changes and the source term calculation is performed for the APR1400 NSSS Auxiliary System components

  6. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  7. The computer code SEURBNUK-2

    International Nuclear Information System (INIS)

    Yerkess, A.

    1984-01-01

    SEURBNUK-2 has been designed to model the hydrodynamic development in time of a hypothetical core disrupture accident in a fast breeder reactor. SEURBNUK-2 is a two-dimensional, axisymmetric, eulerian, finite difference containment code. The numerical procedure adopted in SEURBNUK to solve the hydrodynamic equations is based on the semi-implicit ICE method. SEURBNUK has a full thin shell treatment for tanks of arbitrary shape and includes the effects of the compressibility of the fluid. Fluid flow through porous media and porous structures can also be accommodated. An important feature of SEURBNUK is that the thin shell equations are solved quite separately from those of the fluid, and the time step for the fluid flow calculation can be an integer multiple of that for calculating the shell motion. The interaction of the shell with the fluid is then considered as a modification to the coefficients in the implicit pressure equations, the modifications naturally depending on the behaviour of the thin shell section within the fluid cell. The code is limited to dealing with a single fluid, the coolant, whereas the bubble and the cover gas are treated as cavities of uniform pressure calculated via appropriate pressure-volume-energy relationships. This manual describes the input data specifications needed for the execution of SEURBNUK-2 calculations and nine sample problems of varying degrees of complexity highlight the code capabilities. After explaining the output facilities information is included to aid those unfamiliar with SEURBNUK-2 to avoid the common pit-falls experienced by novices

  8. Quantum computation with Turaev-Viro codes

    International Nuclear Information System (INIS)

    Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.

    2010-01-01

    For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.

  9. Development of Computer Program for Analysis of Irregular Non Homogenous Radiation Shielding

    International Nuclear Information System (INIS)

    Bang Rozali; Nina Kusumah; Hendro Tjahjono; Darlis

    2003-01-01

    A computer program for radiation shielding analysis has been developed to obtain radiation attenuation calculation in non-homogenous radiation shielding and irregular geometry. By determining radiation source strength, geometrical shape of radiation source, location, dimension and geometrical shape of radiation shielding, radiation level of a point at certain position from radiation source can be calculated. By using a computer program, calculation result of radiation distribution analysis can be obtained for some analytical points simultaneously. (author)

  10. Cloud Computing for Complex Performance Codes.

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klein, Brandon Thorin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miner, John Gifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  11. Computer codes for designing proton linear accelerators

    International Nuclear Information System (INIS)

    Kato, Takao

    1992-01-01

    Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)

  12. Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2017-02-15

    In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  13. Gamma Ray Shielding Study of Barium–Bismuth–Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-02-01

    Full Text Available In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium–bismuth–borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium–bismuth–borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  14. A parallelization study of the general purpose Monte Carlo code MCNP4 on a distributed memory highly parallel computer

    International Nuclear Information System (INIS)

    Yamazaki, Takao; Fujisaki, Masahide; Okuda, Motoi; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka

    1993-01-01

    The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)

  15. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  16. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  17. Computer code development plant for SMART design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  18. Performance of the improved version of Monte Carlo code A 3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Omura, M.; Miyake, Y.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G. E.

    2005-01-01

    A 3MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, which automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3MCNP uses the three-dimensional (3-D) Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3MCNP (referred to as A 3MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3MCNPV for a concrete cask neutron and gamma-ray shielding problem, and a PWR dosimetry problem. (authors)

  19. Analysis of mixed oxides critical experiments using the Hammer-Technion code with self-shielding treatment by Bondarenko method

    International Nuclear Information System (INIS)

    Abe, Alfredo Y.; Santos, Adimir dos

    1995-01-01

    The present work summarizes the verification of the treatment of self-shielding based on Bondarenko method in HAMMER-TECHNION cell code for the Pu O 2 -U O 2 critical system using JENDL-3 nuclear data library. The results obtained are in excellent agreement with the original treatment of self-shielding employed by HAMMER-TECHNION cell code. (author). 9 refs, 1 fig, 9 tabs

  20. Concentration - dose - risk computer code

    International Nuclear Information System (INIS)

    Frujinoiu, C.; Preda, M.

    1997-01-01

    Generally, the society is less willing in promoting remedial actions in case of low level chronic exposure situations. Radon in dwellings and workplaces is a case connected to chronic exposure. Apart from radon, the solely source on which the international community agreed for setting action levels, there are other numerous sources technically modified by man that can generate chronic exposure. Even if the nuclear installations are the most relevant, we are surrounded by 'man-made radioactivity' such as: mining industry, coal-fired power plants and fertilizer industry. The operating of an installation even within 'normal limits' could generate chronic exposure due to accumulation of the pollutants after a definite time. This asymptotic proclivity to a constant level define a steady-state concentration that represents a characteristic of the source's presence in the environment. The paper presents a methodology and a code package that derives sequentially the steady-state concentration, doses, detriments, as well as the costs of the effects of installation operation in a given environment. (authors)

  1. Quantum computing with Majorana fermion codes

    Science.gov (United States)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  2. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  3. Gender codes why women are leaving computing

    CERN Document Server

    Misa, Thomas J

    2010-01-01

    The computing profession is facing a serious gender crisis. Women are abandoning the computing field at an alarming rate. Fewer are entering the profession than anytime in the past twenty-five years, while too many are leaving the field in mid-career. With a maximum of insight and a minimum of jargon, Gender Codes explains the complex social and cultural processes at work in gender and computing today. Edited by Thomas Misa and featuring a Foreword by Linda Shafer, Chair of the IEEE Computer Society Press, this insightful collection of essays explores the persisting gender imbalance in computing and presents a clear course of action for turning things around.

  4. Turbo Pascal Computer Code for PIXE Analysis

    International Nuclear Information System (INIS)

    Darsono

    2002-01-01

    To optimal utilization of the 150 kV ion accelerator facilities and to govern the analysis technique using ion accelerator, the research and development of low energy PIXE technology has been done. The R and D for hardware of the low energy PIXE installation in P3TM have been carried on since year 2000. To support the R and D of PIXE accelerator facilities in harmonize with the R and D of the PIXE hardware, the development of PIXE software for analysis is also needed. The development of database of PIXE software for analysis using turbo Pascal computer code is reported in this paper. This computer code computes the ionization cross-section, the fluorescence yield, and the stopping power of elements also it computes the coefficient attenuation of X- rays energy. The computer code is named PIXEDASIS and it is part of big computer code planed for PIXE analysis that will be constructed in the near future. PIXEDASIS is designed to be communicative with the user. It has the input from the keyboard. The output shows in the PC monitor, which also can be printed. The performance test of the PIXEDASIS shows that it can be operated well and it can provide data agreement with data form other literatures. (author)

  5. Automated importance generation and biasing techniques for Monte Carlo shielding techniques by the TRIPOLI-3 code

    International Nuclear Information System (INIS)

    Both, J.P.; Nimal, J.C.; Vergnaud, T.

    1990-01-01

    We discuss an automated biasing procedure for generating the parameters necessary to achieve efficient Monte Carlo biasing shielding calculations. The biasing techniques considered here are exponential transform and collision biasing deriving from the concept of the biased game based on the importance function. We use a simple model of the importance function with exponential attenuation as the distance to the detector increases. This importance function is generated on a three-dimensional mesh including geometry and with graph theory algorithms. This scheme is currently being implemented in the third version of the neutron and gamma ray transport code TRIPOLI-3. (author)

  6. Computer codes and methods for simulating accelerator driven systems

    International Nuclear Information System (INIS)

    Sartori, E.; Byung Chan Na

    2003-01-01

    A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)

  7. New coding technique for computer generated holograms.

    Science.gov (United States)

    Haskell, R. E.; Culver, B. C.

    1972-01-01

    A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.

  8. Development and preliminary verification of 2-D transport module of radiation shielding code ARES

    International Nuclear Information System (INIS)

    Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng

    2013-01-01

    The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)

  9. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  10. Citham-2 computer code-User manual

    International Nuclear Information System (INIS)

    Batista, J.L.

    1984-01-01

    The procedures and the input data for the Citham-2 computer code are described. It is a subroutine that modifies the nuclide concentration taking in account its burn and prepares cross sections library in 2,3 or 4 energy groups, to the used for Citation program. (E.G.) [pt

  11. Computer Security: is your code sane?

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    How many of us write code? Software? Programs? Scripts? How many of us are properly trained in this and how well do we do it? Do we write functional, clean and correct code, without flaws, bugs and vulnerabilities*? In other words: are our codes sane?   Figuring out weaknesses is not that easy (see our quiz in an earlier Bulletin article). Therefore, in order to improve the sanity of your code, prevent common pit-falls, and avoid the bugs and vulnerabilities that can crash your code, or – worse – that can be misused and exploited by attackers, the CERN Computer Security team has reviewed its recommendations for checking the security compliance of your code. “Static Code Analysers” are stand-alone programs that can be run on top of your software stack, regardless of whether it uses Java, C/C++, Perl, PHP, Python, etc. These analysers identify weaknesses and inconsistencies including: employing undeclared variables; expressions resu...

  12. Evaluation of the SCANAIR Computer Code

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali

    2001-11-01

    The SCANAIR computer code, version 3.2, has been evaluated from the standpoint of its capability to analyze, simulate and predict nuclear fuel behavior during severe power transients. SCANAIR calculates the thermal and mechanical behavior of a pressurized water reactor (PWR) fuel rod during a postulated reactivity initiated accident (RIA), and our evaluation indicates that SCANAIR is a state of the art computational tool for this purpose. Our evaluation starts by reviewing the basic theoretical models in SCANAIR, namely the governing equations for heat transfer, the mechanical response of fuel and clad, and the fission gas release behavior. The numerical methods used to solve the governing equations are briefly reviewed, and the range of applicability of the models and their limitations are discussed and illustrated with examples. Next, the main features of the SCANAIR user interface are delineated. The code requires an extensive amount of input data, in order to define burnup-dependent initial conditions to the simulated RIA. These data must be provided in a special format by a thermal-mechanical fuel rod analysis code. The user also has to supply the transient power history under RIA as input, which requires a code for neutronics calculation. The programming structure and documentation of the code are also addressed in our evaluation. SCANAIR is programmed in Fortran-77, and makes use of several general Fortran-77 libraries for handling input/output, data storage and graphical presentation of computed results. The documentation of SCANAIR and its helping libraries is generally of good quality. A drawback with SCANAIR in its present form, is that the code and its pre- and post-processors are tied to computers running the Unix or Linux operating systems. As part of our evaluation, we have performed a large number of computations with SCANAIR, some of which are documented in this report. The computations presented here include a hypothetical RIA in a high

  13. Concatenated codes for fault tolerant quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Laflamme, R.; Zurek, W.

    1995-05-01

    The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.

  14. Study and application of the ANISN and DOT 3.5 codes to problems in nuclear radiation shielding

    International Nuclear Information System (INIS)

    Otto, A.C.

    1983-01-01

    The application of the Sn transport codes ANISN and DOT 3.5 to problems in radiation shielding is reviewed. In addition, a large array of codes involved in radiation shielding calculations is described and applied in this work. The ANISN and DOT 3.5 codes solve the multigroup transport equation in plane, cylindrical and spherical geometries, the first in one dimension and the second in two dimensions, by using the Sn approximation and were designed to solve coupled neutron-photon transport problems commonly found in reactor shielding calculations. In this work the numerical methods used in these codes are reviewed and their basic application to deep-penetration and void problems is discussed. Benchmark problems are solved by employing the array of codes previously mentioned. In particular, the ability of the ISOFLUXO program coupled to the DOT 3.5 code of mapping contours of regions with approximately the same scalar fluxes is illustrated, showing that they can be efficiently used in shielding analysis. (Author) [pt

  15. Computer codes used in particle accelerator design: First edition

    International Nuclear Information System (INIS)

    1987-01-01

    This paper contains a listing of more than 150 programs that have been used in the design and analysis of accelerators. Given on each citation are person to contact, classification of the computer code, publications describing the code, computer and language runned on, and a short description of the code. Codes are indexed by subject, person to contact, and code acronym

  16. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  17. Present state of the SOURCES computer code

    International Nuclear Information System (INIS)

    Shores, Erik F.

    2002-01-01

    In various stages of development for over two decades, the SOURCES computer code continues to calculate neutron production rates and spectra from four types of problems: homogeneous media, two-region interfaces, three-region interfaces and that of a monoenergetic alpha particle beam incident on a slab of target material. Graduate work at the University of Missouri - Rolla, in addition to user feedback from a tutorial course, provided the impetus for a variety of code improvements. Recently upgraded to version 4B, initial modifications to SOURCES focused on updates to the 'tape5' decay data library. Shortly thereafter, efforts focused on development of a graphical user interface for the code. This paper documents the Los Alamos SOURCES Tape1 Creator and Library Link (LASTCALL) and describes additional library modifications in more detail. Minor improvements and planned enhancements are discussed.

  18. (Nearly) portable PIC code for parallel computers

    International Nuclear Information System (INIS)

    Decyk, V.K.

    1993-01-01

    As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes

  19. Evaluation of the FRAPCON-3 Computer Code

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali

    2002-03-01

    The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO 2 fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models

  20. Evaluation of the FRAPCON-3 Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala (Sweden)

    2002-03-01

    The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO{sub 2} fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models

  1. Effect of interpolation error in pre-processing codes on calculations of self-shielding factors and their temperature derivatives

    International Nuclear Information System (INIS)

    Ganesan, S.; Gopalakrishnan, V.; Ramanadhan, M.M.; Cullan, D.E.

    1986-01-01

    We investigate the effect of interpolation error in the pre-processing codes LINEAR, RECENT and SIGMA1 on calculations of self-shielding factors and their temperature derivatives. We consider the 2.0347 to 3.3546 keV energy region for 238 U capture, which is the NEACRP benchmark exercise on unresolved parameters. The calculated values of temperature derivatives of self-shielding factors are significantly affected by interpolation error. The sources of problems in both evaluated data and codes are identified and eliminated in the 1985 version of these codes. This paper helps to (1) inform code users to use only 1985 versions of LINEAR, RECENT, and SIGMA1 and (2) inform designers of other code systems where they may have problems and what to do to eliminate their problems. (author)

  2. Effect of interpolation error in pre-processing codes on calculations of self-shielding factors and their temperature derivatives

    International Nuclear Information System (INIS)

    Ganesan, S.; Gopalakrishnan, V.; Ramanadhan, M.M.; Cullen, D.E.

    1985-01-01

    The authors investigate the effect of interpolation error in the pre-processing codes LINEAR, RECENT and SIGMA1 on calculations of self-shielding factors and their temperature derivatives. They consider the 2.0347 to 3.3546 keV energy region for /sup 238/U capture, which is the NEACRP benchmark exercise on unresolved parameters. The calculated values of temperature derivatives of self-shielding factors are significantly affected by interpolation error. The sources of problems in both evaluated data and codes are identified and eliminated in the 1985 version of these codes. This paper helps to (1) inform code users to use only 1985 versions of LINEAR, RECENT, and SIGMA1 and (2) inform designers of other code systems where they may have problems and what to do to eliminate their problems

  3. Computer code to assess accidental pollutant releases

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Huang, J.C.

    1980-07-01

    A computer code was developed to calculate the cumulative frequency distributions of relative concentrations of an air pollutant following an accidental release from a stack or from a building penetration such as a vent. The calculations of relative concentration are based on the Gaussian plume equations. The meteorological data used for the calculation are in the form of joint frequency distributions of wind and atmospheric stability

  4. Poisson/Superfish codes for personal computers

    International Nuclear Information System (INIS)

    Humphries, S.

    1992-01-01

    The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs

  5. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  6. Computing Challenges in Coded Mask Imaging

    Science.gov (United States)

    Skinner, Gerald

    2009-01-01

    This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.

  7. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: msha12@nfri.re.kr [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)

    2016-11-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  8. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    International Nuclear Information System (INIS)

    Shim, Hee-Jin; Ha, Min-Su; Kim, Sa-Woong; Jung, Hun-Chea; Kim, Duck-Hoi

    2016-01-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K_e factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  9. SALE: Safeguards Analytical Laboratory Evaluation computer code

    International Nuclear Information System (INIS)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem

  10. A zero-dimensional EXTRAP computer code

    International Nuclear Information System (INIS)

    Karlsson, P.

    1982-10-01

    A zero-dimensional computer code has been designed for the EXTRAP experiment to predict the density and the temperature and their dependence upon paramenters such as the plasma current and the filling pressure of neutral gas. EXTRAP is a Z-pinch immersed in a vacuum octupole field and could be either linear or toroidal. In this code the density and temperature are assumed to be constant from the axis up to a breaking point from where they decrease linearly in the radial direction out to the plasma radius. All quantities, however, are averaged over the plasma volume thus giving the zero-dimensional character of the code. The particle, momentum and energy one-fluid equations are solved including the effects of the surrounding neutral gas and oxygen impurities. The code shows that the temperature and density are very sensitive to the shape of the plasma, flatter profiles giving higher temperatures and densities. The temperature, however, is not strongly affected for oxygen concentration less than 2% and is well above the radiation barrier even for higher concentrations. (Author)

  11. SKEMA - A computer code to estimate atmospheric dispersion

    International Nuclear Information System (INIS)

    Sacramento, A.M. do.

    1985-01-01

    This computer code is a modified version of DWNWND code, developed in Oak Ridge National Laboratory. The Skema code makes an estimative of concentration in air of a material released in atmosphery, by ponctual source. (C.M.) [pt

  12. The MESORAD dose assessment model: Computer code

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.

    1988-10-01

    MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs

  13. Neutron spectrum unfolding using computer code SAIPS

    International Nuclear Information System (INIS)

    Karim, S.

    1999-01-01

    The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)

  14. Resonance self-shielding methodology of new neutron transport code STREAM

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung; Hong, Ser Gi

    2015-01-01

    This paper reports on the development and verification of three new resonance self-shielding methods. The verifications were performed using the new neutron transport code, STREAM. The new methodologies encompass the extension of energy range for resonance treatment, the development of optimum rational approximation, and the application of resonance treatment to isotopes in the cladding region. (1) The extended resonance energy range treatment has been developed to treat the resonances below 4 eV of three resonance isotopes and shows significant improvements in the accuracy of effective cross sections (XSs) in that energy range. (2) The optimum rational approximation can eliminate the geometric limitations of the conventional approach of equivalence theory and can also improve the accuracy of fuel escape probability. (3) The cladding resonance treatment method makes it possible to treat resonances in cladding material which have not been treated explicitly in the conventional methods. These three new methods have been implemented in the new lattice physics code STREAM and the improvement in the accuracy of effective XSs is demonstrated through detailed verification calculations. (author)

  15. Computer code for quantitative ALARA evaluations

    International Nuclear Information System (INIS)

    Voilleque, P.G.

    1984-01-01

    A FORTRAN computer code has been developed to simplify the determination of whether dose reduction actions meet the as low as is reasonably achievable (ALARA) criterion. The calculations are based on the methodology developed for the Atomic Industrial Forum. The code is used for analyses of eight types of dose reduction actions, characterized as follows: reduce dose rate, reduce job frequency, reduce productive working time, reduce crew size, increase administrative dose limit for the task, and increase the workers' time utilization and dose utilization through (a) improved working conditions, (b) basic skill training, or (c) refresher training for special skills. For each type of action, two analysis modes are available. The first is a generic analysis in which the program computes potential benefits (in dollars) for a range of possible improvements, e.g., for a range of lower dose rates. Generic analyses are most useful in the planning stage and for evaluating the general feasibility of alternative approaches. The second is a specific analysis in which the potential annual benefits of a specific level of improvement and the annual implementation cost are compared. The potential benefits reflect savings in operational and societal costs that can be realized if occupational radiation doses are reduced. Because the potential benefits depend upon many variables which characterize the job, the workplace, and the workers, there is no unique relationship between the potential dollar savings and the dose savings. The computer code permits rapid quantitative analyses of alternatives and is a tool that supplements the health physicist's professional judgment. The program output provides a rational basis for decision-making and a record of the assumptions employed

  16. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  17. Statistical theory applications and associated computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    The general format is along the same lines as that used in the O.M. Session, i.e. an introduction to the nature of the physical problems and methods of solution based on the statistical model of the nucleus. Both binary and higher multiple reactions are considered. The computer codes used in this session are a combination of optical model and statistical theory. As with the O.M. sessions, the preparation of input and analysis of output are thoroughly examined. Again, comparison with experimental data serves to demonstrate the validity of the results and possible areas for improvement. (author)

  18. Characterization of a lead breast shielding for dose reduction in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Paula Duarte; Brochi, Marco Aurelio Corte; Azevedo-Marques, Paulo Mazzoncini de, E-mail: pauladuarte@usp.br [Universidade de Sao Paulo (FM/RSP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina; Granzotti, Cristiano Roberto Fabri; Santos, Yago da Silva [Universidade de Sao Paulo (FFCLRP/RSP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    2014-07-15

    Objective: several studies have been published regarding the use of bismuth shielding to protect the breast in computed tomography (CT) scans and, up to the writing of this article, only one publication about barium shielding was found. The present study was aimed at characterizing, for the first time, a lead breast shielding. Materials and methods: the percentage dose reduction and the influence of the shielding on quantitative imaging parameters were evaluated. Dose measurements were made on a CT equipment with the aid of specific phantoms and radiation detectors. A processing software assisted in the qualitative analysis evaluating variations in average CT number and noise on images. Results: the authors observed a reduction in entrance dose by 30% and in CTDIvol by 17%. In all measurements, in agreement with studies in the literature, the utilization of cotton fiber as spacer object reduced significantly the presence of artifacts on the images. All the measurements demonstrated increase in the average CT number and noise on the images with the presence of the shielding. Conclusion: as expected, the data observed with the use of lead shielding were of the same order as those found in the literature about bismuth shielding. (author)

  19. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography

    International Nuclear Information System (INIS)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-01-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO"R phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500"R, ProMax"R 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax"R 3D with shielding, the ED was 149 μSv, and for the examination protocol without shielding 148 μSv (SD = 0.31 μSv). For the CS 9500"R, the ED was 88 and 86 μSv (SD = 0.95 μSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. (authors)

  1. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  2. RADHEAT-V4: a code system to generate multigroup constants and analyze radiation transport for shielding safety evaluation

    International Nuclear Information System (INIS)

    Yamano, Naoki; Minami, Kazuyoshi; Koyama, Kinji; Naito, Yoshitaka.

