WorldWideScience

Sample records for shh zic2 six3

  1. Holoprosencephaly: ZIC2 mutation in a case with panhypopituitarism.

    Science.gov (United States)

    Tasdemir, Sener; Sahin, Ibrahim; Cayır, Atilla; Doneray, Hakan; Solomon, Benjamin D; Muenke, Maximilian; Yuce, Ihsan; Tatar, Abdulgani

    2014-07-01

    Holoprosencephaly (HPE), the most common malformation of the brain, results from failed or incomplete separation of the embryonic forebrain (prosencephalon). HPE occurs in approximately 1 in 250 embryos and in about 1 in 10,000 births. It is etiologically heterogeneous, and may be caused by cytogenetic anomalies and teratogenic influences; it occurs as part of a syndrome, or due to heterozygous mutations in 1 of over 10 HPE-associated genes. ZIC2 mutations are the second-most common cause of non-syndromic non-chromosomal HPE (after sonic hedgehog) and occur de novo in 74% of the affected probands. The objective of the study was to describe the first case of ZIC2-related HPE with both anterior and posterior pituitary insufficiencies. We report about a 2-year-8-month-old boy who was born as a second child in a non-consanguineous healthy Turkish family. He has the characteristic ZIC2 phenotype: bitemporal narrowing, upslanting palpebral fissures, large ears, short nose with anteverted nares and broad and deep philtrum. Magnetic resonance imaging revealed alobar HPE. During laboratory investigation, his blood sodium level was 158 mmol/L and the specific gravity of his urine was 1.002. Serum osmolarity was 336 mOsm/L and urine osmolality was 135 mOsm/kg. His FT4 was 0.8 ng/dL and TSH was 0.79 mLU/mL. Response to vasopressin confirmed the diagnosis of central diabetes insipidus and TRH-stimulating test supported the central hypothyroidism. A frameshift mutation (NM_007129.2:c1091_1092 del, p.Gln364Leufs*2) in the ZIC2 gene was detected. Pituitary insufficiency other than isolated diabetes insipidus is a rare finding of HPE, and occurs most frequently in patients with GLI2 mutations (the phenotype of which typically does not include frank neuroanatomic anomalies such as HPE); ours is the only described patient with a ZIC2 mutation and both anterior and posterior pituitary dysfunction.

  2. Six3

    Directory of Open Access Journals (Sweden)

    Steinmetz Patrick RH

    2010-12-01

    Full Text Available Abstract Background The heads of annelids (earthworms, polychaetes, and others and arthropods (insects, myriapods, spiders, and others and the arthropod-related onychophorans (velvet worms show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the 'new phylogeny' placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila, a six3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids. In insects, onychophorans and Platynereis, the otx+ region instead harbours the eye anlagen, which thus occupy a more posterior position. Conclusions These observations indicate that the annelid, onychophoran and arthropod head develops from a conserved anterior-posterior sequence of six3+ and otx+ regions. The six3+ anterior pole of the arthropod head and brain accordingly lies in an anterior-median embryonic region and, in consequence, the optic

  3. Mutations in ZIC2 in human holoprosencephaly: description of a Novel ZIC2 specific phenotype and comprehensive analysis of 157 individuals

    NARCIS (Netherlands)

    Solomon, Benjamin D.; Lacbawan, Felicitas; Mercier, Sandra; Clegg, Nancy J.; Delgado, Mauricio R.; Rosenbaum, Kenneth; Dubourg, Christèle; David, Veronique; Olney, Ann Haskins; Wehner, Lars-Erik; Hehr, Ute; Bale, Sherri; Paulussen, Aimee; Smeets, Hubert J.; Hardisty, Emily; Tylki-Szymanska, Anna; Pronicka, Ewa; Clemens, Michelle; McPherson, Elizabeth; Hennekam, Raoul C. M.; Hahn, Jin; Stashinko, Elaine; Levey, Eric; Wieczorek, Dagmar; Roeder, Elizabeth; Schell-Apacik, Chayim Can; Booth, Carol W.; Thomas, Ronald L.; Kenwrick, Sue; Cummings, Derek A. T.; Bous, Sophia M.; Keaton, Amelia; Balog, Joan Z.; Hadley, Donald; Zhou, Nan; Long, Robert; Vélez, Jorge I.; Pineda-Alvarez, Daniel E.; Odent, Sylvie; Roessler, Erich; Muenke, Maximilian

    2010-01-01

    BACKGROUND: Holoprosencephaly (HPE), the most common malformation of the human forebrain, may be due to mutations in genes associated with non-syndromic HPE. Mutations in ZIC2, located on chromosome 13q32, are a common cause of non-syndromic, non-chromosomal HPE. OBJECTIVE: To characterise genetic

  4. Sexual phenotype differences in zic2 mRNA abundance in the preoptic area of a protogynous teleost, Thalassoma bifasciatum.

    Directory of Open Access Journals (Sweden)

    Katherine McCaffrey

    Full Text Available The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP males and territorial, terminal phase (TP males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum.

  5. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function

    NARCIS (Netherlands)

    Lacbawan, F.; Solomon, B. D.; Roessler, E.; El-Jaick, K.; Domené, S.; Vélez, J. I.; Zhou, N.; Hadley, D.; Balog, J. Z.; Long, R.; Fryer, A.; Smith, W.; Omar, S.; McLean, S. D.; Clarkson, K.; Lichty, A.; Clegg, N. J.; Delgado, M. R.; Levey, E.; Stashinko, E.; Potocki, L.; VanAllen, M. I.; Clayton-Smith, J.; Donnai, D.; Bianchi, D. W.; Juliusson, P. B.; Njølstad, P. R.; Brunner, H. G.; Carey, J. C.; Hehr, U.; Müsebeck, J.; Wieacker, P. F.; Postra, A.; Hennekam, R. C. M.; van den Boogaard, M.-J. H.; van Haeringen, A.; Paulussen, A.; Herbergs, J.; Schrander-Stumpel, C. T. R. M.; Janecke, A. R.; Chitayat, D.; Hahn, J.; McDonald-McGinn, D. M.; Zackai, E. H.; Dobyns, W. B.; Muenke, M.

    2009-01-01

    BACKGROUND: Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing

  6. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.

    Directory of Open Access Journals (Sweden)

    Jingyue Xu

    2016-01-01

    Full Text Available Cleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated. Using Cre/loxP-mediated tissue-specific gene inactivation in mice, we show that Foxf2 is required in the neural crest-derived palatal mesenchyme for normal palatogenesis. We found that Foxf2 mutant embryos exhibit altered patterns of expression of Shh, Ptch1, and Shox2 in the developing palatal shelves. Through RNA-seq analysis, we identified over 150 genes whose expression was significantly up- or down-regulated in the palatal mesenchyme in Foxf2-/- mutant embryos in comparison with control littermates. Whole mount in situ hybridization analysis revealed that the Foxf2 mutant embryos exhibit strikingly corresponding patterns of ectopic Fgf18 expression in the palatal mesenchyme and concomitant loss of Shh expression in the palatal epithelium in specific subdomains of the palatal shelves that correlate with where Foxf2, but not Foxf1, is expressed during normal palatogenesis. Furthermore, tissue specific inactivation of both Foxf1 and Foxf2 in the early neural crest cells resulted in ectopic activation of Fgf18 expression throughout the palatal mesenchyme and dramatic loss of Shh expression throughout the palatal epithelium. Addition of exogenous Fgf18 protein to cultured palatal explants inhibited Shh expression in the palatal epithelium. Together, these data reveal a novel Shh-Foxf-Fgf18-Shh circuit in the palate development molecular network, in which Foxf1 and Foxf2 regulate palatal shelf growth downstream of Shh signaling, at least in part, by repressing Fgf18

  7. Shh-ushing Midline Crossing through Remote Protein Transport.

    Science.gov (United States)

    Herrera, Eloísa; Sitko, Austen A; Bovolenta, Paola

    2018-01-17

    Shh contributes to neural circuit formation with different mechanisms. In this issue, Peng and colleagues (2018) identify a novel trans-axonal mechanism by which Shh derived from contralateral projecting retinal ganglion cells prevents midline crossing of Boc-expressing ipsilateral axons at the optic chiasm. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The many lives of SHH in limb development and evolution.

    Science.gov (United States)

    Lopez-Rios, Javier

    2016-01-01

    The SHH signaling pathway is essential for proper formation of the limb skeleton, as is required for the survival and expansion of distal chondrogenic progenitor cells. At the same time, SHH is important to specify digit identities along the anterior-posterior axis. Upon gain or loss of activity of the SHH pathway, bones are gained, lost or malformed, and such deregulation underlies the aetiology of various human congenital limb defects. Likewise, accumulating evidence suggests that evolutionary tampering with SHH signaling underlies the morphological diversification of the tetrapod appendicular skeleton. This review summarizes the roles of the SHH pathway in the context of limb development and evolution and incorporates recent evidence into a mechanistic view of how the positioning of digit condensations is integrated with the specification of distinct bone morphologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dicty_cDB: SHH247 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SH (Link to library) SHH247 (Link to dictyBase) - - - Contig-U15693-1 - (Link to Or...iginal site) - - SHH247Z 601 - - - - Show SHH247 Library SH (Link to library) Clone ID SHH247 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15693-1 Original site URL http://dictycdb.b...pdate 2002.12. 6 Homology vs DNA Score E Sequences producing significant alignments: (bits) Value N AF188717 |AF188717.1 Dict...ogaster SD01519 fu... 56 6e-07 DQ353802_1( DQ353802 |pid:none) Ictalurus punctatu

  10. Dicty_cDB: SHH233 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SH (Link to library) SHH233 (Link to dictyBase) - - - Contig-U11264-1 - (Link to Or...c08.g1 Strongyloides ratti whole genome shotgun library (SRAAGSS 004) Strongyloides ratti genomic...iginal site) - - SHH233Z 563 - - - - Show SHH233 Library SH (Link to library) Clone ID SHH233 (Link to dicty...631_5( AY458631 |pid:none) Uncultured marine bacterium 159 cl... 84 3e-15 CU92816...86F1 NIH_MGC_58 Homo sapiens cDNA clone IMAGE:4069772 5', mRNA sequence. 46 0.86 1 AP008210 |AP008210.1 Oryza sativa (japonica culti

  11. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Science.gov (United States)

    Xiao, Ying; Thoresen, Daniel T; Miao, Lingling; Williams, Jonathan S; Wang, Chaochen; Atit, Radhika P; Wong, Sunny Y; Brownell, Isaac

    2016-07-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  12. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2016-07-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  13. A conserved role for Notch in priming the cellular response to Shh through ciliary localisation of the key Shh transducer, Smoothened

    DEFF Research Database (Denmark)

    Stasiulewicz, Magdalena; Gray, Shona; Mastromina, Ioanna

    2015-01-01

    Notochord-derived Sonic Hedgehog (SHH) is essential for dorso-ventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show Notch signalling augments the response of neuroepithelial cells...

  14. LHX2 Mediates the FGF-to-SHH Regulatory Loop during Limb Development

    Directory of Open Access Journals (Sweden)

    Billy A. Watson

    2018-06-01

    Full Text Available During limb development, fibroblast growth factors (Fgfs govern proximal–distal outgrowth and patterning. FGFs also synchronize developmental patterning between the proximal–distal and anterior–posterior axes by maintaining Sonic hedgehog (Shh expression in cells of the zone of polarizing activity (ZPA in the distal posterior mesoderm. Shh, in turn, maintains Fgfs in the apical ectodermal ridge (AER that caps the distal tip of the limb bud. Crosstalk between Fgf and Shh signaling is critical for patterned limb development, but the mechanisms underlying this feedback loop are not well-characterized. Implantation of Fgf beads in the proximal posterior limb bud can maintain SHH expression in the former ZPA domain (evident 3 h after application, while prolonged exposure (24 h can induce SHH outside of this domain. Although temporally and spatially disparate, comparative analysis of transcriptome data from these different populations accentuated genes involved in SHH regulation. Comparative analysis identified 25 candidates common to both treatments, with eight linked to SHH expression or function. Furthermore, we demonstrated that LHX2, a LIM Homeodomain transcription factor, is an intermediate in the FGF-mediated regulation of SHH. Our data suggest that LHX2 acts as a competency factor maintaining distal posterior SHH expression subjacent to the AER.

  15. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    Science.gov (United States)

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric

    2015-03-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  16. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  17. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition

    NARCIS (Netherlands)

    Kool, Marcel; Jones, David T. W.; Jäger, Natalie; Northcott, Paul A.; Pugh, Trevor J.; Hovestadt, Volker; Piro, Rosario M.; Esparza, L. Adriana; Markant, Shirley L.; Remke, Marc; Milde, Till; Bourdeaut, Franck; Ryzhova, Marina; Sturm, Dominik; Pfaff, Elke; Stark, Sebastian; Hutter, Sonja; Seker-Cin, Huriye; Johann, Pascal; Bender, Sebastian; Schmidt, Christin; Rausch, Tobias; Shih, David; Reimand, Jüri; Sieber, Laura; Wittmann, Andrea; Linke, Linda; Witt, Hendrik; Weber, Ursula D.; Zapatka, Marc; König, Rainer; Beroukhim, Rameen; Bergthold, Guillaume; van Sluis, Peter; Volckmann, Richard; Koster, Jan; Versteeg, Rogier; Schmidt, Sabine; Wolf, Stephan; Lawerenz, Chris; Bartholomae, Cynthia C.; von Kalle, Christof; Unterberg, Andreas; Herold-Mende, Christel; Hofer, Silvia; Kulozik, Andreas E.; von Deimling, Andreas; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Hasselblatt, Martin; Crawford, John R.; Grant, Gerald A.; Jabado, Nada; Perry, Arie; Cowdrey, Cynthia; Croul, Sydney; Zadeh, Gelareh; Korbel, Jan O.; Doz, Francois; Delattre, Olivier; Bader, Gary D.; McCabe, Martin G.; Collins, V. Peter; Kieran, Mark W.; Cho, Yoon-Jae; Pomeroy, Scott L.; Witt, Olaf; Brors, Benedikt; Taylor, Michael D.; Schüller, Ulrich; Korshunov, Andrey; Eils, Roland; Wechsler-Reya, Robert J.; Lichter, Peter; Pfister, Stefan M.

    2014-01-01

    Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large

  18. Rubinstein-Taybi syndrome predisposing to non-WNT, non-SHH, group 3 medulloblastoma.

    Science.gov (United States)

    Bourdeaut, Franck; Miquel, Catherine; Richer, Wilfrid; Grill, Jacques; Zerah, Michel; Grison, Camille; Pierron, Gaelle; Amiel, Jeanne; Krucker, Clementine; Radvanyi, Francois; Brugieres, Laurence; Delattre, Olivier

    2014-02-01

    Medulloblastomas (MB) are classified in four subgroups: the well defined WNT and Sonic Hedgehog (SHH) subgroups, and the less defined groups 3 and 4. They occasionally occur in the context of a cancer predisposition syndrome. While germline APC mutations predispose to WNT MB, germline mutations in SUFU, PTCH1, and TP53 predispose to SHH tumors. We report on a child with a Rubinstein-Taybi syndrome (RTS) due to a germline deletion in CREBBP, who developed a MB. Biological profilings demonstrate that this tumor belongs to the group 3. RTS may therefore be the first predisposition syndrome identified for non-WNT/non-SHH MB. © 2013 Wiley Periodicals, Inc.

  19. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  20. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    Science.gov (United States)

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  1. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.

    Science.gov (United States)

    Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L

    2009-08-15

    Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.

  2. Is sonic Hedgehog involved in human fracture healing? --a prospective study on local and systemic concentrations of SHH.

    Science.gov (United States)

    Eipeldauer, Stefan; Thomas, Anita; Hoechtl-Lee, Leonard; Kecht, Mathias; Binder, Harald; Koettstorfer, Julia; Gregori, Markus; Sarahrudi, Kambiz

    2014-01-01

    Sonic Hedgehog (SHH) is a new signalling pathway in bone repair. Evidence exist that SHH pathway plays a significant role in vasculogenesis and limb development during embryogenesis. Some in vitro and animal studies has already proven its potential for bone regeneration. However, no data on the role of SHH in the human fracture healing have been published so far. Seventy-five patients with long bone fractures were included into the study and divided in 2 groups. First group contained 69 patients with normal fracture healing. Four patients with impaired fracture healing formed the second group. 34 volunteers donated blood samples as control. Serum samples were collected over a period of 1 year following a standardized time schedule. In addition, SHH levels were measured in fracture haematoma and serum of 16 patients with bone fractures. Fracture haematoma and patients serum both contained lower SHH concentrations compared to control serum. The comparison between the patients' serum SHH level and the control serum revealed lower levels for the patients at all measurement time points. Significantly lower concentrations were observed at weeks 1 and 2 after fracture. SHH levels were slightly decreased in patients with impaired fracture healing without statistical significance. This is the first study to report local and systemic concentration of SHH in human fracture healing and SHH serum levels in healthy adults. A significant reduction of the SHH levels during the inflammatory phase of fracture healing was found. SHH concentrations in fracture haematoma and serum were lower than the concentration in control serum for the rest of the healing period. Our findings indicate that there is no relevant involvement of SHH in human fracture healing. Fracture repair process seem to reduce the SHH level in human. Further studies are definitely needed to clarify the underlying mechanisms.

  3. Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate

    Directory of Open Access Journals (Sweden)

    Stanislav Kremnyov

    2018-01-01

    Full Text Available Abstract Background The notochord has organizer properties and is required for floor plate induction and dorsoventral patterning of the neural tube. This activity has been attributed to sonic hedgehog (shh signaling, which originates in the notochord, forms a gradient, and autoinduces shh expression in the floor plate. However, reported data are inconsistent and the spatiotemporal development of the relevant shh expression domains has not been studied in detail. We therefore studied the expression dynamics of shh in rabbit, chicken and Xenopus laevis embryos (as well as indian hedgehog and desert hedgehog as possible alternative functional candidates in the chicken. Results Our analysis reveals a markedly divergent pattern within these vertebrates: whereas in the rabbit shh is first expressed in the notochord and its floor plate domain is then induced during subsequent somitogenesis stages, in the chick embryo shh is expressed in the prospective neuroectoderm prior to the notochord formation and, interestingly, prior to mesoderm immigration. Neither indian hedgehog nor desert hedgehog are expressed in these midline structures although mRNA of both genes was detected in other structures of the early chick embryo. In X. laevis, shh is expressed at the beginning of gastrulation in a distinct area dorsal to the dorsal blastopore lip and adjacent to the prospective neuroectoderm, whereas the floor plate expresses shh at the end of gastrulation. Conclusions While shh expression patterns in rabbit and X. laevis embryos are roughly compatible with the classical view of “ventral to dorsal induction” of the floor plate, the early shh expression in the chick floor plate challenges this model. Intriguingly, this alternative sequence of domain induction is related to the asymmetrical morphogenesis of the primitive node and other axial organs in the chick. Our results indicate that the floor plate in X. laevis and chick embryos may be initially

  4. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.

    Science.gov (United States)

    Liu, Hong Xiang; Ermilov, Alexandre; Grachtchouk, Marina; Li, Libo; Gumucio, Deborah L; Dlugosz, Andrzej A; Mistretta, Charalotte M

    2013-10-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste

  5. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    Science.gov (United States)

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  6. Medulloblastoma in China: clinicopathologic analyses of SHH, WNT, and non-SHH/WNT molecular subgroups reveal different therapeutic responses to adjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Zhang

    Full Text Available Medulloblastoma (MB is one of the most common primary central nervous system tumors in children. Data is lacking of a large cohort of medulloblastoma patients in China. Also, our knowledge on the sensitivity of different molecular subgroups of MB to adjuvant radiation therapy (RT or chemotherapy (CHT is still limited. The authors performed a retrospective study of 173 medulloblastoma patients treated at two institutions from 2002 to 2011. Formalin-fixed paraffin embedded (FFPE tissues were available in all the cases and sections were stained to classify histological and molecular subgroups. Univariate and multivariate analyses were used to investigate prognostic factors. Of 173 patients, there were 118 children and 55 adults, 112 males and 61 females. Estimated 5-year overall survival (OS rates for all patients, children and adults were 52%, 48% and 63%, respectively. After multivariate analysis, postoperative primary radiation therapy (RT and chemotherapy (CHT were revealed as favorable prognostic factors influencing OS and EFS. Postoperative primary chemotherapy (CHT was found significantly improving the survival of children (p<0.001 while it was not a significant prognostic factor for adult patients. Moreover, patients in WNT subtype had better OS (p = 0.028 than others (SHH and Non-SHH/WNT subtypes given postoperative adjuvant therapies. Postoperative primary RT was found to be a strong prognostic factor influencing the survival in all histological and molecular subgroups (p<0.001. Postoperative primary CHT was found significantly to influence the survival of classic medulloblastoma (CMB (OS p<0.001, EFS p<0.001, SHH subgroup (OS p = 0.020, EFS p = 0.049 and WNT subgroup (OS p = 0.003, EFS p = 0.016 but not in desmoplastic/nodular medulloblastoma (DMB (OS p = 0.361, EFS p = 0.834 and Non-SHH/WNT subgroup (OS p = 0.127, EFS p = 0.055. Our study showed postoperative primary CHT significantly influence the

  7. Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway

    International Nuclear Information System (INIS)

    Zhan, Meixiao; Sun, Xiaohan; Liu, Jinxiao; Li, Yan; Li, Yong; He, Xu; Zhou, Zizhang; Lu, Ligong

    2017-01-01

    The ubiquitin-specific protease Usp7 plays roles in multiple cellular processes through deubiquitinating and stabilizing numerous substrates, including P53, Pten and Gli. Aberrant Usp7 activity has been implicated in many disorders and tumorigenesis, making it as a potential target for therapeutic intervention. Although it is clear that Usp7 is involved in many types of cancer, its role in regulating medulloblastoma (MB) is still unknown. In this study, we show that knockdown of Usp7 inhibits the proliferation and migration of MB cells, while Usp7 overexpression exerts an opposite effect. Furthermore, we establish Usp7 knockout MB cell line using the CRISPR/Cas9 system and further confirm that Usp7 knockout also blocks MB cell proliferation and metastasis. In addition, we reveal that knockdown of Usp7 compromises Shh pathway activity and decrease Gli protein levels, while P53 level and P53 target gene expression have no obvious changes. Finally, we find that Usp7 inhibitors apparently inhibit MB cell viability and migration. Taken together, our findings suggest that Usp7 is important for MB cell proliferation and metastasis by activating Shh pathway, and is a putative therapeutic target for MBs. - Highlights: • Loss of usp7 blocks the proliferation and metastasis of MB cells. • Usp7 regulates MB cell growth and migration through stimulating Shh pathway. • Usp7 inhibitors hamper MB cell proliferation and migration. • Usp7 inhibitors could attenuate Shh pathway activity.

  8. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma

    NARCIS (Netherlands)

    Remke, Marc; Hielscher, Thomas; Korshunov, Andrey; Northcott, Paul A.; Bender, Sebastian; Kool, Marcel; Westermann, Frank; Benner, Axel; Cin, Huriye; Ryzhova, Marina; Sturm, Dominik; Witt, Hendrik; Haag, Daniel; Toedt, Grischa; Wittmann, Andrea; Schöttler, Anna; von Bueren, André O.; von Deimling, Andreas; Rutkowski, Stefan; Scheurlen, Wolfram; Kulozik, Andreas E.; Taylor, Michael D.; Lichter, Peter; Pfister, Stefan M.

    2011-01-01

    Integrated genomics approaches have revealed at least four distinct biologic variants of medulloblastoma: WNT (wingless), SHH (sonic hedgehog), group C, and group D. Because of the remarkable clinical heterogeneity of group D tumors and the dismal prognosis of group C patients, it is vital to

  9. Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma.

    Science.gov (United States)

    Gurgel, Clarissa Araújo Silva; Buim, Marcilei Eliza Cavichiolli; Carvalho, Kátia Cândido; Sales, Caroline Brandi Schlaepfer; Reis, Mitermayer Galvão; de Souza, Renata Oliveira; de Faro Valverde, Ludmila; de Azevedo, Roberto Almeida; Dos Santos, Jean Nunes; Soares, Fernando Augusto; Ramos, Eduardo Antônio Gonçalves

    2014-09-01

    Sonic hedgehog (SHH) pathway activation has been identified as a key factor in the development of many types of tumors, including odontogenic tumors. Our study examined the expression of genes in the SHH pathway to characterize their roles in the pathogenesis of keratocystic odontogenic tumors (KOT) and ameloblastomas (AB). We quantified the expression of SHH, SMO, PTCH1, SUFU, GLI1, CCND1, and BCL2 genes by qPCR in a total of 23 KOT, 11 AB, and three non-neoplastic oral mucosa (NNM). We also measured the expression of proteins related to this pathway (CCND1 and BCL2) by immunohistochemistry. We observed overexpression of SMO, PTCH1, GLI1, and CCND1 genes in both KOT (23/23) and AB (11/11). However, we did not detect expression of the SHH gene in 21/23 KOT and 10/11 AB tumors. Low levels of the SUFU gene were expressed in KOT (P = 0.0199) and AB (P = 0.0127) relative to the NNM. Recurrent KOT exhibited high levels of SMO (P = 0.035), PTCH1 (P = 0.048), CCND1 (P = 0.048), and BCL2 (P = 0.045) transcripts. Using immunolabeling of CCND1, we observed no statistical difference between primary and recurrent KOT (P = 0.8815), sporadic and NBCCS-KOT (P = 0.7688), and unicystic and solid AB (P = 0.7521). Overexpression of upstream (PTCH1 and SMO) and downstream (GLI1, CCND1 and BCL2) genes in the SHH pathway leads to the constitutive activation of this pathway in KOT and AB and may suggest a mechanism for the development of these types of tumors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

    Science.gov (United States)

    Sanchez, Maria A; Armstrong, Regina C

    2018-01-01

    Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. Shh CreERT2 mice and Gli1 CreERT2 mice were crossed to either R26 tdTomato mice to label cells with red fluorescence, or, R26 IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of Shh CreERT2 ; R26 tdTomato mice and Shh CreERT2 ;R26 IAP mice. In Gli1 CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1 CreERT2 ;R26 tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination. Published by Elsevier Inc.

  11. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  12. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    International Nuclear Information System (INIS)

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-01-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  13. The Subjective Health Horizon Questionnaire (SHH-Q): Assessing Future Time Perspectives for Facets of an Active Lifestyle.

    Science.gov (United States)

    Düzel, Sandra; Voelkle, Manuel C; Düzel, Emrah; Gerstorf, Denis; Drewelies, Johanna; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Lindenberger, Ulman

    2016-01-01

    A wider subjective time horizon is assumed to be positively associated with longevity and vitality. In particular, a lifestyle with exposure to novel and varied information is considered beneficial for healthy cognitive aging. At present, measures that specifically assess individuals' perceived temporal extension to engage in active lifestyles in the future are not available. We introduce and validate a new self-report measure, the Subjective Health Horizon Questionnaire (SHH-Q). The SHH-Q assesses individuals' future time perspectives in relation to four interrelated but distinct lifestyle dimensions: (1) novelty-oriented exploration (Novelty), (2) bodily fitness (Body), (3) work goals (Work), and (4) goals in life (Life Goals). The present study aims at: (a) validating the hypothesized factor structure of the SHH-Q, according to which the SHH-Q consists of four interrelated but distinct subscales, and (b) testing the hypothesis that the Novelty and Body subscales of the SHH-Q show positive and selective associations with markers of cognition and somatic health, respectively. Using structural equation modeling, we analyzed data from 1,371 healthy individuals (51% women) with a mean age of 70.1 years (SD = 3.6) who participated in the Berlin Aging Study II (BASE-II) and completed the SHH-Q. As predicted, the SHH-Q formed four correlated but distinct subscales: (1) Novelty, (2) Body, (3) Work, and (4) Life Goals. Greater self-reported future novelty orientation was associated with higher current memory performance, and greater future expectations regarding bodily fitness with better current metabolic status. The SHH-Q reliably assesses individual differences in four distinct dimensions of future time perspective. Two of these dimensions, Novelty and Body, show differential associations with cognitive status and somatic health. The SHH-Q may serve as a tool to assess how different facets of future time perspective relate to somatic health, cognition, motivation, and

  14. Ectopic Overexpression of Sonic Hedgehog (Shh Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas

    Directory of Open Access Journals (Sweden)

    Volker Fendrich

    2011-10-01

    Full Text Available Ligand-dependent activation of the Hedgehog (Hh signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC. Prior studies in genetically engineered mouse models (GEMMs have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh. We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo. Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.