    1989-03-01

    A modular code system RADHEAT-V4 has been developed for performing precisely neutron and photon transport analyses, and shielding safety evaluations. The system consists of the functional modules for producing coupled multi-group neutron and photon cross section sets, for analyzing the neutron and photon transport, and for calculating the atom displacement and the energy deposition due to radiations in nuclear reactor or shielding material. A precise method named Direct Angular Representation (DAR) has been developed for eliminating an error associated with the method of the finite Legendre expansion in evaluating angular distributions of cross sections and radiation fluxes. The DAR method implemented in the code system has been described in detail. To evaluate the accuracy and applicability of the code system, some test calculations on strong anisotropy problems have been performed. From the results, it has been concluded that RADHEAT-V4 is successfully applicable to evaluating shielding problems accurately for fission and fusion reactors and radiation sources. The method employed in the code system is very effective in eliminating negative values and oscillations of angular fluxes in a medium having an anisotropic source or strong streaming. Definitions of the input data required in various options of the code system and the sample problems are also presented. (author)

  3. Development of Probabilistic Internal Dosimetry Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Siwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Tae-Eun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Jai-Ki [Korean Association for Radiation Protection, Seoul (Korea, Republic of)

    2017-02-15

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5{sup th}, 5{sup th}, median, 95{sup th}, and 97.5{sup th} percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various

  4. Development of Probabilistic Internal Dosimetry Computer Code

    International Nuclear Information System (INIS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-01-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5 th , 5 th , median, 95 th , and 97.5 th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases

  5. Evaluation using Monte Carlo simulations, of the effect of a shielding, called external shielding, for fotoneutrons generated in linear accelerators, using the computational model of Varian accelerator 2300 C/D operating in eight rotation angles of the GA

    International Nuclear Information System (INIS)

    Silva, Hugo R.; Silva, Ademir X.; Rebello, Wilson F.; Silva, Maria G.

    2011-01-01

    This paper aims to present the results obtained by Monte Carlo simulation of the effect of shielding against neutrons, called External Shielding, to be placed on the heads of linear accelerators used in radiotherapy. For this, it was used the radiation transport code Monte Carlo N-Particle - MCNPX, in which were developed computational model of the head of the linear accelerator Varian 2300 C/D. The equipment was simulated within a bunker, operating at energies of 10, 15 and 18 MV, considering the rotation of the gantry at eight different angles ( 0 deg, 45 deg, 90 deg, 135 deg, 180 deg, 225 deg, 270 deg and 315 deg), in all cases, the equipment was modeled without and with the shielding positioned attached to the head of the accelerator on its bottom. In each of these settings, it was calculated the Ambient Dose Equivalent due to neutron H * (10)n on points situated in the region of the patient (region of interest for evaluation of undesirable neutron doses on the patient) and in the maze of radiotherapy room (region of interest for shielding the access door to the bunker). It was observed for all energies of equipment operation as well as for all angles of inclination of the gantry, a significant reduction in the values of H * (10) n when the equipment operated with the external shielding, both in the region of the patient as in the region of the maze. (author)

  6. AMZ, library of multigroup constants for EXPANDA computer codes, generated by NJOY computer code from ENDF/B-IV

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Moraes, M. de.

    1984-01-01

    A 70-group, 37-isotope library of multigroup constants for fast reactor nuclear design calculations is described. Nuclear cross sections, transfer matrices, and self-shielding factors were generated with NJOY code and an auxiliary program RGENDF using evaluated data from ENDF/B-IV. The output is being issued in a format suitable for EXPANDA code. Comparisons with JFS-2 library, as well as, test resuls for 14 CSEWG benchmark critical assemblies are presented. (Author) [pt

  7. 40 CFR 194.23 - Models and computer codes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  8. Shielding calculations for neutron calibration bunker using Monte Carlo code MCNP-4C

    International Nuclear Information System (INIS)

    Suman, H.; Kharita, M. H.; Yousef, S.

    2008-02-01

    In this work, the dose arising from an Am-Be source of 10 8 neutron/sec strength located inside the newly constructed neutron calibration bunker in the National Radiation Metrology Laboratories, was calculated using MCNP-4C code. It was found that the shielding of the neutron calibration bunker is sufficient. As the calculated dose is not expected to exceed in inhabited areas 0.183 μSv/hr, which is 10 times smaller than the regulatory dose constraints. Hence, it can be concluded that the calibration bunker can house - from the external exposure point of view - an Am-Be neutron source of 10 9 neutron/sec strength. It turned out that the neutron dose from the source is few times greater than the photon dose. The sky shine was found to contribute significantly to the total dose. This contribution was estimated to be 60% of the neutron dose and 10% of the photon dose. The systematic uncertainties due to various factors have been assessed and was found to be between 4 and 10% due to concrete density variations; 15% due to the dose estimation method; 4 -10% due to weather variations (temperature and moisture). The calculated dose was highly sensitive to the changes in source spectra. The uncertainty due to the use of two different neutron spectra is about 70%.(author)

  9. Electron Cloud Buildup Characterization Using Shielded Pickup Measurements and Custom Modeling Code at CESRTA

    CERN Document Server

    Crittenden, James A

    2013-01-01

    The Cornell Electron Storage Ring Test Accelerator experimental program includes investigations into electron cloud buildup, applying various mitigation techniques in custom vacuum chambers. Among these are two 1.1-m-long sections located symmetrically in the east and west arc regions. These chambers are equipped with pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of small holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. Carbon-coated, TiN-coated and uncoated aluminum chambers have been tested. Electron and positron beams of 2.1, 4.0 and 5.3 GeV with a variety of bunch populations and spacings in steps of 4 and 14 ns have been used. Here we report on results from the ECLOUD modeling code which highlight the sensitivity of these measurements to the physical phenomena determining cloud buildup such as the photoelectron produ...

  10. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  11. Computational models for electromagnetic transients in ITER vacuum vessel, cryostat and thermal shield

    International Nuclear Information System (INIS)

    Alekseev, A.; Arslanova, D.; Belov, A.; Belyakov, V.; Gapionok, E.; Gornikel, I.; Gribov, Y.; Ioki, K.; Kukhtin, V.; Lamzin, E.; Sugihara, M.; Sychevsky, S.; Terasawa, A.; Utin, Y.

    2013-01-01

    A set of detailed computational models are reviewed that covers integrally the system “vacuum vessel (VV), cryostat, and thermal shields (TS)” to study transient electromagnetics (EMs) in the ITER machine. The models have been developed in the course of activities requested and supervised by the ITER Organization. EM analysis is enabled for all ITER operational scenarios. The input data are derived from results of DINA code simulations. The external EM fields are modeled accurate to the input data description. The known magnetic shell approach can be effectively applied to simulate thin-walled structures of the ITER machine. Using an integral–differential formulation, a single unknown is determined within the shells in terms of the vector electric potential taken only at the nodes of a finite-element (FE) mesh of the conducting structures. As a result, the FE mesh encompasses only the system “VV + Cryostat + TS”. The 3D model requires much higher computational resources as compared to a shell model based on the equivalent approximation. The shell models have been developed for all principal conducting structures in the system “VV + Cryostat + TS” including regular ports and neutral beam ports. The structures are described in details in accordance with the latest design. The models have also been applied for simulations of EM transients in components of diagnostic systems and cryopumps and estimation of the 3D effects of the ITER structures on the plasma performance. The developed models have been elaborated and applied for the last 15 years to support the ITER design activities. The finalization of the ITER VV design enables this set of models to be considered ready to use in plasma-physics computations and the development of ITER simulators

  12. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  13. A surface code quantum computer in silicon

    Science.gov (United States)

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  14. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  15. New developments in resonant mixture self-shielding treatment with Apollo code and application to Jules Horowitz reactor core calculation

    International Nuclear Information System (INIS)

    Coste-Delclaux, M.; Aggery, A.; Huot, N.

    2005-01-01

    APOLLO2 is a modular multigroup transport code developed by Cea in Saclay. Until last year, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Last year, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The calculations of a simplified Jules Horowitz reactor using a Monte-Carlo code (TRIPOLI4) as a reference and APOLLO2 in its standard and improved versions, show that, as far as the effective multiplication factor is concerned, the mixture treatment does not bring an improvement, because the new treatment suppresses compensation between the reaction rate discrepancies. The discrepancy of 300 pcm that appears with the reference calculation is in accordance with the technical specifications of the Jules Horowitz reactor

  16. MINIMARS interim report appendix halo model and computer code

    International Nuclear Information System (INIS)

    Santarius, J.F.; Barr, W.L.; Deng, B.Q.; Emmert, G.A.

    1985-01-01

    A tenuous, cool plasma called the halo shields the core plasma in a tandem mirror from neutral gas and impurities. The neutral particles are ionized and then pumped by the halo to the end tanks of the device, since flow of plasma along field lines is much faster than radial flow. Plasma reaching the end tank walls recombines, and the resulting neutral gas is vacuum pumped. The basic geometry of the MINIMARS halo is shown. For halo modeling purposes, the core plasma and cold gas regions may be treated as single radial zones leading to halo source and sink terms. The halo itself is differential into two major radial zones: halo scraper and halo dump. The halo scraper zone is defined by the radial distance required for the ion end plugging potential to drop to the central cell value, and thus have no effect on axial confinement; this distance is typically a sloshing plug ion Larmor diameter. The outer edge of the halo dump zone is defined by the last central cell flux tube to pass through the choke coil. This appendix will summarize the halo model that has been developed for MINIMARS and the methodology used in implementing that model as a computer code

  17. Determination of the exposure speed of radiation emitted by the linear accelerator, using the code MCNP5 to evaluate the radiotherapy room shields of ABC Hospital

    International Nuclear Information System (INIS)

    Corral B, J. R.

    2015-01-01

    Humans should avoid exposure to radiation, because the consequences are harmful to health. Although there are different emission sources of radiation, generated by medical devices they are usually of great interest, since people who attend hospitals are exposed in one way or another to ionizing radiation. Therefore, is important to conduct studies on radioactive levels that are generated in hospitals, as a result of the use of medical equipment. To determine levels of exposure speed of a radioactive facility there are different methods, including the radiation detector and computational method. This thesis uses the computational method. With the program MCNP5 was determined the speed of the radiation exposure in the radiotherapy room of Cancer Center of ABC Hospital in Mexico City. In the application of computational method, first the thicknesses of the shields were calculated, using variables as: 1) distance from the shield to the source; 2) desired weekly equivalent dose; 3) weekly total dose equivalent emitted by the equipment; 4) occupation and use factors. Once obtained thicknesses, we proceeded to model the bunker using the mentioned program. The program uses the Monte Carlo code to probabilistic ally determine the phenomena of interaction of radiation with the shield, which will be held during the X-ray emission from the linear accelerator. The results of computational analysis were compared with those obtained experimentally with the detection method, for which was required the use of a Geiger-Muller counter and the linear accelerator was programmed with an energy of 19 MV with 500 units monitor positioning the detector in the corresponding boundary. (Author)

  18. Development of computer code in PNC, 3

    International Nuclear Information System (INIS)

    Ohtaki, Akira; Ohira, Hiroaki

    1990-01-01

    Super-COPD, a code which is integrated by calculation modules, has been developed in order to evaluate kinds of dynamics of LMFBR plant by improving COPD. The code involves all models and its advanced models of COPD in module structures. The code makes it possible to simulate the system dynamics of LMFBR plant of any configurations and components. (author)

  19. Shield verification and validation action matrix summary

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed

  20. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE

  1. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  2. Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes

    International Nuclear Information System (INIS)

    Harrisson, G.; Marleau, G.

    2012-01-01

    The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)

  3. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  4. New computational methods used in the lattice code DRAGON

    International Nuclear Information System (INIS)

    Marleau, G.; Hebert, A.; Roy, R.

    1992-01-01

    The lattice code DRAGON is used to perform transport calculations inside cells and assemblies for multidimensional geometry using the collision probability method, including the interface current and J ± techniques. Typical geometries that can be treated using this code include CANDU 2-dimensional clusters, CANDU 3-dimensional assemblies, pressurized water reactor (PWR) rectangular and hexagonal assemblies. It contains a self-shielding module for the treatment of microscopic cross section libraries and a depletion module for burnup calculations. DRAGON was written in a modular form in such a way as to accept easily new collision probability options and make them readily available to all the modules that require collision probability matrices like the self-shielding module, the flux solution module and the homogenization module. In this paper the authors present an overview of DRAGON and discuss some of the methods that were implemented in DRAGON in order to improve on its performance

  5. Hamor-2: a computer code for LWR inventory calculation

    International Nuclear Information System (INIS)

    Guimaraes, L.N.F.; Marzo, M.A.S.

    1985-01-01

    A method for calculating the accuracy inventory of LWR reactors is presented. This method uses the Hamor-2 computer code. Hamor-2 is obtained from the coupling of two other computer codes Hammer-Techion and Origen-2 for testing Hamor-2, its results were compared to concentration values measured from activides of two PWR reactors; Kernkraftwerk Obrighein (KWO) and H.B. Robinson (HBR). These actinides are U 235 , U 236 , U 238 , Pu 239 , Pu 241 and PU 242 . The computer code Hammor-2 shows better results than the computer code Origem-2, when both are compared with experimental results. (E.G.) [pt

  6. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)

  7. Use of computer codes for system reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).

  8. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  9. Verification of SACI-2 computer code comparing with experimental results of BIBLIS-A and LOOP-7 computer code

    International Nuclear Information System (INIS)

    Soares, P.A.; Sirimarco, L.F.

    1984-01-01

    SACI-2 is a computer code created to study the dynamic behaviour of a PWR nuclear power plant. To evaluate the quality of its results, SACI-2 was used to recalculate commissioning tests done in BIBLIS-A nuclear power plant and to calculate postulated transients for Angra-2 reactor. The results of SACI-2 computer code from BIBLIS-A showed as much good agreement as those calculated with the KWU Loop 7 computer code for Angra-2. (E.G.) [pt

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files

  11. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  12. Computer-modeling codes to improve exploration nuclear-logging methods. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Wilson, R.D.; Price, R.K.; Kosanke, K.L.

    1983-03-01

    As part of the Department of Energy's National Uranium Resource Evaluation (NURE) project's Technology Development effort, a number of computer codes and accompanying data bases were assembled for use in modeling responses of nuclear borehole logging Sondes. The logging methods include fission neutron, active and passive gamma-ray, and gamma-gamma. These CDC-compatible computer codes and data bases are available on magnetic tape from the DOE Technical Library at its Grand Junction Area Office. Some of the computer codes are standard radiation-transport programs that have been available to the radiation shielding community for several years. Other codes were specifically written to model the response of borehole radiation detectors or are specialized borehole modeling versions of existing Monte Carlo transport programs. Results from several radiation modeling studies are available as two large data bases (neutron and gamma-ray). These data bases are accompanied by appropriate processing programs that permit the user to model a wide range of borehole and formation-parameter combinations for fission-neutron, neutron-, activation and gamma-gamma logs. The first part of this report consists of a brief abstract for each code or data base. The abstract gives the code name and title, short description, auxiliary requirements, typical running time (CDC 6600), and a list of references. The next section gives format specifications and/or directory for the tapes. The final section of the report presents listings for programs used to convert data bases between machine floating-point and EBCDIC

  13. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  14. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  15. Computer codes for neutron data evaluation

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1979-01-01

    Data compilation codes such as NESTOR and REPSTOR, and NDES (Neutron Data Evaluation System) are mainly discussed. NDES is a code for neutron data evaluation using a TSS terminal, TEKTRONIX 4014. Users of NDES can perform plotting of data and calculation with nuclear models under conversational mode. (author)

  16. Potential of the MCNP computer code

    International Nuclear Information System (INIS)

    Kyncl, J.

    1995-01-01

    The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs

  17. Control rod computer code IAMCOS: general theory and numerical methods

    International Nuclear Information System (INIS)

    West, G.

    1982-11-01

    IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr

  18. Implantation of FRAPCON-2 code in HB computer

    International Nuclear Information System (INIS)

    Silva, C.F. da.

    1987-05-01

    The modifications carried out for implanting FRAPCON-2 computer code in the HB DPS-T7 computer are presented. The FRAPCON-2 code calculates thermo-mechanical response during long period of burnup in stationary state for fuel rods of PWR type reactors. (M.C.K.)

  19. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross

  20. The SEDA computer code and its utilization for Angra 1

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1988-11-01

    The implementation of SEDA 2.0 computer code, developed at Ezeiza Atomic Center, Argentine for Angra 1 reactor is described. The SEDA code gives an estimate for radiological consequences of nuclear accidents with release of radiactive materials for the environment. This code is now available for an IBM PC-XT. The computer environment, the files used, data, the programining structure and the models used are presented. The input data and results for two sample case are described. (author) [pt

  1. Automatic generation of 3D fine mesh geometries for the analysis of the venus-3 shielding benchmark experiment with the Tort code

    International Nuclear Information System (INIS)

    Pescarini, M.; Orsi, R.; Martinelli, T.

    2003-01-01

    In many practical radiation transport applications today the cost for solving refined, large size and complex multi-dimensional problems is not so much computing but is linked to the cumbersome effort required by an expert to prepare a detailed geometrical model, verify and validate that it is correct and represents, to a specified tolerance, the real design or facility. This situation is, in particular, relevant and frequent in reactor core criticality and shielding calculations, with three-dimensional (3D) general purpose radiation transport codes, requiring a very large number of meshes and high performance computers. The need for developing tools that make easier the task to the physicist or engineer, by reducing the time required, by facilitating through effective graphical display the verification of correctness and, finally, that help the interpretation of the results obtained, has clearly emerged. The paper shows the results of efforts in this field through detailed simulations of a complex shielding benchmark experiment. In the context of the activities proposed by the OECD/NEA Nuclear Science Committee (NSC) Task Force on Computing Radiation Dose and Modelling of Radiation-Induced Degradation of Reactor Components (TFRDD), the ENEA-Bologna Nuclear Data Centre contributed with an analysis of the VENUS-3 low-flux neutron shielding benchmark experiment (SCK/CEN-Mol, Belgium). One of the targets of the work was to test the BOT3P system, originally developed at the Nuclear Data Centre in ENEA-Bologna and actually released to OECD/NEA Data Bank for free distribution. BOT3P, ancillary system of the DORT (2D) and TORT (3D) SN codes, permits a flexible automatic generation of spatial mesh grids in Cartesian or cylindrical geometry, through combinatorial geometry algorithms, following a simplified user-friendly approach. This system demonstrated its validity also in core criticality analyses, as for example the Lewis MOX fuel benchmark, permitting to easily

  2. Efficacy of Lower-Body Shielding in Computed Tomography Fluoroscopy-Guided Interventions

    International Nuclear Information System (INIS)

    Mahnken, Andreas H.; Sedlmair, Martin; Ritter, Christine; Banckwitz, Rosemarie; Flohr, Thomas

    2012-01-01

    Purpose: Computed tomography (CT) fluoroscopy-guided interventions pose relevant radiation exposure to the interventionalist. The goal of this study was to analyze the efficacy of lower-body shielding as a simple structural method for decreasing radiation dose to the interventionalist without limiting access to the patient. Material and Methods: All examinations were performed with a 128-slice dual source CT scanner (12 × 1.2-mm collimation; 120 kV; and 20, 40, 60, and 80 mAs) and an Alderson-Rando phantom. Scatter radiation was measured with an ionization chamber and a digital dosimeter at standardized positions and heights with and without a lower-body lead shield (0.5-mm lead equivalent; Kenex, Harlow, UK). Dose decreases were computed for the different points of measurement. Results: On average, lower-body shielding decreased scatter radiation by 38.2% within a 150-cm radius around the shielding. This decrease is most significant close to the gantry opening and at low heights of 50 and 100 cm above the floor with a maximum decrease of scatter radiation of 95.9% close to the scanner’s isocentre. With increasing distance to the gantry opening, the effect decreased. There is almost no dose decrease effect at ≥150 above the floor. Scatter radiation and its decrease were linearly correlated with the tube current-time product (r 2 = 0.99), whereas percent scatter radiation decrease was independent of the tube current-time product. Conclusion: Lower-body shielding is an effective way to decrease radiation exposure to the interventionalist and should routinely be used in CT fluoroscopy-guided interventions.

  3. APC: A new code for Atmospheric Polarization Computations

    International Nuclear Information System (INIS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2013-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed

  4. Computer and compiler effects on code results: status report

    International Nuclear Information System (INIS)

    1996-01-01

    Within the framework of the international effort on the assessment of computer codes, which are designed to describe the overall reactor coolant system (RCS) thermalhydraulic response, core damage progression, and fission product release and transport during severe accidents, there has been a continuous debate as to whether the code results are influenced by different code users or by different computers or compilers. The first aspect, the 'Code User Effect', has been investigated already. In this paper the other aspects will be discussed and proposals are given how to make large system codes insensitive to different computers and compilers. Hardware errors and memory problems are not considered in this report. The codes investigated herein are integrated code systems (e. g. ESTER, MELCOR) and thermalhydraulic system codes with extensions for severe accident simulation (e. g. SCDAP/RELAP, ICARE/CATHARE, ATHLET-CD), and codes to simulate fission product transport (e. g. TRAPMELT, SOPHAEROS). Since all of these codes are programmed in Fortran 77, the discussion herein is based on this programming language although some remarks are made about Fortran 90. Some observations about different code results by using different computers are reported and possible reasons for this unexpected behaviour are listed. Then methods are discussed how to avoid portability problems

  5. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  6. Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography

    International Nuclear Information System (INIS)

    Jung, Mi Young; Kweon, Dae Cheol; Kwon, Soo Il

    2009-01-01

    The purpose of our study was to determine the eye radiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lens shielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eye with the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lens without qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  7. Monteray Mark-I: Computer program (PC-version) for shielding calculation with Monte Carlo method

    International Nuclear Information System (INIS)

    Pudjijanto, M.S.; Akhmad, Y.R.

    1998-01-01

    A computer program for gamma ray shielding calculation using Monte Carlo method has been developed. The program is written in WATFOR77 language. The MONTERAY MARH-1 is originally developed by James Wood. The program was modified by the authors that the modified version is easily executed. Applying Monte Carlo method the program observe photon gamma transport in an infinity planar shielding with various thick. A photon gamma is observed till escape from the shielding or when its energy less than the cut off energy. Pair production process is treated as pure absorption process that annihilation photons generated in the process are neglected in the calculation. The out put data calculated by the program are total albedo, build-up factor, and photon spectra. The calculation result for build-up factor of a slab lead and water media with 6 MeV parallel beam gamma source shows that they are in agreement with published data. Hence the program is adequate as a shielding design tool for observing gamma radiation transport in various media

  8. A Comparative Study of RCS Computation Codes

    National Research Council Canada - National Science Library

    Tong, Chia T; Wah, Ang T; Hwee, Lim K; Philip, Ou S; Heng, Yar K; Rowse, David; Amos, Matthew; Keen, Alan; Pegg, Neil; Thain, Andrew

    2005-01-01

    .... The first test object is a (fictitious) generic missile. It provides a test problem for benchmarking the performance of CEM codes on geometries containing real world deficiencies, such as thin bodies and sharp corners...

  9. Monte Carlo computation of Bremsstrahlung intensity and energy spectrum from a 15 MV linear electron accelerator tungsten target to optimise LINAC head shielding

    International Nuclear Information System (INIS)

    Biju, K.; Sharma, Amiya; Yadav, R.K.; Kannan, R.; Bhatt, B.C.

    2003-01-01

    The knowledge of exact photon intensity and energy distributions from the target of an electron target is necessary while designing the shielding for the accelerator head from radiation safety point of view. The computations were carried out for the intensity and energy distribution of photon spectrum from a 0.4 cm thick tungsten target in different angular directions for 15 MeV electrons using a validated Monte Carlo code MCNP4A. Similar results were computed for 30 MeV electrons and found agreeing with the data available in literature. These graphs and the TVT values in lead help to suggest an optimum shielding thickness for 15 MV Linac head. (author)

  10. Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code

    International Nuclear Information System (INIS)

    Dong, M.G.; El-Mallawany, R.; Sayyed, M.I.; Tekin, H.O.

    2017-01-01

    Gamma ray shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses, where A n O m is Nb 2 O 5 = 0.01, 5, Nd 2 O 3 = 3, 5 and Er 2 O 3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy. - Highlights: • The shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses were evaluated. • WinXCom program and MCNP simulation codes were used in the calculations. • Good agreement was noticed between the WinXCom and MCNP5 code results.

  11. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    Science.gov (United States)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  12. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  13. Computer-assisted Particle-in-Cell code development

    International Nuclear Information System (INIS)

    Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.

    1997-12-01

    This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)

  14. Fast Computation of Pulse Height Spectra Using SGRD Code

    Directory of Open Access Journals (Sweden)

    Humbert Philippe

    2017-01-01

    Full Text Available SGRD (Spectroscopy, Gamma rays, Rapid, Deterministic code is used for fast calculation of the gamma ray spectrum produced by a spherical shielded source and measured by a detector. The photon source lines originate from the radioactive decay of the unstable isotopes. The emission rate and spectrum of these primary sources are calculated using the DARWIN code. The leakage spectrum is separated in two parts, the uncollided component is transported by ray-tracing and the scattered component is calculated using a multigroup discrete ordinates method. The pulsed height spectrum is then simulated by folding the leakage spectrum with the detector response functions which are pre-calculated using MCNP5 code for each considered detector type. An application to the simulation of the gamma spectrum produced by a natural uranium ball coated with plexiglass and measured using a NaI detector is presented.

  15. The self shielding module of Apollo.II; Module d`autoprotection du code Apollo.II

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.

    1994-06-01

    This note discusses the methods used in the APOLLO.II code for the calculation of self shielded multigroup cross sections. Basically, the calculation consists in characterizing a heterogenous medium with a single parameter: the background cross section, which is in then used to interpolate reaction rates from pre tabulated values. Very fine multigroup slowing down calculations in homogenous media are used to generate these tables, which contain absorption, diffusion and production reaction rates per group, resonant isotope, temperature and background cross section. Multigroup self shielded cross sections are determined from an equivalence that preserves absorption rates at a slowing down problem with given sources. This article gives a detailed description of the PIC and ``dilution matrix`` formalisms that are used in the homogenization step, as well as the utilization of Bell macro-groups and the different quadrature formulas that may be used in the calculations. Self shielding techniques for isotopic resonant mixtures are also discussed. (author). 2 refs., 193 figs., 2 tabs.

  16. Three-Dimensional (X,Y,Z) Deterministic Analysis of the PCA-Replica Neutron Shielding Benchmark Experiment using the TORT-3.2 Code and Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    OpenAIRE

    Pescarini Massimo; Orsi Roberto; Frisoni Manuela

    2016-01-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with ...

  17. On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul, Lez Durance (France); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy)

    2016-11-01

    Highlights: • A benchmarking activity has been carried out focusing the attention on the cooling circuits of ITER Shield Blocks #08 and #14. • A theoretical-computational fluid-dynamic approach based on the Finite Volume Method has been followed, adopting a commercial code. • Hydraulic characteristic functions and spatial distributions of coolant mass flow rate, velocity and pressure drop have been assessed. • Results obtained have allowed code benchmarking for Blanket modules and the numerical predictions have been found to be generally lower than but quite close to the experimental results (lower than 10%). - Abstract: As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in the outlet pipes, maximum allowable water velocity lower than 7 m/s in manifold pipes. Furthermore the overall pressure drop and flow rate in each BM shall be within the fixed specified design limit to avoid an unduly unbalance of cooling among the 440 modules. Analyses have to be carried out following a computational fluid-dynamic (CFD) approach based on the finite volume method and adopting a CFD commercial code to assess the thermal-hydraulic behaviour of each single circuit of the ITER blanket cooling system. This paper describes the code benchmarking needed to determine the best method to get reliable and timely results. Since experimental tests are

  18. Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Pedersen, Morten V.

    is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... the coding operations must be performed in a particular way, which we introduce. Finally we evaluate the suggested system and find that the amount of coding can be significantly reduced both at nodes that recode and decode.......This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...

  19. PORPST: A statistical postprocessor for the PORMC computer code

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Didier, B.T.

    1991-06-01

    This report describes the theory underlying the PORPST code and gives details for using the code. The PORPST code is designed to do statistical postprocessing on files written by the PORMC computer code. The data written by PORMC are summarized in terms of means, variances, standard deviations, or statistical distributions. In addition, the PORPST code provides for plotting of the results, either internal to the code or through use of the CONTOUR3 postprocessor. Section 2.0 discusses the mathematical basis of the code, and Section 3.0 discusses the code structure. Section 4.0 describes the free-format point command language. Section 5.0 describes in detail the commands to run the program. Section 6.0 provides an example program run, and Section 7.0 provides the references. 11 refs., 1 fig., 17 tabs

  20. SIMCRI: a simple computer code for calculating nuclear criticality parameters

    International Nuclear Information System (INIS)

    Nakamaru, Shou-ichi; Sugawara, Nobuhiko; Naito, Yoshitaka; Katakura, Jun-ichi; Okuno, Hiroshi.

    1986-03-01

    This is a user's manual for a simple criticality calculation code SIMCRI. The code has been developed to facilitate criticality calculation on a single unit of nuclear fuel. SIMCRI makes an extensive survey with a little computing time. Cross section library MGCL for SIMCRI is the same one for the Monte Carlo criticality code KENOIV; it is, therefore, easy to compare the results of the two codes. SIMCRI solves eigenvalue problems and fixed source problems based on the one space point B 1 equation. The results include infinite and effective multiplication factor, critical buckling, migration area, diffusion coefficient and so on. SIMCRI is comprised in the criticality safety evaluation code system JACS. (author)

  1. Validation of a new 39 neutron group self-shielded library based on the nucleonics analysis of the Lotus fusion-fission hybrid test facility performed with the Monte Carlo code

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.

    1985-02-01

    The Swiss LOTUS fusion-fission hybrid test facility was used to investigate the influence of the self-shielding of resonance cross sections on the tritium breeding and on the thorium ratios. Nucleonic analyses were performed using the discrete-ordinates transport codes ANISN and ONEDANT, the surface-flux code SURCU, and the version 3 of the MCNP code for the Li 2 CO 3 and the Li 2 O blanket designs with lead, thorium and beryllium multipliers. Except for the MCNP calculation which bases on the ENDF/B-V files, all nuclear data are generated from the ENDF/B-IV basic library. For the deterministic methods three NJOY group libraries were considered. The first, a 39 neutron group self-shielded library, was generated at EIR. The second bases on the same group structure as the first does and consists of infinitely diluted cross sections. Finally the third library was processed at LANL and consists of coupled 30+12 neutron and gamma groups; these cross sections are not self-shielded. The Monte Carlo analysis bases on a continuous and on a discrete 262 group library from the ENDF/B-V evaluation. It is shown that the results agree well within 3% between the unshielded libraries and between the different transport codes and theories. The self-shielding of resonance cross sections results in a decrease of the thorium capture rate and in an increase of the tritium breeding of about 6%. The remaining computed ratios are not affected by the self-shielding of cross sections. (Auth.)

  2. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  3. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  4. Analysis of the ITER computational shielding benchmark with the Monte Carlo TRIPOLI-4{sup ®} neutron gamma coupled calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yi-Kang, E-mail: yi-kang.lee@cea.fr

    2016-11-01

    Highlights: • Verification and validation of TRIPOLI-4 radiation transport calculations for ITER shielding benchmark. • Evaluation of CEA-V5.1.1 and FENDL-3.0 nuclear data libraries on D–T fusion neutron continuous energy transport calculations. • Advances in nuclear analyses for nuclear heating and radiation damage in iron. • This work also demonstrates that the “safety factors” concept is necessary in the nuclear analyses of ITER. - Abstract: With the growing interest in using the continuous-energy TRIPOLI-4{sup ®} Monte Carlo radiation transport code for ITER applications, a key issue that arises is whether or not the released TRIPOLI-4 code and its associated nuclear data libraries are verified and validated for the D–T fusion neutronics calculations. Previous published benchmark results of TRIPOLI-4 code on the ITER related activities have concentrated on the first wall loading, the reactor dosimetry, the nuclear heating, and the tritium breeding ratio. To enhance the TRIPOLI-4 verification and validation on neutron-gamma coupled calculations for fusion device application, the computational ITER shielding benchmark of M. E. Sawan was performed in this work by using the 2013 released TRIPOLI-4.9S code and the associated CEA-V5.1.1 data library. First wall, blanket, vacuum vessel and toroidal field magnet of the inboard and outboard components were fully modelled in this 1-D toroidal cylindrical benchmark. The 14.1 MeV source neutrons were sampled from a uniform isotropic distribution in the plasma zone. Nuclear responses including neutron and gamma fluxes, nuclear heating, and material damage indicator were benchmarked against previous published results. The capabilities of the TRIPOLI-4 code on the evaluation of above physics parameters were presented. The nuclear data library from the new FENDL-3.0 evaluation was also benchmarked against the CEA-V5.1.1 results for the neutron transport calculations. The results show that both data libraries

  5. Analysis of the ITER computational shielding benchmark with the Monte Carlo TRIPOLI-4® neutron gamma coupled calculations

    International Nuclear Information System (INIS)

    Lee, Yi-Kang

    2016-01-01

    Highlights: • Verification and validation of TRIPOLI-4 radiation transport calculations for ITER shielding benchmark. • Evaluation of CEA-V5.1.1 and FENDL-3.0 nuclear data libraries on D–T fusion neutron continuous energy transport calculations. • Advances in nuclear analyses for nuclear heating and radiation damage in iron. • This work also demonstrates that the “safety factors” concept is necessary in the nuclear analyses of ITER. - Abstract: With the growing interest in using the continuous-energy TRIPOLI-4 ® Monte Carlo radiation transport code for ITER applications, a key issue that arises is whether or not the released TRIPOLI-4 code and its associated nuclear data libraries are verified and validated for the D–T fusion neutronics calculations. Previous published benchmark results of TRIPOLI-4 code on the ITER related activities have concentrated on the first wall loading, the reactor dosimetry, the nuclear heating, and the tritium breeding ratio. To enhance the TRIPOLI-4 verification and validation on neutron-gamma coupled calculations for fusion device application, the computational ITER shielding benchmark of M. E. Sawan was performed in this work by using the 2013 released TRIPOLI-4.9S code and the associated CEA-V5.1.1 data library. First wall, blanket, vacuum vessel and toroidal field magnet of the inboard and outboard components were fully modelled in this 1-D toroidal cylindrical benchmark. The 14.1 MeV source neutrons were sampled from a uniform isotropic distribution in the plasma zone. Nuclear responses including neutron and gamma fluxes, nuclear heating, and material damage indicator were benchmarked against previous published results. The capabilities of the TRIPOLI-4 code on the evaluation of above physics parameters were presented. The nuclear data library from the new FENDL-3.0 evaluation was also benchmarked against the CEA-V5.1.1 results for the neutron transport calculations. The results show that both data libraries can be

  6. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  7. Continuous Materiality: Through a Hierarchy of Computational Codes

    Directory of Open Access Journals (Sweden)

    Jichen Zhu

    2008-01-01

    Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.

  8. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.

    1995-05-01

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  9. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  10. Two-dimensional color-code quantum computation

    International Nuclear Information System (INIS)

    Fowler, Austin G.

    2011-01-01

    We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.

  11. Theoretical calculation possibilities of the computer code HAMMER

    International Nuclear Information System (INIS)

    Onusic Junior, J.

    1978-06-01

    With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt

  12. Computer code qualification program for the Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.

    2003-01-01

    Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)

  13. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  14. Computer codes for level 1 probabilistic safety assessment

    International Nuclear Information System (INIS)

    1990-06-01

    Probabilistic Safety Assessment (PSA) entails several laborious tasks suitable for computer codes assistance. This guide identifies these tasks, presents guidelines for selecting and utilizing computer codes in the conduct of the PSA tasks and for the use of PSA results in safety management and provides information on available codes suggested or applied in performing PSA in nuclear power plants. The guidance is intended for use by nuclear power plant system engineers, safety and operating personnel, and regulators. Large efforts are made today to provide PC-based software systems and PSA processed information in a way to enable their use as a safety management tool by the nuclear power plant overall management. Guidelines on the characteristics of software needed for management to prepare a software that meets their specific needs are also provided. Most of these computer codes are also applicable for PSA of other industrial facilities. The scope of this document is limited to computer codes used for the treatment of internal events. It does not address other codes available mainly for the analysis of external events (e.g. seismic analysis) flood and fire analysis. Codes discussed in the document are those used for probabilistic rather than for phenomenological modelling. It should be also appreciated that these guidelines are not intended to lead the user to selection of one specific code. They provide simply criteria for the selection. Refs and tabs

  15. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  16. User manual of FRAPCON-I computer code

    International Nuclear Information System (INIS)

    Chia, C.T.

    1985-11-01

    The manual for using the FRAPCON-I code implanted by Reactor Department of Brazilian-CNEN to convert IBM FORTRAN in FORTRAN 77 of Honeywell Bull computer is presented. The FRAPCON-I code describes the behaviour of fuel rods of PWR type reactors at stationary state during long periods of burnup. (M.C.K.)

  17. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  18. Nonuniform code concatenation for universal fault-tolerant quantum computing

    Science.gov (United States)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  19. Recent trends in radiation shielding: a RSIC perspective

    International Nuclear Information System (INIS)

    Trubey, D.K.; Roussin, R.W.; Maskewitz, B.F.

    1979-01-01

    The subject of radiation transport and shielding in the nuclear power industry is reviewed, and advances in the state of the art are described. These fall into the areas of computational methods, nuclear cross sections, industry practices, and standards. Computer codes and data available from the Radiation Shielding Information Center (RSIC) representing recent advances are also described

  20. APC: A New Code for Atmospheric Polarization Computations

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  1. Hauser*5, a computer code to calculate nuclear cross sections

    International Nuclear Information System (INIS)

    Mann, F.M.

    1979-07-01

    HAUSER*5 is a computer code that uses the statistical (Hauser-Feshbach) model, the pre-equilibrium model, and a statistical model of direct reactions to predict nuclear cross sections. The code is unrestricted as to particle type, includes fission and capture, makes width-fluctuation corrections, and performs three-body calculations - all in minimum computer time. Transmission coefficients can be generated internally or supplied externally. This report describes equations used, necessary input, and resulting output. 2 figures, 4 tables

  2. Computer codes developed in FRG to analyse hypothetical meltdown accidents

    International Nuclear Information System (INIS)

    Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.

    1978-01-01

    It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)

  3. The computer code EURDYN-1M (release 2). User's manual

    International Nuclear Information System (INIS)

    1982-01-01

    EURDYN-1M is a finite element computer code developed at J.R.C. Ispra to compute the response of two-dimensional coupled fluid-structure configurations to transient dynamic loading for reactor safety studies. This report gives instructions for preparing input data to EURDYN-1M, release 2, and describes a test problem in order to illustrate both the input and the output of the code

  4. Heat Transfer treatment in computer codes for safety analysis

    International Nuclear Information System (INIS)

    Jerele, A.; Gregoric, M.

    1984-01-01

    Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)

  5. Two-phase computer codes for zero-gravity applications

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1986-10-01

    This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified

  6. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  7. A comparison of shielding calculation methods for multi-slice computed tomography (CT) systems

    International Nuclear Information System (INIS)

    Cole, J A; Platten, D J

    2008-01-01

    Currently in the UK, shielding calculations for computed tomography (CT) systems are based on the BIR-IPEM (British Institute of Radiology and Institute of Physics in Engineering in Medicine) working group publication from 2000. Concerns have been raised internationally regarding the accuracy of the dose plots on which this method depends and the effect that new scanner technologies may have. Additionally, more recent shielding methods have been proposed by the NCRP (National Council on Radiation Protection) from the USA. Thermoluminescent detectors (TLDs) were placed in three CT scanner rooms at different positions for several weeks before being processed. Patient workload and dose data (DLP: the dose length product and mAs: the tube current-time product) were collected for this period. Individual dose data were available for more than 95% of patients scanned and the remainder were estimated. The patient workload data were used to calculate expected scatter radiation for each TLD location by both the NCRP and BIR-IPEM methods. The results were then compared to the measured scattered radiation. Calculated scattered air kerma and the minimum required lead shielding were found to be frequently overestimated compared to the measured air kerma, on average almost five times the measured scattered air kerma.

  8. A restructuring of CF package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W.

    2004-01-01

    CF package, which evaluates user-specified 'control functions' and applies them to define or control various aspects of computation, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the CF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory, difficulty is more over because its data is location information of other package's data due to characteristics of CF package. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  9. Computer codes incorporating pre-equilibrium decay

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    After establishing the need to describe the high-energy particle spectrum which is evident in the experimental data, the various models used in the interpretation are presented. This includes the following: a) Cascade Model; b) Fermi-Gas Relaxation Model; c) Exciton Model; d) Hybrid and Geometry-Dependent Model. The codes description and preparation of input data for STAPRE was presented (Dr. Strohmaier). A simulated output was employed for a given input and comparison with experimental data substantiated the rather sophisticated treatment. (author)

  10. Adaptation of HAMMER computer code to CYBER 170/750 computer

    International Nuclear Information System (INIS)

    Pinheiro, A.M.B.S.; Nair, R.P.K.

    1982-01-01

    The adaptation of HAMMER computer code to CYBER 170/750 computer is presented. The HAMMER code calculates cell parameters by multigroup transport theory and reactor parameters by few group diffusion theory. The auxiliary programs, the carried out modifications and the use of HAMMER system adapted to CYBER 170/750 computer are described. (M.C.K.) [pt

  11. Computer codes used during upgrading activities at MINT TRIGA reactor

    International Nuclear Information System (INIS)

    Mohammad Suhaimi Kassim; Adnan Bokhari; Mohd Idris Taib

    1999-01-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear research reactor commissioned in 1982. In 1993, a project was initiated to upgrade the thermal power to 2 MW. The IAEA assistance was sought to assist the various activities relevant to an upgrading exercise. For neutronics calculations, the IAEA has provided expert assistance to introduce the WIMS code, TRIGAP, and EXTERMINATOR2. For thermal-hydraulics calculations, PARET and RELAP5 were introduced. Shielding codes include ANISN and MERCURE. However, in the middle of 1997, MINT has decided to change the scope of the project to safety upgrading of the MINT Reactor. This paper describes some of the activities carried out during the upgrading process. (author)

  12. The archaeology of computer codes - illustrated on the basis of the code SABINE

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-02-01

    Computer codes used by the physics group of the Institute for Reactor Safety are stored on back-up-tapes. However during the last years both the computer and the system have been changed. For new tasks these programmes have to be available. A new procedure is necessary to find and to activate a stored programme. This procedure is illustrated on the basis of the code SABINE. (Author)

  13. Calculation of neutron shielding for a real loaded C-30 cask by code DORT

    International Nuclear Information System (INIS)

    Lacina, J.