  15. Cross-species epigenetics identifies a critical role for VAV1 in SHH subgroup medulloblastoma maintenance.

    Science.gov (United States)

    Lindsey, J C; Kawauchi, D; Schwalbe, E C; Solecki, D J; Selby, M P; McKinnon, P J; Olson, J M; Hayden, J T; Grundy, R G; Ellison, D W; Williamson, D; Bailey, S; Roussel, M F; Clifford, S C

    2015-09-03

    The identification of key tumorigenic events in Sonic Hedgehog (SHH) subgroup medulloblastomas (MBSHH) will be essential for the development of individualized therapies and improved outcomes. However, beyond confirmation of characteristic SHH pathway mutations, recent genome-wide sequencing studies have not revealed commonly mutated genes with widespread relevance as potential therapeutic targets. We therefore examined any role for epigenetic DNA methylation events in MBSHH using a cross-species approach to candidate identification, prioritization and validation. MBSHH-associated DNA methylation events were first identified in 216 subgrouped human medulloblastomas (50 MBSHH, 28 Wnt/Wingless, 44 Group 3 and 94 Group 4) and their conservation then assessed in tumors arising from four independent murine models of Shh medulloblastoma, alongside any role in tumorigenesis using functional assessments in mouse and human models. This strategy identified widespread regional CpG hypo-methylation of VAV1, leading to its elevated expression, as a conserved aberrant epigenetic event, which characterizes the majority of MBSHH tumors in both species, and is associated with a poor outcome in MBSHH patients. Moreover, direct modulation of VAV1 in mouse and human models revealed a critical role in tumor maintenance, and its abrogation markedly reduced medulloblastoma growth. Further, Vav1 activity regulated granule neuron precursor germinal zone exit and migration initiation in an ex vivo model of early postnatal cerebellar development. These findings establish VAV1 as a critical epigenetically regulated oncogene with a key role in MBSHH maintenance, and highlight its potential as a validated therapeutic target and prognostic biomarker for the improved therapy of medulloblastoma.

  16. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia

    Directory of Open Access Journals (Sweden)

    Benjamin M. Kahn

    2017-01-01

    Full Text Available Septo-optic dysplasia (SOD is a congenital disorder characterized by optic nerve, pituitary and midline brain malformations. The clinical presentation of SOD is highly variable with a poorly understood etiology. The majority of SOD cases are sporadic, but in rare instances inherited mutations have been identified in a small number of transcription factors, some of which regulate the expression of Sonic hedgehog (Shh during mouse forebrain development. SOD is also associated with young maternal age, suggesting that environmental factors, including alcohol consumption at early stages of pregnancy, might increase the risk of developing this condition. Here, we address the hypothesis that SOD is a multifactorial disorder stemming from interactions between mutations in Shh pathway genes and prenatal ethanol exposure. Mouse embryos with mutations in the Shh co-receptor, Cdon, were treated in utero with ethanol or saline at embryonic day 8 (E8.0 and evaluated for optic nerve hypoplasia (ONH, a prominent feature of SOD. We show that both Cdon−/− mutation and prenatal ethanol exposure independently cause ONH through a similar pathogenic mechanism that involves selective inhibition of Shh signaling in retinal progenitor cells, resulting in their premature cell-cycle arrest, precocious differentiation and failure to properly extend axons to the optic nerve. The ONH phenotype was not exacerbated in Cdon−/− embryos treated with ethanol, suggesting that an intact Shh signaling pathway is required for ethanol to exert its teratogenic effects. These results support a model whereby mutations in Cdon and prenatal ethanol exposure increase SOD risk through spatiotemporal perturbations in Shh signaling activity.

  17. NODAL and SHH dose-dependent double inhibition promotes an HPE-like phenotype in chick embryos

    Directory of Open Access Journals (Sweden)

    Sandra Mercier

    2013-03-01

    Holoprosencephaly (HPE is a common congenital defect that results from failed or incomplete forebrain cleavage. HPE is characterized by a wide clinical spectrum, with inter- and intrafamilial variability. This heterogeneity is not well understood and it has been suggested that HPE involves a combination of multiple gene mutations. In this model, several mutated alleles or modifying factors are presumed to act in synergy to cause and determine the severity of HPE. This could explain the various clinical phenotypes. Screening for HPE-associated genes in humans suggests the involvement of NODAL or SHH signaling, or both. To test this multigenic hypothesis, we investigated the effects of chemical inhibition of these two main HPE signaling pathways in a chick embryo model. SB-505124, a selective inhibitor of transforming growth factor-B type I receptors was used to inhibit the NODAL pathway. Cyclopamine was used to inhibit the SHH pathway. We report that both inhibitors caused HPE-like defects that were dependent on the drug concentration and on the developmental stage at the time of treatment. We also investigated double inhibition of NODAL and SHH pathways from the onset of gastrulation by using subthreshold inhibitor concentrations. The inhibitors of the NODAL and SHH pathways, even at low concentration, acted synergistically to promote an HPE-like phenotype. These findings support the view that genetic heterogeneity is important in the etiology of HPE and may contribute to the phenotypic variability.

  18. Duplication of 7q36.3 encompassing the Sonic Hedgehog (SHH) gene is associated with congenital muscular hypertrophy

    DEFF Research Database (Denmark)

    Kristensen, Lone Krøldrup; Kjaergaard, S; Kirchhoff, Marianne

    2012-01-01

    with muscular hypertrophy and mildly retarded psychomotor development. Array-CGH identified a small duplication of 7q36.3 including the Sonic Hedgehog (SHH) gene in both the aborted foetus and the live born male sib. Neither of the parents carried the 7q36.3 duplication. The consequences of overexpression...

  19. Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene ?

    OpenAIRE

    Linhares, Nat?lia D.; Svartman, Marta; Salgado, Mauro Ivan; Rodrigues, Tatiane C.; da Costa, Silvia S.; Rosenberg, Carla; Valadares, Eug?nia R.

    2013-01-01

    Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and tha...

  20. FUNCTIONAL GENOMICS IDENTIFIES TIS21-DEPENDENT MECHANISMS AND PUTATIVE CANCER DRUG TARGETS UNDERLYING MEDULLOBLASTOMA SHH-TYPE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giulia Gentile

    2016-11-01

    Full Text Available We have recently generated a novel medulloblastoma (MB mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+-Tis21KO.ts main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs. By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+-is21 wild-type versus Ptch1+-Tis21 knockout, among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets.The data analysis using bioinformatic tools revealed: i a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; ii a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype the neural cell type involved in group 3 MB; iii the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

  1. Sonic hedgehog (SHH) and glioblastoma-2 (Gli-2) expressions are associated with poor jaundice-free survival in biliary atresia.

    Science.gov (United States)

    Jung, Hae Yoen; Jing, Jin; Lee, Kyoung Bun; Jang, Ja-June

    2015-03-01

    Biliary atresia (BA) causes biliary obstruction in neonates. Although the Kasai operation can successfully treat certain BA cases, many patients exhibit recurrent jaundice and secondary biliary cirrhosis requiring liver transplantation. Consequently, studies of the prognostic factors of the Kasai operation are needed. Accordingly, sonic hedgehog (SHH) pathway expression at the extrahepatic bile duct (EHBD), an important bile duct repair mechanism, will be investigated via immunohistochemistry in patients with BA to examine the association with post-Kasai operation prognosis. Fifty-seven EHBD specimens were obtained during Kasai operations from 1992 to 2009. The SHH, patched (PTCH), and glioblastoma-2 (Gli-2) immunohistochemical staining results were analyzed quantitatively. Overall, 57.9% of patients had bile flow normalization after the Kasai operation; 43.1% did not. High preoperative serum total bilirubin, direct bilirubin, and aspartate aminotransferase levels were associated with sustained jaundice post-Kasai operation, as was an age ≥65days at the time of surgery (all pjaundice relapse. Strong Gli-2 and SHH expression in the EHBD might be a poor prognostic factor in Kasai operation-treated patients with BA. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  3. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.

    Science.gov (United States)

    Pereira, Joana; Johnson, Warren E; O'Brien, Stephen J; Jarvis, Erich D; Zhang, Guojie; Gilbert, M Thomas P; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  4. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  5. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  6. Changes and significance of oxygen-metabolism and SHH signal pathway in soldiers trained in high altitude after returning to plains

    Directory of Open Access Journals (Sweden)

    Li LIU

    2012-11-01

    Full Text Available Objective  To observe the changes in oxygen metabolism and sonic hedgehog (SHH signaling pathway in soldiers returning to plains after being stationed and trained for 6 months in a plateau. Methods  Eighty male officers and soldiers, aged 20-30 (22.3±2.9 years, after being stationed and trained on plateau (altitude 3960m for 6 months and returned to plain region (altitude 200m, were selected as subjects. Before their returning to plateau, 6 months after their station and training in plateau, and 2 days after their returning to plain, fasting venous blood samples were collected, the serum levels of superoxide dismutase (SOD, malondialdehyde (MDA and Sonic Hedgehog (SHH were determined by ELISA, the transcription of SHH mRNA was assayed by RT-PCR, and the expressions of SMO and nucleoprotein GLI2 were detected by Western blotting. All the data mentioned above were collected for statistical analysis. Results  As the subjects entered and garrisoned in plateau for 6 months, the activity of SOD decreased and the content of MDA increased significantly (P < 0.05. Both the protein expression and mRNA transcription of SHH were significantly higher after staying in plateau than in plain. When they returned to plain, both parameters decreased significantly, but were still higher than that when they lived in plain (P < 0.01. The expressions of SMO and nucleoprotein GLI2 showed a same tendency of changes. Conclusion  High altitude environment may have a great influence on oxygen metabolism of organism and SHH signal pathway, and the hypoxic environment of high altitude region is one of the conditions in activating the SHH signal pathway.

  7. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway.

    Science.gov (United States)

    Dong, Guang-Zhi; Jeong, Ji Hye; Lee, Yu-Ih; Lee, So Yoon; Zhao, Hui-Yuan; Jeon, Raok; Lee, Hwa Jin; Ryu, Jae-Ha

    2017-04-01

    Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.

  8. Formation of intestinal atresias in the Fgfr2IIIb-/- mice is not associated with defects in notochord development or alterations in Shh expression.

    Science.gov (United States)

    Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F

    2012-09-01

    The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia

  9. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  10. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds

    Directory of Open Access Journals (Sweden)

    Zuniga Aimée

    2012-08-01

    Full Text Available Abstract Background Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1 is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1 locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. Results Three highly conserved regions (HMCO1-3 were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1, is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1

  11. Localization of Bmp-4, Shh and Wnt-5a transcripts during early mice tooth development by in situ hybridization Localização de transcritos de Bmp-4, Shh e Wnt-5a durante as fases iniciais do desenvolvimento dentário de camundongos por hibridização in situ

    Directory of Open Access Journals (Sweden)

    Fábio Daumas Nunes

    2007-06-01

    Full Text Available A comparative nonisotopic in situ hybridization (ISH analysis was carried out for the detection of Bmp-4, Shh and Wnt-5a transcripts during mice odontogenesis from initiation to cap stage. Bmp-4 was expressed early in the epithelium and then in the underlying mesenchyme. Shh expression was seen in the odontogenic epithelial lining thickening, being stronger in the enamel knot area, during the cap stage. Wnt-5a transcripts were expressed only in the mesenchyme during the initiation, bud and cap stages, with strong expression in the dental mesenchyme during the bud stage. The present results showed that Bmp-4, Shh and Wnt-5a are expressed since the very early stages of tooth development, and they suggest that the Wnt-5a gene is expressed in different cell populations than Bmp-4 and Shh.No presente trabalho, realizou-se uma análise comparativa não isotópica por hibridização in situ a fim de se detectar a presença de transcritos de Bmp-4, Shh e Wnt-5a durante as fases iniciais da odontogênese em camundongos, desde a iniciação até o estágio de capuz. No estágio de iniciação, observou-se expressão precoce de Bmp-4 no epitélio e no mesênquima subjacente, enquanto que a expressão de Shh ocorreu durante o estágio de capuz, na região de espessamento do revestimento epitelial odontogênico, tornando-se mais intensa na área de nó do esmalte. Os transcritos de Wnt-5a foram expressos somente no mesênquima durante os estágios de iniciação, botão e capuz, com intenso sinal na região no mesênquima na fase de botão. Estes resultados mostraram que Bmp-4, Shh e Wnt-5a são expressos desde os estágios mais precoces do desenvolvimento dentário, sugerindo que o gene Wnt-5a seja expresso em populações celulares distintas daquelas que expressam Bmp-4 e Shh.

  12. Sirenomelia phenotype in bmp7;shh compound mutants: a novel experimental model for studies of caudal body malformations.

    Science.gov (United States)

    Garrido-Allepuz, Carlos; González-Lamuño, Domingo; Ros, Maria A

    2012-01-01

    Sirenomelia is a severe congenital malformation of the lower body characterized by the fusion of the legs into a single lower limb. This striking external phenotype consistently associates severe visceral abnormalities, most commonly of the kidneys, intestine, and genitalia that generally make the condition lethal. Although the causes of sirenomelia remain unknown, clinical studies have yielded two major hypotheses: i) a primary defect in the generation of caudal mesoderm, ii) a primary vascular defect that leaves the caudal part of the embryo hypoperfused. Interestingly, Sirenomelia has been shown to have a genetic basis in mice, and although it has been considered a sporadic condition in humans, recently some possible familial cases have been reported. Here, we report that the removal of one or both functional alleles of Shh from the Bmp7-null background leads to a sirenomelia phenotype that faithfully replicates the constellation of external and internal malformations, typical of the human condition. These mutants represent an invaluable model in which we have analyzed the pathogenesis of sirenomelia. We show that the signaling defect predominantly impacts the morphogenesis of the hindgut and the development of the caudal end of the dorsal aortas. The deficient formation of ventral midline structures, including the interlimb mesoderm caudal to the umbilicus, leads to the approximation and merging of the hindlimb fields. Our study provides new insights for the understanding of the mechanisms resulting in caudal body malformations, including sirenomelia.

  13. Sirenomelia phenotype in bmp7;shh compound mutants: a novel experimental model for studies of caudal body malformations.

    Directory of Open Access Journals (Sweden)

    Carlos Garrido-Allepuz

    Full Text Available Sirenomelia is a severe congenital malformation of the lower body characterized by the fusion of the legs into a single lower limb. This striking external phenotype consistently associates severe visceral abnormalities, most commonly of the kidneys, intestine, and genitalia that generally make the condition lethal. Although the causes of sirenomelia remain unknown, clinical studies have yielded two major hypotheses: i a primary defect in the generation of caudal mesoderm, ii a primary vascular defect that leaves the caudal part of the embryo hypoperfused. Interestingly, Sirenomelia has been shown to have a genetic basis in mice, and although it has been considered a sporadic condition in humans, recently some possible familial cases have been reported. Here, we report that the removal of one or both functional alleles of Shh from the Bmp7-null background leads to a sirenomelia phenotype that faithfully replicates the constellation of external and internal malformations, typical of the human condition. These mutants represent an invaluable model in which we have analyzed the pathogenesis of sirenomelia. We show that the signaling defect predominantly impacts the morphogenesis of the hindgut and the development of the caudal end of the dorsal aortas. The deficient formation of ventral midline structures, including the interlimb mesoderm caudal to the umbilicus, leads to the approximation and merging of the hindlimb fields. Our study provides new insights for the understanding of the mechanisms resulting in caudal body malformations, including sirenomelia.

  14. Wnt/β-catenin regulates the activity of Epiprofin/Sp6, SHH, FGF and BMP to coordinate the stages of odontogenesis

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2016-03-01

    Full Text Available Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO, a specific inhibitor of GSK-3 activity. Results: Overactivatingthe Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh, Epiprofin (Epfn and Fibroblast growth factor8 (Fgf8, which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4, Fibroblast growth factor10 (Fgf10, Muscle segment homeobox 1 (Msx-1, Bone Morphogenetic protein 4 (Bmp4 and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1 were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.

  15. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV.

    Directory of Open Access Journals (Sweden)

    Julie A Law

    2011-07-01

    Full Text Available DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2, is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs through a pathway termed RNA-directed DNA methylation (RdDM. Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV. However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1, the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2, CLASSY1 (CLSY1, and RNA-directed DNA methylation 4 (RDM4, suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1, was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.

  16. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development.

    Directory of Open Access Journals (Sweden)

    Tobias Bohnenpoll

    2017-08-01

    Full Text Available The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH family of secreted proteins, Sonic hedgehog (SHH as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT.

  17. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development.

    Science.gov (United States)

    Bohnenpoll, Tobias; Wittern, Anna B; Mamo, Tamrat M; Weiss, Anna-Carina; Rudat, Carsten; Kleppa, Marc-Jens; Schuster-Gossler, Karin; Wojahn, Irina; Lüdtke, Timo H-W; Trowe, Mark-Oliver; Kispert, Andreas

    2017-08-01

    The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT).

  18. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis

    Science.gov (United States)

    Aurrekoetxea, Maitane; Irastorza, Igor; García-Gallastegui, Patricia; Jiménez-Rojo, Lucia; Nakamura, Takashi; Yamada, Yoshihiko; Ibarretxe, Gaskon; Unda, Fernando J.

    2016-01-01

    Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts. PMID:27066482

  19. Shh, Respect Freedom of Speech: The Reasons Why Ngugi wa Thiong’o and Ismail Kadare Have Not Been Awarded the Nobel Prize

    Directory of Open Access Journals (Sweden)

    Edona Llukacaj

    2015-12-01

    Full Text Available Shh, Respect Freedom of Speech: The Reasons Why Ngugi wa Thiong’o and Ismail Kadare Have Not Been Awarded the Nobel Prize Abstract The terrorist attack on the satirical French magazine, Charlie Hebdo, at the beginning of this year, intensified the unremitting debate over the right to freedom of speech and expression, as well as its limitations. Nonetheless, it was almost unanimously agreed that the human right to express personal beliefs, regardless of the fact that they could be in deep disagreement with or even insulting towards the values of certain individuals, groups, or worldviews, should be defended and promoted by the whole human community. It goes without saying that the role of intellectuals and, especially, that of the academia, in promoting tolerance, diversity, and dialogue is essential. However, this does not seem to have been one of the criteria on which the Swedish Academy based its choices, over the past years, for the awarding of the Noble Prize in Literature. Focusing on the literary contributions of Ngugi wa Thiong’o and Ismail Kadare, two repeated nominees for the Noble Prize, this paper will attempt to shed light on the reasons why these two “heroes” of free speech and representation have not been awarded the prestigious prize.

  20. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every year we undertake a different site- the first year we surveyed a Huguenot era (late 17th -early 18th century) family plot where slaves were rumored to have been buried, then the 19th-20th century Ulster County (NY) Poorhouse "potter's field" where we found evidence of over 2,000 unmarked graves (some underneath the County pool complex!), and this year we are surveying The Dutchess County (NY) Poorhouse burial grounds. The final exam is a public presentation (either to government legislatures or local historical societies). The public presentation is an extraordinary aspect of the course as the students come to realize that they are the experts on this particular site and this suite of tools. The confidence gained by a 3rd year sociology student explaining a cesium-vapor magnetometer to a government official is indescribable.

  1. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    NARCIS (Netherlands)

    M. Remke (Marc); E.A. Ramaswamy; M. Peacock (Munro); D.J.H. Shih (David J.); C. Koelsche (Christian); P.A. Northcott (Paul A.); N. Hill (Nadia); S. Cavalli (Silvia); M. Kool (Marcel); X. Wang (Xin); S. Mack (Stephen); M. Barszczyk (Mark); A.S. Morrissy (A. Sorana); X. Wu (Xiaochong); S. Agnihotri (Sameer); P. Luu (Phan); D. Jones (David); L. Garzia (Livia); A.M. Dubuc (Adrian); N. Zhukova (Nataliya); R. Vanner (Robert); J.M. Kros (Johan); P.J. French (Pim); E.G. van Meir (Erwin); R. Vibhakar (Rajeev); K. Zitterbart (Karel); J.A. Chan (Jennifer); L. Bognár (László); A. Klekner (Almos); B. Lach (Boleslaw); S. Jung (Shin); F. Saad (Fred); L.M. Liau (Linda); S. Albrecht (Steffen); M. Zollo (Maurizio); M.K. Cooper (Michael); R.C. Thompson (Reid); O. Delattre (Olivier); F. Bourdeaut (Franck); F.F. Doz (François); M. Garami (Miklós); P. Hauser (Peter); C.G. Carlotti (Carlos); T.E. Van Meter (Timothy); L. Massimi (Luca); D. Fults (Daniel); L.W. Pomeroy (Laura); T. Kumabe (Toshiro); Y.S. Ra (Young Shin); J.R. Leonard (Jeffrey); S.K. Elbabaa (Samer); J. Mora (Jaume); J.B. Rubin (Joshua); Y.-J. Cho (Yoon-Jae); R.E. McLendon (Roger); D.D. Bigner (Darell); C.G. Eberhart (Charles); M. Fouladi (Maryam); R.J. Wechsler-Reya (Robert); R. Faria (Rui); S.E. Croul (Sidney); A. Huang (Anding); E. Bouffet (Eric); C.E. Hawkins (Cynthia); M. Dirks (Maaike); W.A. Weiss (William); U. Schüller (Ulrich); A. Pollack (Aaron); P. Rutkowski (Piotr); D. Meyronet (David); A. Jouvet (Anne); M. Fèvre-Montange (Michelle); N. Jabado (Nada); M. Perek-Polnik (Marta); W.A. Grajkowska (Wieslawa); S.-K. Kim (Seung-Ki); J.T. Rutka (James); E. Malkin (Elissa); U. Tabori (Uri); S.M. Pfister (Stefan); A. Korshunov (Andrey); A. von Deimling (Andreas); M.D. Taylor (Michael)

    2013-01-01

    textabstractTelomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought

  2. Dicty_cDB: SHH556 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available nqqvllipqsm*miitnvqlihvpkkvv*lilqsi lmitmpvplipahhqlvfpipq*tvmiiinvl*ihvqtqlvv*ilqltcddsnpctvdsc nnstgcvntpv...smpvpnqpgvthtpxqcr*xqqmyn*cmyqkkgxyxypnp ilmitmpvpmdaxskxrxx*lixqlixg*k--- Frame C: DDNNACTIDSCSPSTGISHTPINC...dactkkrgxtxtpiq y***qclyqwmhxpxkggvnsyxn*xlden--- Translated Amino Acid sequence ...(All Frames) Frame A: lmitmpvqlilvhhqpvfptpqsivmikrpvqlihvqiqlvv*ilqfpvtiiihvllila mt*lvvailqsmlmiiihvpsmpvl

  3. Dicty_cDB: SHH148 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ents: (bits) Value N CB292163 |CB292163.1 UCRCS01_04ac07_g1 Washington Navel orange cold acclimated flavedo ...WORKING DRAFT SEQUENCE, in ordered pieces. 34 0.27 2 CB292162 |CB292162.1 UCRCS01_04ac07_b1 Washington Navel orange cold acclimate

  4. Dicty_cDB: SHH135 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available and phloem from mature trees Picea glauca cDNA clone GenomeQuebec_Id:GQ00610_L03 5', mRNA sequence. 44 1e-0...RNA, partial cds. 1265 0.0 1 DV977319 |DV977319.1 GQ00610.B3.1_L03 GQ006: Cambium

  5. Dicty_cDB: SHH264 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available sertion targeting and chromosome engineering clone MHPP142o16. 50 0.13 1 CR023465 |CR023465.1 Forward strand... read from insert in 3'HPRT insertion targeting and chromosome engineering clone MHPP421e10. 50 0.13 1 CR044...130 |CR044130.1 Forward strand read from insert in 3'HPRT insertion targeting and chromosome engineering clo

  6. Dicty_cDB: SHH391 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 7.1 Forward strand read from insert in 3'HPRT insertion targeting and chromosome engineering...tion targeting and chromosome engineering clone MHPP186g09. 50 0.13 1 CR034434 |CR034434.1 Forward strand re...ad from insert in 3'HPRT insertion targeting and chromosome engineering clone MHPP47e19. 50 0.13 1 dna updat

  7. Dicty_cDB: SHH320 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available in 3'HPRT insertion targeting and chromosome engineering clone MHPP142o16. 50 0....12 1 CR023465 |CR023465.1 Forward strand read from insert in 3'HPRT insertion targeting and chromosome engineering...targeting and chromosome engineering clone MHPP186g09. 50 0.12 1 CR017539 |CR0175...39.1 Forward strand read from insert in 3'HPRT insertion targeting and chromosome engineering clone MHPP47e1

  8. Dicty_cDB: SHH309 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available GGTAAAGGNATGCAAAACTGTAAAAATTAAATAACTCTTTT sequence update 2002.10.25 Translated Amino Acid sequence scspstgcvntpiscddknpctvdscnns...p*tvnvmtfvtlvnvvkiqenvitdkkivmiiiqkqlivaiprlvnvltnhimlsqvvli *slv*lvvslvvvqevkxcktvkik*lf Frame C: scspstgcvntpiscddknpctvdscnns

  9. NCBI nr-aa BLAST: CBRC-PTRO-08-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-08-0058 ref|NP_009060.2| zinc finger protein of the cerebellum 2 [Homo sa...piens] sp|O95409|ZIC2_HUMAN Zinc finger protein ZIC 2 (Zinc finger protein of the cerebellum 2) gb|AAG28409....1|AF193855_1 zinc finger protein of cerebellum ZIC2 [Homo sapiens] emb|CAH70367.1| Zic family member 2 (odd-

  10. Evc Regulates a Symmetrical Response to Shh Signaling in Molar Development

    Czech Academy of Sciences Publication Activity Database

    Nakatomi, M.; Hovořáková, Mária; Gritli-Linde, A.; Blair, H. J.; MacArthur, K.; Peterka, Miroslav; Lesot, H.; Peterková, Renata; Ruiz-Perez, V. L.; Goodship, J. A.; Peters, H.

    2013-01-01

    Roč. 92, č. 3 (2013), s. 222-228 ISSN 0022-0345 R&D Projects: GA ČR GA304/09/1579; GA ČR(CZ) GAP305/12/1766 Institutional support: RVO:68378041 Keywords : odontogenesis * organogenesis * embryonic and fetal development Subject RIV: EA - Cell Biology Impact factor: 4.144, year: 2013

  11. Sequential Shh expression in the development of the mouse upper functional incisor

    Czech Academy of Sciences Publication Activity Database

    Hovořáková, Mária; Smrčková, Lucie; Lesot, H.; Lochovská, Kateřina; Peterka, Miroslav; Peterková, Renata

    2013-01-01

    Roč. 320, č. 7 (2013), s. 455-464 ISSN 1552-5007 R&D Projects: GA ČR GA304/09/1579; GA ČR(CZ) GAP305/12/1766 Institutional support: RVO:68378041 Keywords : mouse * craniofacial * ED13.5 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.876, year: 2013

  12. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull.

    Science.gov (United States)

    McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y; Eberhart, Johann K

    2016-07-15

    The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Primary cilia regulate Shh activity in the control of molar tooth number

    Czech Academy of Sciences Publication Activity Database

    Ohazama, A.; Haycraft, C. J.; Seppala, M.; Ghafoor, S.; Cobourne, M.; Martinelli, D. C.; Fan, CH. M.; Peterková, Renata; Lesot, H.; Yoder, B. K.; Sharpe, P. T.

    2009-01-01

    Roč. 136, č. 6 (2009), s. 897-903 ISSN 0950-1991 R&D Projects: GA ČR GA304/07/0223; GA MŠk OC B23.002 Institutional research plan: CEZ:AV0Z50390512 Keywords : intraflagellar transport * supernumerary tooth * tooth development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.194, year: 2009

  14. Sonic Hedgehog (SHH) pathway in the adult brain: key signaling for astrocyte reactivation and brain repair

    OpenAIRE

    Bermúdez-Muñoz, Olga M

    2016-01-01

    While neurons play a key role in neurotransmission in the nervous central system (CNS) of animals, glial cells are crucial for neuron support and brain maintenance. Recent studies reveal that glial cells regulate the release and reuptake of neurotransmitters, pyruvate and glutathione metabolism, ion buffering, the organization of blood brain barrier and ensures the production of myelin and cerebrospinal fluid. The activity of glial cells is coordinated by the communication between neurons and...

  15. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Finnson Kenneth

    2010-02-01

    Full Text Available Abstract Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has described in other tetrapods. Overexpression of BMP-2 did not cause the formation of extra digits, which is consistent with the hypothesis that it is not the secondary signal of sonic hedgehog. However, it did cause the formation of hypomorphic limbs as a result of increased cellular condensation and apoptosis. Taken together, these results suggest that BMP-2 does not have a direct role in patterning regenerating limbs but may be important to trigger condensation prior to ossification and to mediate apoptosis.

  16. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typi...

  17. Hh pathway expression in human gut tissues and in inflammatory gut diseases

    NARCIS (Netherlands)

    Nielsen, Corinne M.; Williams, Jerrell; van den Brink, Gijs R.; Lauwers, Gregory Y.; Roberts, Drucilla J.

    2004-01-01

    Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of

  18. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration

    International Nuclear Information System (INIS)

    Osawa, Hiroyuki; Ohnishi, Hirohide; Takano, Koji; Noguti, Takasi; Mashima, Hirosato; Hoshino, Hiroko; Kita, Hiroto; Sato, Kiichi; Matsui, Hirofumi; Sugano, Kentaro

    2006-01-01

    Sonic Hedgehog (Shh), a member of hedgehog peptides family, is expressed in gastric gland epithelium. To elucidate Shh function to gastric mucosal cells, we examined the effect of Shh on the proliferation of a rat normal gastric mucosal cell line, RGM-1. RGM-1 cells express essential components of Shh receptor system, patched-1, and smoothened. Shh enhanced DNA synthesis in RGM-1 cells and elevated intracellular calcium concentration ([Ca 2+ ] i ). In addition, Shh as well as calcium ionophore A32187 rapidly activated ERK. However, Shh failed to activate ERK under calcium-free culture condition. Pretreatment of cells with PD98059 attenuated the DNA synthesis promoted by Shh. Moreover, when cells were pretreated with cyclopamine, Shh could not elevate [Ca 2+ ] i , activate ERK or promote DNA synthesis. On the other hand, although Shh induced Gli-1 nuclear accumulation in RGM-1 cells, Shh activated ERK even in cells pretreated with actinomycin D. These results indicate that Shh promotes the proliferation of RGM-1 cells through an intracellular calcium- and ERK-dependent but transcription-independent pathway via Patched/Smoothened receptor system

  19. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  20. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  1. Injury-stimulated Sonic hedgehog expression in microglia contributes to neuroinflammatory response in the MPTP model of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, Jeong Hwi; Chung, Young Cheul; Bok, Eugene; Lee, Hankyu; Huh, Sue Hee; Lee, Ji Eun; Jin, Byung Kwan; Ko, Hyuk Wan

    2017-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease in MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system. - Highlights: • Sonic hedgehog (Shh) was induced by MPTP neurotoxin at the Substantia Nigra (SN) in vivo. • Activated microglia are major cell type for SHH expression in vivo and in vitro. • Different types of cells in the brain, except oligodendrocyte, respond to microglia-derived SHH in SN region.