    1999-01-01

    Measured neutron dose rates of real loaded C-30 casks for WWER spent fuel assemblies are compared with calculated values in the frame of benchmark calculation task. The part of this benchmark task concerning neutron shielding was calculated. Neutron sources values were taken from data presented by V. Chrapciak during the eighth symposium Atomic Energy Research, Bystrice pod Perstejnem in 1998 and the data about cask from the article of the same author from the Atomic Energy Research working group E meeting at Stolpen in 1998. (Author)

  14. Activities of the Radiation Shielding Information Center and a report on codes/data for high energy radiation transport

    International Nuclear Information System (INIS)

    Roussin, R.W.

    1993-01-01

    From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined

  15. Case studies in Gaussian process modelling of computer codes

    International Nuclear Information System (INIS)

    Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony

    2006-01-01

    In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics

  16. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...

  17. Statistical screening of input variables in a complex computer code

    International Nuclear Information System (INIS)

    Krieger, T.J.

    1982-01-01

    A method is presented for ''statistical screening'' of input variables in a complex computer code. The object is to determine the ''effective'' or important input variables by estimating the relative magnitudes of their associated sensitivity coefficients. This is accomplished by performing a numerical experiment consisting of a relatively small number of computer runs with the code followed by a statistical analysis of the results. A formula for estimating the sensitivity coefficients is derived. Reference is made to an earlier work in which the method was applied to a complex reactor code with good results

  18. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  19. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  20. ParShield: A computer program for calculating attenuation parameters of the gamma rays and the fast neutrons

    International Nuclear Information System (INIS)

    Elmahroug, Y.; Tellili, B.; Souga, C.; Manai, K.

    2015-01-01

    Highlights: • Description of the theoretical method used by the ParShield program. • Description of the ParShield program. • Test and validation the ParShield program. - Abstract: This study aims to present a new computer program called ParShield which determines the neutron and gamma-ray shielding parameters. This program can calculate the total mass attenuation coefficients (μ t ), the effective atomic numbers (Z eff ) and the effective electron densities (N eff ) for gamma rays and it can also calculate the effective removal cross-sections (Σ R ) for fast neutrons for mixtures and compounds. The results obtained for the gamma rays by using ParShield were compared with the results calculated by the WinXcom program and the measured results. The obtained values of (Σ R ) were tested by comparing them with the measured results,the manually calculated results and with the results obtained by using MERCSFN program and an excellent agreement was found between them. The ParShield program can be used as a fast and effective tool to choose and compare the shielding materials, especially for the determination of (Z eff ) and (N eff ), there is no other programs in the literature which can calculate

  1. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  2. Thermohydraulic analysis of nuclear power plant accidents by computer codes

    International Nuclear Information System (INIS)

    Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.

    1982-01-01

    RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)

  3. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  4. MISER-I: a computer code for JOYO fuel management

    International Nuclear Information System (INIS)

    Yamashita, Yoshioki

    1976-06-01

    A computer code ''MISER-I'' is for a nuclear fuel management of Japan Experimental Fast Breeder Reactor JOYO. The nuclear fuel management in JOYO can be regarded as a fuel assembly management because a handling unit of fuel in JOYO plant is a fuel subassembly (core and blanket subassembly), and so the recording of material balance in computer code is made with each subassembly. The input information into computer code is given with each subassembly for a transfer operation, or with one reactor cycle and every one month for a burn-up in reactor core. The output information of MISER-I code is the fuel assembly storage record, fuel storage weight record in each material balance subarea at any specified day, and fuel subassembly transfer history record. Change of nuclear fuel composition and weight due to a burn-up is calculated with JOYO-Monitoring Code by off-line computation system. MISER-I code is written in FORTRAN-IV language for FACOM 230-48 computer. (auth.)

  5. Development Of A Navier-Stokes Computer Code

    Science.gov (United States)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  6. Utilizing of computational tools on the modelling of a simplified problem of neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Lessa, Fabio da Silva Rangel; Platt, Gustavo Mendes; Alves Filho, Hermes [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico]. E-mails: fsrlessa@gmail.com; gmplatt@iprj.uerj.br; halves@iprj.uerj.br

    2007-07-01

    In the current technology level, the investigation of several problems is studied through computational simulations whose results are in general satisfactory and much less expensive than the conventional forms of investigation (e.g., destructive tests, laboratory measures, etc.). Almost all of the modern scientific studies are executed using computational tools, as computers of superior capacity and their systems applications to make complex calculations, algorithmic iterations, etc. Besides the considerable economy in time and in space that the Computational Modelling provides, there is a financial economy to the scientists. The Computational Modelling is a modern methodology of investigation that asks for the theoretical study of the identified phenomena in the problem, a coherent mathematical representation of such phenomena, the generation of a numeric algorithmic system comprehensible for the computer, and finally the analysis of the acquired solution, or still getting use of pre-existent systems that facilitate the visualization of these results (editors of Cartesian graphs, for instance). In this work, was being intended to use many computational tools, implementation of numeric methods and a deterministic model in the study and analysis of a well known and simplified problem of nuclear engineering (the neutron transport), simulating a theoretical problem of neutron shielding with physical-material hypothetical parameters, of neutron flow in each space junction, programmed with Scilab version 4.0. (author)

  7. Utilizing of computational tools on the modelling of a simplified problem of neutron shielding

    International Nuclear Information System (INIS)

    Lessa, Fabio da Silva Rangel; Platt, Gustavo Mendes; Alves Filho, Hermes

    2007-01-01

    In the current technology level, the investigation of several problems is studied through computational simulations whose results are in general satisfactory and much less expensive than the conventional forms of investigation (e.g., destructive tests, laboratory measures, etc.). Almost all of the modern scientific studies are executed using computational tools, as computers of superior capacity and their systems applications to make complex calculations, algorithmic iterations, etc. Besides the considerable economy in time and in space that the Computational Modelling provides, there is a financial economy to the scientists. The Computational Modelling is a modern methodology of investigation that asks for the theoretical study of the identified phenomena in the problem, a coherent mathematical representation of such phenomena, the generation of a numeric algorithmic system comprehensible for the computer, and finally the analysis of the acquired solution, or still getting use of pre-existent systems that facilitate the visualization of these results (editors of Cartesian graphs, for instance). In this work, was being intended to use many computational tools, implementation of numeric methods and a deterministic model in the study and analysis of a well known and simplified problem of nuclear engineering (the neutron transport), simulating a theoretical problem of neutron shielding with physical-material hypothetical parameters, of neutron flow in each space junction, programmed with Scilab version 4.0. (author)

  8. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A. [SLAC; Ferrari, A. [CERN; Ferrari, A. [HZDR, Dresden; Mokhov, N. V. [Fermilab; Mueller, S. E. [HZDR, Dresden; Nelson, W. R. [SLAC; Roesler, S. [CERN; Sanami, t.; Striganov, S. I. [Fermilab; Versaci, R. [Unlisted, CZ

    2016-12-01

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.

  9. Nuclear data to support computer code validation

    International Nuclear Information System (INIS)

    Fisher, S.E.; Broadhead, B.L.; DeHart, M.D.; Primm, R.T. III

    1997-04-01

    The rate of plutonium disposition will be a key parameter in determining the degree of success of the Fissile Materials Disposition Program. Estimates of the disposition rate are dependent on neutronics calculations. To ensure that these calculations are accurate, the codes and data should be validated against applicable experimental measurements. Further, before mixed-oxide (MOX) fuel can be fabricated and loaded into a reactor, the fuel vendors, fabricators, fuel transporters, reactor owners and operators, regulatory authorities, and the Department of Energy (DOE) must accept the validity of design calculations. This report presents sources of neutronics measurements that have potential application for validating reactor physics (predicting the power distribution in the reactor core), predicting the spent fuel isotopic content, predicting the decay heat generation rate, certifying criticality safety of fuel cycle facilities, and ensuring adequate radiation protection at the fuel cycle facilities and the reactor. The U.S. in-reactor experience with MOX fuel is first presented, followed by information related to other aspects of the MOX fuel performance information that is valuable to this program, but the data base remains largely proprietary. Thus, this information is not reported here. It is expected that the selected consortium will make the necessary arrangements to procure or have access to the requisite information

  10. A restructuring of RN1 package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, D. H.; Kim, K. R.

    2003-01-01

    RN1 package, which is one of two fission product-related packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN1 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN1 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  11. A restructuring of COR package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S.H.; Kim, K.R.; Kim, D.H.

    2004-01-01

    The COR package, which calculates the thermal response of the core and the lower plenum internal structures and models the relocation of the core and lower plenum structural materials, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To do this, the data transferring methods of the current MELCOR code are modified and adopted into the COR package. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as well as a waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which leads to an efficient memory treatment and an easy understanding of the code. Restructuring of the COR package addressed in this paper includes a module development, subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code. As the trends are similar to each other, it implies that the same approach could be extended to the entire code package. It is expected that the code restructuring will accelerated the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)

  12. A restructuring of RN2 package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, D. H.

    2003-01-01

    RN2 package, which is one of two fission product-related package in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN2 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN2 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The validation has been done by comparing the results of the modified code with those from the existing code. As the trends are the similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  13. The performance test of anti-scattering x-ray grid with inclined shielding material by MCNP code simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-06-15

    The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.

  14. A simplified computer code based on point Kernel theory for calculating radiation dose in packages of radioactive material

    International Nuclear Information System (INIS)

    1986-03-01

    A study on radiation dose control in packages of radioactive waste from nuclear facilities, hospitals and industries, such as sources of Ra-226, Co-60, Ir-192 and Cs-137, is presented. The MAPA and MAPAM computer codes, based on point Kernel theory for calculating doses of several source-shielding type configurations, aiming to assure the safe transport conditions for these sources, was developed. The validation of the code for point sources, using the values provided by NCRP, for the thickness of lead and concrete shieldings, limiting the dose at 100 Mrem/hr for several distances from the source to the detector, was carried out. The validation for non point sources was carried out, measuring experimentally radiation dose from packages developed by Brazilian CNEN/S.P. for removing the sources. (M.C.K.) [pt

  15. Parallelization of MCNP 4, a Monte Carlo neutron and photon transport code system, in highly parallel distributed memory type computer

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro; Takano, Makoto; Naito, Yoshitaka; Yamazaki, Takao; Fujisaki, Masahide; Suzuki, Koichiro; Okuda, Motoi.

    1993-11-01

    In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)

  16. Automated uncertainty analysis methods in the FRAP computer codes

    International Nuclear Information System (INIS)

    Peck, S.O.

    1980-01-01

    A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts

  17. HUDU: The Hanford Unified Dose Utility computer code

    International Nuclear Information System (INIS)

    Scherpelz, R.I.

    1991-02-01

    The Hanford Unified Dose Utility (HUDU) computer program was developed to provide rapid initial assessment of radiological emergency situations. The HUDU code uses a straight-line Gaussian atmospheric dispersion model to estimate the transport of radionuclides released from an accident site. For dose points on the plume centerline, it calculates internal doses due to inhalation and external doses due to exposure to the plume. The program incorporates a number of features unique to the Hanford Site (operated by the US Department of Energy), including a library of source terms derived from various facilities' safety analysis reports. The HUDU code was designed to run on an IBM-PC or compatible personal computer. The user interface was designed for fast and easy operation with minimal user training. The theoretical basis and mathematical models used in the HUDU computer code are described, as are the computer code itself and the data libraries used. Detailed instructions for operating the code are also included. Appendices to the report contain descriptions of the program modules, listings of HUDU's data library, and descriptions of the verification tests that were run as part of the code development. 14 refs., 19 figs., 2 tabs

  18. Computer Security: better code, fewer problems

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2016-01-01

    The origin of many security incidents is negligence or unintentional mistakes made by web developers or programmers. In the rush to complete the work, due to skewed priorities, or just to ignorance, basic security principles can be omitted or forgotten.   The resulting vulnerabilities lie dormant until the evil side spots them and decides to hit hard. Computer security incidents in the past have put CERN’s reputation at risk due to websites being defaced with negative messages about the Organization, hash files of passwords being extracted, restricted data exposed… And it all started with a little bit of negligence! If you check out the Top 10 web development blunders, you will see that the most prevalent mistakes are: Not filtering input, e.g. accepting “<“ or “>” in input fields even if only a number is expected.  Not validating that input: you expect a birth date? So why accept letters? &...

  19. Development of computer code in PNC, 8

    International Nuclear Information System (INIS)

    Ohhira, Mitsuru

    1990-01-01

    Private buildings applied base isolation system, are on the practical stage now. So, under Construction and Maintenance Management Office, we are doing an application study of base isolation system to nuclear fuel facilities. On the process of this study, we have developed Dynamic Analysis Program-Base Isolation System (DAP-BS) which is able to run a 32-bit personal computer. Using this program, we can analyze a 3-dimensional structure, and evaluate the various properties of base isolation parts that are divided into maximum 16 blocks. And from the results of some simulation analyses, we thought that DAP-BS had good reliability and marketability. So, we put DAP-BS on the market. (author)

  20. A compendium of computer codes in fault tree analysis

    International Nuclear Information System (INIS)

    Lydell, B.

    1981-03-01

    In the past ten years principles and methods for a unified system reliability and safety analysis have been developed. Fault tree techniques serve as a central feature of unified system analysis, and there exists a specific discipline within system reliability concerned with the theoretical aspects of fault tree evaluation. Ever since the fault tree concept was established, computer codes have been developed for qualitative and quantitative analyses. In particular the presentation of the kinetic tree theory and the PREP-KITT code package has influenced the present use of fault trees and the development of new computer codes. This report is a compilation of some of the better known fault tree codes in use in system reliability. Numerous codes are available and new codes are continuously being developed. The report is designed to address the specific characteristics of each code listed. A review of the theoretical aspects of fault tree evaluation is presented in an introductory chapter, the purpose of which is to give a framework for the validity of the different codes. (Auth.)

  1. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Thomsen, D.H.

    1975-08-01

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  2. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes

  4. BLINDAGE: A neutron and gamma-ray transport code for shieldings with the removal-diffusion technique coupled with the point-kernel technique

    International Nuclear Information System (INIS)

    Fanaro, L.C.C.B.

    1984-01-01

    It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt

  5. A three-dimensional magnetostatics computer code for insertion devices

    International Nuclear Information System (INIS)

    Chubar, O.; Elleaume, P.; Chavanne, J.

    1998-01-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented

  6. Holonomic surface codes for fault-tolerant quantum computation

    Science.gov (United States)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  7. A restructuring of TF package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Song, Y. M.; Kim, D. H.

    2002-01-01

    TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  8. Computer codes for problems of isotope and radiation research

    International Nuclear Information System (INIS)

    Remer, M.

    1986-12-01

    A survey is given of computer codes for problems in isotope and radiation research. Altogether 44 codes are described as titles with abstracts. 17 of them are in the INIS scope and are processed individually. The subjects are indicated in the chapter headings: 1) analysis of tracer experiments, 2) spectrum calculations, 3) calculations of ion and electron trajectories, 4) evaluation of gamma irradiation plants, and 5) general software

  9. Sample test cases using the environmental computer code NECTAR

    International Nuclear Information System (INIS)

    Ponting, A.C.

    1984-06-01

    This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)

  10. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  11. RADTRAN: a computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1977-04-01

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  12. COMPBRN III: a computer code for modeling compartment fires

    International Nuclear Information System (INIS)

    Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.

    1986-07-01

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  13. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  14. FLASH: A finite element computer code for variably saturated flow

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A

  15. CRACKEL: a computer code for CFR fuel management calculations

    International Nuclear Information System (INIS)

    Burstall, R.F.; Ball, M.A.; Thornton, D.E.J.

    1975-12-01

    The CRACKLE computer code is designed to perform rapid fuel management surveys of CFR systems. The code calculates overall features such as reactivity, power distributions and breeding gain, and also calculates for each sub-assembly plutonium content and power output. A number of alternative options are built into the code, in order to permit different fuel management strategies to be calculated, and to perform more detailed calculations when necessary. A brief description is given of the methods of calculation, and the input facilities of CRACKLE, with examples. (author)

  16. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  17. Quality assurance aspects of the computer code CODAR2

    International Nuclear Information System (INIS)

    Maul, P.R.

    1986-03-01

    The computer code CODAR2 was developed originally for use in connection with the Sizewell Public Inquiry to evaluate the radiological impact of routine discharges to the sea from the proposed PWR. It has subsequently bee used to evaluate discharges from Heysham 2. The code was frozen in September 1983, and this note gives details of its verification, validation and evaluation. Areas where either improved modelling methods or more up-to-date information relevant to CODAR2 data bases have subsequently become available are indicated; these will be incorporated in any future versions of the code. (author)

  18. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  19. Independent peer review of nuclear safety computer codes

    International Nuclear Information System (INIS)

    Boyack, B.E.; Jenks, R.P.

    1993-01-01

    A structured, independent computer code peer-review process has been developed to assist the US Nuclear Regulatory Commission (NRC) and the US Department of Energy in their nuclear safety missions. This paper describes a structured process of independent code peer review, benefits associated with a code-independent peer review, as well as the authors' recent peer-review experience. The NRC adheres to the principle that safety of plant design, construction, and operation are the responsibility of the licensee. Nevertheless, NRC staff must have the ability to independently assess plant designs and safety analyses submitted by license applicants. According to Ref. 1, open-quotes this requires that a sound understanding be obtained of the important physical phenomena that may occur during transients in operating power plants.close quotes The NRC concluded that computer codes are the principal products to open-quotes understand and predict plant response to deviations from normal operating conditionsclose quotes and has developed several codes for that purpose. However, codes cannot be used blindly; they must be assessed and found adequate for the purposes they are intended. A key part of the qualification process can be accomplished through code peer reviews; this approach has been adopted by the NRC

  20. User's manual for the NEFTRAN II computer code

    International Nuclear Information System (INIS)

    Olague, N.E.; Campbell, J.E.; Leigh, C.D.; Longsine, D.E.

    1991-02-01

    This document describes the NEFTRAN II (NEtwork Flow and TRANsport in Time-Dependent Velocity Fields) computer code and is intended to provide the reader with sufficient information to use the code. NEFTRAN II was developed as part of a performance assessment methodology for storage of high-level nuclear waste in unsaturated, welded tuff. NEFTRAN II is a successor to the NEFTRAN and NWFT/DVM computer codes and contains several new capabilities. These capabilities include: (1) the ability to input pore velocities directly to the transport model and bypass the network fluid flow model, (2) the ability to transport radionuclides in time-dependent velocity fields, (3) the ability to account for the effect of time-dependent saturation changes on the retardation factor, and (4) the ability to account for time-dependent flow rates through the source regime. In addition to these changes, the input to NEFTRAN II has been modified to be more convenient for the user. This document is divided into four main sections consisting of (1) a description of all the models contained in the code, (2) a description of the program and subprograms in the code, (3) a data input guide and (4) verification and sample problems. Although NEFTRAN II is the fourth generation code, this document is a complete description of the code and reference to past user's manuals should not be necessary. 19 refs., 33 figs., 25 tabs

  1. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  2. Radiological impact assessment in Malaysia using RESRAD computer code

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Khairuddin Mohamad Kontol; Razali Hamzah

    1999-01-01

    Radiological Impact Assessment (RIA) can be conducted in Malaysia by using the RESRAD computer code developed by Argonne National Laboratory, U.S.A. The code can do analysis to derive site specific guidelines for allowable residual concentrations of radionuclides in soil. Concepts of the RIA in the context of waste management concern in Malaysia, some regulatory information and assess status of data collection are shown. Appropriate use scenarios and site specific parameters are used as much as possible so as to be realistic so that will reasonably ensure that individual dose limits and or constraints will be achieved. Case study have been conducted to fulfil Atomic Energy Licensing Board (AELB) requirements where for disposal purpose the operator must be required to carry out. a radiological impact assessment to all proposed disposals. This is to demonstrate that no member of public will be exposed to more than 1 mSv/year from all activities. Results obtained from analyses show the RESRAD computer code is able to calculate doses, risks, and guideline values. Sensitivity analysis by the computer code shows that the parameters used as input are justified so as to improve confidence to the public and the AELB the results of the analysis. The computer code can also be used as an initial assessment to conduct screening assessment in order to determine a proper disposal site. (Author)

  3. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  4. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  5. The FOCON96 1.0 computer code

    International Nuclear Information System (INIS)

    Merle-Szeremeta, A.; Thomassin, A.

    1999-01-01

    The Institute of Protection and Nuclear Safety (I.P.S.N.) has developed a computer code, FOCON96 1.0 to calculate the dosimetric consequences of atmospheric radioactive releases from nuclear installations after several years of usual operation. This communication describes the principal characteristics of FOCON96 1.0 and its functionalities. The principal elements of a comparison between FOCON96 1.0 and PC-CREAM ( European computer code developed by the N.R.P.B. and answering the same criteria) are given here. (N.C.)