  2. The Acid-Secreting Parietal Cell as an Endocrine Source of Sonic Hedgehog During Gastric Repair

    Science.gov (United States)

    Engevik, Amy C.; Feng, Rui; Yang, Li

    2013-01-01

    Sonic Hedgehog (Shh) has been shown to regulate wound healing in various tissues. Despite its known function in tissue regeneration, the role of Shh secreted from the gastric epithelium during tissue repair in the stomach remains unknown. Here we tested the hypothesis that Shh secreted from the acid-secreting parietal cell is a fundamental circulating factor that drives gastric repair. A mouse model expressing a parietal cell-specific deletion of Shh (PC-ShhKO) was generated using animals bearing loxP sites flanking exon 2 of the Shh gene (Shhflx/flx) and mice expressing a Cre transgene under the control of the H+,K+-ATPase β-subunit promoter. Shhflx/flx, the H+,K+-ATPase β-subunit promoter, and C57BL/6 mice served as controls. Ulcers were induced via acetic acid injury. At 1, 2, 3, 4, 5, and 7 days after the ulcer induction, gastric tissue and blood samples were collected. Parabiosis experiments were used to establish the effect of circulating Shh on ulcer repair. Control mice exhibited an increased expression of Shh in the gastric tissue and plasma that correlated with the repair of injury within 7 days after surgery. PC-ShhKO mice showed a loss of ulcer repair and reduced Shh tissue and plasma concentrations. In a parabiosis experiment whereby a control mouse was paired with a PC-ShhKO littermate and both animals subjected to gastric injury, a significant increase in the circulating Shh was measured in both parabionts. Elevated circulating Shh concentrations correlated with the repair of gastric ulcers in the PC-ShhKO parabionts. Therefore, the acid-secreting parietal cell within the stomach acts as an endocrine source of Shh during repair. PMID:24092639

  3. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.

    Science.gov (United States)

    Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold

    2017-11-01

    In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.

  4. Megalin functions as an endocytic sonic hedgehog receptor.

    Science.gov (United States)

    McCarthy, Robert A; Barth, Jeremy L; Chintalapudi, Mastan R; Knaak, Christian; Argraves, W Scott

    2002-07-12

    Embryos deficient in the morphogen Sonic hedgehog (Shh) or the endocytic receptor megalin exhibit common neurodevelopmental abnormalities. Therefore, we have investigated the possibility that a functional relationship exists between the two proteins. During embryonic development, megalin was found to be expressed along the apical surfaces of neuroepithelial cells and was coexpressed with Shh in the ventral floor plate of the neural tube. Using enzyme-linked immunosorbent assay, homologous ligand displacement, and surface plasmon resonance techniques, it was found that the amino-terminal fragment of Shh (N-Shh) bound to megalin with high affinity. Megalin-expressing cells internalized N-Shh through a mechanism that was inhibited by antagonists of megalin, viz. anti-receptor-associated protein and anti-megalin antibodies. Heparin also inhibited N-Shh endocytosis, implicating proteoglycans in the internalization process, as has been described for other megalin ligands. Use of chloroquine to inhibit lysosomal proteinase activity showed that N-Shh endocytosed via megalin was not efficiently targeted to the lysosomes for degradation. The ability of megalin-internalized N-Shh to bypass lysosomes may relate to the finding that the interaction between N-Shh and megalin was resistant to dissociation with low pH. Together, these findings show that megalin is an efficient endocytic receptor for N-Shh. Furthermore, they implicate megalin as a new regulatory component of the Shh signaling pathway.

  5. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    Science.gov (United States)

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  6. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  7. Clinicopathological correlation and prognostic significance of sonic hedgehog protein overexpression in human gastric cancer.

    Science.gov (United States)

    Niu, Yanyang; Li, Fang; Tang, Bo; Shi, Yan; Hao, Yingxue; Yu, Peiwu

    2014-01-01

    This study investigated the expression of Sonic Hedgehog (Shh) protein in gastric cancer, and correlated it with clinicopathological parameters. The prognostic significance of Shh protein was analyzed. Shh protein expression was evaluated in 113 cases of gastric cancer and 60 cases of normal gastric mucosa. The immunoreactivity was scored semi quantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely non-overexpression group with score 0 or 1, and overexpression group with score 2 or 3. The overexpression of Shh protein was correlated with clinicopathological parameters. Survival analysis was then performed to determine the Shh protein prognostic significance in gastric cancer. In immunohistochemistry study, nineteen (31.7%) normal gastric mucosa revealed Shh protein overexpression, while eighty-one (71.7%) gastric cancer revealed overexpression. The expression of Shh protein were significantly higher in gastric cancer tissues than in normal gastric mucosa (P overexpression and non-expression groups P = 0.168 and 0.071). However, Shh overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 1.187, P = 0.041). Shh protein expression is upregulated and is statistically correlated with age, tumor differentiation, depth of invasion, pathologic staging, and nodal metastasis. The Shh protein overexpression is a significant independent prognostic factor in multivariate Cox regression analysis in gastric cancer.

  8. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Science.gov (United States)

    Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen

    2013-01-01

    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494

  9. Epithelial trafficking of Sonic hedgehog by megalin.

    Science.gov (United States)

    Morales, Carlos R; Zeng, Jibin; El Alfy, Mohamed; Barth, Jeremy L; Chintalapudi, Mastan Rao; McCarthy, Robert A; Incardona, John P; Argraves, W Scott

    2006-10-01

    We present here evidence of in vivo epithelial endocytosis and trafficking of non-lipid-modified Sonic hedgehog (ShhN) when infused into rat efferent ducts via microinjection. Initially, exogenous ShhN is detected in endocytic vesicles and early endosomes located near the apical plasma membrane of non-ciliated cells. Within 30-60 min following infusion, ShhN can be detected in lysosomes and at basolateral regions of non-ciliated cells. Basolaterally, ShhN was observed along the extracellular surfaces of interdigitated plasma membranes of adjacent cells and in the extracellular compartment underlying the efferent duct epithelium. Uptake and subcellular trafficking of infused ShhN by non-ciliated cells could be blocked by either anti-megalin IgG or the megalin antagonist, RAP. Ciliated cells, which do not express megalin, displayed little if any apical internalization of ShhN even though they were found to express Patched-1. However, ShhN was found in coated pits of lateral plasma membranes of ciliated cells as well as in underlying endocytic vesicles. We conclude that megalin-mediated endocytosis of ShhN can occur in megalin-expressing epithelia in vivo, and that the internalized ShhN can be targeted to the lysosome or transcytosed in the plane of the epithelium or across the epithelium. These findings highlight the multiple mechanisms by which megalin may influence Shh morphogen gradients in vivo.

  10. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs.

    Science.gov (United States)

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in the middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  12. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    International Nuclear Information System (INIS)

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-01-01

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons

  13. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wan; Hua, Zheng; Honglei, Xiao; Zhenjue, She [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China); Zhou Guomin [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China)], E-mail: gmzhou185@yahoo.com.cn

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  14. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    International Nuclear Information System (INIS)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng; Fu, Chao; Cao, Zhang

    2015-01-01

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser 461 , along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2

  15. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  16. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fu, Chao [Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Cao, Zhang, E-mail: zzzhangcao@126.com [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China)

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  17. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice.

    Science.gov (United States)

    Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2018-04-01

    Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.

  18. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development

    OpenAIRE

    Jenkins, Dagan; Winyard, Paul J D; Woolf, Adrian S.

    2007-01-01

    Studies of mouse mutants have demonstrated that Sonic hedgehog (SHH) signalling has a functional role in morphogenesis and differentiation at multiple sites within the forming urinary tract, and urinary tract malformations have been reported in humans with mutations that disrupt SHH signalling. However, there is only strikingly sparse and fragmentary information about the expression of SHH and associated signalling genes in normal human urinary tract development. We used immunohistochemistry ...

  19. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Science.gov (United States)

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  1. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  2. Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mingxia Wang

    2014-01-01

    Full Text Available Sonic hedgehog (Shh signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS. We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1 in RA synovial tissues was examined by immunohistochemistry (IHC and in FLS by IHC, immunofluorescence (IF, quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05. Cyclopamine (a specific inhibitor of Shh signaling decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1 phase. Our data show that Shh signaling is activated in synovium of RA patients in vivo and in cultured FLS form RA patients in vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

  3. Sonic hedgehog signaling in the development of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2015-01-01

    Full Text Available The expression pattern of Sonic Hedgehog (Shh in the developing hypothalamus changes over time. Shh is initially expressed in the prechordal mesoderm and later in the hypothalamic neuroepithelium-- first medially, and then in two off-medial domains. This dynamic expression suggests that Shh might regulate several aspects of hypothalamic development. To gain insight into them, lineage tracing, (conditional gene inactivation in mouse, in ovo loss- and gain-of-function approaches in chick and analysis of Shh expression regulation have been employed. We will focus on mouse studies and refer to chick and fish when appropriate to clarify. These studies show that Shh-expressing neuroepithelial cells serve as a signaling center for neighboring precursors, and give rise to most of the basal hypothalamus (tuberal and mammillary regions. Shh signaling is initially essential for hypothalamic induction. Later, Shh signaling from the neuroepithelium controls specification of the lateral hypothalamic area and growth-patterning coordination in the basal hypothalamus. To further elucidate the role of Shh in hypothalamic development, it will be essential to understand how Shh regulates the downstream Gli transcription factors.

  4. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Directory of Open Access Journals (Sweden)

    Maha El Shahawy

    2017-07-01

    Full Text Available The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH and retinoic acid (RA signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  5. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    Science.gov (United States)

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  6. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    Science.gov (United States)

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  7. Protective Effects of Sonic Hedgehog Against Ischemia/Reperfusion Injury in Mouse Skeletal Muscle via AKT/mTOR/p70S6K Signaling

    Directory of Open Access Journals (Sweden)

    Qiu Zeng

    2017-10-01

    Full Text Available Background/Aims: Skeletal muscle ischemia/reperfusion (I/R injury is a common and severe disease. Sonic hedgehog (Shh plays a critical role in post-natal skeletal muscle regeneration. In the present study, the role of Shh in skeletal muscle I/R injury and the mechanisms involved were investigated. Methods: The expression of Shh, AKT/mTOR/p70S6K and apoptosis pathway components were evaluated following tourniquet-induced skeletal muscle I/R injury. Then, mice were subjected to systemic administration of cyclopamine or one-shot treatment of a plasmid encoding the human Shh gene (phShh to examine the effects of Shh on I/R injury. Moreover, mice were subjected to systemic administration of NVP-BEZ235 to investigate the role of the AKT/mTOR/p70S6K pathway in Shh-triggered skeletal muscle protection. Results: We found that the levels of Shh, AKT/mTOR/p70S6K pathway components and Cleaved Caspase 3 and the Bax/Bcl2 ratio initially increased and then decreased at different time points post-I/R injury. Moreover, Shh protected skeletal muscle against I/R injury by alleviating muscle destruction, reducing interstitial fibrosis and inhibiting apoptosis, and these protective effects were abrogated when the AKT/mTOR/p70S6K pathway was inhibited. Conclusion: Collectively, these data suggest that Shh signaling exerts a protective role through the AKT/mTOR/p70S6K signaling pathway during skeletal muscle I/R injury. Thus, Shh signaling may be a therapeutic target for protecting skeletal muscle from I/R injury.

  8. Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes

    Science.gov (United States)

    Gillis, J. Andrew; Rawlinson, Kate A.; Bell, Justin; Lyon, Warrick S.; Baker, Clare V. H.; Shubin, Neil H.

    2011-01-01

    Chondrichthyans possess endoskeletal appendages called branchial rays that extend laterally from their hyoid and gill-bearing (branchial) arches. Branchial ray outgrowth, like tetrapod limb outgrowth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, distal endoskeletal elements fail to form in the absence of normal Shh signaling, whereas shortened duration of Shh expression correlates with distal endoskeletal reduction in naturally variable populations. Chondrichthyans also exhibit natural variation with respect to branchial ray distribution—elasmobranchs (sharks and batoids) possess a series of ray-supported septa on their hyoid and gill arches, whereas holocephalans (chimaeras) possess a single hyoid arch ray-supported operculum. Here we show that the elongate hyoid rays of the holocephalan Callorhinchus milii grow in association with sustained Shh expression within an opercular epithelial fold, whereas Shh is only transiently expressed in the gill arches. Coincident with this transient Shh expression, branchial ray outgrowth is initiated in C. milii but is not maintained, yielding previously unrecognized vestigial gill arch branchial rays. This is in contrast to the condition seen in sharks, where sustained Shh expression corresponds to the presence of fully formed branchial rays on the hyoid and gill arches. Considered in light of current hypotheses of chondrichthyan phylogeny, our data suggest that the holocephalan operculum evolved in concert with gill arch appendage reduction by attenuation of Shh-mediated branchial ray outgrowth, and that chondrichthyan branchial rays and tetrapod limbs exhibit parallel developmental mechanisms of evolutionary reduction. PMID:21220324

  9. Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling.

    Science.gov (United States)

    Ghorpade, Devram Sampat; Holla, Sahana; Kaveri, Srini V; Bayry, Jagadeesh; Patil, Shripad A; Balaji, Kithiganahalli Narayanaswamy

    2013-02-01

    Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.

  10. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract

    NARCIS (Netherlands)

    van den Brink, G. R.; Hardwick, J. C. H.; Nielsen, C.; Xu, C.; ten Kate, F. J.; Glickman, J.; van Deventer, S. J. H.; Roberts, D. J.; Peppelenbosch, M. P.

    2003-01-01

    Background: Sonic hedgehog (Shh) is an important endodermal morphogenetic signal during the development of the vertebrate gut. It controls gastrointestinal patterning in general, and gastric gland formation in particular. We have previously shown that Shh regulates gastric gland proliferation in the

  11. Transplanted Adult Neural Stem Cells Express Sonic Hedgehog In Vivo and Suppress White Matter Neuroinflammation after Experimental Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Genevieve M. Sullivan

    2017-01-01

    Full Text Available Neural stem cells (NSCs delivered intraventricularly may be therapeutic for diffuse white matter pathology after traumatic brain injury (TBI. To test this concept, NSCs isolated from adult mouse subventricular zone (SVZ were transplanted into the lateral ventricle of adult mice at two weeks post-TBI followed by analysis at four weeks post-TBI. We examined sonic hedgehog (Shh signaling as a candidate mechanism by which transplanted NSCs may regulate neuroregeneration and/or neuroinflammation responses of endogenous cells. Mouse fluorescent reporter lines were generated to enable in vivo genetic labeling of cells actively transcribing Shh or Gli1 after transplantation and/or TBI. Gli1 transcription is an effective readout for canonical Shh signaling. In ShhCreERT2;R26tdTomato mice, Shh was primarily expressed in neurons and was not upregulated in reactive astrocytes or microglia after TBI. Corroborating results in Gli1CreERT2;R26tdTomato mice demonstrated that Shh signaling was not upregulated in the corpus callosum, even after TBI or NSC transplantation. Transplanted NSCs expressed Shh in vivo but did not increase Gli1 labeling of host SVZ cells. Importantly, NSC transplantation significantly reduced reactive astrogliosis and microglial/macrophage activation in the corpus callosum after TBI. Therefore, intraventricular NSC transplantation after TBI significantly attenuated neuroinflammation, but did not activate host Shh signaling via Gli1 transcription.

  12. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2014-10-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1- and Shh-Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh-Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1- domain and down-regulates the genes characteristic of the Shh-Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain.

  13. Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog.

    Science.gov (United States)

    Solomon, Benjamin D; Bear, Kelly A; Wyllie, Adrian; Keaton, Amelia A; Dubourg, Christele; David, Veronique; Mercier, Sandra; Odent, Sylvie; Hehr, Ute; Paulussen, Aimee; Clegg, Nancy J; Delgado, Mauricio R; Bale, Sherri J; Lacbawan, Felicitas; Ardinger, Holly H; Aylsworth, Arthur S; Bhengu, Ntombenhle Louisa; Braddock, Stephen; Brookhyser, Karen; Burton, Barbara; Gaspar, Harald; Grix, Art; Horovitz, Dafne; Kanetzke, Erin; Kayserili, Hulya; Lev, Dorit; Nikkel, Sarah M; Norton, Mary; Roberts, Richard; Saal, Howard; Schaefer, G B; Schneider, Adele; Smith, Erika K; Sowry, Ellen; Spence, M Anne; Shalev, Stavit A; Steiner, Carlos E; Thompson, Elizabeth M; Winder, Thomas L; Balog, Joan Z; Hadley, Donald W; Zhou, Nan; Pineda-Alvarez, Daniel E; Roessler, Erich; Muenke, Maximilian

    2012-07-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, may result from mutations in over 12 genes. Sonic Hedgehog (SHH) was the first such gene discovered; mutations in SHH remain the most common cause of non-chromosomal HPE. The severity spectrum is wide, ranging from incompatibility with extrauterine life to isolated midline facial differences. To characterise genetic and clinical findings in individuals with SHH mutations. Through the National Institutes of Health and collaborating centres, DNA from approximately 2000 individuals with HPE spectrum disorders were analysed for SHH variations. Clinical details were examined and combined with published cases. This study describes 396 individuals, representing 157 unrelated kindreds, with SHH mutations; 141 (36%) have not been previously reported. SHH mutations more commonly resulted in non-HPE (64%) than frank HPE (36%), and non-HPE was significantly more common in patients with SHH than in those with mutations in the other common HPE related genes (pC-terminus (including accounting for the relative size of the coding regions, p=0.00010), no specific genotype-phenotype correlations could be established regarding mutation location. SHH mutations overall result in milder disease than mutations in other common HPE related genes. HPE is more frequent in individuals with truncating mutations, but clinical predictions at the individual level remain elusive.

  14. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia

    2017-01-01

    Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection.

    Science.gov (United States)

    Shi, Xin; Wei, Shengcai; Simms, Kevin J; Cumpston, Devan N; Ewing, Thomas J; Zhang, Ping

    2018-01-01

    Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 10 7 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2-SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition

  16. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions

    DEFF Research Database (Denmark)

    Chang, Shu-Chun; Mulloy, Barbara; Magee, Anthony I

    2011-01-01

    by quantitation of alkaline phosphatase activity in C3H10T1/2 cells differentiating into osteoblasts and hShh-inducible gene expression in PANC1 human pancreatic ductal adenocarcinoma cells. Mutated hShhs such as K37S/K38S, K178S, and particularly K37S/K38S/K178S that could not interact with heparin efficiently...... had reduced signaling activity compared with wild type hShh or a control mutation (K74S). In addition, the mutant hShh proteins supported reduced proliferation and invasion of PANC1 cells compared with control hShh proteins, following endogenous hShh depletion by RNAi knockdown. The data correlated...

  17. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.

  19. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma.

    Science.gov (United States)

    Malhotra, Anshu; Dey, Abhinav; Prasad, Niyathi; Kenney, Anna Marie

    2016-01-01

    Sonic hedgehog (Shh) signaling is closely coupled with bioenergetics of medulloblastoma, the most common malignant pediatric brain tumor. Shh-associated medulloblastoma arises from cerebellar granule neuron precursors (CGNP), a neural progenitor whose developmental expansion requires signaling by Shh, a ligand secreted by the neighboring Purkinje neurons. Previous observations show that Shh signaling inhibits fatty acid oxidation although driving increased fatty acid synthesis. Proliferating CGNPs and mouse Shh medulloblastomas feature high levels of glycolytic enzymes in vivo and in vitro. Because both of these metabolic processes are closely linked to mitochondrial bioenergetics, the role of Shh signaling in mitochondrial biogenesis was investigated. This report uncovers a surprising decrease in mitochondrial membrane potential (MMP) and overall ATP production in CGNPs exposed to Shh, consistent with increased glycolysis resulting in high intracellular acidity, leading to mitochondrial fragmentation. Ultrastructural examination of mitochondria revealed a spherical shape in Shh-treated cells, in contrast to the elongated appearance in vehicle-treated postmitotic cells. Expression of mitofusin 1 and 2 was reduced in these cells, although their ectopic expression restored the MMP to the nonproliferating state and the morphology to a fused, interconnected state. Mouse Shh medulloblastoma cells featured drastically impaired mitochondrial morphology, restoration of which by ectopic mitofusin expression was also associated with a decrease in the expression of Cyclin D2 protein, a marker for proliferation. This report exposes a novel role for Shh in regulating mitochondrial dynamics and rescue of the metabolic profile of tumor cells to that of nontransformed, nonproliferating cells and represents a potential avenue for development of medulloblastoma therapeutics. ©2015 American Association for Cancer Research.

  20. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  1. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  2. Ontogenetic expression of Sonic Hedgehog in the chicken subpallium

    Directory of Open Access Journals (Sweden)

    Sylvia M Bardet

    2010-07-01

    Full Text Available Sonic hedgehog (SHH is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS, somites and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatio-temporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1 and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.

  3. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas

    2006-10-01

    Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.

  4. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    International Nuclear Information System (INIS)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Highlights: ► Shh activation in neonatal cochleae enhances sensory cell proliferation. ► Proliferating supporting cells can transdifferentiate into hair cells. ► Shh promotes proliferation by transiently modulating pRb activity. ► Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  5. Resveratrol Enhances Neurite Outgrowth and Synaptogenesis Via Sonic Hedgehog Signaling Following Oxygen-Glucose Deprivation/Reoxygenation Injury

    Directory of Open Access Journals (Sweden)

    Fanren Tang

    2017-09-01

    Full Text Available Background/Aims: Neurite outgrowth and synaptogenesis are critical steps for functional recovery after stroke. Resveratrol promotes neurite outgrowth and synaptogenesis, but the underlying mechanism is not well understood, although the Sonic hedgehog (Shh signaling pathway may be involved. Given that resveratrol activates sirtuin (Sirt1, the present study examined whether this is mediated by Shh signaling. Methods: Primary cortical neuron cultures were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R. Cell viability and apoptosis were evaluated with Cell Counting Kit 8 and by terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Neurite outgrowth and synaptogenesis were assessed by immunocytochemistry and western blotting, which was also used to examine the expression of Sirt1 and Shh signaling proteins. Results: Resveratrol and the Smoothened (Smo agonist purmophamine, which activates Shh signaling, increased viability, reduced apoptosis, and stimulated neurite outgrowth after OGD/R injury. Moreover, the expression of growth-associated protein(GAP-43, synaptophysin, Shh, Patched (Ptc-1, Smo, glioma-associated oncogene homolog (Gli-1, and Sirt1 were upregulated under these conditions. These effects were reversed by treatment with the Smo inhibitor cyclopamine, whereas the Sirt1 inhibitor sirtinol reduced the levels of Shh, Ptc-1, Smo, and Gli-1. Conclusions: Resveratrol reduces neuronal injury following OGD/R injury and enhances neurite outgrowth and synaptogenesis by activating Shh signaling, which in turn induces Sirt1.

  6. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Directory of Open Access Journals (Sweden)

    Liu S

    2018-04-01

    Full Text Available Su Liu,1,2,* Jun-Li Yao,1,3,* Xin-Xin Wan,1,* Zhi-Jing Song,1 Shuai Miao,1,2 Ye Zhao,1,2 Xiu-Li Wang,1,2 Yue-Peng Liu4 1Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; 2Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; 3Department of Anesthesiology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China; 4Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China *These authors contributed equally to this work Purpose: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh signaling in opioid-induced hyperalgesia and tolerance. Methods: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF inhibitor K252 and anti-BDNF antibody were used. Results: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh

  7. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  8. Complementary Gli activity mediates early patterning of the mouse visual system.

    Science.gov (United States)

    Furimsky, Marosh; Wallace, Valerie A

    2006-03-01

    The Sonic hedgehog (Shh) signaling pathway plays a key role in the development of the vertebrate central nervous system, including the eye. This pathway is mediated by the Gli transcription factors (Gli1, Gli2, and Gli3) that differentially activate and repress the expression of specific downstream target genes. In this study, we investigated the roles of the three vertebrate Glis in mediating midline Shh signaling in early ocular development. We examined the ocular phenotypes of Shh and Gli combination mutant mouse embryos and monitored proximodistal and dorsoventral patterning by the expression of specific eye development regulatory genes using in situ hybridization. We show that midline Shh signaling relieves the repressor activity of Gli3 adjacent to the midline and then promotes eye pattern formation through the nonredundant activities of all three Gli proteins. Gli3, in particular, is required to specify the dorsal optic stalk and to define the boundary between the optic stalk and the optic cup.

  9. Sonic Hedgehog Signaling Promotes Tumor Growth

    National Research Council Canada - National Science Library

    Bushman, Wade

    2007-01-01

    ... of the DOD New Investigator award indicate that Shh signaling promotes tumor growth. This proposal addresses the hypothesis that Sonic hedgehog signaling promotes tumor growth by activating stromal cell gene expression...

  10. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  11. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling.

    Science.gov (United States)

    Buchtová, Marcela; Handrigan, Gregory R; Tucker, Abigail S; Lozanoff, Scott; Town, Liam; Fu, Katherine; Diewert, Virginia M; Wicking, Carol; Richman, Joy M

    2008-07-01

    Here we take the first look at cellular dynamics and molecular signaling in the developing snake dentition. We found that tooth formation differs from rodents in several respects. The majority of snake teeth bud off of a deep, ribbon-like dental lamina rather than as separate tooth germs. Prior to and after dental lamina ingrowth, we observe asymmetries in cell proliferation and extracellular matrix distribution suggesting that localized signaling by a secreted protein is involved. We cloned Sonic hedgehog from the African rock python Python sebae and traced its expression in the species as well as in two other snakes, the closely-related Python regius and the more derived corn snake Elaphe guttata (Colubridae). We found that expression of Shh is first confined to the odontogenic band and defines the position of the future dental lamina. Shh transcripts in pythons are progressively restricted to the oral epithelium on one side of the dental lamina and remain in this position throughout the prehatching period. Shh is expressed in the inner enamel epithelium and the stellate reticulum of the tooth anlagen, but is absent from the outer enamel epithelium and its derivative, the successional lamina. This suggests that signals other than Shh are responsible for replacement tooth formation. Functional studies using cyclopamine to block Hh signaling during odontogenesis prevented initiation and extension of the dental lamina into the mesenchyme, and also affected the directionality of this process. Further, blocking Hh signaling led to disruptions of the inner enamel epithelium. To explore the role of Shh in lamina extension, we looked at its expression in the premaxillary teeth, which form closer to the oral surface than elsewhere in the mouth. Oral ectodermal Shh expression in premaxillary teeth is lost soon after the teeth form reinforcing the idea that Shh is controlling the depth of the dental lamina. In summary, we have found diverse roles for Shh in patterning the

  12. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala

    Directory of Open Access Journals (Sweden)

    Machold Robert P

    2010-05-01

    Full Text Available Abstract Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh-expressing and Shh-responsive (Nkx2-1+ and Gli1+ neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2 temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.

  13. SOLAR ENERGETIC PARTICLE EVENTS AND THE KIPLINGER EFFECT

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2012-01-01

    The Kiplinger effect is an observed association of solar energetic (E > 10 MeV) particle (SEP) events with a 'soft-hard-harder' (SHH) spectral evolution during the extended phases of the associated solar hard (E > 30 keV) X-ray (HXR) flares. Besides its possible use as a space weather predictor of SEP events, the Kiplinger effect has been interpreted as evidence of SEP production in the flare site itself, contradicting the widely accepted view that particles of large SEP events are predominately or entirely accelerated in shocks driven by coronal mass ejections (CMEs). We review earlier work to develop flare soft X-ray (SXR) and HXR spectra as SEP event forecast tools and then examine recent Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) evidence supporting the association of SHH HXR flares with large SEP events. We point out that ad hoc prediction criteria using the CME widths and SXR flare durations of associated RHESSI hard X-ray bursts (HXBs) can yield results comparable to those of the SHH prediction criteria. An examination of the RHESSI dynamic plots reveals several ambiguities in the determination of whether and when the SHH criteria are fulfilled, which must be quantified and applied consistently before an SHH-based predictive tool can be made. A comparative HXR spectral study beginning with the large population of relatively smaller SEP events has yet to be done, and we argue that those events will not be so well predicted by the SHH criteria. SHH HXR flares and CMEs are both components of large eruptive flare events, which accounts for the good connection of the SHH HXR flares with SEP events.

  14. Molecular Conversations and the Development of the Hair Follicle and Basal Cell Carcinoma

    OpenAIRE

    Harris, Pamela Jo; Takebe, Naoko; Ivy, S. Percy

    2010-01-01

    The understanding of the anatomy and development of fetal and adult hair follicles and molecular study of the major embryonic pathways that regulate the hair follicle have led to exciting discoveries concerning the development of basal cell carcinoma (BCC). These studies have shed light on the major roles of Sonic hedgehog (Shh) signaling and its interactions with the insulin-like growth factor (IGF) axis in BCC development. New work, for example, explores a link between Shh signaling and IGF...

  15. Subcellular Localization of Patched and Smoothened, the Receptors for Sonic Hedgehog Signaling, in the Hippocampal Neuron

    OpenAIRE

    Petralia, Ronald S.; Schwartz, Catherine M.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2011-01-01

    Cumulative evidence suggests that, aside from patterning the embryonic neural tube, Sonic hedgehog (Shh) signaling plays important roles in the mature nervous system. In this study, we investigate the expression and localization of the Shh signaling receptors, Patched (Ptch) and Smoothened (Smo), in the hippocampal neurons of young and mature rats. Reverse transcriptase-polymerase chain reaction and immunoblotting analyses show that the expression of Ptch and Smo remains at a moderate level i...

  16. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    Science.gov (United States)

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  17. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    Science.gov (United States)

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  18. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects.

    Science.gov (United States)

    Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R

    2015-04-01

    Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.

  19. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.; Baker, Ruth E.; Tickle, Cheryll; Maini, Philip K.; Towers, Matthew

    2013-01-01

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  20. Sonic Hedgehog in cancer stem cells: a novel link with autophagy

    Directory of Open Access Journals (Sweden)

    Luis A Milla

    2012-01-01

    Full Text Available The Sonic Hegdehog/GLI (SHH/GLI pathway has been extensively studied for its role in developmental and cancer biology. During early embryonic development the SHH pathway is involved mainly in pattern formation, while in latter stages its function in stem cell and progenitor proliferation becomes increasingly relevant. During postnatal development and in adult tissues, SHH/GLI promotes cell homeostasis by actively regulating gene transcription, recapitulating the function observed during normal tissue growth. In this review, we will briefly discuss the fundamental importance of SHH/GLI in tumor growth and cancer evolution and we will then provide insights into a possible novel mechanism of SHH action in cancer through autophagy modulation in cancer stem cells. Autophagy is a homeostatic mechanism that when disrupted can promote and accelerate tumor progression in both cancer cells and the stroma that harbors tumorigenesis. Understanding possible new targets for SHH signaling and its contribution to cancer through modulation of autophagy might provide better strategies in order to design combined treatments and perform clinical trials.

  1. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors.

    Science.gov (United States)

    Carreno, Gabriela; Apps, John R; Lodge, Emily J; Panousopoulos, Leonidas; Haston, Scott; Gonzalez-Meljem, Jose Mario; Hahn, Heidi; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-09-15

    Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3 + /LHX4 + Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3 + /LHX4 + RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2 + stem cell compartment by the end of gestation. © 2017. Published by The Company of Biologists Ltd.

  2. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors

    Science.gov (United States)

    Lodge, Emily J.; Panousopoulos, Leonidas; Haston, Scott; Gonzalez-Meljem, Jose Mario; Hahn, Heidi; Martinez-Barbera, Juan Pedro

    2017-01-01

    Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ stem cell compartment by the end of gestation. PMID:28807898

  3. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    Science.gov (United States)

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  4. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  5. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib.

    Science.gov (United States)

    Lou, Emil; Schomaker, Matthew; Wilson, Jon D; Ahrens, Mary; Dolan, Michelle; Nelson, Andrew C

    2016-08-12

    Medulloblastoma is an aggressive primitive neuroectodermal tumor of the cerebellum that is rare in adults. Medulloblastomas fall into 4 prognostically significant molecular subgroups that are best defined by experimental gene expression profiles: the WNT pathway, sonic hedgehog (SHH) pathway, and subgroups 3 and 4 (non-SHH/WNT). Medulloblastoma of adults belong primarily to the SHH category. Vismodegib, an SHH-pathway inhibitor FDA-approved in 2012 for treatment of basal cell carcinoma, has been used successfully in the setting of chemorefractory medulloblastoma, but not as a first-line therapy. In this report, we describe a sustained response of an unresectable multifocal form of adult medulloblastoma to vismodegib. Molecular analysis in this case revealed mutations in TP53 and a cytogenetic abnormality, i17q, that is prevalent and most often associated with subgroup 4 rather than the SHH-activated form of medulloblastoma. Our findings indicate that vismodegib may also block alternate, non-canonical forms of downstream SHH pathway activation. These findings provide strong impetus for further investigation of vismodegib in clinical trials in the first-line setting for pediatric and adult forms of medulloblastoma.

  6. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    Science.gov (United States)

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  7. The anti-neoplastic activity of Vandetanib against high-risk medulloblastoma variants is profoundly enhanced by additional PI3K inhibition.

    Science.gov (United States)

    Craveiro, Rogerio B; Ehrhardt, Michael; Velz, Julia; Olschewski, Martin; Goetz, Barbara; Pietsch, Torsten; Dilloo, Dagmar

    2017-07-18

    Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis.Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants.

  8. Sonic Hedgehog Signaling in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Xiulong Xu

    2017-10-01

    Full Text Available Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K or mitogen-activated protein kinase (MAPK pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC. Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy.

  9. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Roberta eHaddad-Tóvolli

    2015-03-01

    Full Text Available Secreted protein Sonic hedgehog (Shh ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e. we wanted to clarify the hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: 1 hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; 2 another source of diversity are differential requirements for Shh of neural vs non-neural origin; 3 Gli2 is indispensable for the specification of a medial progenitor domain generating several essential hypothalamic nuclei plus the pituitary and median eminence; 4 the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it.

  10. Sonic Hedgehog Signaling in Thyroid Cancer

    Science.gov (United States)

    Xu, Xiulong; Lu, Yurong; Li, Yi; Prinz, Richard A.

    2017-01-01

    Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy. PMID:29163356

  11. Correlation between hedgehog (hh) protein family and brain-derived neurotrophic factor (bdnf) in autism spectrum disorder (asd)

    International Nuclear Information System (INIS)

    Halepoto, D.M.; Bashir, S.

    2015-01-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). Study Design: An observational, comparative study. Place and Duration of Study: Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Methodology: Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient-r was determined. Results: The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. Conclusion: The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism. (author)

  12. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  13. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4.

    Science.gov (United States)

    Ward, Stacey A; Warrington, Nicole M; Taylor, Sara; Kfoury, Najla; Luo, Jingqin; Rubin, Joshua B

    2017-03-15

    The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR . ©2016 American Association for Cancer Research.

  14. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.

    Science.gov (United States)

    Inoue, Takashi; Ogawa, Masaharu; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-30

    The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.

  15. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness.

    Science.gov (United States)

    Casas, Bárbara S; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J; Palma, Verónica

    2017-10-13

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1 , the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1 lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.

  16. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  17. Effects of manipulations to detect sliding hiatal hernia in dogs with brachycephalic airway obstructive syndrome.

    Science.gov (United States)

    Broux, Olivier; Clercx, Cécile; Etienne, Anne-Laure; Busoni, Valeria; Claeys, Stéphanie; Hamaide, Annick; Billen, Frédéric

    2018-02-01

    To determine the influence of manipulations aimed at increasing the transdiaphragmatic pressure gradient on the gastro-esophageal junction (GEJ) of dogs with brachycephalic airway obstructive syndrome (BAOS), and to identify the manipulation that most improves the detection of GEJ abnormalities and sliding hiatal hernia (SHH) in dogs with BAOS. In vivo experimental pilot study and prospective clinical study. Five purpose-bred Beagles and 20 dogs diagnosed with BAOS. Respiratory and digestive clinical signs as well as respiratory and GEJ abnormalities were scored. The presence of SHH was investigated using radiography and endoscopy in standard conditions. Endoscopic investigation was repeated after manipulations including manual pressure on the cranial abdomen (MP), Trendelenburg position (30°), or temporary complete endotracheal tube obstruction (ETO). No SHH was detected in any normal dog under any condition. Sixty-five percent of dogs with BAOS presented with digestive clinical signs, including vomiting and/or regurgitation. SHH was observed in only one dog via radiography and was not detected via endoscopy. Manipulations during endoscopy influenced GEJ abnormalities and allowed the detection of SHH in 2 (30°), 4 (ETO), and 5 (MP) dogs, respectively. Digestive clinical signs correlated with GEJ abnormalities observed only in dogs with ETO (P = .02). Manipulations aimed at increasing the transdiaphragmatic pressure gradient during endoscopy in BAOS dogs allowed the detection of GEJ abnormalities and SHH that were not detected under standard conditions. Although MP allowed detection of SHH in more dogs than ETO, scores under MP did not correlate with digestive clinical signs. Therefore, ETO may be more accurate manipulation for the detection of GEJ abnormalities in BAOS dogs. © 2017 The American College of Veterinary Surgeons.

  18. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  19. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  20. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  1. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    International Nuclear Information System (INIS)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri; Nakamura, Masafumi; Zheng, Hong; Lu, Jian; Takayanagi, Ryoichi; Nomura, Masatoshi

    2011-01-01

    Research highlights: → GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. → GLI1 directly interacts with AR. → SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  2. Targeting Sonic Hedgehog Signaling by Compounds and Derivatives from Natural Products

    Directory of Open Access Journals (Sweden)

    Yu-Chuen Huang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays critical roles in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemopreventives, and their antitumor effects have been demonstrated both in vitro and in vivo. However, reports for their bioactivity against CSCs and specifically targeting Shh signaling remain limited. In this review, we summarize investigations of the compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade. Given that Shh signaling antagonism has been clinically proven as effective strategy against CSCs, this review may be exploitable for development of novel anticancer agents from complementary and alternative medicine.

  3. Reflection does not undermine self-interested prosociality.

    Science.gov (United States)

    Rand, David G; Kraft-Todd, Gordon T

    2014-01-01

    The cognitive basis of prosocial behavior has received considerable recent attention. Previous work using economic games has found that in social dilemmas, intuitive decisions are more prosocial on average. The Social Heuristics Hypothesis (SHH) explains this result by contending that strategies which are successful in daily life become automatized as intuitions. Deliberation then causes participants to adjust to the self-interested strategy in the specific setting at hand. Here we provide further evidence for the SHH by confirming several predictions regarding when and for whom time pressure/delay will and will not alter contributions in a Public Goods Game (PGG). First, we replicate and extend previous results showing that (as predicted by the SHH) trust of daily-life interaction partners and previous experience with economic games moderate the effect of time pressure/delay in social dilemmas. We then confirm a novel prediction of the SHH: that deliberation should not undermine the decision to benefit others when doing so is also individually payoff-maximizing. Our results lend further support to the SHH, and shed light on the role that deliberation plays in social dilemmas.

  4. Constitutive Activation of Smoothened in the Renal Collecting Ducts Leads to Renal Hypoplasia, Hydronephrosis, and Hydroureter.

    Science.gov (United States)

    Gupta, Deepak Prasad; Hwang, Jae-Won; Cho, Eui-Sic; Kim, Won; Song, Chang Ho; Chai, Ok Hee

    2017-01-01

    Sonic Hedgehog (Shh) signaling plays a major role in and is essential for regulation, patterning, and proliferation during renal development. Smoothened (Smo) plays a pivot role in transducing the Shh-glioma-associated oncogene Kruppel family member. However, the cellular and molecular mechanism underlying the role of sustained Smo activation in postnatal kidney development is still not clearly understood. Using a conditional knockin mouse model that expresses a constitutively activated form of Smo (SmoM2) upon Homeobox-B7-mediated recombination (Hoxb7-Cre), the effects of Shh signaling were determined in postnatal kidney development. SmoM2;Hoxb7-Cre mutant mice showed growth retardation with a reduction of body weight. Constitutive activation of Smo in the renal collecting ducts caused renal hypoplasia, hydronephrosis, and hydroureter. The parenchymal area and glomerular numbers were reduced, but the glomerular density was increased in SmoM2;Hoxb7-Cre mutant mice. The expression of Patched 1, the receptor of Shh and a downstream target gene of the Shh signaling pathway, was highly restricted and it was upregulated in the inner medullary collecting ducts of the kidney. The proliferative cells in the mesenchyme and collecting ducts were decreased in SmoM2;Hoxb7-Cre mutant mice. This study showed for the first time that sustained Smo inhibits postnatal kidney development by suppressing the proliferation of the mesenchyme and medullary collecting ducts in mice. © 2017 S. Karger AG, Basel.

  5. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  6. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  7. Association of expression of the hedgehog signal with Merkel cell polyomavirus infection and prognosis of Merkel cell carcinoma.

    Science.gov (United States)

    Kuromi, Teruyuki; Matsushita, Michiko; Iwasaki, Takeshi; Nonaka, Daisuke; Kuwamoto, Satoshi; Nagata, Keiko; Kato, Masako; Akizuki, Gen; Kitamura, Yukisato; Hayashi, Kazuhiko

    2017-11-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that mostly occurs in the elderly. Merkel cell polyomavirus (MCPyV) is detected in approximately 80% of MCCs and is associated with carcinogenesis. Hedgehog signaling pathway plays a role in human embryogenesis and organogenesis. In addition, reactivation of this pathway later in life can cause tumors. Twenty-nineMCPyV-positive and 21 MCPyV-negative MCCs were immunohistochemically stained with primary antibodies for hedgehog signaling (SHH, IHH, PTCH1, SMO, GLI1, GLI2, and GLI3) and evaluated using H-score. Polymerase chain reaction and sequence analysis for SHH and GLI1 exons were also performed. Expression of SHH was higher in MCPyV-positive MCCs than in MCPyV-negative MCCs (PA. Only 2 mutations with amino acid changes were detected in MCPyV-negative MCCs only: 1 missense mutation in GLI1 exon 4 and 1 nonsense mutation in SHH-3B. Expression of SHH and GLI1 may be useful prognostic markers of MCC because increased expression was associated with better prognosis. The high rate of c.576G>A silent mutation in GLI1 exon 5 was a feature of MCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma.

    Science.gov (United States)

    Faria, Claudia C; Golbourn, Brian J; Dubuc, Adrian M; Remke, Marc; Diaz, Roberto J; Agnihotri, Sameer; Luck, Amanda; Sabha, Nesrin; Olsen, Samantha; Wu, Xiaochong; Garzia, Livia; Ramaswamy, Vijay; Mack, Stephen C; Wang, Xin; Leadley, Michael; Reynaud, Denis; Ermini, Leonardo; Post, Martin; Northcott, Paul A; Pfister, Stefan M; Croul, Sidney E; Kool, Marcel; Korshunov, Andrey; Smith, Christian A; Taylor, Michael D; Rutka, James T

    2015-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)-driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma. ©2014 American Association for Cancer Research.

  9. Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies

    Science.gov (United States)

    2013-12-09

    matrix is formulated as follows: K = RA−1 (32) or more explicitly K =             sqq sqm sqt sqh fqq fqm fqt fqh smm smt smh −fqm fmm fmt fmh...stt sth fqt −fmt ftt fth shh −fqh fmh −fth fhh Sym sqq −sqm sqt −sqh smm −smt smh stt −sth shh             (33) 13 Distribution A...sqq sqm sqt sqh fqq fqm fqt fqh smm smt smh −fqm fmm fmt fmh stt sth fqt −fmt ftt fth shh −fqh fmh −fth fhh Sym

  10. Semiotics and semiology of Nursing: evaluation of undergraduate students' knowledge on procedures.

    Science.gov (United States)

    Melo, Gabriela de Sousa Martins; Tibúrcio, Manuela Pinto; Freitas, Camylla Cavalcante Soares de; Vasconcelos, Quinídia Lúcia Duarte de Almeida Quithé de; Costa, Isabel Karolyne Fernandes; Torres, Gilson de Vasconcelos

    2017-04-01

    to assess the knowledge of scholars on Nursing regarding simple hands hygiene (SHH), blood pressure measurement (BP), peripheral venipuncture (PV) with venous catheter and male urethral catheterization delay (UCD) procedures. quantitative study carried out between February and May 2014, with 186 undergraduate Nursing students from 5th to 9th period of a public university of Rio Grande do Norte, with application of four questionnaires. One carried out descriptive and analytic analysis. the students presented low average percentage of right answers, especially in blood pressure measurement (55.5%); SHH's average was higher than 70%. The average of correct answers was the highest in SHH (8.6), followed by UCD (7.8), PV (7.4) and BP (6.7). The questions regarding the topic "concepts" showed less correct answers when comparing it to the topic "technique steps". it is necessary to establish knowledge monitoring strategies, in order to stimulate the constant improvement.

  11. A review of hedgehog signaling in cranial bone development

    Directory of Open Access Journals (Sweden)

    Angel ePan

    2013-04-01

    Full Text Available During craniofacial development, the Hedgehog (HH signaling pathway is essential for mesodermal tissue patterning and differentiation. The Hedgehog family consists of three protein ligands: Sonic Hedgehog (SHH, Indian Hedgehog (IHH, and Desert Hedgehog (DHH, of which two are expressed in the craniofacial complex (IHH and SHH. Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly, hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development.

  12. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts.

    Science.gov (United States)

    Vered, M; Peleg, O; Taicher, S; Buchner, A

    2009-08-01

    The aggressive biological behavior of odontogenic keratocysts (OKCs), unlike that of other odontogenic cysts, has argued for its recent re-classification as a neoplasm, 'keratocystic odontogenic tumor'. Identification of mutations in the PTCH gene in some of the OKCs that were expected to produce truncated proteins, resulting in loss of control of the cell cycle, provided additional support for OKCs having a neoplastic nature. We investigated the immunohistochemical expression of the sonic hedgehog (SHH) signaling pathway-related proteins, PTCH, smoothened (SMO) and GLI-1, and of the SHH-induced bcl-2 oncoprotein in a series of primary OKC (pOKC), recurrent OKC (rOKC) and nevoid basal cell carcinoma syndrome-associated OKCs (NBCCS-OKCs), and compared them to solid ameloblastomas (SAMs), unicystic ameloblastomas (UAMs), 'orthokeratinized' OKCs (oOKCs), dentigerous cysts (DCs) and radicular cysts (RCs). All studied lesions expressed the SHH pathway-related proteins in a similar pattern. The expression of bcl-2 in OKCs (pOKCs and NBCCS-OKCs) and SAMs was significantly higher than in oOKCs, DCs and RCs (P < 0.001). The present results of the immunoprofile of OKCs (that includes the expression of the SHH-related proteins and the SHH-induced bcl-2 oncoprotein) further support the notion of OKC having a neoplastic nature. As OKCs vary considerably in their biologic behavior, it is suggested that the quality and quantity of interactions between the SHH and other cell cycle regulatory pathways are likely to work synergistically to define the individual phenotype and corresponding biological behavior of this lesion.

  13. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Hsiang-Yun Tang

    Full Text Available Misfolded proteins of the endoplasmic reticulum (ER are eliminated by the ER-associated degradation (ERAD in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH, a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.

  14. The Role of Hedgehog-Interacting Protein in Maintaining Cavernous Nerve Integrity and Adult Penile Morphology

    Science.gov (United States)

    Angeloni, Nicholas L.; Bond, Christopher W.; Monsivais, Diana; Tang, Yi; Podlasek, Carol A.

    2010-01-01

    Introduction Sonic hedgehog (SHH) is an essential regulator of smooth muscle apoptosis in the penis that has significant clinical potential as a therapy to suppress post-prostatectomy apoptosis, an underlying cause of erectile dysfunction (ED). Thus an understanding of how SHH signaling is regulated in the adult penis is essential to move the field of ED research forward and to develop new treatment strategies. We propose that hedgehog-interacting protein (HIP), which has been shown to bind SHH protein and to play a role in SHH regulation during embryogenesis of other organs, is a critical regulator of SHH signaling, penile morphology, and apoptosis induction. Aims We have examined HIP signaling in the penis and cavernous nerve (CN) during postnatal differentiation of the penis, in CN-injured, and a diabetic model of ED. Methods HIP localization/abundance and RNA abundance were examined by immunohistochemical (IHC) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in Sprague-Dawley rats between the ages of 7 and 92 days old, in CN-injured Sprague-Dawley rats and in BioBreeding/Worcester diabetic rats. HIP signaling was perturbed in the pelvic ganglia and in the penis and TUNEL assay was performed in the penis. CN tie, lidocaine, and anti-kinesin experiments were performed to examine HIP signaling in the CN and penis. Results In this study we are the first to demonstrate that HIP undergoes anterograde transport to the penis via the CN, that HIP perturbation in the pelvic ganglia or the penis induces apoptosis, and that HIP plays a role in maintaining CN integrity, penile morphology, and SHH abundance. Conclusions These studies are significant because they show HIP involvement in cross-talk (signaling) between the pelvic ganglia and penis, which is integral for maintenance of penile morphology and they suggest a mechanism of how nerves may regulate target organ morphology and function. PMID:19515211

  15. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Science.gov (United States)

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  16. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    2010-06-01

    Full Text Available Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown.Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants.This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  17. Argentine references for the assessment of body proportions from birth to 17 years of age.

    Science.gov (United States)

    Del Pino, Mariana; Orden, Alicia B; Arenas, María A; Fano, Virginia

    2017-06-01

    Abnormal body proportions may indicate skeletal disorders; therefore, their detection has great clinical significance. To estimate centiles for head circumference/height (HC/H) and sitting height/height (SH/H) ratios, and assess their diagnostic usefulness among a group of children with skeletal dysplasia. Centiles 3, 10, 25, 50, 75, 90 and 97 for HC/H and SH/H ratios were estimated with the LMS method using Box-Cox transformation to normalize data distribution for each age. Q-Q plot tests were applied to evaluate normality of residuals and the Q test to calculate goodness-of-fit. The sample included 4818 girls and4803 boys, all healthy, between 0-17 years old. The median of the SH/H ratio for each age decreased from 0.67 at birth to 0.57 at age 4. At 12 years of age, values reached 0.52 and 0.53 for males and females, respectively, remaining unchanged until age 17. The median of the HC/H ratio decreased from 0.45 at 6 years old to 0.34 at 17 years old for both sexes. Z-scores for SH/H among 20 children diagnosed with hypochondroplasia were better at showing abnormal proportions than the SH/H ratio not adjusted by age. Estimated centiles for HC/H and SH/H ratios show that the most dramatic changes in body proportions occur in the prepubertal period. These references allow an earlier detection of abnormal body proportions in children with skeletal dysplasia.

  18. Aberrant expression of sonic hedgehog pathway in colon cancer and melanosis coli.

    Science.gov (United States)

    Wang, Zhong Chuan; Gao, Jun; Zi, Shu Ming; Yang, Ming; Du, Peng; Cui, Long

    2013-08-01

    To determine the hedgehog (Hh) signaling pathway correlated with the development of colon cancer and melanosis coli. Protein and mRNA levels of Hh signaling pathway components (sonic hedgehog [Shh], protein patched homolog 1 [Ptch 1], GLI family zinc finger 1 [Gli 1] and suppressor of fused homolog [Drosophila] [Sufu]) in 127 patients with colon cancer, 36 with melanosis coli and 20 adjacent normal mucosal tissues taken from surgical specimens were evaluated using antibody staining and quantitative real-time polymerase chain reaction. In adjacent normal tissue Shh and Ptch1, but not Gli1 or Sufu, were weakly expressed and mainly in the lining epithelium of the colonic mucosa. In cancerous tissues Shh and Gli1 were uniformly strong while Ptch1 was patchy and weak, and Sufu uniformly weak, which paralleled their levels of corresponding mRNA. Elevated protein levels of Shh and Ptch were significantly associated with mucinous colonic tissues. Elevated Sufu protein levels were positively correlated with the diameter and invasion of the tumor. In patients with melanosis coli, mRNA levels of Shh, Ptch1, Gli1 and Sufu were very low, which was similar to those of adjacent normal tissues; but protein levels of Shh, Ptch1 and Gli1, but not Sufu, were high, which was similar to those of cancerous tissues. The mRNA and protein levels of Hh pathway components are aberrantly elevated in colon cancer, which may be the potential molecular classification markers. Further studies are required to determine the role of melanosis coli in the colon tumorigenesis. © 2013 The Authors. Journal of Digestive Diseases © 2013 Wiley Publishing Asia Pty Ltd and Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine.

  19. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    Science.gov (United States)

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  20. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  1. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Science.gov (United States)

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  2. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang,3 Hsin-Hua Tsai31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan, Republic of ChinaBackground: The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC. Some researchers have proposed that the sonic hedgehog (Shh pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer.Materials and methods: We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133- cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1, glioma-associated oncogene homolog 1 (Gli-1, and smoothened homolog (Smoh by real-time polymerase chain reaction of both CD133+ and CD133- cells.Results: The number (mean ± standard deviation of colonies of CD133+ cells and CD133- cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001. Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001. CD133+ cells and CD133– cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively.Conclusion: CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these

  3. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  4. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  5. Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS

    DEFF Research Database (Denmark)

    Farooq, Muhammad; Troelsen, Jesper T; Boyd, Mette

    2010-01-01

    A cis-regulatory sequence also known as zone of polarizing activity (ZPA) regulatory sequence (ZRS) located in intron 5 of LMBR1 is essential for expression of sonic hedgehog (SHH) in the developing posterior limb bud mesenchyme. Even though many point mutations causing preaxial duplication defects...... demonstrated a marked difference between wild-type and the mutant probe, which uniquely bound one or several transcription factors extracted from Caco-2 cells. This finding supports a model in which ectopic anterior SHH expression in the developing limb results from abnormal binding of one or more...

  6. P/CAF Function in Transcriptional Activation by Steroid Hormone Receptors and Mammary Cell Proliferation

    Science.gov (United States)

    1999-07-01

    majority (see below) of GCN5 nulls, no expression of Shh and HNF-3ß was observed in the region of the notochord (Fig. 5f, 5g), suggesting that...apparent head fold and body axis. Notochord staining of Shh and tiny patches of paraxis expression are detected in a subset of these less severe...143, 363-73 (1991). 17. Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561-74 (1994

  7. Correlation Between Hedgehog (Hh) Protein Family and Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y

    2015-12-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p autism.

  8. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    ) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh...

  9. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    Science.gov (United States)

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Chemical Suppression of the Reactivated Androgen Signaling Pathway in Androgen-Independent Prostate Cancer

    Science.gov (United States)

    2011-07-01

    when it is ingested during pregnancy [20,21]. Aside from its role in development, Hh signaling also supports stem cells in adult tissues [22-24]. However...For the mo.~t commonly uti - lized human prostate cancer cell lines (LNCaP and derivatives, DUI45, PC3 or CWR22rvl) grown in culture, Shh, Glil/2 and

  11. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    Science.gov (United States)

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  12. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    International Nuclear Information System (INIS)

    Kramer, Brian C.; Woodbury, Dale; Black, Ira B.

    2006-01-01

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFRα1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease

  13. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  14. BIZARRE CASE OF POLYDACTYLY WITH RIGHT MIRROR FOOT

    OpenAIRE

    Saif Omar; Mehre Darakhshan Mehdi; Provas Benerjee

    2014-01-01

    Mirror foot, a form of polydactyly, is a rare congenital anomaly. In this form of congenital anomaly, there are several additional digits with accessory tarsal bones. It may be associated with fibular dimelia, tibial aplasia and tibial dysplasia. Cause of such anomaly is not known. On experimental basis it appears to involve ectopic SHH (Sonic hedgehog) signaling in the limb bud mesenchyme

  15. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  16. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs.

    Science.gov (United States)

    Bonavita, Raffaella; Vincent, Kathleen; Pinelli, Robert; Dahia, Chitra Lekha

    2018-05-21

    In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of HH signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. © 2018. Published by The Company of Biologists Ltd.

  17. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte

    2007-01-01

    embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development...

  18. Prospective evaluation of surgical management of sliding hiatal hernia and gastroesophageal reflux in dogs.

    Science.gov (United States)

    Mayhew, Philipp D; Marks, Stanley L; Pollard, Rachel; Culp, William T N; Kass, Philip H

    2017-11-01

    To evaluate response to surgical management of sliding hiatal hernia (SHH) and gastroesophageal reflux (GER) in dogs using standardized clinical scoring, videofluoroscopic swallow studies, and impedance planimetry. Prospective clinical trial. A total of 17 client-owned dogs. Dogs were included if they had clinical signs and videofluoroscopic evidence of SHH and/or GER. Owners were asked to complete a standardized canine dysphagia assessment tool (CDAT) preoperatively and postoperatively. Conscious videofluoroscopic swallowing studies and impedance planimetry (IP) were used to evaluate esophageal function and lower esophageal sphincter location and geometry preoperatively and in a subsection of dogs postoperatively. Preoperatively, 13/17 dogs included in the study had a history of regurgitation, and 4/17 had radiographic evidence of aspiration pneumonia. Postprandial regurgitation improved in 8/10 dogs with preoperative regurgitation, and for which completed preoperative and postoperative CDAT questionnaires were available (P hernia severity score improved postoperatively (P = .046) in dogs with preoperative and postoperative videofluoroscopic swallowing studies (n = 12). However, hernia frequency score (P = .2) and IP parameters did not differ significantly between time points. Clinical signs of SHH generally improved with surgery but did not consistently resolve. Videofluoroscopic studies provide evidence that GER and SHH can persist postoperatively in some patients. Based on IP findings, clinical improvement may be attributed to a mechanism independent of lower esophageal sphincter attenuation. © 2017 The American College of Veterinary Surgeons.

  19. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    Science.gov (United States)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  20. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  1. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  2. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  3. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  4. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    Science.gov (United States)

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Left cardiac isomerism in the Sonic hedgehog null mouse.