  6. A new practical model of testes shield: the effectiveness during abdominopelvic computed tomography.

    Science.gov (United States)

    Sancaktutar, Ahmet Ali; Bozkurt, Yaşar; Önder, Hakan; Söylemez, Haluk; Atar, Murat; Penbegül, Necmettin; Ziypak, Tevfik; Tekbaş, Güven; Tepeler, Abdülkadir

    2012-01-01

    The goal of our prospective study was to measure the effect of a new standard model male gonad shield on the testicular radiation exposure during routine abdominopelvic computed tomography (CT). Two hundred male patients who underwent upper abdominal and pelvic CT examinations were included in our study. To prepare the testes shield (TS), 2 No. 8 fluoroscopy radiation-protection gloves made of bismuth (0.35 mm lead equivalent) were used. These gloves were invaginated into one another and their fingers were turned inside out. Scrotums of all patients were pushed into these lead-containing gloves. Upper abdominal CT (n = 6), pelvic CT (n = 9), and abdominopelvic scanning (n = 185) were performed. Immediately after the CT examinations and at postprocedural day 1, the scrotal examinations were repeated. None of the patients exhibited scrotal laceration, edema, eruption, erythema, tenderness, or pain. During the CT examinations, 22 patients (11%) felt unrest because of their exposed genital regions, without any adverse effect on the procedure. Dosimetric measurements of radioactivity inside the TS (dosimeter I) and outside it (dosimeter II) were 6.8 and 69.00 mSv, respectively. Accordingly, the TS we used in our study reduced the radiation exposure of the testes by 90.2% (10.1 times). We think that the use of this radioprotective TS during radiological diagnostic and therapeutic procedures is an appropriate approach from both a medical and legal perspective. Therefore, we recommend this userfriendly, practical, low-cost, and effective TS for all radiologic procedures.

  7. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  8. Computer code MLCOSP for multiple-correlation and spectrum analysis with a hybrid computer

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Fujii, Yoshio; Usui, Hozumi; Watanabe, Koichi

    1975-10-01

    Usage of the computer code MLCOSP(Multiple Correlation and Spectrum) developed is described for a hybrid computer installed in JAERI Functions of the hybrid computer and its terminal devices are utilized ingeniously in the code to reduce complexity of the data handling which occurrs in analysis of the multivariable experimental data and to perform the analysis in perspective. Features of the code are as follows; Experimental data can be fed to the digital computer through the analog part of the hybrid computer by connecting with a data recorder. The computed results are displayed in figures, and hardcopies are taken when necessary. Series-messages to the code are shown on the terminal, so man-machine communication is possible. And further the data can be put in through a keyboard, so case study according to the results of analysis is possible. (auth.)

  9. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  11. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  12. Evaluation of the influence of a postulated lubrication oil fire on safety related cables in the top shield platform of PFBR RCB by using FDS Code

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Jayasuriya, C.; Nashine, B.K.; Chellapandi, P.; Velusamy, K.

    2010-01-01

    Top deck of Prototype Fast Breeder Reactor (PFBR) primary system houses redundant safety related systems like Control and Safety Rod Drive Mechanisms (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), subassembly outlet sodium temperature measurement system and central canal plug. These systems protrude out from the reactor through the Control Plug (CP), which is supported on the Top Shield (TS) of PFBR. Control and instrumentation signal cables and power cables of these safety related systems that are coming out from the CP are routed through Top Shield Platform (TSP, which is concentric with Reactor Vault (RV) at EL 34.1 m above the TS) to the peripheral local instrumentation control centers via the cable junction boxes supported on TS. Influence approach fire hazard analysis (FHA) has been carried out to evaluate the condition of redundant safety related cables under the scenario of a postulated oil fire in the TSP using Fire Dynamics Simulator code (FDS, Version 5). FDS is a computational fluid dynamics (CFD) based fire analysis code and it is developed by National Institute of Standards and Technology (NIST), USA. In this paper the details of the model developed and the results of the analysis carried out are discussed. In TSP, a postulated oil fire scenario with complete inventory of a primary sodium pump (PSP) lubrication oil leak (200 lt) has been considered at 30 m elevation on the TS. Computational model with the geometry of TSP and with other important structural components on TS like PSPs, intermediate heat exchangers (IHXs), large rotating plug (LRP), small rotating plug (SRP), CP and etc. has been developed along with a fire of 1800 kW/m 2 heat release rate in the vicinity of the PSP1. Numerical simulation has been carried out to evaluate this oil fire influence on the typical safety related cables routed at 34 m elevation. It has been found that the surface temperature of the cables that are routed directly above the fire only crosses the ignition

  13. Prodeto, a computer code for probabilistic fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Braam, H [ECN-Solar and Wind Energy, Petten (Netherlands); Christensen, C J; Thoegersen, M L [Risoe National Lab., Roskilde (Denmark); Ronold, K O [Det Norske Veritas, Hoevik (Norway)

    1999-03-01

    A computer code for structural relibility analyses of wind turbine rotor blades subjected to fatigue loading is presented. With pre-processors that can transform measured and theoretically predicted load series to load range distributions by rain-flow counting and with a family of generic distribution models for parametric representation of these distribution this computer program is available for carying through probabilistic fatigue analyses of rotor blades. (au)

  14. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  15. A phantom-based evaluation of three commercially available patient organ shields for computed tomography X-ray examinations in diagnostic radiology

    International Nuclear Information System (INIS)

    Huggett, J.; Mukonoweshuro, W.; Loader, R.

    2013-01-01

    Three commercially available in-plane patient organ shields (barium eye, bismuth eye and bismuth breast) for computed tomography (CT) examinations were evaluated to determine their effectiveness for dose reduction. Absorbed doses were measured using metal oxide semiconductor field effect transistor dosemeters fastened to a Kyoto CT Torso phantom. Resultant images were visually compared with those minus shielding by an experienced radiologist. Approximate dose reductions of 21, 38 and 50 % were achieved by the barium eye, bismuth eye and bismuth breast shields, respectively, at a cost of increased image noise and streak artefacts. Shielded images produced varied levels of image artefact, particularly those resulting from the eye shields. Measured dose reductions were not consistent with the potential dose savings stated by the manufacturers of the shields. When evaluating the breast shield, similar dose reduction was achieved without shield-induced artefact by simply reducing the X-ray tube current. (authors)

  16. Calculation of extended shields in the Monte Carlo method using importance function (BRAND and DD code systems)

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Kagalenko, I.Eh.; Mironovich, Yu.N.

    1992-01-01

    Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P 1 -approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs

  17. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  18. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    Science.gov (United States)

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  19. Protect Heterogeneous Environment Distributed Computing from Malicious Code Assignment

    Directory of Open Access Journals (Sweden)

    V. S. Gorbatov

    2011-09-01

    Full Text Available The paper describes the practical implementation of the protection system of heterogeneous environment distributed computing from malicious code for the assignment. A choice of technologies, development of data structures, performance evaluation of the implemented system security are conducted.

  20. Atmospheric dispersion of radioactive releases: Computer code DIASPORA

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Bartzis, J.M.

    1982-05-01

    The computer code DIASPORA is presented. Air and ground concentrations of an airborne radioactive material released from an elevated continuous point source are calculated using Gaussian plume models. Dry and wet deposition as well as plume rise effects are taken into consideration. (author)

  1. Method for quantitative assessment of nuclear safety computer codes

    International Nuclear Information System (INIS)

    Dearien, J.A.; Davis, C.B.; Matthews, L.J.

    1979-01-01

    A procedure has been developed for the quantitative assessment of nuclear safety computer codes and tested by comparison of RELAP4/MOD6 predictions with results from two Semiscale tests. This paper describes the developed procedure, the application of the procedure to the Semiscale tests, and the results obtained from the comparison

  2. Computer code for double beta decay QRPA based calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, C. A.; Mariano, A. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina and Instituto de Física La Plata, CONICET, La Plata (Argentina); Krmpotić, F. [Instituto de Física La Plata, CONICET, La Plata, Argentina and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Samana, A. R.; Ferreira, V. dos Santos [Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, BA (Brazil); Bertulani, C. A. [Department of Physics, Texas A and M University-Commerce, Commerce, TX (United States)

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  3. Connecting Neural Coding to Number Cognition: A Computational Account

    Science.gov (United States)

    Prather, Richard W.

    2012-01-01

    The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…

  4. Linking CATHENA with other computer codes through a remote process

    Energy Technology Data Exchange (ETDEWEB)

    Vasic, A.; Hanna, B.N.; Waddington, G.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Girard, R. [Hydro-Quebec, Montreal, Quebec (Canada)

    2005-07-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program

  5. Linking CATHENA with other computer codes through a remote process

    International Nuclear Information System (INIS)

    Vasic, A.; Hanna, B.N.; Waddington, G.M.; Sabourin, G.; Girard, R.

    2005-01-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program starts, ends

  6. Methods and computer codes for probabilistic sensitivity and uncertainty analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1985-01-01

    This paper describes the methods and applications experience with two computer codes that are now available from the National Energy Software Center at Argonne National Laboratory. The purpose of the SCREEN code is to identify a group of most important input variables of a code that has many (tens, hundreds) input variables with uncertainties, and do this without relying on judgment or exhaustive sensitivity studies. Purpose of the PROSA-2 code is to propagate uncertainties and calculate the distributions of interesting output variable(s) of a safety analysis code using response surface techniques, based on the same runs used for screening. Several applications are discussed, but the codes are generic, not tailored to any specific safety application code. They are compatible in terms of input/output requirements but also independent of each other, e.g., PROSA-2 can be used without first using SCREEN if a set of important input variables has first been selected by other methods. Also, although SCREEN can select cases to be run (by random sampling), a user can select cases by other methods if he so prefers, and still use the rest of SCREEN for identifying important input variables

  7. Development and application of computational aerothermodynamics flowfield computer codes

    Science.gov (United States)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  8. Validation of containment thermal hydraulic computer codes for VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)

    2005-07-01

    Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to

  9. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  10. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  11. Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code

    International Nuclear Information System (INIS)

    Scott, T.C.; Grant, I.P.; Saunders, V.R.

    1997-01-01

    The calculation of molecular properties based on quantum mechanics is an area of fundamental research whose horizons have always been determined by the power of state-of-the-art computers. A computational bottleneck is the numerical calculation of the required molecular integrals to sufficient precision. Herein, we present a method for the rapid numerical evaluation of molecular integrals using optimized FORTRAN code generated by Maple. The method is based on the exploitation of common intermediates and the optimization can be adjusted to both serial and vectorized computations. (orig.)

  12. Fuel rod computations. The COMETHE code in its CEA version

    International Nuclear Information System (INIS)

    Lenepveu, Dominique.

    1976-01-01

    The COMETHE code (COde d'evolution MEcanique et THermique) is intended for computing the irradiation behavior of water reactor fuel pins. It is concerned with steadily operated cylindrical pins, containing fuel pellet stacks (UO 2 or PuO 2 ). The pin consists in five different axial zones: two expansion chambers, two blankets, and a central core that may be divided into several stacks parted by plugs. As far as computation is concerned, the pin is divided into slices (maximum 15) in turn divided into rings (maximum 50). Information are obtained for each slice: the radial temperature distribution, heat transfer coefficients, thermal flux at the pin surface, changes in geometry according to temperature conditions, and specific burn-up. The physical models involved take account for: heat transfer, fission gas release, fuel expansion, and creep of the can. Results computed with COMETHE are compared with those from ELP and EPEL irradiation experiments [fr

  13. A DOE Computer Code Toolbox: Issues and Opportunities

    International Nuclear Information System (INIS)

    Vincent, A.M. III

    2001-01-01

    The initial activities of a Department of Energy (DOE) Safety Analysis Software Group to establish a Safety Analysis Toolbox of computer models are discussed. The toolbox shall be a DOE Complex repository of verified and validated computer models that are configuration-controlled and made available for specific accident analysis applications. The toolbox concept was recommended by the Defense Nuclear Facilities Safety Board staff as a mechanism to partially address Software Quality Assurance issues. Toolbox candidate codes have been identified through review of a DOE Survey of Software practices and processes, and through consideration of earlier findings of the Accident Phenomenology and Consequence Evaluation program sponsored by the DOE National Nuclear Security Agency/Office of Defense Programs. Planning is described to collect these high-use codes, apply tailored SQA specific to the individual codes, and implement the software toolbox concept. While issues exist such as resource allocation and the interface among code developers, code users, and toolbox maintainers, significant benefits can be achieved through a centralized toolbox and subsequent standardized applications

  14. Additional extensions to the NASCAP computer code, volume 3

    Science.gov (United States)

    Mandell, M. J.; Cooke, D. L.

    1981-01-01

    The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.

  15. COMPUTATION FORMAT computer codes X4TOC4 and PLOTC4. Implementing and Testing on a Personal Computer

    International Nuclear Information System (INIS)

    McLaughlin, P.K.

    1987-05-01

    This document describes the contents of the diskette containing the COMPUTATION FORMAT codes X4TOC4 and PLOTC4 by D.E. Cullen, and example data for use in implementing and testing these codes on a Personal Computer of the type IBM-PC/AT. Upon request the codes are available from the IAEA Nuclear Data Section, free of charge, on a single diskette. (author)

  16. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  17. Comparison of MCNP4C and experimental results on neutron and gamma ray shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho; Lee, Eun Ki [KEPRI, Taejon (Korea, Republic of)

    2004-07-01

    MCNP code is a general-purpose Monte Carlo radiation transport code that can numerically simulate neutron, photon, and electron transport. Increasing the speed of computing machine is making numerical transport simulation more attractive and has led to the widespread use of such code. This code can be used for general radiation shielding and criticality accident alarm system related dose calculations, so that the version 4C2 of this code was used to evaluate the shielding effect against neutron and gamma ray experiments. The Ueki experiments were used for neutron shielding effects for materials, and the Kansas State University (KSU) photon skyshine experiments of 1977 were tested for gamma ray shielding effects.

  18. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  19. Integrated computer codes for nuclear power plant severe accident analysis

    International Nuclear Information System (INIS)

    Jordanov, I.; Khristov, Y.

    1995-01-01

    This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs

  20. Integrated computer codes for nuclear power plant severe accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jordanov, I; Khristov, Y [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs.

  1. RADTRAN 5: A computer code for transportation risk analysis

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1991-01-01

    RADTRAN 5 is a computer code developed at Sandia National Laboratories (SNL) in Albuquerque, NM, to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI Standard FORTRAN 77 and contains significant advances in the methodology for route-specific analysis first developed by SNL for RADTRAN 4 (Neuhauser and Kanipe, 1992). Like the previous RADTRAN codes, RADTRAN 5 contains two major modules for incident-free and accident risk amlysis, respectively. All commercially important transportation modes may be analyzed with RADTRAN 5: highway by combination truck; highway by light-duty vehicle; rail; barge; ocean-going ship; cargo air; and passenger air

  2. A computer code for fault tree calculations: PATREC

    International Nuclear Information System (INIS)

    Blin, A.; Carnino, A.; Koen, B.V.; Duchemin, B.; Lanore, J.M.; Kalli, H.

    1978-01-01

    A computer code for evaluating the reliability of complex system by fault tree is described in this paper. It uses pattern recognition approach and programming techniques from IBM PL1 language. It can take account of many of the present day problems: multi-dependencies treatment, dispersion in the reliability data parameters, influence of common mode failures. The code is running currently since two years now in Commissariat a l'Energie Atomique Saclay center and shall be used in a future extension for automatic fault trees construction

  3. An improved thermal model for the computer code NAIAD

    International Nuclear Information System (INIS)

    Rainbow, M.T.

    1982-12-01

    An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented

  4. Integrated severe accident containment analysis with the CONTAIN computer code

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.

    1985-12-01

    Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite

  5. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    Science.gov (United States)

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  6. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  7. War of ontology worlds: mathematics, computer code, or Esperanto?

    Science.gov (United States)

    Rzhetsky, Andrey; Evans, James A

    2011-09-01

    The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.

  8. Computer codes for evaluation of control room habitability (HABIT)

    International Nuclear Information System (INIS)

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs

  9. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  10. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  11. Experience with the WIMS computer code at Skoda Plzen

    International Nuclear Information System (INIS)

    Vacek, J.; Mikolas, P.

    1991-01-01

    Validation of the program for neutronics analysis is described. Computational results are compared with results of experiments on critical assemblies and with results of other codes for different types of lattices. Included are the results for lattices containing Gd as burnable absorber. With minor exceptions, the results of benchmarking were quite satisfactory and justified the inclusion of WIMS in the production system of codes for WWER analysis. The first practical application was the adjustment of the WWER-440 few-group diffusion constants library of the three-dimensional diffusion code MOBY-DICK, which led to a remarkable improvement of results for operational states. Then a new library for the analysis of WWER-440 start-up was generated and tested and at present a new library for the analysis of WWER-440 operational states is being tested. Preparation of the library for WWER-1000 is in progress. (author). 19 refs

  12. Benchmarking of computer codes and approaches for modeling exposure scenarios

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided

  13. Microdosimetry computation code of internal sources - MICRODOSE 1

    International Nuclear Information System (INIS)

    Li Weibo; Zheng Wenzhong; Ye Changqing

    1995-01-01

    This paper describes a microdosimetry computation code, MICRODOSE 1, on the basis of the following described methods: (1) the method of calculating f 1 (z) for charged particle in the unit density tissues; (2) the method of calculating f(z) for a point source; (3) the method of applying the Fourier transform theory to the calculation of the compound Poisson process; (4) the method of using fast Fourier transform technique to determine f(z) and, giving some computed examples based on the code, MICRODOSE 1, including alpha particles emitted from 239 Pu in the alveolar lung tissues and from radon progeny RaA and RAC in the human respiratory tract. (author). 13 refs., 6 figs

  14. Validation and testing of the VAM2D computer code

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs

  15. FRANTIC: a computer code for time dependent unavailability analysis

    International Nuclear Information System (INIS)

    Vesely, W.E.; Goldberg, F.F.

    1977-03-01

    The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process

  16. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  17. Computer code for qualitative analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Yule, H.P.

    1979-01-01

    Computer code QLN1 provides complete analysis of gamma-ray spectra observed with Ge(Li) detectors and is used at both the National Bureau of Standards and the Environmental Protection Agency. It locates peaks, resolves multiplets, identifies component radioisotopes, and computes quantitative results. The qualitative-analysis (or component identification) algorithms feature thorough, self-correcting steps which provide accurate isotope identification in spite of errors in peak centroids, energy calibration, and other typical problems. The qualitative-analysis algorithm is described in this paper

  18. Verification of structural analysis computer codes in nuclear engineering

    International Nuclear Information System (INIS)

    Zebeljan, Dj.; Cizelj, L.

    1990-01-01

    Sources of potential errors, which can take place during use of finite element method based computer programs, are described in the paper. The magnitude of errors was defined as acceptance criteria for those programs. Error sources are described as they are treated by 'National Agency for Finite Element Methods and Standards (NAFEMS)'. Specific verification examples are used from literature of Nuclear Regulatory Commission (NRC). Example of verification is made on PAFEC-FE computer code for seismic response analyses of piping systems by response spectrum method. (author)

  19. A computer code package for electron transport Monte Carlo simulation

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    1999-01-01

    A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)

  20. Methods for the development of large computer codes under LTSS

    International Nuclear Information System (INIS)

    Sicilian, J.M.

    1977-06-01

    TRAC is a large computer code being developed by Group Q-6 for the analysis of the transient thermal hydraulic behavior of light-water nuclear reactors. A system designed to assist the development of TRAC is described. The system consists of a central HYDRA dataset, R6LIB, containing files used in the development of TRAC, and a file maintenance program, HORSE, which facilitates the use of this dataset

  1. WAMCUT, a computer code for fault tree evaluation. Final report

    International Nuclear Information System (INIS)

    Erdmann, R.C.

    1978-06-01

    WAMCUT is a code in the WAM family which produces the minimum cut sets (MCS) for a given fault tree. The MCS are useful as they provide a qualitative evaluation of a system, as well as providing a means of determining the probability distribution function for the top of the tree. The program is very efficient and will produce all the MCS in a very short computer time span. 22 figures, 4 tables

  2. Parallel computing by Monte Carlo codes MVP/GMVP

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Nakagawa, Masayuki; Mori, Takamasa

    2001-01-01

    General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)

  3. Computer codes for the analysis of flask impact problems

    International Nuclear Information System (INIS)

    Neilson, A.J.

    1984-09-01

    This review identifies typical features of the design of transportation flasks and considers some of the analytical tools required for the analysis of impact events. Because of the complexity of the physical problem, it is unlikely that a single code will adequately deal with all the aspects of the impact incident. Candidate codes are identified on the basis of current understanding of their strengths and limitations. It is concluded that the HONDO-II, DYNA3D AND ABAQUS codes which ar already mounted on UKAEA computers will be suitable tools for use in the analysis of experiments conducted in the proposed AEEW programme and of general flask impact problems. Initial attention should be directed at the DYNA3D and ABAQUS codes with HONDO-II being reserved for situations where the three-dimensional elements of DYNA3D may provide uneconomic simulations in planar or axisymmetric geometries. Attention is drawn to the importance of access to suitable mesh generators to create the nodal coordinate and element topology data required by these structural analysis codes. (author)

  4. Computer codes for the operational control of the research reactors

    International Nuclear Information System (INIS)

    Kalker, K.J.; Nabbi, R.; Bormann, H.J.