    Science.gov (United States)

    Hildreth, Victoria; Webb, Sandra; Chaudhry, Bill; Peat, Jonathan D; Phillips, Helen M; Brown, Nigel; Anderson, Robert H; Henderson, Deborah J

    2009-06-01

    Sonic hedgehog (Shh) is a secreted morphogen necessary for the production of sidedness in the developing embryo. In this study, we describe the morphology of the atrial chambers and atrioventricular junctions of the Shh null mouse heart. We demonstrate that the essential phenotypic feature is isomerism of the left atrial appendages, in combination with an atrioventricular septal defect and a common atrioventricular junction. These malformations are known to be frequent in humans with left isomerism. To confirm the presence of left isomerism, we show that Pitx2c, a recognized determinant of morphological leftness, is expressed in the Shh null mutants on both the right and left sides of the inflow region, and on both sides of the solitary arterial trunk exiting from the heart. It has been established that derivatives of the second heart field expressing Isl1 are asymmetrically distributed in the developing normal heart. We now show that this population is reduced in the hearts from the Shh null mutants, likely contributing to the defects. To distinguish the consequences of reduced contributions from the second heart field from those of left-right patterning disturbance, we disrupted the movement of second heart field cells into the heart by expressing dominant-negative Rho kinase in the population of cells expressing Isl1. This resulted in absence of the vestibular spine, and presence of atrioventricular septal defects closely resembling those seen in the hearts from the Shh null mutants. The primary atrial septum, however, was well formed, and there was no evidence of isomerism of the atrial appendages, suggesting that these features do not relate to disruption of the contributions made by the second heart field. We demonstrate, therefore, that the Shh null mouse is a model of isomerism of the left atrial appendages, and show that the recognized associated malformations found at the venous pole of the heart in the setting of left isomerism are likely to arise from

  6. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression.

    Science.gov (United States)

    Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong

    2014-11-01

    Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.

  7. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development.

    Directory of Open Access Journals (Sweden)

    Anita M Quintana

    Full Text Available There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf, but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.

  8. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development

    International Nuclear Information System (INIS)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-01

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/β-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/β-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4 + cells and a subpopulation of double-negative cells (DN; CD4 - CD8 - ), DN4 (CD44 - CD25 - ). Shh and Wnt/β-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/β-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  9. Defining the molecular pathologies in cloaca malformation: similarities between mouse and human

    Directory of Open Access Journals (Sweden)

    Laura A. Runck

    2014-04-01

    Full Text Available Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations

  10. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  11. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  12. Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiancheng [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Wu, Kaijie [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Gao, Dexuan [Department of Urology, Shandong Provincial Hospital affiliated with Shandong University, Ji' nan (China); Zhu, Guodong; Wu, Dapeng; Wang, Xinyang; Chen, Yule; Du, Yuefeng; Song, Wenbin; Ma, Zhenkun [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Authement, Craig; Saha, Debabrata [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hsieh, Jer-Tsong, E-mail: jt.hsieh@utsouthwestern.edu [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); He, Dalin, E-mail: dalinhe@yahoo.com [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China)

    2014-11-15

    Purpose: Renal cell carcinoma (RCC) is often considered a radioresistant tumor, but the molecular mechanism underlying its radioresistance is poorly understood. This study explored the roles of hypoxia-inducible factor 2α (HIF2α) and sonic hedgehog (SHH)-GLI1 signaling in mediating the radioresistance of RCC cells and to unveil the interaction between these 2 signaling pathways. Methods and Materials: The activities of SHH-GLI1 signaling pathway under normoxia and hypoxia in RCC cells were examined by real-time polymerase chain reaction, Western blot, and luciferase reporter assay. The expression of HIF2α and GLI1 in RCC patients was examined by immunohistochemistry, and their correlation was analyzed. Furthermore, RCC cells were treated with HIF2α-specific shRNA (sh-HIF2α), GLI1 inhibitor GANT61, or a combination to determine the effect of ionizing radiation (IR) on RCC cells based on clonogenic assay and double-strand break repair assay. Results: RCC cells exhibited elevated SHH-GLI1 activities under hypoxia, which was mediated by HIF2α. Hypoxia induced GLI1 activation through SMO-independent pathways that could be ablated by PI3K inhibitor or MEK inhibitor. Remarkably, the SHH-GLI1 pathway also upregulated HIF2α expression in normoxia. Apparently, there was a positive correlation between HIF2α and GLI1 expression in RCC patients. The combination of sh-HIF2α and GLI1 inhibitor significantly sensitized RCC cells to IR. Conclusions: Cross-talk between the HIF2α and SHH-GLI1 pathways was demonstrated in RCC. Cotargeting these 2 pathways, significantly sensitizing RCC cells to IR, provides a novel strategy for RCC treatment.

  13. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice

    Science.gov (United States)

    Manuel, Martine; Martynoga, Ben; Yu, Tian; West, John D.; Mason, John O.; Price, David J.

    2010-01-01

    Summary Foxg1 is required for development of the ventral telencephalon in the embryonic mammalian forebrain. Although one existing hypothesis suggests that failed ventral telencephalic development in the absence of Foxg1 is due to reduced production of the morphogens sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8), the possibility that telencephalic cells lacking Foxg1 are intrinsically incompetent to generate the ventral telencephalon has remained untested. We examined the ability of Foxg1−/− telencephalic cells to respond to Shh and Fgf8 by examining the expression of genes whose activation requires Shh or Fgf8 in vivo and by testing their responses to Shh and Fgf8 in culture. We found that many elements of the Shh and Fgf8 signalling pathways continue to function in the absence of Foxg1 but, nevertheless, we were unable to elicit normal responses of key ventral telencephalic marker genes in Foxg1−/− telencephalic tissue following a range of in vivo and in vitro manipulations. We explored the development of Foxg1−/− cells in Foxg1−/− Foxg1+/+ chimeric embryos that contained ventral telencephalon created by normally patterned wild-type cells. We found that Foxg1−/− cells contributed to the chimeric ventral telencephalon, but that they retained abnormal specification, expressing dorsal rather than ventral telencephalic markers. These findings indicate that, in addition to regulating the production of ventralising signals, Foxg1 acts cell-autonomously in the telencephalon to ensure that cells develop the competence to adopt ventral identities. PMID:20081193

  14. Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy.

    Science.gov (United States)

    Blüml, Stefan; Margol, Ashley S; Sposto, Richard; Kennedy, Rebekah J; Robison, Nathan J; Vali, Marzieh; Hung, Long T; Muthugounder, Sakunthala; Finlay, Jonathan L; Erdreich-Epstein, Anat; Gilles, Floyd H; Judkins, Alexander R; Krieger, Mark D; Dhall, Girish; Nelson, Marvin D; Asgharzadeh, Shahab

    2016-01-01

    Medulloblastomas in children can be categorized into 4 molecular subgroups with differing clinical characteristics, such that subgroup determination aids in prognostication and risk-adaptive treatment strategies. Magnetic resonance spectroscopy (MRS) is a widely available, noninvasive tool that is used to determine the metabolic characteristics of tumors and provide diagnostic information without the need for tumor tissue. In this study, we investigated the hypothesis that metabolite concentrations measured by MRS would differ between molecular subgroups of medulloblastoma and allow accurate subgroup determination. MRS was used to measure metabolites in medulloblastomas across molecular subgroups (SHH = 12, Groups 3/4 = 17, WNT = 1). Levels of 14 metabolites were analyzed to determine those that were the most discriminant for medulloblastoma subgroups in order to construct a multivariable classifier for distinguishing between combined Group 3/4 and SHH tumors. Medulloblastomas across molecular subgroups revealed distinct spectral features. Group 3 and Group 4 tumors demonstrated metabolic profiles with readily detectable taurine, lower levels of lipids, and high levels of creatine. SHH tumors showed prominent choline and lipid with low levels of creatine and little or no evidence of taurine. A 5-metabolite subgroup classifier inclusive of creatine, myo-inositol, taurine, aspartate, and lipid 13a was developed that could discriminate between Group 3/4 and SHH medulloblastomas with excellent accuracy (cross-validated area under the curve [AUC] = 0.88). The data show that medulloblastomas of Group 3/4 differ metabolically as measured using MRS when compared with SHH molecular subgroups. MRS is a useful and accurate tool to determine medulloblastoma molecular subgroups. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism.

    Science.gov (United States)

    Gregory, L C; Gaston-Massuet, C; Andoniadou, C L; Carreno, G; Webb, E A; Kelberman, D; McCabe, M J; Panagiotakopoulos, L; Saldanha, J W; Spoudeas, H A; Torpiano, J; Rossi, M; Raine, J; Canham, N; Martinez-Barbera, J P; Dattani, M T

    2015-05-01

    The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH. © 2014 John Wiley & Sons Ltd.

  16. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis.

    Science.gov (United States)

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  17. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandra Angelova

    2018-02-01

    Full Text Available In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  18. Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity.

    Science.gov (United States)

    Tian, Natasha M; Pratt, Thomas; Price, David J

    2008-12-01

    Mammalian binocular vision relies on the divergence of retinal ganglion cell axons at the optic chiasm, with strictly controlled numbers projecting contralaterally and ipsilaterally. In mouse, contralateral projections arise from the entire retina, whereas ipsilateral projections arise from ventrotemporal retina. We investigate how development of these patterns of projection is regulated by the contralateral determinant Foxg1, a forkhead box transcription factor expressed in nasal retina and at the chiasm. In nasal retina, loss of Foxg1 causes increased numbers of ipsilateral projections and ectopic expression of the ipsilateral determinants Zic2, Ephb1 and Foxd1, indicating that nasal retina is competent to express an ipsilateral program that is normally suppressed by Foxg1. Using co-cultures that combine Foxg1-expressing with Foxg1-null retinal explants and chiasm cells, we provide functional evidence that Foxg1 promotes contralateral projections through actions in nasal retina, and that in chiasm cells, Foxg1 is required for the generation of a hitherto unrecognized activity supporting RGC axon growth.

  19. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  20. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  1. Human germline hedgehog pathway mutations predispose to fatty liver.

    Science.gov (United States)

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  2. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

    Science.gov (United States)

    Onishi, Keisuke

    2017-01-01

    Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142

  3. Fgf16 is essential for pectoral fin bud formation in zebrafish

    International Nuclear Information System (INIS)

    Nomura, Ryohei; Kamei, Eriko; Hotta, Yuuhei; Konishi, Morichika; Miyake, Ayumi; Itoh, Nobuyuki

    2006-01-01

    Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in the zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA

  4. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival.

    Science.gov (United States)

    Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J

    2016-08-03

    Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog ( Shh ), a vertebrate orthologue of Drosophila hedgehog , is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).

  5. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Dworkin

    2016-08-01

    Full Text Available Craniofacial defects (CFD are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh, a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla and lower jaw (mandible.

  6. An Integrated Approach Identifies Nhlh1 and Insm1 as Sonic Hedgehog-regulated Genes in Developing Cerebellum and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Enrico De Smaele

    2008-01-01

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor of childhood arising from deregulated cerebellar development. Sonic Hedgehog (Shh pathway plays a critical role in cerebellar development and its aberrant expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled a cluster of genes whose expression correlates with the levels of Hedgehog (HH activity. From this cluster, we identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the expression of these genes is also upregulated in mouse and human HH-dependent MBs, suggesting that they may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.

  7. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Science.gov (United States)

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  8. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling

    OpenAIRE

    Murtaugh, L. Charles; Chyung, Jay H.; Lassar, Andrew B.

    1999-01-01

    Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evid...

  9. Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    Science.gov (United States)

    Gache, Yannick; Brellier, Florence; Rouanet, Sophie; Al-Qaraghuli, Sahar; Goncalves-Maia, Maria; Burty-Valin, Elodie; Barnay, Stéphanie; Scarzello, Sabine; Ruat, Martial; Sevenet, Nicolas; Avril, Marie-Françoise; Magnaldo, Thierry

    2015-01-01

    Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings

  10. Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2017-12-01

    Full Text Available Summary: Colon cancer is a heterogeneous tumor driven by a subpopulation of cancer stem cells (CSCs. To study CSCs in colon cancer, we used limiting dilution spheroid and serial xenotransplantation assays to functionally define the frequency of CSCs in a panel of patient-derived cancer organoids. These studies demonstrated cancer organoids to be enriched for CSCs, which varied in frequency between tumors. Whole-transcriptome analysis identified WNT and Hedgehog signaling components to be enhanced in CSC-enriched tumors and in aldehyde dehydrogenase (ALDH-positive CSCs. Canonical GLI-dependent Hedgehog signaling is a negative regulator of WNT signaling in normal intestine and intestinal tumors. Here, we show that Hedgehog signaling in colon CSCs is autocrine SHH-dependent, non-canonical PTCH1 dependent, and GLI independent. In addition, using small-molecule inhibitors and RNAi against SHH-palmitoylating Hedgehog acyltransferase (HHAT, we demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival. : Colon cancer is a heterogeneous tumor driven by a subpopulation(s of therapy-resistant cancer stem cells (CSCs. Regan et al. use 3D culture models to demonstrate that CSC survival is regulated by non-canonical, SHH-dependent, PTCH1-dependent Hedgehog signaling, which acts as a positive regulator of WNT signaling to block CSC differentiation. Keywords: WNT pathway, non-canonical Hedgehog signaling, cancer stem cell, colon cancer, cancer organoid, PTCH1, HHAT, SHH

  11. Imaging Biomarkers for Adult Medulloblastomas: Genetic Entities May Be Identified by Their MR Imaging Radiophenotype.

    Science.gov (United States)

    Keil, V C; Warmuth-Metz, M; Reh, C; Enkirch, S J; Reinert, C; Beier, D; Jones, D T W; Pietsch, T; Schild, H H; Hattingen, E; Hau, P

    2017-10-01

    The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences in MR imaging biomarkers identified in pediatric medulloblastomas. Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists. Lesions and perifocal edema were volumetrized and multiparametrically evaluated for classic morphologic characteristics, location, hydrocephalus, and Chang criteria. To identify MR imaging biomarkers, we correlated genetic entities sonic hedgehog ( SHH ) TP53 wild type, wingless ( WNT ), and non -WNT/ non -SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. There were 19 SHH TP53 wild type (69%), 4 WNT -activated (14%), and 5 Group 4 (17%) medulloblastomas. Six potential MR imaging biomarkers were identified, 3 of which, hydrocephalus ( P = .03), intraventricular macrometastases ( P = .02), and hemorrhage ( P = .04), when combined, could identify WNT medulloblastoma with 100% sensitivity and 88.3% specificity (95% CI, 39.8%-100.0% and 62.6%-95.3%). WNT -activated nuclear β-catenin accumulating medulloblastomas were smaller than the other entities (95% CI, 5.2-22.3 cm 3 versus 35.1-47.6 cm 3 ; P = .03). Hemorrhage was exclusively present in non -WNT/ non -SHH medulloblastomas ( P = .04; n = 2/5). MR imaging biomarkers were all discordant from those identified in the pediatric cohort. Desmoplastic/nodular medulloblastomas were more rarely in contact with the fourth ventricle (4/15 versus 7/13; P = .04). MR imaging biomarkers can help distinguish histologic and genetic

  12. The Role of NG2 Glial Cells in ALS Pathogenesis

    Science.gov (United States)

    2013-10-01

    line of OPC differentiation from iPS cells. SHH, sonic hedgehog ; RA, retinoitic acid; bFGF, basic FGF; PDGF, platelet-derived growth factor; IGF...University School of Medicine, Baltimore, Maryland, USA. 3Department of Anatomy , Kitasato University School of Medicine, Sagamihara, Japan. 4Brain Science...6Present address: Shriners Hospital Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine

  13. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.

    Science.gov (United States)

    Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter

    2017-12-06

    The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright

  14. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  15. Indicative quantities of recyclable materials disposed of at municipal landfills in 2011

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2012-10-01

    Full Text Available of recyclable materials disposed of at municipal landfi lls in 2011 SHH OELOFSE CSIR Natural Resources and the Environment, PO Box 395, Pretoria 0001 Email: soelofse@csir.co.za ? www.csir.co.za BACKGROUND Only a few landfills in Gauteng, where about 45..., 2011). The best resolve for the increasing pressure on available landfill airspace is a reduction in waste through waste minimisation and recycling, especially of those waste streams consuming most airspace. Reducing waste disposal at landfill...

  16. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    OpenAIRE

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha; Vaidya, Vidita A.

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and...

  17. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    Science.gov (United States)

    2015-12-01

    tumor suppressors and REST-targeted neuronal genes. Brg1 deletion led to the inhibition of Shh-type medulloblastoma growth by deregulation of the...China University of Rostock & Research Institute for the Biology of Farm Animals, Germany University of Texas Southwestern Medical Center at...of Rostock & Research Institute for the Biology of Farm Animals, Germany . Mentor: Prof. Dr. Hans-Martin Seyfert 2010- 2014 Postdoctoral

  18. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    Science.gov (United States)

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  20. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    OpenAIRE

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary induct...

  1. Hedgehog signaling pathway in neuroblastoma differentiation.

    Science.gov (United States)

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements

    OpenAIRE

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-01-01

    The limb skeletal elements that have unique morphology and distinct locations are developed from limb progenitors, derived from the lateral plate mesoderm. These skeletal elements arise during limb development. In this study, we show genetic evidence that function of Sall4 is essential prior to limb outgrowth for development of the anterior-proximal skeletal elements. Furthermore, genetic interaction between Sall4 and Gli3 is upstream of establishing Shh (Sonic hedgehog) expression, and there...

  3. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  4. Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery.

    Science.gov (United States)

    Schneider, Christian; Ramaswamy, Vijay; Kulkarni, Abhaya V; Rutka, James T; Remke, Marc; Tabori, Uri; Hawkins, Cynthia; Bouffet, Eric; Taylor, Michael D

    2015-03-01

    While medulloblastoma was initially thought to comprise a single homogeneous entity, it is now accepted that it in fact comprises 4 discrete subgroups, each with its own distinct demographics, clinical presentation, transcriptomics, genetics, and outcome. Hydrocephalus is a common complication of medulloblastoma and not infrequently requires CSF diversion. The authors report the incidence of CSF diversion surgery in each of the subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). The medical and imaging records for patients who underwent surgery for medulloblastoma at The Hospital for Sick Children were retrospectively reviewed. The primary outcome was the requirement for CSF diversion surgery either before or within 60 days of tumor resection. The modified Canadian Preoperative Prediction Rule for Hydrocephalus (mCPPRH) was compared among subgroups. Of 143 medulloblastoma patients, treated from 1991 to 2013, sufficient data were available for 130 patients (15 with Wnt, 30 with Shh, 30 with Group 3, and 55 with Group 4 medulloblastomas). Of these, 28 patients (22%) ultimately underwent CSF diversion surgery: 0% with Wnt, 29% with Shh, 29% with Group 3, and 43% with Group 4 tumors. Patients in the Wnt subgroup had a lower incidence of CSF diversion than all other patients combined (p = 0.04). Wnt patients had a lower mCPPRH score (lower risk of CSF diversion, p = 0.045), were older, had smaller ventricles at diagnosis, and had no leptomeningeal metastases. The overall rate of CSF diversion surgery for Shh, Group 3, and Group 4 medulloblastomas is around 30%, but no patients in the present series with a Wnt medulloblastoma required shunting. The low incidence of hydrocephalus in patients with Wnt medulloblastoma likely reflects both host factors (age) and disease factors (lack of metastases). The absence of hydrocephalus in patients with Wnt medulloblastomas likely contributes to their excellent rate of survival and may also contribute to a higher quality

  5. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    International Nuclear Information System (INIS)

    Shahi, Mehdi H; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G; Rey, Juan A; Fan, Xing; Castresana, Javier S

    2010-01-01

    The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes

  6. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    International Nuclear Information System (INIS)

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds

  7. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    International Nuclear Information System (INIS)

    He Chengyong; Zuo Zhenghong; Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin; Wang Chonggang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  8. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  9. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon.

    Science.gov (United States)

    Ruzhynsky, Vladimir A; McClellan, Kelly A; Vanderluit, Jacqueline L; Jeong, Yongsu; Furimsky, Marosh; Park, David S; Epstein, Douglas J; Wallace, Valerie A; Slack, Ruth S

    2007-05-30

    Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neural precursor cells. The mechanism underlying aberrant ventral patterning lies in a dramatic loss of Sonic hedgehog (Shh) expression specifically in this region. The E2F4-deficient phenotype can be recapitulated by interbreeding mice heterozygous for E2F4 with those lacking one allele of Shh, suggesting a genetic interaction between these pathways. Treatment of E2F4-deficient cells with a Hh agonist rescues stem cell self-renewal and cells expressing the homeodomain proteins that specify the ventral telencephalic structures. Finally, we show that E2F4 deficiency results in impaired activity of Shh forebrain-specific enhancers. In conclusion, these studies establish a novel requirement for the cell cycle regulatory protein, E2F4, in the development of the ventral telencephalon.

  10. E2F4 is required for early eye patterning.

    Science.gov (United States)

    Ruzhynsky, Vladimir A; Furimsky, Marosh; Park, David S; Wallace, Valerie A; Slack, Ruth S

    2009-01-01

    Increasingly, studies reveal novel functions for cell cycle proteins during development. Here, we investigated the role of E2F4 in eye development. E2F4-deficient mouse embryos exhibit severe early eye patterning defects, which are evident from embryonic day 11.5 and characterized by aberrant shape of the optic cup, coloboma as well as abnormal eye pigmentation. Loss of E2F4 is associated with proximal-distal patterning defects in the optic vesicle. These defects are characterized by the expansion of optic stalk marker gene expression to the optic cup and reduced expression of ventral optic cup markers. These defects are associated with a split of Shh expression domain at the ventral midline of the forebrain and expansion of the Shh activity into the ventral optic cup. Despite these patterning defects, early neuronal differentiation and Shh expression in the retina are not affected by E2F4 deletion. Overall, the results of our studies show a novel role of E2F4 in the early eye development. 2009 S. Karger AG, Basel.

  11. Zika Virus Can Strongly Infect and Disrupt Secondary Organizers in the Ventricular Zone of the Embryonic Chicken Brain.

    Science.gov (United States)

    Thawani, Ankita; Sirohi, Devika; Kuhn, Richard J; Fekete, Donna M

    2018-04-17

    Zika virus (ZIKV) is associated with severe neurodevelopmental impairments in human fetuses, including microencephaly. Previous reports examining neural progenitor tropism of ZIKV in organoid and animal models did not address whether the virus infects all neural progenitors uniformly. To explore this, ZIKV was injected into the neural tube of 2-day-old chicken embryos, resulting in nonuniform periventricular infection 3 days later. Recurrent foci of intense infection were present at specific signaling centers that influence neuroepithelial patterning at a distance through secretion of morphogens. ZIKV infection reduced transcript levels for 3 morphogens, SHH, BMP7, and FGF8 expressed at the midbrain basal plate, hypothalamic floor plate, and isthmus, respectively. Levels of Patched1, a SHH-pathway downstream gene, were also reduced, and a SHH-dependent cell population in the ventral midbrain was shifted in position. Thus, the diminishment of signaling centers through ZIKV-mediated apoptosis may yield broader, non-cell-autonomous changes in brain patterning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  13. Prognostic value of hedgehog signaling pathway in digestive system cancers: A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Yihan; Peng, Qian; Jia, Hongyuan; Du, Xiao

    2016-01-01

    The Hedgehog (Hh) signaling pathway has recently been reported to be associated with the prognosis of digestive system cancers. However, the results are inconsistent. This study aimed to investigate the association between Hh pathway components and survival outcomes in patients with digestive system cancers. We conducted a comprehensive retrieval in PubMed, EMBASE and Cochrane library for relevant literatures until May 1st, 2015. The pooled hazard ratios (HRs) for overall survival (OS) and disease-free survival (DFS) with 95% confidence intervals (CIs) were calculated to clarify the prognostic value of Hh pathway components, including Shh, Gli1, Gli2, Smo and Ptch1. A total of 16 eligible articles with 3222 patients were included in the meta-analysis. Pooled HR suggested that over-expression of Shh and Gli1 were both associated with poor OS (HR = 1.87, 95% CI: 1.14-3.07 and HR = 1.96, 95% CI: 1.66-2.32, respectively) and DFS (HR = 2.37, 95% CI: 1.19-4.72 and HR = 2.18, 95% CI: 1.61-2.96, respectively). In addition, over-expression of Smo was associated with poor DFS (HR = 1.38, 95% CI: 1.08-1.75). This study reveals that over-expressed Hh pathway components, including Shh, Gli1 and Smo, are associated with poor prognosis in digestive system cancer patients. Hh signaling pathway may become a potential therapeutic target in digestive system cancers.

  14. Social dilemma cooperation (unlike Dictator Game giving) is intuitive for men as well as women.

    Science.gov (United States)

    Rand, David G

    2017-11-01

    Does intuition favor prosociality, or does prosocial behavior require deliberative self-control? The Social Heuristics Hypothesis (SHH) stipulates that intuition favors typically advantageous behavior - but which behavior is typically advantageous depends on both the individual and the context. For example, non-zero-sum cooperation (e.g. in social dilemmas like the Prisoner's Dilemma) typically pays off because of the opportunity for reciprocity. Conversely, reciprocity does not promote zero-sum cash transfers (e.g. in the Dictator Game, DG). Instead, DG giving can be long-run advantageous because of reputation concerns: social norms often require such behavior of women but not men. Thus, the SHH predicts that intuition will favor social dilemma cooperation regardless of gender, but only favor DG giving among women. Here I present meta-analytic evidence in support of this prediction. In 31 studies examining social dilemma cooperation (N=13,447), I find that promoting intuition increases cooperation to a similar extent for both men and women. This stands in contrast to the results from 22 DG studies (analyzed in Rand et al., 2016) where intuition promotes giving among women but not men. Furthermore, I show using meta-regression that the interaction between gender and intuition is significantly larger in the DG compared to the cooperation games. Thus, I find clear evidence that the role of intuition and deliberation varies across both setting and individual as predicted by the SHH.

  15. Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways.

    Science.gov (United States)

    Dastan, Maryam; Najafzadeh, Nowruz; Abedelahi, Ali; Sarvi, Mohammadreza; Niapour, Ali

    2016-12-01

    Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (Pminoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (Pminoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. STATISTICS OF FLARING LOOPS OBSERVED BY NOBEYAMA RADIOHELIOGRAPH. II. SPECTRAL EVOLUTION

    International Nuclear Information System (INIS)

    Huang Guangli; Nakajima, Hiroshi

    2009-01-01

    The spectral evolution of solar microwave bursts is studied in 10 impulsive events with loop-like structures, which are selected in the flare list of Nobeyama Radioheliograph. Most events have a brighter and harder looptop (LT) with maximum time later than at least one of its two footpoints (FPs), and have a common feature of the spectral evolution in the LT and the two FPs. There are five simple impulsive bursts with a well known pattern of soft-hard-soft or soft-hard-harder (SHH). It is first found that the other five events have multiple subpeaks in their impulsive phase, and mostly have a new feature of hard-soft-hard (HSH) in each subpeak, but, the well known tendency of SHH is still maintained in the total spectral evolution of these events. All of these features in the spectral evolution of the 10 selected events are consistent with the full Sun observations of Nobeyama Radio Polarimeters in these events. The new feature of HSH may be explained by the thermal free-free emission before, during, and after these bursts, together with multiple injections of nonthermal electrons, while the SHH pattern in the total duration may be directly caused by the trapping effect.

  17. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse

    Directory of Open Access Journals (Sweden)

    Michael eHeide

    2015-08-01

    Full Text Available Acquisition of specific neuronal identity by individual brain nuclei is a key step in brain development. However, how the mechanisms that confer neuronal identity are integrated with upstream regional specification networks is still mysterious. Expression of Sonic hedgehog (Shh, is required for hypothalamic specification and is later downregulated by Tbx3 to allow for the differentiation of the tubero-mamillary region. In this region, the mamillary body (MBO, is a large neuronal aggregate essential for memory formation. To clarify how MBO identity is acquired after regional specification, we investigated Lhx5, a transcription factor with restricted MBO expression. We first generated a hypomorph allele of Lhx5—in homozygotes, the MBO disappears after initial specification. Intriguingly, in these mutants, Tbx3 was downregulated and the Shh expression domain abnormally extended. Microarray analysis and chromatin immunoprecipitation indicated that Lhx5 appears to be involved in Shh downregulation through Tbx3 and activates several MBO-specific regulator and effector genes. Finally, by tracing the caudal hypothalamic cell lineage we show that, in the Lhx5 mutant, at least some MBO cells are present but lack characteristic marker expression. Our work shows how the Lhx5 locus contributes to integrate regional specification pathways with downstream acquisition of neuronal identity in the MBO.

  18. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    Science.gov (United States)

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  19. Subcellular localization of Patched and Smoothened, the receptors for Sonic hedgehog signaling, in the hippocampal neuron.