    1986-01-01

    Four small computer codes developed by ZFR are presented, which have been used for several years during operation of the research reactors FRJ-1, FRJ-2, AVR (all in Juelich) and DR-2 (Riso, Denmark). Because of interest coming from the other reactor stations the codes are documented within the frame work of the IAEA Research Contract No. 3634/FG. The zero-dimensional burnup program CREMAT is used for reactor cores in which flux measurements at each individual fuel element are carried out during operation. The program yields burnup data for each fuel element and for the whole core. On the basis of these data, fuel reloading is prepared for the next operational period under consideration of the permitted minimum shut down reactivity of the system. The program BURNY calculates burnup for fuel elements inaccessible for flux measurements, but for which 'position weighting factors' have been measured/calculated during zero power operation of the core, and which are assumed to be constant in all operational situations. The code CURIAX calculates post-irradiation data for discharged fuel elements needed in their manipulation and transport. These three programs have been written for highly enriched fuel and take into account U-235 only. The modification of CREMAT for LEU Cores and its combiantion with ORIGEN is in preparation. KINIK is an inverse kinetic code and widely used for absorber rod calibration at the abovementioned research reactors. It includes a special polynomial subroutine which can easily be used in other codes. (orig.) [de

  5. Use of computer codes to improve nuclear power plant operation

    International Nuclear Information System (INIS)

    Misak, J.; Polak, V.; Filo, J.; Gatas, J.

    1985-01-01

    For safety and economic reasons, the scope for carrying out experiments on operational nuclear power plants (NPPs) is very limited and any changes in technical equipment and operating parameters or conditions have to be supported by theoretical calculations. In the Nuclear Power Plant Scientific Research Institute (NIIAEhS), computer codes are systematically used to analyse actual operating events, assess safety aspects of changes in equipment and operating conditions, optimize the conditions, preparation and analysis of NPP startup trials and review and amend operating instructions. In addition, calculation codes are gradually being introduced into power plant computer systems to perform real time processing of the parameters being measured. The paper describes a number of specific examples of the use of calculation codes for the thermohydraulic analysis of operating and accident conditions aimed at improving the operation of WWER-440 units at the Jaslovske Bohunice V-1 and V-2 nuclear power plants. These examples confirm that computer calculations are an effective way of solving operating problems and of further increasing the level of safety and economic efficiency of NPP operation. (author)

  6. ABINIT: a computer code for matter; Abinit: un code au service de la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Amadon, B.; Bottin, F.; Bouchet, J.; Dewaele, A.; Jollet, F.; Jomard, G.; Loubeyre, P.; Mazevet, S.; Recoules, V.; Torrent, M.; Zerah, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2008-07-01

    The PAW (Projector Augmented Wave) method has been implemented in the ABINIT Code that computes electronic structures in atoms. This method relies on the simultaneous use of a set of auxiliary functions (in plane waves) and a sphere around each atom. This method allows the computation of systems including many atoms and gives the expression of energy, forces, stress... in terms of the auxiliary function only. We have generated atomic data for iron at very high pressure (over 200 GPa). We get a bcc-hcp transition around 10 GPa and the magnetic order disappears around 50 GPa. This method has been validated on a series of metals. The development of the PAW method has required a great effort for the massive parallelization of the ABINIT code. (A.C.)

  7. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin

    1990-12-01

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  8. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  9. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  10. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  11. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  12. WSRC approach to validation of criticality safety computer codes

    International Nuclear Information System (INIS)

    Finch, D.R.; Mincey, J.F.

    1991-01-01

    Recent hardware and operating system changes at Westinghouse Savannah River Site (WSRC) have necessitated review of the validation for JOSHUA criticality safety computer codes. As part of the planning for this effort, a policy for validation of JOSHUA and other criticality safety codes has been developed. This policy will be illustrated with the steps being taken at WSRC. The objective in validating a specific computational method is to reliably correlate its calculated neutron multiplication factor (K eff ) with known values over a well-defined set of neutronic conditions. Said another way, such correlations should be: (1) repeatable; (2) demonstrated with defined confidence; and (3) identify the range of neutronic conditions (area of applicability) for which the correlations are valid. The general approach to validation of computational methods at WSRC must encompass a large number of diverse types of fissile material processes in different operations. Special problems are presented in validating computational methods when very few experiments are available (such as for enriched uranium systems with principal second isotope 236 U). To cover all process conditions at WSRC, a broad validation approach has been used. Broad validation is based upon calculation of many experiments to span all possible ranges of reflection, nuclide concentrations, moderation ratios, etc. Narrow validation, in comparison, relies on calculations of a few experiments very near anticipated worst-case process conditions. The methods and problems of broad validation are discussed

  13. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  14. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Wilson, J.W.

    1997-01-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He 4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm 2 of aluminum and 100 gm/cm 2 of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport

  15. Probabilistic evaluations for CANTUP computer code analysis improvement

    International Nuclear Information System (INIS)

    Florea, S.; Pavelescu, M.

    2004-01-01

    Structural analysis with finite element method is today an usual way to evaluate and predict the behavior of structural assemblies subject to hard conditions in order to ensure their safety and reliability during their operation. A CANDU 600 fuel channel is an example of an assembly working in hard conditions, in which, except the corrosive and thermal aggression, long time irradiation, with implicit consequences on material properties evolution, interferes. That leads inevitably to material time-dependent properties scattering, their dynamic evolution being subject to a great degree of uncertainness. These are the reasons for developing, in association with deterministic evaluations with computer codes, the probabilistic and statistical methods in order to predict the structural component response. This work initiates the possibility to extend the deterministic thermomechanical evaluation on fuel channel components to probabilistic structural mechanics approach starting with deterministic analysis performed with CANTUP computer code which is a code developed to predict the long term mechanical behavior of the pressure tube - calandria tube assembly. To this purpose the structure of deterministic calculus CANTUP computer code has been reviewed. The code has been adapted from LAHEY 77 platform to Microsoft Developer Studio - Fortran Power Station platform. In order to perform probabilistic evaluations, it was added a part to the deterministic code which, using a subroutine from IMSL library from Microsoft Developer Studio - Fortran Power Station platform, generates pseudo-random values of a specified value. It was simulated a normal distribution around the deterministic value and 5% standard deviation for Young modulus material property in order to verify the statistical calculus of the creep behavior. The tube deflection and effective stresses were the properties subject to probabilistic evaluation. All the values of these properties obtained for all the values for

  16. Improvement of level-1 PSA computer code package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.

    1997-07-01

    This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on `The improvement of level-1 PSA Computer Codes` is divided into two main activities : (1) improvement of level-1 PSA methodology, (2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs.

  17. Improvement of level-1 PSA computer code package

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.

    1997-07-01

    This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on 'The improvement of level-1 PSA Computer Codes' is divided into two main activities : 1) improvement of level-1 PSA methodology, 2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs

  18. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  19. Basic data, computer codes and integral experiments: The tools for modelling in nuclear technology

    International Nuclear Information System (INIS)

    Sartori, E.

    2001-01-01

    When studying applications in nuclear technology we need to understand and be able to predict the behavior of systems manufactured by human enterprise. First, the underlying basic physical and chemical phenomena need to be understood. We have then to predict the results from the interplay of the large number of the different basic events: i.e. the macroscopic effects. In order to be able to build confidence in our modelling capability, we need then to compare these results against measurements carried out on such systems. The different levels of modelling require the solution of different types of equations using different type of parameters. The tools required for carrying out a complete validated analysis are: - The basic nuclear or chemical data; - The computer codes, and; - The integral experiments. This article describes the role each component plays in a computational scheme designed for modelling purposes. It describes also which tools have been developed and are internationally available. The role of the OECD/NEA Data Bank, the Radiation Shielding Information Computational Center (RSICC), and the IAEA Nuclear Data Section are playing in making these elements available to the community of scientists and engineers is described. (author)

  20. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  1. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  2. Monocrystal sputtering by the computer simulation code ACOCT

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Takeuchi, Wataru.

    1987-09-01

    A new computer code ACOCT has been developed in order to simulate the atomic collisions in the crystalline target within the binary collision approximation. The present code is more convenient as compared with the MARLOWE code, and takes the higher-order simultaneous collisions into account. To cheke the validity of the ACOCT program, we have calculated sputtering yields for various ion-target combinations and compared with the MARLOWE results. It is found that the calculated yields by the ACOCT program are in good agreements with those by the MARLOWE code. The ejection patterns of sputtered atoms were also calculated for the major surfaces of fcc, bcc, diamond and hcp structures, and we have got reasonable agreements with experimental results. In order to know the effects of the simultaneous collision in the slowing down process the sputtering yields and the projected ranges are calculated, changeing the parameter of the criterion for the simultaneous collision, and the effect of the simultaneous collision is found to depend on the crystal orientation. (author)

  3. STADIC: a computer code for combining probability distributions

    International Nuclear Information System (INIS)

    Cairns, J.J.; Fleming, K.N.

    1977-03-01

    The STADIC computer code uses a Monte Carlo simulation technique for combining probability distributions. The specific function for combination of the input distribution is defined by the user by introducing the appropriate FORTRAN statements to the appropriate subroutine. The code generates a Monte Carlo sampling from each of the input distributions and combines these according to the user-supplied function to provide, in essence, a random sampling of the combined distribution. When the desired number of samples is obtained, the output routine calculates the mean, standard deviation, and confidence limits for the resultant distribution. This method of combining probability distributions is particularly useful in cases where analytical approaches are either too difficult or undefined

  4. RADTRAN 5 - A computer code for transportation risk analysis

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1993-01-01

    The RADTRAN 5 computer code has been developed to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI standard FORTRAN 77; the code contains significant advances in the methodology first pioneered with the LINK option of RADTRAN 4. A major application of the LINK methodology is route-specific analysis. Another application is comparisons of attributes along the same route segments. Nonradiological risk factors have been incorporated to allow users to estimate nonradiological fatalities and injuries that might occur during the transportation event(s) being analyzed. These fatalities include prompt accidental fatalities from mechanical causes. Values of these risk factors for the United States have been made available in the code as optional defaults. Several new health effects models have been published in the wake of the Hiroshima-Nagasaki dosimetry reassessment, and this has emphasized the need for flexibility in the RADTRAN approach to health-effects calculations. Therefore, the basic set of health-effects conversion equations in RADTRAN have been made user-definable. All parameter values can be changed by the user, but a complete set of default values are available for both the new International Commission on Radiation Protection model (ICRP Publication 60) and the recent model of the U.S. National Research Council's Committee on the Biological Effects of Radiation (BEIR V). The meteorological input data tables have been modified to permit optional entry of maximum downwind distances for each dose isopleth. The expected dose to an individual in each isodose area is also calculated and printed automatically. Examples are given that illustrate the power and flexibility of the RADTRAN 5 computer code. (J.P.N.)

  5. Compilation of the abstracts of nuclear computer codes available at CPD/IPEN

    International Nuclear Information System (INIS)

    Granzotto, A.; Gouveia, A.S. de; Lourencao, E.M.

    1981-06-01

    A compilation of all computer codes available at IPEN in S.Paulo are presented. These computer codes are classified according to Argonne National Laboratory - and Energy Nuclear Agency schedule. (E.G.) [pt

  6. CARP: a computer code and albedo data library for use by BREESE, the MORSE albedo package

    International Nuclear Information System (INIS)

    Emmett, M.B.; Rhoades, W.A.

    1978-10-01

    The CARP computer code was written to allow processing of DOT angular flux tapes to produce albedo data for use in the MORSE computer code. An albedo data library was produced containing several materials. 3 tables

  7. Nuclear model codes available at the Nuclear Energy Agency Computer Program Library (NEA-CPL)

    International Nuclear Information System (INIS)

    Sartori, E.; Garcia Viedma, L. de

    1976-01-01

    This paper briefly outlines the objectives of the NEA-CPL and its activities in the field of Nuclear Model Computer Codes. A short description of the computer codes available from the CPL in this field is also presented. (author)

  8. Computer codes in nuclear safety, radiation transport and dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.

    2006-01-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations

  9. Development validation and use of computer codes for inelastic analysis

    International Nuclear Information System (INIS)

    Jobson, D.A.

    1983-01-01

    A finite element scheme is a system which provides routines so carry out the operations which are common to all finite element programs. The list of items that can be provided as standard by the finite element scheme is surprisingly large and the list provided by the UNCLE finite element scheme is unusually comprehensive. This presentation covers the following: construction of the program, setting up a finite element mesh, generation of coordinates, incorporating boundary and load conditions. Program validation was done by creep calculations performed using CAUSE code. Program use is illustrated by calculating a typical inelastic analysis problem. This includes computer model of the PFR intermediate heat exchanger

  10. Utilization of Relap 5 computer code for analyzing thermohydraulic projects

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1987-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant of the 1300 MW (electric) class. A station blackout has been choosen to investigate the thermohydraulic behaviour of the the test facility in comparison to the reactor plant. The computer code RELAPS/MOD1 has been utilized to simulate the blackout and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermohydraulic behaviours of the two systems. (author) [pt

  11. Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers

    International Nuclear Information System (INIS)

    Woodruff, W.L.

    1990-01-01

    Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs

  12. Assessment of the integrity of structural shielding of four computed tomography facilities in the greater Accra region of Ghana

    International Nuclear Information System (INIS)

    Nkansah, A.; Schandorf, C.; Boadu, M.; Fletcher, J. J.

    2013-01-01

    The structural shielding thicknesses of the walls of four computed tomography (CT) facilities in Ghana were re-evaluated to verify the shielding integrity using the new shielding design methods recommended by the National Council on Radiological Protection and Measurements (NCRP). The shielding thickness obtained ranged from 120 to 155 mm using default DLP values proposed by the European Commission and 110 to 168 mm using derived DLP values from the four CT manufacturers. These values are within the accepted standard concrete wall thickness ranging from 102 to 152 mm prescribed by the NCRP. The ultrasonic pulse testing of all walls indicated that these are of good quality and free of voids since pulse velocities estimated were within the range of 3.496±0.005 km s -1 . An average dose equivalent rate estimated for supervised areas is 3.4±0.27 μSv week -1 and that for the controlled area is 18.0±0.15 μSv week -1 , which are within acceptable values. (authors)

  13. Analysis of the Length of Braille Texts in English Braille American Edition, the Nemeth Code, and Computer Braille Code versus the Unified English Braille Code

    Science.gov (United States)

    Knowlton, Marie; Wetzel, Robin

    2006-01-01

    This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…

  14. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  15. Generation of point isotropic source dose buildup factor data for the PFBR special concretes in a form compatible for usage in point kernel computer code QAD-CGGP

    International Nuclear Information System (INIS)

    Radhakrishnan, G.

    2003-01-01

    Full text: Around the PFBR (Prototype Fast Breeder Reactor) reactor assembly, in the peripheral shields special concretes of density 2.4 g/cm 3 and 3.6 g/cm 3 are to be used in complex geometrical shapes. Point-kernel computer code like QAD-CGGP, written for complex shield geometry comes in handy for the shield design optimization of peripheral shields. QAD-CGGP requires data base for the buildup factor data and it contains only ordinary concrete of density 2.3 g/cm 3 . In order to extend the data base for the PFBR special concretes, point isotropic source dose buildup factors have been generated by Monte Carlo method using the computer code MCNP-4A. For the above mentioned special concretes, buildup factor data have been generated in the energy range 0.5 MeV to 10.0 MeV with the thickness ranging from 1 mean free paths (mfp) to 40 mfp. Capo's formula fit of the buildup factor data compatible with QAD-CGGP has been attempted

  16. PERCON: A flexible computer code for detailed thermal performance studies

    International Nuclear Information System (INIS)

    Boardman, F.B.; Collier, W.D.

    1975-07-01

    PERCON is a computer code which evaluates temperatures in three dimensions for a block containing heat sources and having coolant flow in one dimension. The solution is obtained at successive planes perpendicular to the coolant flow and the progression from one plane to the next occurs by the heat to the coolant determining convective boundary conditions at the next plane after due allowance being made for any lateral mixing or mass transfer between coolants. It is also possible to calculate the diametral change along a radius as a function of irradiation shrinkage and thermal expansion. This is used in a 'through life' calculation which evalates interaction pressure in tubular fuel elements. Physical property data used by the code may be specified as functions of temperature. The coolant flow may be specified, or alternatively derived by the program to satisfy either a specified overall pressure drop or mixed mean temperature rise. The pressure drop through each coolant is calculated and the flow modified, followed by a repeat of the temperature calculation, until the pressure imbalance between chosen flow channels at chosen axial positions is less than the specified convergence limit. A detailed description of the facilities in the code is given and some cases which have been studied are discussed. (U.K.)

  17. Comparison of computer code calculations with FEBA test data

    International Nuclear Information System (INIS)

    Zhu, Y.M.

    1988-06-01

    The FEBA forced feed reflood experiments included base line tests with unblocked geometry. The experiments consisted of separate effect tests on a full-length 5x5 rod bundle. Experimental cladding temperatures and heat transfer coefficients of FEBA test No. 216 are compared with the analytical data postcalculated utilizing the SSYST-3 computer code. The comparison indicates a satisfactory matching of the peak cladding temperatures, quench times and heat transfer coefficients for nearly all axial positions. This agreement was made possible by the use of an artificially adjusted value of the empirical code input parameter in the heat transfer for the dispersed flow regime. A limited comparison of test data and calculations using the RELAP4/MOD6 transient analysis code are also included. In this case the input data for the water entrainment fraction and the liquid weighting factor in the heat transfer for the dispersed flow regime were adjusted to match the experimental data. On the other hand, no fitting of the input parameters was made for the COBRA-TF calculations which are included in the data comparison. (orig.) [de

  18. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  19. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modelling and computer simulation for the manufacture by powder HIPing of Blanket Shield components for ITER

    International Nuclear Information System (INIS)

    Gillia, O.; Bucci, Ph.; Vidotto, F.; Leibold, J.-M.; Boireau, B.; Boudot, C.; Cottin, A.; Lorenzetto, P.; Jacquinot, F.

    2006-01-01

    In components of blanket modules for ITER, intricate cooling networks are needed in order to evacuate all heat coming from the plasma. Hot Isostatic Pressing (HIPing) technology is a very convenient method to produce near net shape components with complex cooling network through massive stainless steel parts by bonding together tubes inserted in grooves machined in bulk stainless steel. Powder is often included in the process so as to release difficulties arising with gaps closure between tube and solid part or between several solid parts. In the mean time, it releases the machining precision needed on the parts to assemble before HIP. However, inserting powder in the assembly means densification, i.e. volume change of powder during the HIP cycle. This leads to global and local shape changes of HIPed parts. In order to control the deformations, modelling and computer simulation are used. This modelling and computer simulation work has been done in support to the fabrication of a shield prototype for the ITER blanket. Problems such as global bending of the whole part and deformations of tubes in their powder bed are addressed. It is important that the part does not bend too much. It is important as well to have circular tube shape after HIP, firstly in order to avoid their rupture during HIP but also because non destructive ultrasonic examination is needed to check the quality of the densification and bonding between tube and powder or solid parts; the insertions of a probe in the tubes requires a minimal circular tube shape. For simulation purposes, the behaviour of the different materials has to be modelled. Although the modelling of the massive stainless steel behaviour is not neglected, the most critical modelling is about power. For this study, a thorough investigation on the powder behaviour has been performed with some in-situ HIP dilatometry experiments and some interrupted HIP cycles on trial parts. These experiments have allowed the identification of a

  1. Estimation of staff doses in complex radiological examinations using a Monte Carlo computer code

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2007-01-01

    The protection of medical personnel in interventional radiology is an important issue of radiological protection. The irradiation of the worker is largely non-uniform, and a large part of his body is shielded by a lead apron. The estimation of effective dose (E) under these conditions is difficult and several approaches are used to estimate effective dose involving such a protective apron. This study presents a summary from an extensive series of simulations to determine scatter-dose distribution around the patient and staff effective dose from personal dosimeter readings. The influence of different parameters (like beam energy and size, patient size, irradiated region, worker position and orientation) on the staff doses has been determined. Published algorithms that combine readings of an unshielded and a shielded dosimeter to estimate effective dose have been applied and a new algorithm, that gives more accurate dose estimates for a wide range of situations was proposed. A computational approach was used to determine the dose distribution in the worker's body. The radiation transport and energy deposition was simulated using the MCNP4B code. The human bodies of the patient and radiologist were generated with the Body Builder anthropomorphic model-generating tool. The radiologist is protected with a lead apron (0.5 mm lead equivalent in the front and 0.25 mm lead equivalent in the back and sides) and a thyroid collar (0.35 mm lead equivalent). The lower-arms of the worker were folded to simulate the arms position during clinical examinations. This realistic situation of the folded arms affects the effective dose to the worker. Depending on the worker position and orientation (and of course the beam energy), the difference can go up to 25 percent. A total of 12 Hp(10) dosimeters were positioned above and under the lead apron at the neck, chest and waist levels. Extra dosimeters for the skin dose were positioned at the forehead, the forearms and the front surface of

  2. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  3. COMPUTATIONAL FLUID DYNAMICS INVESTIGATION ON THE USE OF HEAT SHIELDS FOR THERMAL MANAGEMENT IN A CAR UNDERHOOD

    Directory of Open Access Journals (Sweden)

    S.Y. Lam

    2012-12-01

    Full Text Available Temperature variations inside a car underhood are largely controlled by the heat originating from the engine block and the exhaust manifold. Excessive temperatures in the underhood can lead to the faster deterioration of engine components and may affect the thermal comfort level inside the passenger cabin. This paper presents computational fluid dynamics investigations to assess the performance of a heat shield in lowering the peak temperature of the engine components and firewall in the underhood region of a typical passenger car. The simulation used the finite volume method with the standard k-ε turbulence model and an isothermal model for the heat transfer calculations. The results show that the heat shield managed to reduce the peak temperature of the engine components and firewall by insulating the intense heat from the engine block and exhaust and regulating the airflow inside the underhood region.