    Science.gov (United States)

    Petralia, Ronald S; Schwartz, Catherine M; Wang, Ya-Xian; Mattson, Mark P; Yao, Pamela J

    2011-12-15

    Cumulative evidence suggests that, aside from patterning the embryonic neural tube, Sonic hedgehog (Shh) signaling plays important roles in the mature nervous system. In this study, we investigate the expression and localization of the Shh signaling receptors, Patched (Ptch) and Smoothened (Smo), in the hippocampal neurons of young and mature rats. Reverse transcriptase-polymerase chain reaction and immunoblotting analyses show that the expression of Ptch and Smo remains at a moderate level in young postnatal and adult brains. By using immunofluorescence light microscopy and immunoelectron microscopy, we examine the spatial distribution of Ptch and Smo within the hippocampal neurons. In young developing neurons, Ptch and Smo are present in the processes and are clustered at their growth cones. In mature neurons, Ptch and Smo are concentrated in dendrites, spines, and postsynaptic sites. Synaptic Ptch and Smo often co-exist with unusual structures-synaptic spinules and autophagosomes. Our results reveal the anatomical organization of the Shh receptors within both the young and the mature hippocampal neurons. Copyright © 2011 Wiley-Liss, Inc.

  20. Effects of ionizing radiation on the hematopoietic niche and treatment of acute radiation syndrome by gene therapy in highly-irradiated monkeys

    International Nuclear Information System (INIS)

    Garrigou, Ph.

    2011-01-01

    The hematopoietic stem cell niche represents a complex radiosensitive compartment whose protection is required for recovery from radiation-induced myelosuppression. We initially studied RI effects on endothelial and mesenchymal progenitors by an evaluating radiosensitivity and cell death. Then, we have proposed a new gene therapy strategy based on local and short term secretion of Sonic hedgehog morphogen to favour vascular niche repair and to stimulate residual hematopoietic stem and progenitor cells. We investigated the hematopoietic response of 8-Gy gamma irradiated monkeys to a single intra-osseous injection of xenogeneic multipotent mesenchymal stem cells transduced with a Shh pIRES2 plasmid. Thrombocytopenia and neutropenia duration were significantly reduced in grafted animals and clonogenics normalized from day 42. Areas under the curve of PLTs and ANCs between day 0 and day 30 were significantly higher in treated animals than in controls. Grafting Matrigel TM colonized or not with ASC in immunocompromised mice demonstrated a notable pro-angiogenic activity for Shh-ASC. Long term follow up (180-300 days) confirmed a durable recovery in the four grafted monkeys. Globally this study suggests that grafting Shh-multipotent stem cells may represent a new strategy to cure radiation-induced niche damage. (author)

  1. CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Jia, Guiquan; Chandriani, Sanjay; Abbas, Alexander R; DePianto, Daryle J; N'Diaye, Elsa N; Yaylaoglu, Murat B; Moore, Heather M; Peng, Ivan; DeVoss, Jason; Collard, Harold R; Wolters, Paul J; Egen, Jackson G; Arron, Joseph R

    2017-09-01

    Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14 , which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. Post-results, NCT00968981. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Hyperinnervation improves Xenopus laevis limb regeneration.

    Science.gov (United States)

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Semiotics and semiology of Nursing: evaluation of undergraduate students' knowledge on procedures

    Directory of Open Access Journals (Sweden)

    Gabriela de Sousa Martins Melo

    Full Text Available ABSTRACT Objective: to assess the knowledge of scholars on Nursing regarding simple hands hygiene (SHH, blood pressure measurement (BP, peripheral venipuncture (PV with venous catheter and male urethral catheterization delay (UCD procedures. Method: quantitative study carried out between February and May 2014, with 186 undergraduate Nursing students from 5th to 9th period of a public university of Rio Grande do Norte, with application of four questionnaires. One carried out descriptive and analytic analysis. Results: the students presented low average percentage of right answers, especially in blood pressure measurement (55.5%; SHH's average was higher than 70%. The average of correct answers was the highest in SHH (8.6, followed by UCD (7.8, PV (7.4 and BP (6.7. The questions regarding the topic "concepts" showed less correct answers when comparing it to the topic "technique steps". Conclusion: it is necessary to establish knowledge monitoring strategies, in order to stimulate the constant improvement.

  4. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    Energy Technology Data Exchange (ETDEWEB)

    He Chengyong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Zuo Zhenghong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Wang Chonggang, E-mail: cgwang@xmu.edu.cn [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2011-01-25

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  5. Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Fujimi, Takahiko J; Hatayama, Minoru; Aruga, Jun

    2012-01-15

    Zic3 controls neuroectodermal differentiation and left-right patterning in Xenopus laevis embryos. Here we demonstrate that Zic3 can suppress Wnt/β-catenin signaling and control development of the notochord and Spemann's organizer. When we overexpressed Zic3 by injecting its RNA into the dorsal marginal zone of 2-cell-stage embryos, the embryos lost mesodermal dorsal midline structures and showed reduced expression of organizer markers (Siamois and Goosecoid) and a notochord marker (Xnot). Co-injection of Siamois RNA partially rescued the reduction of Xnot expression caused by Zic3 overexpression. Because the expression of Siamois in the organizer region is controlled by Wnt/β-catenin signaling, we subsequently examined the functional interaction between Zic3 and Wnt signaling. Co-injection of Xenopus Zic RNAs and β-catenin RNA with a reporter responsive to the Wnt/β-catenin cascade indicated that Zic1, Zic2, Zic3, Zic4, and Zic5 can all suppress β-catenin-mediated transcriptional activation. In addition, co-injection of Zic3 RNA inhibited the secondary axis formation caused by ventral-side injection of β-catenin RNA in Xenopus embryos. Zic3-mediated Wnt/β-catenin signal suppression required the nuclear localization of Zic3, and involved the reduction of β-catenin nuclear transport and enhancement of β-catenin degradation. Furthermore, Zic3 co-precipitated with Tcf1 (a β-catenin co-factor) and XIC (I-mfa domain containing factor required for dorsoanterior development). The findings in this report produce a novel system for fine-tuning of Wnt/β-catenin signaling. Copyright © 2011. Published by Elsevier Inc.

  6. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    Science.gov (United States)

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  7. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  8. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  9. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  10. Expression analysis of some genes regulated by retinoic acid in controls and triadimefon-exposed embryos: is the amphibian Xenopus laevis a suitable model for gene-based comparative teratology?

    Science.gov (United States)

    Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena

    2011-06-01

    The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.

  11. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions

    International Nuclear Information System (INIS)

    Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi

    2011-01-01

    Research highlights: → Bioengineered teeth regulated the contact area of epithelium and mesenchyme. → The crown width is regulated by the contact area of the epithelium and mesenchyme. → This regulation is associated with cell proliferation and Sonic hedgehog expression. → The cusp number is correlated with the crown width of the bioengineered tooth. → Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.

  12. Membrane topology of hedgehog acyltransferase.

    Science.gov (United States)

    Matevossian, Armine; Resh, Marilyn D

    2015-01-23

    Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway.

    Science.gov (United States)

    Wang, Dengdian; Kong, Xiaochuan; Li, Yuan; Qian, Weiwei; Ma, Jiaxing; Wang, Daming; Yu, Dexin; Zhong, Caiyun

    2017-11-04

    Cancer stem cells (CSCs) is responsible for the recurrence of human cancers. Thus, targeting CSCs is considered to be a valid way for human cancer treatment. Curcumin is a major component of phytochemicals that exerts potent anticancer activities. However, the effect of curcumin on bladder cancer stem cells (BCSCs) remains to be elucidated. In this study, we investigated the mechanism of curcumin suppressing bladder cancer stem cells. In this study, UM-UC-3 and EJ cells were cultured in serum-free medium (SFM) to form cell spheres that was characterized as BCSCs. Then cell spheres were separately treated with different concentrations of curcumin and purmorphamine. Cell cycle analysis were used to determine the percentage of cells in different phases. Western blot and quantitative real-time PCR analysis were used to detect the expression of relative molecules. Immunofluorescence staining analysis were also utilized to measure the protein level of CD44. We found that CSC markers, including CD44, CD133, ALDH1-A1, OCT-4 and Nanog, were obviously highly expressed in cell spheres. Moreover, we observed that curcumin reduced the cell spheres formation, decreased the expression of CSC markers, suppressed cell proliferation and induced cell apoptosis. We also found that curcumin inhibited the activation of Shh pathway, while the inhibitory effects of curcumin on BCSCs could be weakened by upregulation of Sonic Hedgehog (Shh) pathway. Altogether, these data suggested that curcumin inhibited the activities of BCSCs through suppressing Shh pathway, which might be an effective chemopreventive agent for bladder cancer intervention. Copyright © 2017. Published by Elsevier Inc.

  14. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    Science.gov (United States)

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  15. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    Science.gov (United States)

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  16. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    2014-06-01

    Full Text Available The miR-17∼92 cluster family is composed of three members encoding microRNAs that share seed sequences. To assess their role in cerebellar and medulloblastoma (MB development, we deleted the miR-17∼92 cluster family in Nestin-positive neural progenitors and in mice heterozygous for the Sonic Hedgehog (SHH receptor Patched 1 (Ptch1+/−. We show that mice in which we conditionally deleted the miR-17∼92 cluster (miR-17∼92floxed/floxed; Nestin-Cre+ alone or together with the complete loss of the miR-106b∼25 cluster (miR-106b∼25−/− were born alive but with small brains and reduced cerebellar foliation. Remarkably, deletion of the miR-17∼92 cluster abolished the development of SHH-MB in Ptch1+/− mice. Using an orthotopic transplant approach, we showed that granule neuron precursors (GNPs purified from the cerebella of postnatal day 7 (P7 Ptch1+/−; miR-106b∼25−/− mice and overexpressing Mycn induced MBs in the cortices of naïve recipient mice. In contrast, GNPs purified from the cerebella of P7 Ptch1+/−; miR-17∼92floxed/floxed; Nestin-Cre+ animals and overexpressing Mycn failed to induce tumors in recipient animals. Taken together, our findings demonstrate that the miR-17∼92 cluster is dispensable for cerebellar development, but required for SHH-MB development.

  17. Development of posterior hypothalamic neurons enlightens a switch in the prosencephalic basic plan.

    Directory of Open Access Journals (Sweden)

    Sophie Croizier

    Full Text Available In rats and mice, ascending and descending axons from neurons producing melanin-concentrating hormone (MCH reach the cerebral cortex and spinal cord. However, these ascending and descending projections originate from distinct sub-populations expressing or not "Cocaine-and-Amphetamine-Regulated-Transcript" (CART peptide. Using a BrdU approach, MCH cell bodies are among the very first generated in the hypothalamus, within a longitudinal cell cord made of earliest delaminating neuroblasts in the diencephalon and extending from the chiasmatic region to the ventral midbrain. This region also specifically expresses the regulatory genes Sonic hedgehog (Shh and Nkx2.2. First MCH axons run through the tractus postopticus (tpoc which gathers pioneer axons from the cell cord and courses parallel to the Shh/Nkx2.2 expression domain. Subsequently generated MCH neurons and ascending MCH axons differentiate while neurogenesis and mantle layer differentiation are generalized in the prosencephalon, including telencephalon. Ascending MCH axons follow dopaminergic axons of the mesotelencephalic tract, both being an initial component of the medial forebrain bundle (mfb. Netrin1 and Slit2 proteins that are involved in the establishment of the tpoc and mfb, respectively attract or repulse MCH axons.We conclude that first generated MCH neurons develop in a diencephalic segment of a longitudinal Shh/Nkx2.2 domain. This region can be seen as a prosencephalic segment of a medial neurogenic column extending from the chiasmatic region through the ventral neural tube. However, as the telencephalon expends, it exerts a trophic action and the mfb expands, inducing a switch in the longitudinal axial organization of the prosencephalon.

  18. Limb patterning genes and heterochronic development of the emu wing bud

    Directory of Open Access Journals (Sweden)

    Craig A. Smith

    2016-12-01

    Full Text Available Abstract Background The forelimb of the flightless emu is a vestigial structure, with greatly reduced wing elements and digit loss. To explore the molecular and cellular mechanisms associated with the evolution of vestigial wings and loss of flight in the emu, key limb patterning genes were examined in developing embryos. Methods Limb development was compared in emu versus chicken embryos. Immunostaining for cell proliferation markers was used to analyze growth of the emu forelimb and hindlimb buds. Expression patterns of limb patterning genes were studied, using whole-mount in situ hybridization (for mRNA localization and RNA-seq (for mRNA expression levels. Results The forelimb of the emu embryo showed heterochronic development compared to that in the chicken, with the forelimb bud being retarded in its development. Early outgrowth of the emu forelimb bud is characterized by a lower level of cell proliferation compared the hindlimb bud, as assessed by PH3 immunostaining. In contrast, there were no obvious differences in apoptosis in forelimb versus hindlimb buds (cleaved caspase 3 staining. Most key patterning genes were expressed in emu forelimb buds similarly to that observed in the chicken, but with smaller expression domains. However, expression of Sonic Hedgehog (Shh mRNA, which is central to anterior–posterior axis development, was delayed in the emu forelimb bud relative to other patterning genes. Regulators of Shh expression, Gli3 and HoxD13, also showed altered expression levels in the emu forelimb bud. Conclusions These data reveal heterochronic but otherwise normal expression of most patterning genes in the emu vestigial forelimb. Delayed Shh expression may be related to the small and vestigial structure of the emu forelimb bud. However, the genetic mechanism driving retarded emu wing development is likely to rest within the forelimb field of the lateral plate mesoderm, predating the expression of patterning genes.

  19. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    Science.gov (United States)

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  20. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    Science.gov (United States)

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  1. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    Science.gov (United States)

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  2. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.

    Science.gov (United States)

    Park, Soo-Yeon; Do, Gyeong-Min; Lee, Sena; Lim, Yeni; Shin, Jae-Ho; Kwon, Oran

    2014-09-01

    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  4. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Ravinder Kaur

    2015-10-01

    Full Text Available Medulloblastoma (MB is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH, Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2 is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs, but not their normal counterparts (hENs, resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.

  5. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  6. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes.

    Science.gov (United States)

    Correia de Sá, Tiago Ribeiro; Silva, Roberto; Lopes, José Manuel

    2015-11-01

    Basal cell carcinoma (BCC) is the most common skin cancer worldwide with increasing incidence, but difficult to assess due to the current under registration practice. Despite the low mortality rate, BCC is a cause of great morbidity and an economic burden to health services. There are several risk factors that increase the risk of BCC and partly explain its incidence. Low-penetrance susceptibility alleles, as well as genetic alterations in signaling pathways, namely SHH pathway, also contribute to the carcinogenesis. BCC associate with several genetic syndromes, of which basal cell nevus syndrome is the most common.

  7. Acidosis y coma en el Diabético

    OpenAIRE

    Alfredo Jácome Roca

    1992-01-01

    Definición. La cetoacidosis diabética (CAD)y la alcohólica, la acidosis láctica y el síndrome hiperosmolar hiperglucémico (SHH) a menudo se sobreponen en grado considerable, por lo que los revisaremos en conjunto. Definiremos la cetoacidosLs diabética como la descompensación grave de la diabetes, la emergencia endocrina más común caracterizada por un desequilibrio ácido-básico, de líquidos y electrolitos, asociado a una diuresis osmótica y catabolismo de ...

  8. Investigations of nephrotoxicity caused by ionic and non-ionic contrast media in rats with previously damaged and not previously damaged kidneys and special view to urinary enzyme determinations

    International Nuclear Information System (INIS)

    Hofmeister, R.

    1988-01-01

    In this study ionic (meglumine amidotrizoate) and non-ionic contrast media (SHH 340 AB, Iohexol, Iopromide, Iosimide and Iopamidol) were tested for their nephrotoxicity in rats. During the experiment detections of urea nitrogen, serum creatinine and urinary enzymes as well as histological examinations of the kidneys were carried out for the diagnosis of acute renal damage. The results obtained in this study demonstrate that rats are not very sensitive to non-ionic contrast media with regard to kidney damage and determinations of urinary enzymes are valuable for the diagnosis of contrast media induced acute kidney damage in living animals. (orig./MG) [de

  9. New perspectives in the treatment of adult medulloblastoma in the era of molecular oncology.

    Science.gov (United States)

    Brandes, Alba A; Bartolotti, Marco; Marucci, Gianluca; Ghimenton, Claudio; Agati, Raffaele; Fioravanti, Antonio; Mascarin, Maurizio; Volpin, Lorenzo; Ammannati, Franco; Masotto, Barbara; Gardiman, Marina Paola; De Biase, Dario; Tallini, Giovanni; Crisi, Girolamo; Bartolini, Stefania; Franceschi, Enrico

    2015-06-01

    Medulloblastoma is the most common central nervous system tumor in children, while it is extremely rare in adults. Multimodal treatment involving surgery, radiotherapy and chemotherapy can improve the prognosis of this disease, and recent advances in molecular biology have allowed the identification of molecular subgroups (WNT, SHH, Groups 3 and 4), each of which have different cytogenetic, mutational and gene expression signatures, demographics, histology and prognosis. The present review focuses on the state of the art for adult medulloblastoma treatment and on novel molecular advances and their future implications in the treatment of this disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Disease: H01667 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available tor cells of the cerebellum. Recently, four distinct molecular subgroups of medulloblastoma have been identi...on levels compared with SHH and Group 4 tumors.The most frequently mutated somatic gene in Group 4 medulloblastoma...9471/3 Desmoplastic nodular medulloblastoma ICD-10: C71.6 MeSH: D008527 PMID:18676356 (gene) ... AUTHORS ... de ...ulloblastoma and ependymoma: a review from a translational research perspective. ... ...Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R ... TITLE ... Biological background of pediatric med

  11. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  12. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  13. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice

    Science.gov (United States)

    Zhang, Jennifer; Wang, Yan; Jin, Jane Y.; Degan, Simone; Hall, Russell P.; Boehm, Ryan D.; Jaipan, Panupong; Narayan, Roger J.

    2016-04-01

    Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642- μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800- μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.

  14. Knockdown of connexin43-mediated regulation of the zone of polarizing activity in the developing chick limb leads to digit truncation.

    Science.gov (United States)

    Law, Lee Yong; Lin, Jun Sheng; Becker, David L; Green, Colin R

    2002-12-01

    In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.

  15. Dual odontogenic origins develop at the early stage of rat maxillary incisor development.

    Science.gov (United States)

    Kriangkrai, Rungarun; Iseki, Sachiko; Eto, Kazuhiro; Chareonvit, Suconta

    2006-03-01

    Developmental process of rat maxillary incisor has been studied through histological analysis and investigation of tooth-related gene expression patterns at initial tooth development. The tooth-related genes studied here are fibroblast growth factor-8 (Fgf-8), pituitary homeobox gene-2 (Pitx-2), sonic hedgehog (Shh), muscle segment homeobox-1 (Msx-1), paired box-9 (Pax-9) and bone morphogenetic protein-4 (Bmp-4). The genes are expressed in oral epithelium and/or ectomesenchyme at the stage of epithelial thickening to the early bud stage of tooth development. Both the histological observation and tooth-related gene expression patterns during early stage of maxillary incisor development demonstrate that dual odontogenic origins aligned medio-laterally in the medial nasal process develop, subsequently only single functional maxillary incisor dental placode forms. The cascade of tooth-related gene expression patterns in rat maxillary incisor studied here is quite similar to those of the previous studies in mouse mandibular molar, even though the origins of oral epithelium and ectomesenchyme involved in development of maxillary incisor and mandibular molar are different. Thus, we conclude that maxillary incisor and mandibular molar share a similar signaling control of Fgf-8, Pitx-2, Shh, Msx-1, Pax-9 and Bmp-4 genes at the stage of oral epithelial thickening to the early bud stage of tooth development.

  16. Evaluation of motor neuron differentiation potential of human umbilical cord blood- derived mesenchymal stem cells, in vitro.

    Science.gov (United States)

    Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Latifi, Nourahmad

    2017-04-01

    Many people suffer from spinal cord injuries annually. These deficits usually threaten the quality of life of patients. As a postpartum medically waste product, human Umbilical Cord Blood (UCB) is a rich source of stem cells with self- renewal properties and neural differentiation capacity which made it useful in regenerative medicine. Since there is no report on potential of human umbilical cord blood-derived mesenchymal stem cells into motor neurons, we set out to evaluate the differentiation properties of these cells into motor neuron-like cells through administration of Retinoic Acid(RA), Sonic Hedgehog(Shh) and BDNF using a three- step in vitro procedure. The results were evaluated using Real-time PCR, Flowcytometry and Immunocytochemistry for two weeks. Our data showed that the cells changed into bipolar morphology and could express markers related to motor neuron; including Hb-9, Pax-6, Islet-1, NF-H, ChAT at the level of mRNA and protein. We could also quantitatively evaluate the expression of Islet-1, ChAT and NF-H at 7 and 14days post- induction using flowcytometry. It is concluded that human UCB-MSCs is potent to express motor neuron- related markers in the presence of RA, Shh and BDNF through a three- step protocol; thus it could be a suitable cell candidate for regeneration of motor neurons in spinal cord injuries. Copyright © 2017. Published by Elsevier B.V.

  17. Generalidades de la señalización molecular durante el desarrollo embrionario: El caso del Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    David Arias

    2016-12-01

    Full Text Available Histogenesis and organogenesis of the vertebrates –including humans– involves the interaction of an epithelium (derived from the ectoderm and endoderm and the underlying mesenchyme (derived from the intraembryonic mesoderm. This interaction is regulated by a paracrine signaling network that includes several ligands and their respective receptors, in addition to a series of transcription factors that control the whole system. Among these factors are fibroblast growth factors (Fgf, Hedgehog family (Hh, Wingless family (Wnt and beta-fibroblast growth factor superfamily (Tgf-β, which act to organize the morphogenetic pattern of a tissue, an organ, an apparatus and a morphofunctional system. One of the most studied factors is Sonic hedgehog (Shh, which is essential for regulating the formation of morphogenetic fields in specific places of the embryo’s body schema through cell proliferation, differentiation, migration and cell survival processes –in development or in the adult–. Therefore, the purpose of this literature review is to describe the role of Shh in the embryonic development of the neural tube, the limbs and the teeth.

  18. Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures.

    Science.gov (United States)

    Zurich, Marie-Gabrielle; Honegger, Paul

    2011-08-28

    Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Activation of retinal stem cells in the proliferating marginal region of RCS rats during development of retinitis pigmentosa.

    Science.gov (United States)

    Jian, Qian; Xu, Haiwei; Xie, Hanping; Tian, Chunyu; Zhao, Tongtao; Yin, ZhengQin

    2009-11-06

    Retinal stem cells (RSCs) have been demonstrated at the proliferating marginal regions from the pars plana of ciliary body to the ciliary marginal zone (CMZ) in adult lower vertebrates and mammals. Investigations in the lower vertebrates have provided some evidence that RSCs can proliferate following retinal damage; however, the evidence that this occurs in mammals is not clear. In this study, we explored RSCs proliferation potential of adult mammalian in proliferating marginal regions of Royal College of Surgeons (RCS) rats, an animal model for retinitis pigmentosa (RP). The proliferation was evaluated using BrdU labeling, and Chx-10 as markers to discern progenitor cell of CMZ in Long-Evan's and RCS rats at different postnatal day (PND) after eye opening. We found that few Chx-10 and BrdU labeled cells in the proliferating marginal regions of Long-Evan's rats, which significantly increased in RCS rats at PND30 and PND60. Consistent with this, Chx-10/Vimentin double staining cells in the center retina of RCS rats increased significantly at PND30 after eye opening. In addition, mRNA expression of Shh, Ptch1 and Smo was up-regulated in RCS rats at PND60 compared to age-matched Long-Evan's rats, which revealed Shh/ptc pathway involving in the activation of RSCs. These results suggest that RSCs in the mammalian retinal proliferating marginal regions has the potential to regenerate following degeneration.

  20. [Medulloblastoma. Pathology].

    Science.gov (United States)

    Siegfried, A; Delisle, M-B

    2018-04-24

    Medulloblastomas, embryonal neuroepithelial tumors developed in the cerebellum or brain stem, are mainly observed in childhood. The treatment of WHO-Grade IV tumors depends on stratifications that are usually based on postoperative data, histopathological subtype, tumor extension and presence of MYC or NMYC amplifications. Recently, molecular biology studies, based on new technologies (i.e. sequencing, transcriptomic, methylomic) have introduced genetic subtypes integrated into the latest WHO-2016 neuropathological classification. According to this classification, the three genetic groups WNT, SHH, with or without mutated TP53 gene, and non-WNT/non-SHH, comprising subgroups 3 and 4, are recalled in this review. The contribution of immunohistochemistry to define these groups is specified. The four histopathological groups are detailed in comparison to the WHO-2007 classification and the molecular data: classic medulloblastoma, desmoplastic/nodular medulloblastoma, medulloblastoma with extensive nodularity, and large cell/anaplastic medulloblastoma. The groups defined on genetic and histopathological grounds are not strictly concordant. Depending on the age of the patients, their correlations are different, as well as their role in the management and prognosis of these tumors. Other embryonal tumors, for which new classifications are in progress and gliomas may be confused with a medulloblastoma and the elements of the differential diagnosis of these entities are discussed. This evolution in classification fully justifies ongoing structuring procedures such as histopathological review (RENOCLIP) and the organization of molecular biology platforms. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Science.gov (United States)

    Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.

    2012-01-01

    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324

  2. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    N. Pfeifer

    2012-01-01

    Full Text Available Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  3. A new Cre driver mouse line, Tcf21/Pod1-Cre, targets metanephric mesenchyme.

    Directory of Open Access Journals (Sweden)

    Yoshiro Maezawa

    Full Text Available Conditional gene targeting in mice has provided great insight into the role of gene function in kidney development and disease. Although a number of Cre-driver mouse strains already exist for the kidney, development of additional strains with unique expression patterns is needed. Here we report the generation and validation of a Tcf21/Pod1-Cre driver strain that expresses Cre recombinase throughout the condensing and stromal mesenchyme of developing kidneys and in their derivatives including epithelial components of the nephron and interstitial cells. To test the efficiency of this line, we crossed it to mice transgenic for either loss or gain of function β-catenin conditional alleles. Mice with deletion of β-catenin from Tcf21-expressing cells are born with hypoplastic kidneys, hydroureters and hydronephrosis. By contrast, Tcf21-Cre driven gain of function for β-catenin in mice results in fused midline kidneys and hypoplastic kidneys. Finally, we report the first renal mesenchymal deletion of Patched1 (Ptch1, the receptor for sonic hedgehog (Shh, which results in renal cysts demonstrating a functional role of Shh signaling pathway in renal cystogensis. In summary, we report the generation and validation of a new Cre driver strain that provides robust excision in metanephric mesenchyme.

  4. Molecular signaling in intervertebral disk development.

    Science.gov (United States)

    DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A

    2005-09-01

    The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.

  5. Characterising the developmental profile of human embryonic stem cell-derived medium spiny neuron progenitors and assessing mature neuron function using a CRISPR-generated human DARPP-32WT/eGFP-AMP reporter line.

    Science.gov (United States)

    Hunt, C P J; Pouton, C W; Haynes, J M

    2017-06-01

    In the developing ventral telencephalon, cells of the lateral ganglionic eminence (LGE) give rise to all medium spiny neurons (MSNs). This development occurs in response to a highly orchestrated series of morphogenetic stimuli that pattern the resultant neurons as they develop. Striatal MSNs are characterised by expression of dopamine receptors, dopamine-and cyclic AMP-regulated phosphoprotein (DARPP32) and the neurotransmitter GABA. In this study, we demonstrate that fine tuning Wnt and hedgehog (SHH) signaling early in human embryonic stem cell differentiation can induce a subpallial progenitor molecular profile. Stimulation of TGFβ signaling pathway by activin-A further supports patterning of progenitors to striatal precursors which adopt an LGE-specific gene signature. Moreover, we report that these MSNs also express markers associated with mature neuron function (cannabinoid, adenosine and dopamine receptors). To facilitate live-cell identification we generated a human embryonic stem cell line using CRISPR-mediated gene editing at the DARPP32 locus (DARPP32 WT/eGFP-AMP-LacZ ). The addition of dopamine to MSNs either increased, decreased or had no effect on intracellular calcium, indicating the presence of multiple dopamine receptor subtypes. In summary, we demonstrate greater control over early fate decisions using activin-A, Wnt and SHH to direct differentiation into MSNs. We also generate a DARPP32 reporter line that enables deeper pharmacological profiling and interrogation of complex receptor interactions in human MSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Selection of the in vitro culture media influences mRNA expression of Hedgehog genes, Il-6, and important genes regarding reactive oxygen species in single murine preimplantation embryos.

    Science.gov (United States)

    Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P

    2012-01-01

    The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  7. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    Science.gov (United States)

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Science.gov (United States)

    Waszak, Sebastian M; Northcott, Paul A; Buchhalter, Ivo; Robinson, Giles W; Sutter, Christian; Groebner, Susanne; Grund, Kerstin B; Brugières, Laurence; Jones, David T W; Pajtler, Kristian W; Morrissy, A Sorana; Kool, Marcel; Sturm, Dominik; Chavez, Lukas; Ernst, Aurelie; Brabetz, Sebastian; Hain, Michael; Zichner, Thomas; Segura-Wang, Maia; Weischenfeldt, Joachim; Rausch, Tobias; Mardin, Balca R; Zhou, Xin; Baciu, Cristina; Lawerenz, Christian; Chan, Jennifer A; Varlet, Pascale; Guerrini-Rousseau, Lea; Fults, Daniel W; Grajkowska, Wiesława; Hauser, Peter; Jabado, Nada; Ra, Young-Shin; Zitterbart, Karel; Shringarpure, Suyash S; De La Vega, Francisco M; Bustamante, Carlos D; Ng, Ho-Keung; Perry, Arie; MacDonald, Tobey J; Hernáiz Driever, Pablo; Bendel, Anne E; Bowers, Daniel C; McCowage, Geoffrey; Chintagumpala, Murali M; Cohn, Richard; Hassall, Timothy; Fleischhack, Gudrun; Eggen, Tone; Wesenberg, Finn; Feychting, Maria; Lannering, Birgitta; Schüz, Joachim; Johansen, Christoffer; Andersen, Tina V; Röösli, Martin; Kuehni, Claudia E; Grotzer, Michael; Kjaerheim, Kristina; Monoranu, Camelia M; Archer, Tenley C; Duke, Elizabeth; Pomeroy, Scott L; Shelagh, Redmond; Frank, Stephan; Sumerauer, David; Scheurlen, Wolfram; Ryzhova, Marina V; Milde, Till; Kratz, Christian P; Samuel, David; Zhang, Jinghui; Solomon, David A; Marra, Marco; Eils, Roland; Bartram, Claus R; von Hoff, Katja; Rutkowski, Stefan; Ramaswamy, Vijay; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Malkin, David; Gajjar, Amar; Korbel, Jan O; Pfister, Stefan M

    2018-06-01

    Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MB WNT ), SHH (MB SHH ), group 3 (MB Group3 ), and group 4 (MB Group4 ). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105

  9. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system.