  4. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended

  5. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  6. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  7. Shielding calculations and collective dose estimations with the point-kernel-code VISIPLAN registered for the example of the project ZENT

    International Nuclear Information System (INIS)

    Boehlke, S.; Niegoth, H.

    2012-01-01

    In the nuclear power plant Leibstadt (KKL) during the next year large components will be dismantled and stored for final disposal within the interim storage facility ZENT at the NPP site. Before construction of ZENT appropriate estimations of the local dose rate inside and outside the building and the collective dose for the normal operation have to be performed. The shielding calculations are based on the properties of the stored components and radiation sources and on the concepts for working place requirements. The installation of control and monitoring areas will depend on these calculations. For the determination of the shielding potential of concrete walls and steel doors with the defined boundary conditions point-kernel codes like MICROSHIELd registered are used. Complex problems cannot be modeled with this code. Therefore the point-kernel code VISIPLAN registered was developed for the determination of the local dose distribution functions in 3D models. The possibility of motion sequence inputs allows an optimization of collective dose estimations for the operational phases of a nuclear facility.

  8. The implementation of CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Commission (CNEN)

    International Nuclear Information System (INIS)

    Couto, R.T.

    1987-01-01

    The implementation of the CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Comission is presented. CP1 is a computer code used to solve the equations of punctual kinetic with Doppler feed back from the system temperature variation based on the Newton refrigeration equation (E.G.) [pt

  9. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code

    International Nuclear Information System (INIS)

    Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.

    2003-01-01

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k eff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  10. Interface design of VSOP'94 computer code for safety analysis

    International Nuclear Information System (INIS)

    Natsir, Khairina; Andiwijayakusuma, D.; Wahanani, Nursinta Adi; Yazid, Putranto Ilham

    2014-01-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects

  11. Interface design of VSOP'94 computer code for safety analysis

    Science.gov (United States)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  12. A computer code for analysis of severe accidents in LWRs

    International Nuclear Information System (INIS)

    2001-01-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  13. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  14. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  15. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  16. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  17. Computer code for simulating pressurized water reactor core

    International Nuclear Information System (INIS)

    Serrano, A.M.B.

    1978-01-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)

  18. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  19. Application of the RESRAD computer code to VAMP scenario S

    International Nuclear Information System (INIS)

    Gnanapragasam, E.K.; Yu, C.

    1997-03-01

    The RESRAD computer code developed at Argonne National Laboratory was among 11 models from 11 countries participating in the international Scenario S validation of radiological assessment models with Chernobyl fallout data from southern Finland. The validation test was conducted by the Multiple Pathways Assessment Working Group of the Validation of Environmental Model Predictions (VAMP) program coordinated by the International Atomic Energy Agency. RESRAD was enhanced to provide an output of contaminant concentrations in environmental media and in food products to compare with measured data from southern Finland. Probability distributions for inputs that were judged to be most uncertain were obtained from the literature and from information provided in the scenario description prepared by the Finnish Centre for Radiation and Nuclear Safety. The deterministic version of RESRAD was run repeatedly to generate probability distributions for the required predictions. These predictions were used later to verify the probabilistic RESRAD code. The RESRAD predictions of radionuclide concentrations are compared with measured concentrations in selected food products. The radiological doses predicted by RESRAD are also compared with those estimated by the Finnish Centre for Radiation and Nuclear Safety

  20. A computer code SPHINCS for sodium fire safety evaluation

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    2000-01-01

    A computer code SPHINCS solves coupled phenomena of thermal-hydraulics and sodium fire based on a multi-zone model. It deals with arbitrary number of rooms each of which is connected mutually by doorway and penetrations. With regard to the combustion phenomena, flame sheet model and liquid droplet combustion model are used for pool and spray fire, respectively, with the chemical equilibrium model using Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of SPHINCS is detailed representation of thermal-hydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The author analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the SPHINCS has been validated with regard to the pool combustion phenomena. Further research needs are identified for the pool spreading modeling considering thermal deformation of liner and measurement of pool fluidity property of a mixture of liquid sodium and reaction products. SPHINCS code is to be used mainly in the safety evaluation of the consequence of sodium fire accident of liquid metal cooled fast reactor. (author)

  1. Development Of The Computer Code For Comparative Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Purwadi, Mohammad Dhandhang

    2001-01-01

    The qualitative and quantitative chemical analysis with Neutron Activation Analysis (NAA) is an importance utilization of a nuclear research reactor, and this should be accelerated and promoted in application and its development to raise the utilization of the reactor. The application of Comparative NAA technique in GA Siwabessy Multi Purpose Reactor (RSG-GAS) needs special (not commercially available yet) soft wares for analyzing the spectrum of multiple elements in the analysis at once. The application carried out using a single spectrum software analyzer, and comparing each result manually. This method really degrades the quality of the analysis significantly. To solve the problem, a computer code was designed and developed for comparative NAA. Spectrum analysis in the code is carried out using a non-linear fitting method. Before the spectrum analyzed, it was passed to the numerical filter which improves the signal to noise ratio to do the deconvolution operation. The software was developed using the G language and named as PASAN-K The testing result of the developed software was benchmark with the IAEA spectrum and well operated with less than 10 % deviation

  2. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.

    1996-01-01

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  3. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  4. Benchmarking of the computer code and the thirty foot side drop analysis for the Shippingport (RPV/NST package)

    International Nuclear Information System (INIS)

    Bumpus, S.E.; Gerhard, M.A.; Hovingh, J.; Trummer, D.J.; Witte, M.C.

    1989-01-01

    This paper presents the benchmarking of a finite element computer code and the subsequent results from the code simulating the 30 foot side drop impact of the RPV/NST transport package from the decommissioned Shippingport Nuclear Power Station. The activated reactor pressure vessel (RPV), thermal shield, and other reactor external components were encased in concrete contained by the neutron shield tank (NST) and a lifting skirt. The Shippingport RPV/NST package, a Type B Category II package, weighs approximately 900 tons and has 17.5 ft diameter and 40.7 ft. length. For transport of the activated components from Shippingport to the burial site, the Safety Analysis Report for Packaging (SARP) demonstrated that the package can withstand the hypothetical accidents of DOE Order 5480.3 including 10 CFR 71. Mathematical simulations of these accidents can substitute for actual tests if the simulated results satisfy the acceptance criteria. Any such mathematical simulation, including the modeling of the materials, must be benchmarked to experiments that duplicate the loading conditions of the tests. Additional confidence in the simulations is justified if the test specimens are configured similar to the package

  5. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  6. Users guide for NRC145-2 accident assessment computer code

    International Nuclear Information System (INIS)

    Pendergast, M.M.

    1982-08-01

    An accident assessment computer code has been developed for use at the Savannah River Plant. This computer code is based upon NRC Regulatory Guide 1.145 which provides guidence for accident assessements for power reactors. The code contains many options so that the user may utilize the code for many different assessments. For example the code can be used for non-nuclear assessments such as Sulpher Dioxide which may be required by the EPA. A discription of the code is contained in DP-1646. This document is a compilation of step-by-step instructions on how to use the code on the SRP IBM 3308 computer. This document consists of a number of tables which contain copies of computer listings. Some of the computer listings are copies of input; other listings give examples of computer output

  7. Assessment of the structural shielding integrity of some selected computed tomography facilities in the Greater Accra Region of Ghana

    International Nuclear Information System (INIS)

    Nkansah, A.

    2010-01-01

    The structural shielding integrity was assessed for four of the CT facilities at Trust Hospital, Korle-Bu Teaching Hospital, the 37 Military Hospital and Medical Imaging Ghana Ltd. in the Greater Accra Region of Ghana. From the shielding calculations, the concrete wall thickness computed are 120, 145, 140 and 155mm, for Medical Imaging Ghana Ltd. 37 Military, Trust Hospital and Korle-Bu Teaching Hospital respectively using Default DLP values. The wall thickness using Derived DLP values are 110, 110, 120 and 168mm for Medical Imaging Ghana Ltd, 37 Military Hospital, Trust Hospital and Korle-Bu Teaching Hospital respectively. These values are within the accepted standard concrete thickness of 102- 152mm prescribed by the National Council of Radiological Protection and measurement. The ultrasonic pulse testing indicated that all the sandcrete walls are of good quality and free of voids since pulse velocities estimated were approximately equal to 3.45km/s. an average dose rate measurement for supervised areas is 3.4 μSv/wk and controlled areas is 18.0 μSv/wk. These dose rates were below the acceptable levels of 100 μSv per week for the occupationally exposed and 20 μSv per week for members of the public provided by the ICRU. The results mean that the structural shielding thickness are adequate to protect members of the public and occupationally exposed workers (au).

  8. Standardization of computer programs - basis of the Czechoslovak library of nuclear codes

    International Nuclear Information System (INIS)

    Gregor, M.

    1987-01-01

    A standardized form of computer code documentation has been established in the CSSR in the field of reactor safety. Structure and content of the documentation are described and codes already subject to this process are mentioned. The formation of a Czechoslovak nuclear code library and facilitated discussion of safety reports containing results of standardized codes are aimed at

  9. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A. [and others

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEU codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.

  10. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality

    International Nuclear Information System (INIS)

    Geleijns, J.; Veldkamp, W.J.H.; Salvado Artells, M.; Lopez Tortosa, M.; Calzado Cantera, A.

    2006-01-01

    This study aimed at assessment of efficacy of selective in-plane shielding in adults by quantitative evaluation of the achieved dose reduction and image quality. Commercially available accessories for in-plane shielding of the eye lens, thyroid and breast, and an anthropomorphic phantom were used for the evaluation of absorbed dose and image quality. Organ dose and total energy imparted were assessed by means of a Monte Carlo technique taking into account tube voltage, tube current, and scanner type. Image quality was quantified as noise in soft tissue. Application of the lens shield reduced dose to the lens by 27% and to the brain by 1%. The thyroid shield reduced thyroid dose by 26%; the breast shield reduced dose to the breasts by 30% and to the lungs by 15%. Total energy imparted (unshielded/shielded) was 88/86 mJ for computed tomography (CT) brain, 64/60 mJ for CT cervical spine, and 289/260 mJ for CT chest scanning. An increase in image noise could be observed in the ranges were bismuth shielding was applied. The observed reduction of organ dose and total energy imparted could be achieved more efficiently by a reduction of tube current. The application of in-plane selective shielding is therefore discouraged. (orig.)

  11. URR-PACK: Calculating Self-Shielding in the Unresolved Resonance Energy Range

    International Nuclear Information System (INIS)

    Cullen, Dermott E.; Trkov, Andrej

    2016-07-01

    This report describes HOW to calculate self-shielding in the unresolved resonance region (URR), in terms of the computer codes we provide to allow a user to do these calculations himself. Here we only describe HOW to calculate; a longer companion report describes in detail WHY it is necessary to include URR self-shielding.

  12. Final technical position on documentation of computer codes for high-level waste management

    International Nuclear Information System (INIS)

    Silling, S.A.

    1983-06-01

    Guidance is given for the content of documentation of computer codes which are used in support of a license application for high-level waste disposal. The guidelines cover theoretical basis, programming, and instructions for use of the code

  13. RADTRAN II: revised computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1982-10-01

    A revised and updated version of the RADTRAN computer code is presented. This code has the capability to predict the radiological impacts associated with specific schemes of radioactive material shipments and mode specific transport variables

  14. INTRANS. A computer code for the non-linear structural response analysis of reactor internals under transient loads

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The 'INTRANS' system is a general purpose computer code, designed to perform linear and non-linear structural stress and deflection analysis of impacting or non-impacting nuclear reactor internals components coupled with reactor vessel, shield building and external as well as internal gapped spring support system. This paper describes in general a unique computational procedure for evaluating the dynamic response of reactor internals, descretised as beam and lumped mass structural system and subjected to external transient loads such as seismic and LOCA time-history forces. The computational procedure is outlined in the INTRANS code, which computes component flexibilities of a discrete lumped mass planar model of reactor internals by idealising an assemblage of finite elements consisting of linear elastic beams with bending, torsional and shear stiffnesses interacted with external or internal linear as well as non-linear multi-gapped spring support system. The method of analysis is based on the displacement method and the code uses the fourth-order Runge-Kutta numerical integration technique as a basis for solution of dynamic equilibrium equations of motion for the system. During the computing process, the dynamic response of each lumped mass is calculated at specific instant of time using well-known step-by-step procedure. At any instant of time then, the transient dynamic motions of the system are held stationary and based on the predicted motions and internal forces of the previous instant. From which complete response at any time-step of interest may then be computed. Using this iterative process, the relationship between motions and internal forces is satisfied step by step throughout the time interval

  15. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  16. Sensitivity and uncertainty studies of the CRAC2 computer code

    International Nuclear Information System (INIS)

    Kocher, D.C.; Ward, R.C.; Killough, G.G.; Dunning, D.E. Jr.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.

    1985-05-01

    This report presents a study of the sensitivity of early fatalities, early injuries, latent cancer fatalities, and economic costs for hypothetical nuclear reactor accidents as predicted by the CRAC2 computer code (CRAC = Calculation of Reactor Accident Consequences) to uncertainties in selected models and parameters used in the code. The sources of uncertainty that were investigated in the CRAC2 sensitivity studies include (1) the model for plume rise, (2) the model for wet deposition, (3) the procedure for meteorological bin-sampling involving the selection of weather sequences that contain rain, (4) the dose conversion factors for inhalation as they are affected by uncertainties in the physical and chemical form of the released radionuclides, (5) the weathering half-time for external ground-surface exposure, and (6) the transfer coefficients for estimating exposures via terrestrial foodchain pathways. The sensitivity studies were performed for selected radionuclide releases, hourly meteorological data, land-use data, a fixed non-uniform population distribution, a single evacuation model, and various release heights and sensible heat rates. Two important general conclusions from the sensitivity and uncertainty studies are as follows: (1) The large effects on predicted early fatalities and early injuries that were observed in some of the sensitivity studies apparently are due in part to the presence of thresholds in the dose-response models. Thus, the observed sensitivities depend in part on the magnitude of the radionuclide releases. (2) Some of the effects on predicted early fatalities and early injuries that were observed in the sensitivity studies were comparable to effects that were due only to the selection of different sets of weather sequences in bin-sampling runs. 47 figs., 50 tabs

  17. COMTA - a computer code for fuel mechanical and thermal analysis

    International Nuclear Information System (INIS)

    Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.

    1979-01-01

    COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)

  18. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo

    1982-01-01

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt

  19. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    International Nuclear Information System (INIS)

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system

  20. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 2, Part 3: Functional modules F16--F17; Revision 5

    International Nuclear Information System (INIS)

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system

  1. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 2, Part 3: Functional modules F16--F17; Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  2. Shielding calculations and collective dose estimations with the point-kernel-code VISIPLAN {sup registered} for the example of the project ZENT; Abschirmberechnungen und Kollektivdosisabschaetzungen mit dem Punkt-Kern-Code VISIPLAN {sup registered} am Beispiel des Projektes ZENT

    Energy Technology Data Exchange (ETDEWEB)

    Boehlke, S.; Niegoth, H. [STEAG Energy Services GmbH, Essen (Germany). Nuclear Technologies; Stalder, I. [Kernkraftwerk Leibstadt AG, Leibstadt (Switzerland)

    2012-11-01

    In the nuclear power plant Leibstadt (KKL) during the next year large components will be dismantled and stored for final disposal within the interim storage facility ZENT at the NPP site. Before construction of ZENT appropriate estimations of the local dose rate inside and outside the building and the collective dose for the normal operation have to be performed. The shielding calculations are based on the properties of the stored components and radiation sources and on the concepts for working place requirements. The installation of control and monitoring areas will depend on these calculations. For the determination of the shielding potential of concrete walls and steel doors with the defined boundary conditions point-kernel codes like MICROSHIELd {sup registered} are used. Complex problems cannot be modeled with this code. Therefore the point-kernel code VISIPLAN {sup registered} was developed for the determination of the local dose distribution functions in 3D models. The possibility of motion sequence inputs allows an optimization of collective dose estimations for the operational phases of a nuclear facility.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Miscellaneous -- Volume 3, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, L.M.; Jordon, W.C. [Oak Ridge National Lab., TN (United States); Edwards, A.L. [Oak Ridge National Lab., TN (United States)]|[Lawrence Livermore National Lab., CA (United States)] [and others

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice; (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System developments has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3--for the data libraries and subroutine libraries.

  4. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Landers, N.F.; Petrie, L.M.; Knight, J.R. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries.

  5. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Miscellaneous -- Volume 3, Revision 4

    International Nuclear Information System (INIS)

    Petrie, L.M.; Jordon, W.C.; Edwards, A.L.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice; (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System developments has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3--for the data libraries and subroutine libraries

  6. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    International Nuclear Information System (INIS)

    Landers, N.F.; Petrie, L.M.; Knight, J.R.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries

  7. Verification study of the FORE-2M nuclear/thermal-hydraulilc analysis computer code

    International Nuclear Information System (INIS)

    Coffield, R.D.; Tang, Y.S.; Markley, R.A.

    1982-01-01

    The verification of the LMFBR core transient performance code, FORE-2M, was performed in two steps. Different components of the computation (individual models) were verified by comparing with analytical solutions and with results obtained from other conventionally accepted computer codes (e.g., TRUMP, LIFE, etc.). For verification of the integral computation method of the code, experimental data in TREAT, SEFOR and natural circulation experiments in EBR-II were compared with the code calculations. Good agreement was obtained for both of these steps. Confirmation of the code verification for undercooling transients is provided by comparisons with the recent FFTF natural circulation experiments. (orig.)

  8. Computer codes for shaping the magnetic field of the JINR phasotron

    International Nuclear Information System (INIS)

    Zaplatin, N.L.; Morozov, N.A.

    1983-01-01

    The computer codes providing for the shaping the magnetic field of the JINR high current phasotron are presented. Using these codes the control for the magnetic field mapping was realized in on- or off-line regimes. Then these field parameters were calculated and ferromagnetic correcting elements and trim coils setting were chosen. Some computer codes were realised for the magnetic field horizontal component measurements. The data are presented on some codes possibilities. The codes were used on the EC-1010 and the CDC-6500 computers

  9. ANTEO: An optimised PC computer code for the steady state thermal hydraulic analysis of rod bundles

    International Nuclear Information System (INIS)

    Cevolani, S.

    1996-07-01

    The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of a such code was made possible by two facts: first, the increase the computing power of the desk machines; secondly, the fact several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes

  10. Numerical simulation of a reinforced concrete shield around a nuclear reactor

    International Nuclear Information System (INIS)

    Mahama, Mumuni Salifu

    1996-02-01

    Ghana currently operates a Research Reactor and other nuclear facilities including a Gamma Irradiation Facility, a Radiographic Non-Destructive Testing laboratory and would be operating in the nearest future a Radiotherapy Centre. Each of these has a concrete radiation shield as a major safety device. In carrying out its functions, a concrete radiation shield may be subjected to thermal and mechanical stresses. A facility for analysing these stresses is desirable. Two computer codes have been developed under this programme for radiation shielding computation and stress analysis of cylindrical reactor shields. (au)

  11. FISPIN - a computer code for nuclide inventory calculations

    International Nuclear Information System (INIS)

    Burstall, R.F.

    1979-10-01

    The code is used for assessment of three groups of nuclides, the actinides, the fission products, and structural materials. The methods of calculation are described, together with the input and output of the code and examples of both. Recommendations are given for the best use of the code. (author)

  12. Internal radiation dose calculations with the INREM II computer code

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Killough, G.G.

    1978-01-01

    A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation

  13. Iterative Metallic Artifact Reduction for In-Plane Gonadal Shielding During Computed Tomographic Venography of Young Males.

    Science.gov (United States)

    Choi, Jin Woo; Lee, Sang Yub; Kim, Jong Hyo; Jin, Hyeongmin; Lee, Jaewon; Choi, Young Hun; Lee, Hyeon-Kyeong; Park, Jae Hyung

    The purpose of this study was to evaluate a gonadal shield (GS) and iterative metallic artifact reduction (IMAR) during computed tomography scans, regarding the image quality and radiation dose. A phantom was imaged with and without a GS. Prospectively enrolled, young male patients underwent lower extremity computed tomography venography (precontrast imaging without the GS and postcontrast imaging with the GS). Radiation dose was measured each time, and the GS-applied images were reconstructed by weighted filtered back projection and IMAR. In the phantom study, image artifacts were significantly reduced by using IMAR (P = 0.031), whereas the GS reduced the radiation dose by 61.3%. In the clinical study (n = 29), IMAR mitigated artifacts from the GS, thus 96.6% of the IMAR image sets were clinically usable. Gonadal shielding reduced the radiation dose to the testes by 69.0%. The GS in conjunction with IMAR significantly reduced the radiation dose to the testes while maintaining the image quality.

  14. TRAC-PF1/MOD1 computer code

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-01-01

    The TRAC-P1 program was designed primarily for the analysis of large-break loss-of-coolant accidents (LOCAs) in pressurized water reactors (PWRs). Because of its versatility, however, it can be applied directly to many analyses ranging from blowdowns in simple pipes to integral LOCA tests in multiloop facilities. A refined version, called TRAC-P1A, was released to the National Energy Software Center (NESC) in March 1979. Although it still treats the same class of problems, TRAC-P1A is more efficient than TRAC-P1 and incorporates improved hydrodynamic and heat-transfer models. It also is easier to implement on various computers. TRAC-PD2 contains improved reflood and heat-transfer models and improvements in the numerical solution methods. Although a large LOCA code, it has been applied successfully to small-break problems and to the Three Mile Island incident. Distinguishing characteristics of the TRAC-PF1/MOD1 are summarized

  15. Shielding for a tandem accelerator coupled to linac booster

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Bisht, J.S.; Venkataraman, G.