    Science.gov (United States)

    Bénazet, Jean-Denis; Zeller, Rolf

    2009-10-01

    A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.

  10. Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis.

    Directory of Open Access Journals (Sweden)

    Cornelia M Hooper

    Full Text Available Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified - WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10-15 and 20-30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies.

  11. Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Walderik W. Zomerman

    2018-03-01

    Full Text Available Summary: The brain cancer medulloblastoma consists of different transcriptional subgroups. To characterize medulloblastoma at the phosphoprotein-signaling level, we performed high-throughput peptide phosphorylation profiling on a large cohort of SHH (Sonic Hedgehog, group 3, and group 4 medulloblastomas. We identified two major protein-signaling profiles. One profile was associated with rapid death post-recurrence and resembled MYC-like signaling for which MYC lesions are sufficient but not necessary. The second profile showed enrichment for DNA damage, as well as apoptotic and neuronal signaling. Integrative analysis demonstrated that heterogeneous transcriptional input converges on these protein-signaling profiles: all SHH and a subset of group 3 patients exhibited the MYC-like protein-signaling profile; the majority of the other group 3 subset and group 4 patients displayed the DNA damage/apoptotic/neuronal signaling profile. Functional analysis of enriched pathways highlighted cell-cycle progression and protein synthesis as therapeutic targets for MYC-like medulloblastoma. : Using peptide phosphorylation profiling, Zomerman et al. identify two medulloblastoma phosphoprotein-signaling profiles that have prognostic value and are potentially targetable. They find that these profiles extend across transcriptome-based subgroup borders. This suggests that diverse genetic information converges on common protein-signaling pathways and highlights protein-signaling as a unique information layer. Keywords: medulloblastoma, protein-signaling, protein synthesis, MYC, TP53, proteome, phosphoproteome

  12. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Science.gov (United States)

    Brun, S N; Markant, S L; Esparza, L A; Garcia, G; Terry, D; Huang, J-M; Pavlyukov, M S; Li, X-N; Grant, G A; Crawford, J R; Levy, M L; Conway, E M; Smith, L H; Nakano, I; Berezov, A; Greene, M I; Wang, Q; Wechsler-Reya, R J

    2015-07-01

    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.

  13. Acidosis y coma en el Diabético

    Directory of Open Access Journals (Sweden)

    Alfredo Jácome Roca

    1992-12-01

    Full Text Available

    Definición. La cetoacidosis diabética (CADy la alcohólica, la acidosis láctica y el síndrome hiperosmolar hiperglucémico (SHH a menudo se sobreponen en grado considerable, por lo que los revisaremos en conjunto. Definiremos la cetoacidosLs diabética como la descompensación grave de la diabetes, la emergencia endocrina más común caracterizada por un desequilibrio ácido-básico, de líquidos y electrolitos, asociado a una diuresis osmótica y catabolismo de las grasas por hiperglucemia insulino- deficiente.

    El síndrome hiperosmolar hiperglucémico es de comienzo lento y se caracteriza por trastorno del estado de conciencia, deshidratación profunda e hiperglucemia sin cetoacidosis. La cetoacidosLs alcohólica es un desequilibrio ácido-básico con deshidratación en alcohólicos, mujeres por lo común, no necesariamente diabéticas, aunque puede haber moderada hiperglucemia. La acidos Ls láctica puede ser complicación de un estado de shock y/o deshidratación severa, o de ingesta abundante de alcohol, lo que también puede llevar a hiperuricemia y gota.

    Signos y síntomas. Malestar general, astenia, anorexia, náusea, vómito, dolor abdominal con somnolencia, estupor y/o coma, pueden ser manifestaciones de cualquiera de las entidades arriba mencionadas.

    Sin embargo, aunque tanto en CADcomo en SHH hay signos de deshidratación (sequedad de mucosa con piel seca sin turgencia, ojos hundidos, en el primero hay náusea, vómito y respiración acidótica (rápida y profunda, lo que generalmente falta en el segundo. ElCADes de niños y adultos jóvenes o maduros, con función cardio-renal aceptable mientras que el SHHes más de ancianos, a menudo hipertensos con fallas renal o cardíaca, hemiparéticos, que pueden consultar por convulsiones focales. No siempre el paciente es reconocido como diabético, sobre todo en SHH.

    Lapoliuria y la polidipsia caracterizan a la acidosis diabética y al s

  14. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  15. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia.

    Directory of Open Access Journals (Sweden)

    Milena Saqui-Salces

    Full Text Available Chronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast⁻/⁻ mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia. LacZ reporter mice for Sonic hedgehog (Shh, Gli1, and Gli2 expression bred onto the Gast⁻/⁻ background revealed reduced Shh and Gli1 expression in the antra compared to wild type controls (WT. Gli2 expression in the Gast⁻/⁻ corpus was unchanged. However in the hyperplastic Gast⁻/⁻ antra, Gli2 expression increased in both the mesenchyme and epithelium, whereas expression in WT mice remained exclusively mesenchymal. These observations suggested that Gli2 is differentially regulated in the hyperplastic Gast⁻/⁻ antrum versus the corpus and by a Shh ligand-independent mechanism. Moreover, the proinflammatory cytokines Il-1β and Il-11, which promote gastric epithelial proliferation, were increased in the Gast⁻/⁻ stomach along with Infγ. To test if inflammation could account for elevated epithelial Gli2 expression in the Gast⁻/⁻ antra, the human gastric cell line AGS was treated with IL-1β and was found to increase GLI2 but decrease GLI1 levels. IL-1β also repressed human GAST gene expression. Indeed, GLI2 but not GLI1 or GLI3 expression repressed gastrin luciferase reporter activity by ∼50 percent. Moreover, chromatin immunoprecipitation of GLI2 in AGS cells confirmed that GLI2 directly binds to the GAST promoter. Using a mouse model of constitutively active epithelial GLI2 expression, we found that activated GLI2 repressed Gast expression but induced Il-1β gene expression and proliferation in the gastric antrum, along with a reduction of the number of G-cells. In summary

  16. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  17. Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Stagni, Fiorenza; Raspanti, Alessandra; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Ciani, Elisabetta; Giuliani, Alessandro; Bighinati, Andrea; Calzà, Laura; Magistretti, Jacopo; Bartesaghi, Renata

    2017-07-01

    Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early

  18. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  19. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Gregory M Shackleford

    Full Text Available Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP cells, which are cells of origin for the sonic hedgehog (SHH subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and

  20. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lin Nan; Tang Zhaofeng; Deng Meihai; Zhong Yuesi; Lin Jizong; Yang Xuhui; Xiang Peng; Xu Ruiyun

    2008-01-01

    During liver injury, bone marrow-derived mesenchymal stem cells (MSCs) can migrate and differentiate into hepatocytes. Hepatic stellate cell (SC) activation is a pivotal event in the development of liver fibrosis. Therefore, we hypothesized that SCs may play an important role in regulating MSC proliferation and differentiation through the paracrine signaling pathway. We demonstrate that MSCs and SCs both express hedgehog (Hh) pathway components, including its ligands, receptors, and target genes. Transwell co-cultures of SCs and MSCs showed that the SCs produced sonic hedgehog (Shh), which enhanced the proliferation and differentiation of MSCs. These findings demonstrate that SCs indirectly modulate the activity of MSCs in vitro via the Hh pathway, and provide a plausible explanation for the mechanisms of transplanted MSCs in the treatment of liver fibrosis

  1. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    Science.gov (United States)

    Woods, C G; Stricker, S; Seemann, P; Stern, R; Cox, J; Sherridan, E; Roberts, E; Springell, K; Scott, S; Karbani, G; Sharif, S M; Toomes, C; Bond, J; Kumar, D; Al-Gazali, L; Mundlos, S

    2006-08-01

    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.

  2. Morfogenesis dan Diferensiasi Sel dalam Perkembangan Gigi (Tinjauan Molekuler

    Directory of Open Access Journals (Sweden)

    Yani Corvianindya

    2015-11-01

    Full Text Available Tooth development provides a dynamic process that has recently been studied at molecular level. There has been much progress toward the understanding of epithelial-mesenchymal cell signaling in tooth germ formation, morphogenesis and cell differentiation. The epithelial-mesenchym interaction is suggested to be the most important mechanism in organogenesis that stimulate mitosis and prevent apoptosis adjacent to the tissue surface. Moreover it affects cell formation and cell differentiation. Enamel knot is assumed to act as a signaling center in the tooth germ epithelial in organizing the tooth pattern as well as controlling the tooth growth. The genes involved in this mechanism are p21, Fgf-4, Shh, Bmp-2, bmp-4, Msx-1 and Lef-1 which are expressed in the enamel knot during the bud stage and cap stage. At the further step of differentiation, epithelial ameloblast and mesenchymal odontoblast will deposit organic matrix in enamel and dentin. This article reviews the molecular morphogenesis of tooth development.

  3. IHH and FGF8 coregulate elongation of digit primordia.

    Science.gov (United States)

    Zhou, Jian; Meng, Junwei; Guo, Shengzhen; Gao, Bo; Ma, Gang; Zhu, Xuming; Hu, Jianxin; Xiao, Yue; Lin, Chuwen; Wang, Hongsheng; Ding, Lusheng; Feng, Guoyin; Guo, Xizhi; He, Lin

    2007-11-23

    In the developing limb bud, digit pattern arises from anterior-posterior (A-P) positional information which is provided by the concentration gradient of SHH. However, the mechanisms of translating early asymmetry into morphological form are still unclear. Here, we examined the ability of IHH and FGF8 signaling to regulate digital chondrogenesis, by implanting protein-loaded beads in the interdigital space singly and in combination. We found that IHH protein induced an elongated digit and that FGF8 protein blocked the terminal phalange formation. Molecular marker analysis showed that IHH expanded Sox9 expression in mesenchymal cells possibly through up-regulated FGF8 expression. Application of both IHH and FGF8 protein induced a large terminal phalange. These results suggest that both enhanced IHH and FGF8 signaling are required for the development of additional cartilage element in limbs. IHH and FGF8 maybe play different roles and act synergistically to promote chondrogenesis during digit primordia elongation.

  4. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  5. Updating the Wnt pathways

    Science.gov (United States)

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  6. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim

    2011-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However......, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed...... the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells...

  7. A fetus with hemifacial microsomia and sirenomelia. The same mesodermal defect spectrum?

    Science.gov (United States)

    López-Valdez, Jaime Asael; Estrada-Juárez, Higinio; Moreno-Verduzco, Elsa Romelia; Aguinaga-Ríos, Mónica

    2013-04-01

    Sirenomelia is the most severe malformation complex affecting the human caudal pole, although its etiology is unclear, a primary defect of blastogenesis has been proposed. Studies consider sirenomelia as the most severe form of caudal dysgenesis, VACTERL association, or axial mesodermal dysplasia, although others still support the idea of a different pathologic entity. We report the prenatal, clinical, and pathologic features of a fetus with cleft lip and palate, microtia, cardiac, renal and intestinal malformations, radial aplasia, and sirenomelia. Karyotype, chromosomal breakage studies, and SHH sequence analysis were normal. The occurrence of cephalic, midline-paramedial, and caudal malformations in the same patient imply the diagnosis of hemifacial microsomia and sirenomelia. These entities are part of the same mesodermal malformation spectrum and the clinical presentation depends on environmental and genetic interactions in embrionic development. Future clinical and genome wide studies will help to better delineate this spectrum.

  8. Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals

    Directory of Open Access Journals (Sweden)

    Andrea C. Romero

    2015-12-01

    Full Text Available There is a necessity to develop in vitro methods for testing embryotoxicity (Romero et al., 2015 [1]. We studied the progress of D3 mouse embryonic stem cells differentiation exposed to model embryotoxicants and non-embryotoxicants chemicals through the expression of biomarker genes. We studied a set of 16 different genes biomarkers of general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3, ectoderm formation (Nrcam, Nes, Shh and Pnpla6, mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7 and endoderm formation (Flk1 and Afp. We offer dose response in order to derive the concentration causing either 50% or 200% of expression of the biomarker gene. These records revealed to be a valuable end-point to predict in vitro the embryotoxicity of chemicals (Romero et al., 2015 [1].

  9. Helicobacter pylori as a crucial factor in intestinal metaplasia development of gastric mucosa

    Directory of Open Access Journals (Sweden)

    Sergii Vernygorodskyi

    2016-06-01

    Full Text Available Helicobacter pylori (H. pylori is detected on the surface of gastric epithelium and in goblet cells, predominantly in patients with chronic atrophic gastritis and incomplete intestinal metaplasia (IM. H. pylori infection persistence leads to the formation of gastrointestinal phenotype of IM. H. pylori can be considered as an etiological factor of IM. It inhibits the expression of SOX2 in gastric epithelial cells, hence activating transcription factor CDX2 as a counterpart to MUC5AC gene inhibition and MUC2 gene induction. Thus, in metaplastic cells, programming differentiation after intestinal phenotype will develop. The role of H. pylori in the origin of intestinal metaplasia of gastric mucosa was defined in this study to elucidate the probable mechanism of cell reprogramming. The activation of CDX2, with simultaneous inactivation and decreased number of genes (e.g., SHH, SOX2, and RUNX3 responsible for gastric differentiation, was identified to cause the appearance of IM.

  10. Progressive Loss of Function in a Limb Enhancer during Snake Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kvon, Evgeny Z.; Kamneva, Olga K.; Melo, Uirá S.; Barozzi, Iros; Osterwalder, Marco; Mannion, Brandon J.; Tissières, Virginie; Pickle, Catherine S.; Plajzer-Frick, Ingrid; Lee, Elizabeth A.; Kato, Momoe; Garvin, Tyler H.; Akiyama, Jennifer A.; Afzal, Veena; Lopez-Rios, Javier; Rubin, Edward M.; Dickel, Diane E.; Pennacchio, Len A.; Visel, Axel

    2016-10-20

    The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. In this paper, we identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution.

  11. Possible Genetic Origin of Limb-Body Wall Complex.

    Science.gov (United States)

    Gajzer, David C; Hirzel, Alicia Cristina; Saigal, Gaurav; Rojas, Claudia Patricia; Rodriguez, Maria Matilde

    2015-01-01

    Limb body wall complex (LBWC) is characterized by multiple severe congenital malformations including an abdominal and/or thoracic wall defect covered by amnion, a short or absent umbilical cord with the placenta almost attached to the anterior fetal wall, intestinal malrotation, scoliosis, and lower extremity anomalies. There is no consensus about the etiology of LBWC and many cases with abnormal facial cleft do not meet the requirements for the true complex. We describe a series of four patients with LBWC and other malformations in an attempt to explain their etiology. There are several reports of fetuses with LBWC and absent gallbladder and one of our patients also had polysplenia. Absent gallbladder and polysplenia are associated with laterality genes including HOX, bFGF, transforming growth factor beta/activins/BMP4, WNT 1-8, and SHH. We postulate that this severe malformation may be due to abnormal genes involved in laterality and caudal development.

  12. Magnetophonon resonance in photoluminescence excitation spectra of magnetoexcitons in GaAs/Al0.3Ga0.7As superlattice

    DEFF Research Database (Denmark)

    Dickmann, S.; Tartakovskii, A. I.; Timofeev, V. B.

    2000-01-01

    A strong increase in the intensity of the peaks of excited magnetoexciton (ME) states in the photoluminescence excitation (PLE) spectra recorded for the ground heavy-hole magnetoexcitons (of the 1sHH type) has been found in a GaAs/Al0.3Ga0.7As superlattice in strong magnetic field B applied normal...... to the sample layers. While varying B, the intensities of the PLE peaks have been measured as functions of energy separation Delta E between excited ME peaks and the ground state of the system. The resonance profiles have been found to have maxima at Delta E-max close to the energy of the GaAs LO phonon...

  13. Novel Sonic Hedgehog Mutation in a Couple with Variable Expression of Holoprosencephaly

    Directory of Open Access Journals (Sweden)

    M. Aguinaga

    2011-01-01

    Full Text Available Holoprosencephaly (HPE is the most common developmental defect of the forebrain and midface in humans. sporadic and inherited mutations in the human sonic hedgehog (SHH gene cause 37% of familial HPE. A couple was referred to our unit with a family history of two spontaneous first trimester miscarriages and a daughter with HPE who presented early neonatal death. The father had a repaired median cleft lip, absence of central incisors, facial medial hypoplasia, and cleft palate. Intelligence and a brain CT scan were normal. Direct paternal sequencing analysis showed a novel nonsense mutation (W127X. Facial characteristics are considered as HPE microforms, and the pedigree suggested autosomal dominant inheritance with a variable expression of the phenotype. This study reinforces the importance of an exhaustive evaluation of couples with a history of miscarriages and neonatal deaths with structural defects.

  14. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    Science.gov (United States)

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  15. Tourist Satisfaction with Hospitality Services on River Ship “Ms River Aria”

    Directory of Open Access Journals (Sweden)

    Nikola Vuksanović

    2013-07-01

    Full Text Available The main prerequisite for a successful business of hospitality services and building customer loyalty is to develop measures for improving and development hospitality services and offer. This paper presents the results of tourists satisfaction surveys based on the measurement of expected and perceived levels of quality hospitality services on a river ship “MS River Aria” company “Grand Circle Cruise Line”. The survey was conducted between March and September 2012 on the itinerary: Amsterdam - Vienna (SGE, Amsterdam - Antwerp (SHH, Linz - Budapest (EDR and Budapest - Constanta (LBS. A model for measuring hospitality services was developed by the company itself. During statistical data analysis, only the highest ratings, whose share was shown as percentage, were taken into account. The obtained results may be relevant for other cruise companies and contribute to the improvement of business and pleasure tourist.

  16. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified...

  17. Evolving molecular era of childhood medulloblastoma: time to revisit therapy.

    Science.gov (United States)

    Khatua, Soumen

    2016-01-01

    Currently medulloblastoma is treated with a uniform therapeutic approach based on histopathology and clinico-radiological risk stratification, resulting in unpredictable treatment failure and relapses. Improved understanding of the biological, molecular and genetic make-up of these tumors now clearly identifies it as a compendium of four distinct subtypes (WNT, SHH, group 3 and 4). Advances in utilization of the genomic and epigenomic machinery have now delineated genetic aberrations and epigenetic perturbations in each subgroup as potential druggable targets. This has resulted in endeavors to profile targeted therapy. The challenge and future of medulloblastoma therapeutics will be to keep pace with the evolving novel biological insights and translating them into optimal targeted treatment regimens.

  18. An adult multifocal medulloblastoma with diffuse acute postoperative cerebellar swelling: immunohistochemical and molecular genetics analysis.

    Science.gov (United States)

    Balik, Vladimir; Trojanec, Radek; Holzerova, Milena; Tuckova, Lucie; Sulla, Igor; Megova, Magdalena; Vaverka, Miroslav; Hrabalek, Lumir; Ehrmann, Jiri

    2015-01-01

    Medulloblastoma (MB), the most common malignant tumor typically affecting children, occurs only exceptionally in adults. Multifocal presentation of this malignancy in adulthood is even much rarer—only four cases with favorable postoperative course have been reported, so far. The study illustrates a very rare rapid postoperative clinical deterioration due to diffuse cerebellar swelling (DCS) in an adult multifocal MB (MMB). To the best of their knowledge, authors for the first time performed genetic analysis of MMB and demonstrated expression patterns of selected markers that put the patient within the sonic hedgehog (SHH) molecular subgroup and at least partially explain her unsatisfactory clinical course. Herein, authors summarized the relevant literature concerning this issue with the aim to determine features that would facilitate diagnosis and therapy of such a scarce clinical entity.

  19. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    International Nuclear Information System (INIS)

    Hirose, Yoshikazu; Itoh, Tohru; Miyajima, Atsushi

    2009-01-01

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk + hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk + hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk + hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  20. Potential evolution of neurosurgical treatment paradigms for craniopharyngioma based on genomic and transcriptomic characteristics.

    Science.gov (United States)

    Robinson, Leslie C; Santagata, Sandro; Hankinson, Todd C

    2016-12-01

    The recent genomic and transcriptomic characterization of human craniopharyngiomas has provided important insights into the pathogenesis of these tumors and supports that these tumor types are distinct entities. Critically, the insights provided by these data offer the potential for the introduction of novel therapies and surgical treatment paradigms for these tumors, which are associated with high morbidity rates and morbid conditions. Mutations in the CTNNB1 gene are primary drivers of adamantinomatous craniopharyngioma (ACP) and lead to the accumulation of β-catenin protein in a subset of the nuclei within the neoplastic epithelium of these tumors. Dysregulation of epidermal growth factor receptor (EGFR) and of sonic hedgehog (SHH) signaling in ACP suggest that paracrine oncogenic mechanisms may underlie ACP growth and implicate these signaling pathways as potential targets for therapeutic intervention using directed therapies. Recent work shows that ACP cells have primary cilia, further supporting the potential importance of SHH signaling in the pathogenesis of these tumors. While further preclinical data are needed, directed therapies could defer, or replace, the need for radiation therapy and/or allow for less aggressive surgical interventions. Furthermore, the prospect for reliable control of cystic disease without the need for surgery now exists. Studies of papillary craniopharyngioma (PCP) are more clinically advanced than those for ACP. The vast majority of PCPs harbor the BRAF v600e mutation. There are now 2 reports of patients with PCP that had dramatic therapeutic responses to targeted agents. Ongoing clinical and research studies promise to not only advance our understanding of these challenging tumors but to offer new approaches for patient management.

  1. Fast to forgive, slow to retaliate: intuitive responses in the ultimatum game depend on the degree of unfairness.

    Science.gov (United States)

    Ferguson, Eamonn; Maltby, John; Bibby, Peter A; Lawrence, Claire

    2014-01-01

    Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to 'atypical' situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the 'fast to forgive, slow to anger' (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: 'fast to forgive, and slow to retaliate'. However, for severely unfair offers (90:10) the intuitive and fast response is to always

  2. Targeted reduction of vascular Msx1 and Msx2 mitigates arteriosclerotic calcification and aortic stiffness in LDLR-deficient mice fed diabetogenic diets.

    Science.gov (United States)

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A

    2014-12-01

    When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA.

    Science.gov (United States)

    Deckelbaum, Ron A; Chan, George; Miao, Dengshun; Goltzman, David; Karaplis, Andrew C

    2002-07-15

    Indian Hedgehog (Ihh), a member of the hedgehog (HH) family of secreted morphogens, and parathyroid hormone-related peptide (PTHrP) are key regulators of cartilage cell (chondrocyte) differentiation. We have investigated, in vitro, the actions of HH signalling and its possible interplay with PTHrP using rat CFK-2 chondrocytic cells. Markers of chondrocyte differentiation [alkaline phosphatase (ALP) activity, and type II (Col2a1) and type X collagen (Col10a1) expression] were enhanced by overexpression of Ihh or its N-terminal domain (N-Ihh), effects mimicked by exogenous administration of recombinant N-terminal HH peptide. Moreover, a missense mutation mapping to the N-terminal domain of Ihh (W160G) reduces the capacity of N-Ihh to induce differentiation. Prolonged exposure of CFK-2 cells to exogenous N-Shh (5x10(-9) M) in the presence of PTHrP (10(-8) M) or forskolin (10(-7) M) resulted in perturbation of HH-mediated differentiation. In addition, overexpression of a constitutively active form of the PTHrP receptor (PTHR1 H223R) inhibited Ihh-mediated differentiation, implicating activation of protein kinase A (PKA) by PTHR1 as a probable mediator of the antagonistic effects of PTHrP. Conversely, overexpression of Ihh/N-Ihh or exogenous treatment with N-Shh led to dampening of PTHrP-mediated activation of PKA. Taken together, our data suggest that Ihh harbors the capacity to induce rather than inhibit chondrogenic differentiation, that PTHrP antagonizes HH-mediated differentiation through a PKA-dependent mechanism and that HH signalling, in turn, modulates PTHrP action through functional inhibition of signalling by PTHR1 to PKA.

  4. Fast to forgive, slow to retaliate: intuitive responses in the ultimatum game depend on the degree of unfairness.

    Directory of Open Access Journals (Sweden)

    Eamonn Ferguson

    Full Text Available Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional and system 2 (slow, reflective, effortful, proactive and unemotional. Evidence shows that when cooperation is salient, people are fast (system 1 to cooperate, but with longer delays (system 2 they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH, whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to 'atypical' situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the 'fast to forgive, slow to anger' (FFSA heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation or retaliation is moderated by the degree (certainty of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger. However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10 and enforced time delays prior to responding (1s, 2s, 8s, 15s. We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40 people are fast (intuitive to cooperate but with longer delays reject these mildly unfair offers: 'fast to forgive, and slow to retaliate'. However, for severely unfair offers (90:10 the intuitive and fast response is to

  5. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  6. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity.

    Directory of Open Access Journals (Sweden)

    Marisa O Peluso

    Full Text Available A requisite step for canonical Hedgehog (Hh pathway activation by Sonic Hedgehog (Shh ligand is accumulation of Smoothened (Smo to the primary cilium (PC. Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses

  7. Suppression of STAT3 NH2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21.

    Science.gov (United States)

    Ray, Sutapa; Coulter, Don W; Gray, Shawn D; Sughroue, Jason A; Roychoudhury, Shrabasti; McIntyre, Erin M; Chaturvedi, Nagendra K; Bhakat, Kishor K; Joshi, Shantaram S; McGuire, Timothy R; Sharp, John G

    2018-04-01

    Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH 2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients. © 2017 Wiley Periodicals, Inc.

  8. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum.

    Science.gov (United States)

    Seifert, Ashley W; Harfe, Brian D; Cohn, Martin J

    2008-06-01

    Congenital malformations of anorectal and genitourinary (collectively, anogenital) organs occur at a high frequency in humans, however the lineage of cells that gives rise to anogenital organs remains poorly understood. The penile urethra has been reported to develop from two cell populations, with the proximal urethra developing from endoderm and the distal urethra forming from an apical ectodermal invagination, however this has never been tested by direct analysis of cell lineage. During gut development, endodermal cells express Sonic hedgehog (Shh), which is required for normal patterning of digestive and genitourinary organs. We have taken advantage of the properties of Shh expression to genetically label and follow the fate of posterior gut endoderm during anogenital development. We report that the entire urethra, including the distal (glandar) region, is derived from endoderm. Cloacal endoderm also gives rise to the epithelial linings of the bladder, rectum and anterior region of the anus. Surprisingly, the lineage map also revealed an endodermal origin of the perineum, which is the first demonstration that endoderm differentiates into skin. In addition, we fate mapped genital tubercle ectoderm and show that it makes no detectable contribution to the urethra. In males, formation of the urethral tube involves septation of the urethral plate by continued growth of the urorectal septum. Analysis of cell lineage following disruption of androgen signaling revealed that the urethral plate of flutamide-treated males does not undergo this septation event. Instead, urethral plate cells persist to the ventral margin of the tubercle, mimicking the pattern seen in females. Based on these spatial and temporal fate maps, we present a new model for anogenital development and suggest that disruptions at specific developmental time points can account for the association between anorectal and genitourinary defects.

  9. Valproic acid treatment response in vitro is determined by TP53 status in medulloblastoma.

    Science.gov (United States)

    Mascaro-Cordeiro, Bruna; Oliveira, Indhira Dias; Tesser-Gamba, Francine; Pavon, Lorena Favaro; Saba-Silva, Nasjla; Cavalheiro, Sergio; Dastoli, Patrícia; Toledo, Silvia Regina Caminada

    2018-05-22

    Histone deacetylate inhibitors (HDACi), as valproic acid (VA), have been reported to enhance efficacy and to prevent drug resistance in some tumors, including medulloblastoma (MB). In the present study, we investigated VA role, combined to cisplatin (CDDP) in cell viability and gene expression of MB cell lines. Dose-response curve determined IC 50 values for each treatment: (1) VA single, (2) CDDP single, and (3) VA and CDDP combined. Cytotoxicity and flow cytometry evaluated cell viability after exposure to treatments. Quantitative PCR evaluated gene expression levels of AKT, CTNNB1, GLI1, KDM6A, KDM6B, NOTCH2, PTCH1, and TERT, before and after treatment. Besides, we performed next-generation sequencing (NGS) for PTCH1, TERT, and TP53 genes. The most effective treatment to reduce viability was combined for D283MED and ONS-76; and CDDP single for DAOY cells (p AKT genes were overexpressed after treatments with VA. D283MED and ONS-76 cells presented variants in TERT and PTCH1, respectively and DAOY cell line presented a TP53 mutation. MB tumors belonging to SHH molecular subgroup, with TP53 MUT , would be the ones that present high risk in relation to VA use during the treatment, while TP53 WT MBs can benefit from VA therapy, both SHH and groups 3 and 4. Our study shows a new perspective about VA action in medulloblastoma cells, raising the possibility that VA may act in different patterns. According to the genetic background of MB cell, VA can stimulate cell cycle arrest and apoptosis or induce resistance to treatment via signaling pathways activation.