    1996-01-01

    Shielding calculation for the Beam-Hall-II of pelletron facility, augmented with linac booster in its phase-II at Nuclear Science Centre, New Delhi, has been done. An estimate is obtained by reduction factor method considering source radiation of monoenergetic neutrons, which is then compared with the detail computation using computer code ALICE considering total energy and angular distribution of neutrons. Another code ASFIT is used to take into account the build up of gamma dose from (n, gamma) reactions within the concrete shield incorporating new radiation weighting factors as recommended by ICRP-60. (author). 8 refs., 2 figs

  16. The TESS [Tandem Experiment Simulation Studies] computer code user's manual

    International Nuclear Information System (INIS)

    Procassini, R.J.

    1990-01-01

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs

  17. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  18. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  19. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  20. Further development of the computer code ATHLET-CD

    International Nuclear Information System (INIS)

    Weber, Sebastian; Austregesilo, Henrique; Bals, Christine; Band, Sebastian; Hollands, Thorsten; Koellein, Carsten; Lovasz, Liviusz; Pandazis, Peter; Schubert, Johann-Dietrich; Sonnenkalb, Martin

    2016-10-01

    In the framework of the reactor safety research program sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi), the computer code system ATHLET/ATHLET-CD has been further developed as an analysis tool for the simulation of accidents in nuclear power plants with pressurized and boiling water reactors as well as for the evaluation of accident management procedures. The main objective was to provide a mechanistic analysis tool for best estimate calculations of transients, accidents, and severe accidents with core degradation in light water reactors. With the continued development, the capability of the code system has been largely improved, allowing best estimate calculations of design and beyond design base accidents, and the simulation of advanced core degradation with enhanced model extent in a reasonable calculation time. ATHLET comprises inter alia a 6-equation model, models for the simulation of non-condensable gases and tracking of boron concentration, as well as additional component and process models for the complete system simulation. Among numerous model improvements, the code application has been extended to super critical pressures. The mechanistic description of the dynamic development of flow regimes on the basis of a transport equation for the interface area has been further developed. This ATHLET version is completely integrated in ATHLET-CD. ATHLET-CD further comprises dedicated models for the simulation of fuel and control assembly degradation for both pressurized and boiling water reactors, debris bed with melting in the core region, as well as fission product and aerosol release and transport in the cooling system, inclusive of decay of nuclide inventories and of chemical reactions in the gas phase. The continued development also concerned the modelling of absorber material release, of melting, melt relocation and freezing, and the interaction with the wall of the reactor pressure vessel. The following models were newly

  1. Calculating additional shielding requirements in diagnostics X-ray departments by computer

    International Nuclear Information System (INIS)

    Rahimi, A.

    2004-01-01

    This report provides an extension of an existing method for the calculation of the barrier thickness required to reduce the three types of radiation exposure emitted from the source, the primary, secondary and leakage radiation, to a specified weekly design limit (MPD). Since each of these three types of radiation are of different beam quality, having different shielding requirements, NCRP 49 has provided means to calculate the necessary protective barrier thickness for each type of radiation individually. Additionally, barrier requirements specified using the techniques stated at NCRP 49, show enormous variations among users. Part of the variations is due to different assumptions made regarding the use of the examined room and the characteristics of adjoining space. Many of the differences result from the difficulty of accurately relating information from the calculations to graphs and tables involved in the calculation process specified by this report. Moreover, the latest technological developments such as mammography are not addressed and attenuation data for three-phase generators, that are most widely used today, is not provided. The design of shielding barriers in diagnostic X-ray departments generally follow the ALARA principle. That means that, in practice, the exposure levels are kept 'as low as reasonably achievable', taking into account economical and technical factors. Additionally, the calculation of barrier requirements includes many uncertainties (e.g. the workload, the actual kVp used etc.). (author)

  2. Assessment of the computer code COBRA/CFTL

    International Nuclear Information System (INIS)

    Baxi, C.B.; Burhop, C.J.

    1981-07-01

    The COBRA/CFTL code has been developed by Oak Ridge National Laboratory (ORNL) for thermal-hydraulic analysis of simulated gas-cooled fast breeder reactor (GCFR) core assemblies to be tested in the core flow test loop (CFTL). The COBRA/CFTL code was obtained by modifying the General Atomic code COBRA*GCFR. This report discusses these modifications, compares the two code results for three cases which represent conditions from fully rough turbulent flow to laminar flow. Case 1 represented fully rough turbulent flow in the bundle. Cases 2 and 3 represented laminar and transition flow regimes. The required input for the COBRA/CFTL code, a sample problem input/output and the code listing are included in the Appendices

  3. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1983-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  4. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1982-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  5. A computer code to design liquid containers for vehicles

    International Nuclear Information System (INIS)

    Parizi, H.B.; Fard, M.P.; Dolatabadi, A.

    2003-01-01

    We are presenting the development of a modular code for the simulation of the fluid sloshing that occurs in the liquid containers in vehicles. Sloshing occurs when a partially filled container of liquid goes through transient or steady external forces. Under such conditions, the free surface of the liquid may move and the liquid may impact on the walls of the container, exchanging forces. These forces may cause numerous harmful and undesirable consequences in the operation of the vehicle, such as vehicle turn over. The fluid mechanic equations that describe the fluid sloshing in the container and the dynamic equations that describe the movement of the container are solved separately in two different codes. The codes are coupled weekly, such that the output of one code will be used as the input to the other code in the same time step. The outputs of the fluid code are the forces and torques that are applied to the body of the container due to sloshing, whereas the output of the dynamic code are the translational and rotational velocities and accelerations of the container. The proposed software can be used to test the performance of the designed container under various operating condition and allow effective improvements to the container design. The proposed code is different than the presently available codes, in that it will provide a true simulation of the coupled fluid and structure interaction. (author)

  6. User manual for PACTOLUS: a code for computing power costs

    International Nuclear Information System (INIS)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results with the updated version of PACTOLUS. 11 figures, 2 tables

  7. User manual for PACTOLUS: a code for computing power costs.

    Energy Technology Data Exchange (ETDEWEB)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results. (RWR)

  8. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  9. Sensitivity and uncertainty studies of the CRAC2 computer code

    International Nuclear Information System (INIS)

    Kocher, D.C.; Ward, R.C.; Killough, G.G.; Dunning, D.E. Jr.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.

    1987-01-01

    The authors have studied the sensitivity of health impacts from nuclear reactor accidents, as predicted by the CRAC2 computer code, to the following sources of uncertainty: (1) the model for plume rise, (2) the model for wet deposition, (3) the meteorological bin-sampling procedure for selecting weather sequences with rain, (4) the dose conversion factors for inhalation as affected by uncertainties in the particle size of the carrier aerosol and the clearance rates of radionuclides from the respiratory tract, (5) the weathering half-time for external ground-surface exposure, and (6) the transfer coefficients for terrestrial foodchain pathways. Predicted health impacts usually showed little sensitivity to use of an alternative plume-rise model or a modified rain-bin structure in bin-sampling. Health impacts often were quite sensitive to use of an alternative wet-deposition model in single-trial runs with rain during plume passage, but were less sensitive to the model in bin-sampling runs. Uncertainties in the inhalation dose conversion factors had important effects on early injuries in single-trial runs. Latent cancer fatalities were moderately sensitive to uncertainties in the weathering half-time for ground-surface exposures, but showed little sensitivity to the transfer coefficients for terrestrial foodchain pathways. Sensitivities of CRAC2 predictions to uncertainties in the models and parameters also depended on the magnitude of the source term, and some of the effects on early health effects were comparable to those that were due only to selection of different sets of weather sequences in bin-sampling

  10. Implementation of computer codes for performance assessment of the Republic repository of LLW/ILW Mochovce

    International Nuclear Information System (INIS)

    Hanusik, V.; Kopcani, I.; Gedeon, M.

    2000-01-01

    This paper describes selection and adaptation of computer codes required to assess the effects of radionuclide release from Mochovce Radioactive Waste Disposal Facility. The paper also demonstrates how these codes can be integrated into performance assessment methodology. The considered codes include DUST-MS for source term release, MODFLOW for ground-water flow and BS for transport through biosphere and dose assessment. (author)

  11. Three computer codes for safety and stability of large superconducting magnets

    International Nuclear Information System (INIS)

    Turner, L.R.

    1985-01-01

    For analyzing the safety and stability of large superconducting magnets, three computer codes TASS, SHORTURN, and SSICC have been developed, applicable to bath-cooled magnets, bath-cooled magnets with shorted turns, and magnets with internally cooled conductors respectively. The TASS code is described, and the use of the three codes is reviewed

  12. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  13. Streaming experiment of gamma-ray obliquely incident on concrete shield wall with straight cylindrical ducts and verification of single scattering code

    International Nuclear Information System (INIS)

    Yamaji, Akio; Saito, Tetsuo.

    1988-01-01

    To investigate a proximity effect of ducts on shield performance against γ radiation, an experiment was performed at JRR-4 by entering the γ-ray beam into a concrete shield wall of 100 cm-thickness with 3 or 5 straight cylindrical ducts of radius of 4.45 cm placed in a straight line or crosswise at interval of 8.9 cm. The dose rates were measured using digital dosimeters on a horizontal line 20 cm apart from the rear of the wall with 0, 1, 3 and 5 ducts, and with the incident angles of 0deg, 7deg, 14deg and 20deg, respectively. The dose rate distributions depended on the number of ducts and the incident angle, and the dose rate ratios of with-three-ducts to no-duct distributed within 3.6∼12, 1.3∼5.0 and 1.1∼4.3, for the incident angles of 7deg, 14deg and 20deg, while those of with-single-duct to no-duct within 1.2∼7.1, 1.1∼2.7 and 1.0∼1.9, respectively. The experiment was analyzed using a multigroup single scattering code G33YSN able to deal with the geometry of the ducts exactly. For each incident angle, the calculation agreed with the experiment within a factor of 2. (author)

  14. MLSOIL and DFSOIL - computer codes to estimate effective ground surface concentrations for dose computations

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.

    1984-11-01

    This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables

  15. PAPIRUS - a computer code for FBR fuel performance analysis

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsuboi, Y.; Sogame, M.

    1991-01-01

    The FBR fuel performance analysis code PAPIRUS has been developed to design fuels for demonstration and future commercial reactors. A pellet structural model was developed to describe the generation, depletion and transport of vacancies and atomic elements in unified fashion. PAPIRUS results in comparison with the power - to - melt test data from HEDL showed validity of the code at the initial reactor startup. (author)

  16. Utilization of KENO-IV computer code with HANSEN-ROACH library

    International Nuclear Information System (INIS)

    Lima Barros, M. de; Vellozo, S.O.

    1982-01-01

    Several analysis with KENO-IV computer code, which is based in the Monte Carlo method, and the cross section library HANSEN-ROACH, were done, aiming to present the more convenient form to execute criticality calculations with this computer code and this cross sections. (E.G.) [pt

  17. CAT: a computer code for the automated construction of fault trees

    International Nuclear Information System (INIS)

    Apostolakis, G.E.; Salem, S.L.; Wu, J.S.

    1978-03-01

    A computer code, CAT (Computer Automated Tree, is presented which applies decision table methods to model the behavior of components for systematic construction of fault trees. The decision tables for some commonly encountered mechanical and electrical components are developed; two nuclear subsystems, a Containment Spray Recirculation System and a Consequence Limiting Control System, are analyzed to demonstrate the applications of CAT code

  18. TRACMAB. A computer code to form part of the link between the codes TRAC and MABEL

    International Nuclear Information System (INIS)

    Newbon, S.

    1982-05-01

    This report describes the function of the link program TRACMAB and provides a guide for users. The program is required to convert the thermal disequilibrium data output by the transient code TRAC into equilibrium data in a format compatible with the input data required by the code CAIN which in turn produces input data for MABEL. (author)

  19. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    Directory of Open Access Journals (Sweden)

    Muhammad Harist Murdani

    2018-03-01

    Full Text Available In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc and neighborhood proximity (Top-K. Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  20. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    Science.gov (United States)

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  1. SWAAM-LT: The long-term, sodium/water reaction analysis method computer code

    International Nuclear Information System (INIS)

    Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.

    1993-01-01

    The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data

  2. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  3. Cooperation of experts' opinion, experiment and computer code development

    International Nuclear Information System (INIS)

    Wolfert, K.; Hicken, E.

    The connection between code development, code assessment and confidence in the analysis of transients will be discussed. In this manner, the major sources of errors in the codes and errors in applications of the codes will be shown. Standard problem results emphasize that, in order to have confidence in licensing statements, the codes must be physically realistic and the code user must be qualified and experienced. We will discuss why there is disagreement between the licensing authority and vendor concerning assessment of the fullfillment of safety goal requirements. The answer to the question lies in the different confidence levels of the assessment of transient analysis. It is expected that a decrease in the disagreement will result from an increased confidence level. Strong efforts will be made to increase this confidence level through improvements in the codes, experiments and related organizational strcutures. Because of the low probability for loss-of-coolant-accidents in the nuclear industry, assessment must rely on analytical techniques and experimental investigations. (orig./HP) [de

  4. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  5. Status report of shielding investigation in Japan

    International Nuclear Information System (INIS)

    Shindo, M.

    1964-01-01

    The Japan Atomic Energy Research Institute (JAERI) was established in 1954, and immediately proceeded with the construction of a research reactor. The first symposium in Japan on nuclear energy was held in 1957. Most of the papers presented in the field of reactor shielding were limited to shielding materials and their fabrication. In the first stage of our investigations, our efforts were devoted to practical design studies of reactor shielding. As a result of these studies, it was found that the formulae at hand for calculations were inadequate, but at that time no electronic computer was available in Japan nor were theoretical calculations very actively undertaken. Problems on nuclear ship shielding had been investigated at the Ship Research Institute, since 1956 and many fruitful results had been obtained. About that time the Japan Atomic Industry Forum started activities and took the initiative in organizing shielding research. Research workers in the shipbuilding industry in particular have been seriously studying shielding problems. Few years after the first symposium, problems concerning more fundamental studies were treated by many research workers. Shielding experiments using radioisotopes were carried out and many fruitful results were obtained. They are described in the this paper. Medium size electronic computers became available in Japan, permitting a theoretical study group to make an active contribution. They produced some codes, and their results are also described in the following sections. This constituted the second stage of our investigations. A swimming-pool reactor, JRR-4 (Japan Research Reactor-4), has been under construction at JAERI since 1962 and will become critical in autumn 1964. After characteristic tests it will be a very powerful tool for the shielding investigations. This id the beginning of the third stage of investigations

  6. Prevalence of Protective Shielding Utilization for Radiation Dose Reduction in Adult Patients Undergoing Body Scanning Using Computed Tomography.

    Science.gov (United States)

    Safiullah, Shoaib; Patel, Roshan; Uribe, Brittany; Spradling, Kyle; Lall, Chandana; Zhang, Lishi; Okhunov, Zhamshid; Clayman, Ralph V; Landman, Jaime

    2017-10-01

    Ionizing radiation is implicated in nearly 2% of malignancies in the United States; radiation shields prevent unnecessary radiation exposure during medical imaging. Contemporary radiation shield utilization for adult patients in the United States is poorly defined. Therefore, we evaluated the prevalence of protective shielding utilization in adult patients undergoing CT scans in United States' hospitals. An online survey was sent to established radiology departments randomly selected from the 2015 American Hospital Association Guide. Radiology departments conducting adult CT imaging were eligible; among 370 eligible departments, 215 departments accepted the study participation request. Questions focused on shielding practices during CT imaging of the eyes, thyroid, breasts, and gonads. Prevalence data were stratified per hospital location, size, and type. Main outcomes included overall protective shielding utilization, respondents' belief and knowledge regarding radiation safety, and organ-specific shielding prevalence. Sixty-seven of 215 (31%) hospitals completed the survey; 66 (99%) reported familiarity with the ALARA (as low as reasonably achievable) principle and 56 (84%) affirmed their belief that shielding is beneficial. Only 60% of hospitals employed shielding during CT imaging; among these institutions, shielding varied based on CT study: abdominopelvic CT (13, 33%), head CT (33, 83%), or chest CT (30, 75%). Among surveyed hospitals, 40% do not utilize CT shielding despite the majority acknowledging the ALARA principle and agreeing that shielding is a beneficial practice. Failure to address the low prevalence of protective shielding may lead to poor community health due to increased risk of radiation-related cancers.

  7. MMA, A Computer Code for Multi-Model Analysis

    Science.gov (United States)

    Poeter, Eileen P.; Hill, Mary C.

    2007-01-01

    This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations. Many applications of MMA will

  8. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  9. Flux wire measurements in Cavalier for verifying computer code applications

    International Nuclear Information System (INIS)

    Fehr, M.; Stubbs, J.; Hosticka, B.

    1988-01-01

    The Cavalier and UVAR research reactors are to be converted from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. As a first step, an extensive set of gold wire activation measurements has been taken on the Cavalier reactor. Axial traverses show internal consistency to the order of ±5%, while horizontal traverses show somewhat larger deviations. The activation measurements will be converted to flux measurements via the Thermos code and will then be used to verify the Leopard-2DB codes. The codes will ultimately be used to design an upgraded LEU core for the UVAR

  10. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  11. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    Faya, S.C.S.; Faya, A.J.G.

    1983-01-01

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt

  12. Sensitivity analysis of FRAPCON-1 computer code to some parameters

    International Nuclear Information System (INIS)

    Chia, C.T.; Silva, C.F. da.

    1987-05-01

    A sensibility study of the code FRAPCON-1 was done for the following inout data: number of axial nodes, number of time steps and the axial power shape. Their influence in the code response concerning to the fuel center line temperature, stored energy, internal gas pressure, clad hoop strain and gap width were analyzed. The number of axial nodes has little influence, but care must be taken in the choice of the power axial profile and the time step length. (Author) [pt

  13. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig.

  14. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    International Nuclear Information System (INIS)

    Imam, M.

    1995-01-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig

  15. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  16. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  17. Citham a computer code for calculating fuel depletion-description, tests, modifications and evaluation

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1984-12-01

    The CITHAN computer code was developed at IPEN (Instituto de Pesquisas Energeticas e Nucleares) to link the HAMMER computer code with a fuel depletion routine and to provide neutron cross sections to be read with the appropriate format of the CITATION code. The problem arised due to the efforts to addapt the new version denomined HAMMER-TECHION with the routine refered. The HAMMER-TECHION computer code was elaborated by Haifa Institute, Israel within a project with EPRI. This version is at CNEN to be used in multigroup constant generation for neutron diffusion calculation in the scope of the new methodology to be adopted by CNEN. The theoretical formulation of CITHAM computer code, tests and modificatins are described. (Author) [pt

  18. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  19. Qualification of the new version of HAMMER computer code

    International Nuclear Information System (INIS)

    Chia, C.T.

    1984-06-01

    (HTEC) code were tested with a great number of diferent type of experiments. This experiments covers the most important parameters in neutronic calculations, such as the cell geometry and composition. The HTEC code results have been analysed and compared with experimental data and results given by the literature and simulated by HAMMER and LEOPARD codes. The quantities used for analysis were Keff and the following integral parameters: R28 - ratio of epicadmium-to-subcadmium 238 U captures; D25 - ratio of epicadmium-to-subcadmium 235 U fission; D28 - ratio of 238 U fissions to 235 U fissions; C - ratio of 238 U captures to 235 U fissions; RC02 - ratio of epicadmium-to-subcadmium 232 Th capture. The analysis shows that the results given by the code are in good agreement with the experimental data and the results given by the other codes. The calculation that have been done with the detailed ressonance profile tabulations of plutonium isotopes shows worst results than that obtained with the ressonance parameters. Almost all the simulated cases, shows that the HTEC results are closest to the experimental data than the HAMMER results, when one do not use the detailed ressonance profile tabulations of the plutonium isotopes. (Author) [pt

  20. A three-dimensional computed tomography-assisted Monte Carlo evaluation of ovoid shielding on the dose to the bladder and rectum in intracavitary radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Gifford, Kent A.; Horton, John L.; Pelloski, Christopher E.; Jhingran, Anuja; Court, Laurence E.; Mourtada, Firas; Eifel, Patricia J.

    2005-01-01

    Purpose: To determine the effects of Fletcher Suit Delclos ovoid shielding on dose to the bladder and rectum during intracavitary radiotherapy for cervical cancer. Methods and Materials: The Monte Carlo method was used to calculate the dose in 12 patients receiving low-dose-rate intracavitary radiotherapy with both shielded and unshielded ovoids. Cumulative dose-difference surface histograms were computed for the bladder and rectum. Doses to the 2-cm 3 and 5-cm 3 volumes of highest dose were computed for the bladder and rectum with and without shielding. Results: Shielding affected dose to the 2-cm 3 and 5-cm 3 volumes of highest dose for the rectum (10.1% and 11.1% differences, respectively). Shielding did not have a major impact on the dose to the 2-cm 3 and 5-cm 3 volumes of highest dose for the bladder. The average dose reduction to 5% of the surface area of the bladder was 53 cGy. Reductions as large as 150 cGy were observed to 5% of the surface area of the bladder. The average dose reduction to 5% of the surface area of the rectum was 195 cGy. Reductions as large as 405 cGy were observed to 5% of the surface area of the rectum. Conclusions: Our data suggest that the ovoid shields can greatly reduce the radiation dose delivered to the rectum. We did not find the same degree of effect on the dose to the bladder. To calculate the dose accurately, however, the ovoid shields must be included in the dose model