  10. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma.

    Science.gov (United States)

    Ehrhardt, Michael; Craveiro, Rogerio B; Velz, Julia; Olschewski, Martin; Casati, Anna; Schönberger, Stefan; Pietsch, Torsten; Dilloo, Dagmar

    2018-04-01

    Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi-kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti-neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c-myc-amplified Non-WNT/Non-SHH and SHH-TP53-mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c-kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi-modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC-0941 enhances the anti-neoplastic efficacy of Axitinib against c-myc-amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Nicanor eMorales-Delgado

    2011-02-01

    Full Text Available The hypothalamus comprises alar, basal and floor plate developmental compartments. Recent molecular data support a rostro-caudal subdivision into rostral (terminal and caudal (peduncular halves. In this context, the distribution of neuronal populations expressing somatostatin (Sst mRNA was analyzed in the developing mouse hypothalamus, comparing with the expression pattern of the genes Orthopedia (Otp, Distal-less 5 (Dlx5, Sonic Hedgehog (Shh and Nk2 homeobox 1 (Nkx2.1. At embryonic day 10.5 (E10.5, Sst mRNA was first detectable in the anterobasal nucleus, a Nkx2.1-, Shh- and Otp- positive basal domain. By E13.5, nascent Sst expression was also related to two additional Otp-positive domains within the alar plate and one in the basal plate. In the alar plate, Sst-positive cells were observed in rostral and caudal ventral subdomains of the Otp-positive paraventricular complex. An additional basal Sst-expressing cell group was found within a longitudinal Otp-positive periretromamillary band that separates the retromamillary area from tuberal areas. Apart of subsequent growth of these initial populations, at E13.5 and E15.5 some Sst-positive derivatives migrate tangentially into neighboring regions. A subset of cells produced at the anterobasal nucleus disperses ventralwards into the shell of the ventromedial hypothalamic nucleus and the arcuate nucleus. Cells from the rostroventral paraventricular subdomain reach the suboptic nucleus, whereas a caudal contingent migrates radially into lateral paraventricular, perifornical and entopeduncular nuclei. Our data provide a topologic map of molecularly-defined progenitor areas originating a specific neuron type during early hypothalamic development. Identification of four main separate sources helps to understand causally its complex adult organization.

  12. Doxorubicin combined with low intensity ultrasound suppresses the growth of oral squamous cell carcinoma in culture and in xenografts

    Directory of Open Access Journals (Sweden)

    Haixia Fan

    2017-11-01

    Full Text Available Abstract Background Oral squamous cell carcinoma (OSCC invades surrounding tissues by upregulating matrix metalloproteinases (MMPs -2 and −9, which causes over-expression of the Hedgehog signaling proteins Shh and Gli-1 and degradation of the extracellular matrix, thereby creating a “highway” for tumor invasion. We explored the potential of low intensity ultrasound (LIUS and doxorubicin (DOX to inhibit the formation of this “highway”. Methods MTT assays were used to examine OSCC cell viability after exposure to LIUS and DOX. The cell morphological changes and ultrastructure were detected by scanning electron microscopy and transmission electron microscopy. Endogenous autophagy-associated proteins were analyzed by immunofluorescent staining and western blotting. Cell migration and invasion abilities were evaluated by Transwell assays. Collagen fiber changes were evaluated by Masson’s trichrome staining. Invasion-associated proteins were analyzed by immunohistochemistry and western blotting. Results LIUS of 1 W/cm2 increased the in vitro DOX uptake into OSCC by nearly 3-fold in three different cell lines and induced transient autophagic vacuoles on the cell surface. The combination of LIUS and 0.2 μg/ml DOX inhibited tumor cell viability and invasion, promoted tumor stromal collagen deposition, and prolonged the survival of mice. This combination also down-regulated MMP-2, MMP-9, Shh and Gli-1 in tumor xenografts. Collagen fiber expression was negatively correlated with the expression of these proteins in human OSCC samples. Conclusions Our findings suggest that effective low dosages of DOX in combination with LIUS can inhibit cell proliferation, migration and invasion, which might be through MMP-2/9 production mediated by the Hedgehog signaling pathway.

  13. Cytogenetic prognostication within medulloblastoma subgroups.

    Science.gov (United States)

    Shih, David J H; Northcott, Paul A; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M; Garzia, Livia; Peacock, John; Mack, Stephen C; Wu, Xiaochong; Rolider, Adi; Morrissy, A Sorana; Cavalli, Florence M G; Jones, David T W; Zitterbart, Karel; Faria, Claudia C; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G; Liau, Linda M; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K; Thompson, Reid C; Bailey, Simon; Lindsey, Janet C; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M C; Scherer, Stephen W; Phillips, Joanna J; Gupta, Nalin; Fan, Xing; Muraszko, Karin M; Vibhakar, Rajeev; Eberhart, Charles G; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F; Weiss, William A; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R; Rubin, Joshua B; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M; Gajjar, Amar; Packer, Roger J; Rutkowski, Stefan; Pomeroy, Scott L; French, Pim J; Kloosterhof, Nanne K; Kros, Johan M; Van Meir, Erwin G; Clifford, Steven C; Bourdeaut, Franck; Delattre, Olivier; Doz, François F; Hawkins, Cynthia E; Malkin, David; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T; Pfister, Stefan M; Taylor, Michael D

    2014-03-20

    Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.

  14. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  16. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsumaru

    2011-01-01

    Full Text Available An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh, GLI-Kruppel family member 3 (Gli3 and Aristaless-like homeobox 4 (Alx4. Introduction of additional Alx4(Lst mutations into the Gli3(Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3(Xt/+; Alx4(Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3(Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles.We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.

  17. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    Science.gov (United States)

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  18. Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: histological and gene expression analyses.

    Science.gov (United States)

    Kaneko, Takamasa; Freeha, Khalid; Wu, Xiaoming; Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2016-10-01

    Despite the common structure of vertebrates, the development of the vertebral column differs widely between teleosts and tetrapods in several respects, including the ossification of the centrum and the function of the notochord. In contrast to tetrapods, vertebral development in teleosts is not fully understood, particularly for large fish with highly ossified bones. We therefore examined the histology and gene expression profile of vertebral development in fugu, Takifugu rubripes, a model organism for genomic research. Ossification of the fugu centrum is carried out by outer osteoblasts expressing col1a1, col2a1, and sparc, and the growing centra completely divide the notochord into double cone-shaped segments that function as intercentral joints. In this process, the notochord basal cells produce a thick notochord sheath exhibiting Alcian-blue-reactive cartilaginous properties and composing the intercentral ligament in cooperation with the external ligament connective tissue. Synthesis of the matrix by the basal cells was ascertained by an in vitro test. Expression of twist2 indicates that this connective tissue is descended from the embryonic sclerotome. Notochord basal cells express sox9, ihhb, shh, and col2a1a, suggesting that the signaling system involved in chondrocyte proliferation and matrix production also functions in notochord cells for notochord sheath formation. We further found that the notochord expression of both ntla and shh is maintained in the fugu vertebral column, whereas it is turned off after embryogenesis in zebrafish. Thus, our results demonstrate that, in contrast to zebrafish, a dynamic morphogenesis and molecular network continues to function in fugu until the establishment of the adult vertebral column.

  19. The clinical significance of equivocal findings on spinal MRI in children with medulloblastoma.

    Science.gov (United States)

    Bennett, Julie; Ashmawy, Ramy; Ramaswamy, Vijay; Stephens, Derek; Bouffet, Eric; Laperriere, Normand; Taylor, Michael; Shroff, Manohar; Bartels, Ute

    2017-08-01

    Medulloblastoma (MB) is the most common malignant brain tumor of childhood, with cerebrospinal fluid spread the most common site of metastasis. Currently, children diagnosed with MB and evidence of spinal metastasis are treated with an increased dose of craniospinal radiation (CSI). This report reviewed equivocal abnormalities including nerve root clumping, linear vascular enhancement, nerve root enhancement and/or other vague findings on spinal magnetic resonance imaging (MRI) to elucidate their prognostic significance and aid in risk stratification. This retrospective cohort study identified children (≥3 years) diagnosed with MB between 1988 and 2012. Children treated with upfront CSI were included, and staging spine MRI must have been done preoperatively or within 72 hr of primary tumor resection. Initial MRI of the spine was assessed by two independent reviewers blinded to outcome to evaluate for equivocal findings. Survival analysis was done to determine impact on prognosis. One hundred of 157 patients were eligible for the analysis. Equivocal findings were identified in 48 (48%) patients, with MRI done preoperatively in 45 (94%) patients. Analysis by subgroup identified a higher proportion of equivocal findings in the sonic hedgehog (SHH) subgroup (P = 0.007). Five-year overall survival (OS) in children with equivocal findings compared to those with normal MRI was not different, 80 vs. 84.8% respectively, while OS in M3 patients was worse at 54.7% (P = 0.02). A higher proportion of equivocal findings was identified in the SHH subgroup. This institutional retrospective review demonstrates equivocal findings are common, not associated with decreased OS and should not prompt increased dose of CSI. © 2017 Wiley Periodicals, Inc.

  20. Differential immunohistochemical expression profiles of perlecan-binding growth factors in epithelial dysplasia, carcinoma in situ, and squamous cell carcinoma of the oral mucosa.

    Science.gov (United States)

    Hasegawa, Mayumi; Cheng, Jun; Maruyama, Satoshi; Yamazaki, Manabu; Abé, Tatsuya; Babkair, Hamzah; Saito, Chikara; Saku, Takashi

    2016-05-01

    The intercellular deposit of perlecan, a basement-membrane type heparan sulfate proteoglycan, is considered to function as a growth factor reservoir and is enhanced in oral epithelial dysplasia and carcinoma in situ (CIS). However, it remains unknown which types of growth factors function in these perlecan-enriched epithelial conditions. The aim of this study was to determine immunohistochemically which growth factors were associated with perlecan in normal oral epithelia and in different epithelial lesions from dysplasia and CIS to squamous cell carcinoma (SCC). Eighty-one surgical tissue specimens of oral SCC containing different precancerous stages, along with ten of normal mucosa, were examined by immunohistochemistry for growth factors. In normal epithelia, perlecan and growth factors were not definitely expressed. In epithelial dysplasia, VEGF, SHH, KGF, Flt-1, and Flk-1were localized in the lower half of rete ridges (in concordance with perlecan, 33-100%), in which Ki-67 positive cells were densely packed. In CIS, perlecan and those growth factors/receptors were more strongly expressed in the cell proliferating zone (63-100%). In SCC, perlecan and KGF disappeared from carcinoma cells but emerged in the stromal space (65-100%), while VEGF, SHH, and VEGF receptors remained positive in SCC cells (0%). Immunofluorescence showed that the four growth factors were shown to be produced by three oral SCC cell lines and that their signals were partially overlapped with perlecan signals. The results indicate that perlecan and its binding growth factors are differentially expressed and function in specific manners before (dysplasia/CIS) and after (SCC) invasion of dysplasia/carcinoma cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer.

    Science.gov (United States)

    Bikle, Daniel D; Oda, Yuko; Tu, Chia-Ling; Jiang, Yan

    2015-04-01

    The VDR acting with or without its principal ligand 1,25(OH)2D regulates two central processes in the skin, interfollicular epidermal (IFE) differentiation and hair follicle cycling (HFC). Calcium is an important co-regulator with 1,25(OH)2D at least of epidermal differentiation. Knockout of the calcium sensing receptor (CaSR) in addition to VDR accelerates the development of skin cancer in mice on a low calcium diet. Coactivators such as mediator 1 (aka DRIP205) and steroid receptor coactivator 3 (SRC3) regulate VDR function at different stages of the differentiation process, with Med 1 essential for hair follicle differentiation and early stages of epidermal differentiation and proliferation and SRC3 essential for the latter stages of differentiation including formation of the permeability barrier and innate immunity. The corepressor of VDR, hairless (HR), is essential for hair follicle cycling, although its effect on epidermal differentiation in vivo is minimal. In its regulation of HFC and IFE VDR controls two pathways-wnt/β-catenin and sonic hedgehog (SHH). In the absence of VDR these pathways are overexpressed leading to tumor formation. Whereas, VDR binding to β-catenin may block its activation of TCF/LEF1 sites, β-catenin binding to VDR may enhance its activation of VDREs. 1,25(OH)2D promotes but may not be required for these interactions. Suppression of SHH expression by VDR, on the other hand, requires 1,25(OH)2D. The major point of emphasis is that the role of VDR in the skin involves a number of novel mechanisms, both 1,25(OH)2D dependent and independent, that when disrupted interfere with IFE differentiation and HFC, predisposing to cancer formation. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    International Nuclear Information System (INIS)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk; Yoo, Young A.

    2012-01-01

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)–Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh–Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3–p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2–p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  3. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    Science.gov (United States)

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  4. Development of hemipenes in the ball python snake Python regius.

    Science.gov (United States)

    Leal, Francisca; Cohn, Martin J

    2015-01-01

    Within amniotes, external copulatory organs have undergone extensive morphological diversification. One of the most extreme examples is squamate (lizards and snakes) hemipenes, which are paired copulatory organs that extend from the lateral margins of the cloaca. Here, we describe the development of hemipenes in a basal snake, the ball python (Python regius). Snake hemipenes arise as a pair of lateral swellings on either side of the caudal part of the cloaca, and these paired outgrowths persist to form the left and right hemipenes. In non-squamate amniotes, external genitalia form from paired swellings that arise on the anterior side of the cloaca, which then fuse medially to form a single genital tubercle, the anlagen of the penis or clitoris. Whereas in non-squamate amniotes, Sonic hedgehog (Shh)-expressing cells of the cloacal endoderm form the urethral or sulcus epithelium and are required for phallus outgrowth, the hemipenes of squamates lack an endodermal contribution, and the sulcus does not express Shh. Thus, snake hemipenes differ from the genital tubercles of non-squamate amniotes both in their embryonic origins and in at least part of patterning mechanisms, which raises the possibility that hemipenes may not be direct homologs of the unpaired amniote penis. Nonetheless, we find that some developmental genes show similar expression patterns in snake hemipenes buds and non-squamate genital tubercles, suggesting that homologous developmental mechanisms are involved in aspects of external genital development across amniotes, even when these structures may have different developmental origins and may have arisen independently during evolution.

  5. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200.

    Science.gov (United States)

    Fu, Junsheng; Rodova, Mariana; Nanta, Rajesh; Meeker, Daniel; Van Veldhuizen, Peter J; Srivastava, Rakesh K; Shankar, Sharmila

    2013-06-01

    Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by

  6. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway

    Directory of Open Access Journals (Sweden)

    Zakia A. Abdelhamed

    2015-06-01

    Full Text Available Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3 cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2 upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital

  7. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4 expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.

  8. Characterization of the early proliferative response of the rodent bladder to subtotal cystectomy: a unique model of mammalian organ regeneration.

    Directory of Open Access Journals (Sweden)

    Charles C Peyton

    Full Text Available Subtotal cystectomy (STC; surgical removal of ∼75% of the rat urinary bladder elicits a robust proliferative response resulting in complete structural and functional bladder regeneration within 8-weeks. The goal of these studies was to characterize the early cellular response that mediates this regenerative phenomenon, which is unique among mammalian organ systems. STC was performed on eighteen 12-week-old female Fischer F344 rats. At 1, 3, 5 and 7-days post-STC, the bladder was harvested 2-hours after intraperitoneal injection of bromodeoxyuridine (BrdU. Fluorescent BrdU labeling was quantified in cells within the urothelium, lamina propria (LP, muscularis propria (MP and serosa. Cell location was confirmed with fluorescently co-labeled cytokeratin, vimentin or smooth muscle actin (SMA, to identify urothelial, interstitial and smooth muscle cells, respectively. Expression of sonic hedgehog (Shh, Gli-1 and bone morphogenic factor-4 (BMP-4 were evaluated with immunochemistry. Three non-operated rats injected with BrdU served as controls. Less than 1% of cells in the bladder wall were labeled with BrdU in control bladders, but this percentage significantly increased by 5-8-fold at all time points post-STC. The spatiotemporal characteristics of the proliferative response were defined by a significantly higher percentage of BrdU-labeled cells within the urothelium at 1-day than in the MP and LP. A time-dependent shift at 3 and 5-days post-STC revealed significantly fewer BrdU-labeled cells in the MP than LP or urothelium. By 7-days the percentage of BrdU-labeled cells was similar among urothelium, LP and MP. STC also caused an increase in immunostaining for Shh, Gli-1 and BMP-4. In summary, the early stages of functional bladder regeneration are characterized by time-dependent changes in the location of the proliferating cell population, and expression of several evolutionarily conserved developmental signaling proteins. This report extends

  9. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    Science.gov (United States)

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, pacid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, preflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  10. A Research Focused on Improving Vocalisation Level on Violin Education

    Science.gov (United States)

    Parasiz, Gökalp

    2018-01-01

    The research aimed to improve vocalisation levels of music teacher's candidates on performance works for violin education moving from difficulties faced by prospective teachers. At the same time, it was aimed to provide new perspectives to violin educators. Study group was composed of six 3rd grade students studying violin education in a State…

  11. Children's Comprehension of Two Types of Syntactic Ambiguity

    Science.gov (United States)

    Zimmer, Elly Jane

    2017-01-01

    This study asks whether children accept both interpretations of ambiguous sentences with contexts supporting each option. Twenty-six 3- to 5-year-old English-speaking children and a control group of 30 English-speaking adults participated in a truth value judgment task. As a step towards evaluating the complexity of syntactic ambiguity, the…

  12. Motivated by Meaning: Testing the Effect of Knowledge-Infused Rewards on Preschoolers' Persistence

    Science.gov (United States)

    Alvarez, Aubry L.; Booth, Amy E.

    2014-01-01

    Research and theory suggest that young children are highly attuned to causality. This study explores whether this drive can motivate task engagement. Fifty-six 3- and 4-year-olds completed a motor task as many times as desired, viewing a picture of a novel item upon each completion. Forty-two randomly assigned children then received either: (a)…

  13. Alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles

    International Nuclear Information System (INIS)

    Trofimova, Ol'ga M; Voronkov, Mikhail G; Chernov, Nikolai F

    1999-01-01

    The published data on the synthesis, properties and transformations of alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles of the general formula Het(CH 2 ) n SiX 3 are surveyed and systematised. Data on the biological activities and applications of these compounds are presented. The bibliography includes 255 references.

  14. Categorization in 3- and 4-Month-Old Infants: An Advantage of Words over Tones

    Science.gov (United States)

    Ferry, Alissa L.; Hespos, Susan J.; Waxman, Sandra R.

    2010-01-01

    Neonates prefer human speech to other nonlinguistic auditory stimuli. However, it remains an open question whether there are any conceptual consequences of words on object categorization in infants younger than 6 months. The current study examined the influence of words and tones on object categorization in forty-six 3- to 4-month-old infants.…

  15. Factors Influencing Sensitivity to Lexical Tone in an Artificial Language: Implications for Second Language Learning

    Science.gov (United States)

    Caldwell-Harris, Catherine L.; Lancaster, Alia; Ladd, D. Robert; Dediu, Dan; Christiansen, Morten H.

    2015-01-01

    This study examined whether musical training, ethnicity, and experience with a natural tone language influenced sensitivity to tone while listening to an artificial tone language. The language was designed with three tones, modeled after level-tone African languages. Participants listened to a 15-min random concatenation of six 3-syllable words.…

  16. "Dinosaurs." Kindergarten. Anchorage School District Elementary Science Program.

    Science.gov (United States)

    Herminghaus, Trisha, Ed.

    This unit contains 15 lessons on dinosaurs for kindergarten children. It provides a materials list, supplementary materials list, use of process skill terminology, unit objectives, vocabulary, six major dinosaurs, and background information. Lessons are: (1) "Webbing"; (2) "Introduction to the Big Six"; (3) "Paleontology…

  17. Environmental constraints on the interdependence of drainage ...

    African Journals Online (AJOL)

    At least six 3rd order streams were chosen from diverse geologic formations- Precambrian Basement Complex rocks and Asu River Formation in Abakaliki and Ikom-Mamfe Formation. ... The result of Principal Component Analysis shows that the four factor model account for 83.90% of the variation in the original data.

  18. Evaluation of a multifaceted intervention to limit excessive antipsychotic co-prescribing in schizophrenia out-patients

    DEFF Research Database (Denmark)

    Baandrup, Lone; Allerup, Peter; Lublin, H

    2010-01-01

    polypharmacy, socioeconomic status and functional level of patients. The intervention was aimed at psychiatric healthcare providers and consisted of 1 day of didactic lectures, six 3-h educational outreach visits and an electronic reminder during drug prescribing. RESULTS: Between-group use of antipsychotic...

  19. Hemispheric processing of vocal emblem sounds.

    Science.gov (United States)

    Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K

    2013-01-01

    Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.

  20. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  1. Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws.

    Science.gov (United States)

    Hamrick, M W

    2001-01-01

    Paleontological evidence indicates that the evolutionary diversification of mammals early in the Cenozoic era was characterized by an adaptive radiation of distal limb structures. Likewise, neontological data show that morphological variation in distal limb integumentary appendages (e.g., nails, hooves, and claws) can be observed not only among distantly related mammalian taxa but also among closely related species within the same clade. Comparative analysis of nail, claw, and hoof morphogenesis reveals relatively subtle differences in mesenchymal and epithelial patterning underlying these adult differences in distal limb appendage morphology. Furthermore, studies of regulatory gene expression during vertebrate claw development demonstrate that many of the signaling molecules involved in patterning ectodermal derivatives such as teeth, hair, and feathers are also involved in organizing mammalian distal limb appendages. For example, Bmp4 signaling plays an important role during the recruitment of mesenchymal cells into the condensations forming the terminal phalanges, whereas Msx2 affects the length of nails and claws by suppressing proliferation of germinal epidermal cells. Evolutionary changes in the form of distal integumentary appendages may therefore result from changes in gene expression during formation of mesenchymal condensations (Bmp4, posterior Hox genes), induction of the claw fold and germinal matrix (shh), and/or proliferation of epidermal cells in the claw matrix (Msx1, Msx2). The prevalence of convergences and parallelisms in nail and claw structure among mammals underscores the existence of multiple morphogenetic pathways for evolutionary change in distal limb appendages.

  2. Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula.

    Directory of Open Access Journals (Sweden)

    Gabriel-Nicolás eSantos-Durán

    2015-04-01

    Full Text Available The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir, TH-ir, 5-HT-ir and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates.

  3. Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula.

    Science.gov (United States)

    Santos-Durán, Gabriel N; Menuet, Arnaud; Lagadec, Ronan; Mayeur, Hélène; Ferreiro-Galve, Susana; Mazan, Sylvie; Rodríguez-Moldes, Isabel; Candal, Eva

    2015-01-01

    The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp, and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir), TH-ir, 5-HT-ir, and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates.

  4. On the Morphogenesis of Feathers

    Science.gov (United States)

    Yu, Mingke; Wu, Ping; Widelitz, Randall B.; Chuong, Cheng-Ming

    2015-01-01

    The most unique character of the feather is its highly ordered hierarchical branched structure1, 2. This evolutionary novelty confers flight function to birds3–5. Recent discoveries of fossils in China have prompted keen interest in the origin and evolution of feathers6–14. However, controversy arises whether the irregularly branched integumentary fibers on dinosaurs such as Sinornithosaurus are truly feathers6, 11, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather8–10. Here we take a developmental approach to analyze molecular mechanisms in feather branching morphogenesis. We have used the replication competent avian sarcoma (RCAS) retrovirus15 to efficiently deliver exogenous genes to regenerating chicken flight feather follicles. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) plays a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore we show that sonic hedgehog (SHH) is essential for apoptosis of the marginal plate epithelia to become spaces between barbs. Our analyses show the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide first clues on the possible developmental mechanisms in the evolution of feather forms. PMID:12442169

  5. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    Science.gov (United States)

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  6. Identification and characterisation of side population cells in the canine pituitary gland.

    Science.gov (United States)

    van Rijn, Sarah J; Gremeaux, Lies; Riemers, Frank M; Brinkhof, Bas; Vankelecom, Hugo; Penning, Louis C; Meij, Björn P

    2012-06-01

    To date, stem/progenitor cells have not been identified in the canine pituitary gland. Cells that efficiently exclude the vital dye Hoechst 33342 can be visualised and identified using fluorescence activated cell sorting (FACS) as a 'side population' (SP), distinct from the main population (MP). Such SPs have been identified in several tissues and display stem/progenitor cell characteristics. In this study, a small SP (1.3%, n=6) was detected in the anterior pituitary glands of healthy dogs. Quantitative PCR indicated significantly higher expression of CD34 and Thy1 in this SP, but no differences in the expression of CD133, Bmi-1, Axin2 or Shh. Pro-opiomelanocortin (POMC) and Lhx3 expression were significantly higher in the MP than in the SP, but no differences in the expression of Tpit, GH or PRL were found. The study demonstrated the existence of an SP of cells in the normal canine pituitary gland, encompassing cells with stem cell characteristics and without POMC expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Eye Development Genes and Known Syndromes

    Science.gov (United States)

    Slavotinek, Anne M.

    2011-01-01

    Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33–95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, Oculocardiafaciodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6. PMID:22005280

  8. Copy Number Variations Found in Patients with a Corpus Callosum Abnormality and Intellectual Disability.

    Science.gov (United States)

    Heide, Solveig; Keren, Boris; Billette de Villemeur, Thierry; Chantot-Bastaraud, Sandra; Depienne, Christel; Nava, Caroline; Mignot, Cyril; Jacquette, Aurélia; Fonteneau, Eric; Lejeune, Elodie; Mach, Corinne; Marey, Isabelle; Whalen, Sandra; Lacombe, Didier; Naudion, Sophie; Rooryck, Caroline; Toutain, Annick; Caignec, Cédric Le; Haye, Damien; Olivier-Faivre, Laurence; Masurel-Paulet, Alice; Thauvin-Robinet, Christel; Lesne, Fabien; Faudet, Anne; Ville, Dorothée; des Portes, Vincent; Sanlaville, Damien; Siffroi, Jean-Pierre; Moutard, Marie-Laure; Héron, Delphine

    2017-06-01

    To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular.

    Science.gov (United States)

    Fang, De-Ren; Lv, Zhong-Fa; Qiao, Gang

    2014-04-01

    To analyze the dynamic expression of Wnt family member 5A (Wingless-type MMTV integration Wnt site family, member 5a) in murine hair cycle and its inhibitory effects on follicle in vivo. Situ hybridization in full-thickness skin was used to observe the change of mouse protein expression in different growth stages, and Ad-Wnt5a was injected after defeathering to observe the hair follicle growth in vivo. The Wnt5a mRNA was expressed at birth, and was firstly increased then decreased along with the progress of the hair cycle. It reached the peak in advanced stage of growth cycle (P<0.05). Rhoa and β-catenin expression levels were significantly decreased in three groups. Rac2 expression was significantly up-regulated, and the expression level of Wnt5a, Shh and Frizzled2 was increased, but less significantly than group 2. The expression of Wnt5a mRNA is consistent with change of murine follicle cycle, and has obvious inhibitory effects on the growth of hair follicle in vivo, indicating that it is antagonistic to Wnts pathway and interferes the growth of follicle together. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  10. Analysis of the presence of cell proliferation-related molecules in the Tgf-β3 null mutant mouse palate reveals misexpression of EGF and Msx-1.

    Science.gov (United States)

    del Río, A; Barrio, M C; Murillo, J; Maldonado, E; López-Gordillo, Y; Martínez-Sanz, E; Martínez, M L; Martínez-Álvarez, C

    2011-01-01

    The Tgf-β(3) null mutant mouse palate presents several cellular anomalies that lead to the appearance of cleft palate. One of them concerns the cell proliferation of both the palatal medial edge epithelium and mesenchyme. In this work, our aim was to determine whether there was any variation in the presence/distribution of several cell proliferation-related molecules that could be responsible for the cell proliferation defects observed in these palates. Our results showed no difference in the presence of EGF-R, PDGF-A, TGF-β(2), Bmp-2, and Bmp-4, and differences were minimal for FGF-10 and Shh. However, the expression of EGF and Msx-1 changed substantially. The shift of the EGF protein expression was the one that most correlated with that of cell proliferation. This molecule is regulated by TGF-β(3), and experiments blocking its activity in culture suggest that EGF misexpression in the Tgf-β(3) null mutant mouse palate plays a role in the cell proliferation defect observed. Copyright © 2010 S. Karger AG, Basel.

  11. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.

    Science.gov (United States)

    Barlow, A J; Francis-West, P H

    1997-01-01

    The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.

  12. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    Science.gov (United States)

    Tanaka, Simon; Iber, Dagmar

    2013-10-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.

  13. Growth of Limb Muscle is Dependent on Skeletal-Derived Indian Hedgehog

    Science.gov (United States)

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh−/− mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis accompanied by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels. PMID:21683695

  14. Disp1 regulates growth of mammalian long bones through the control of Ihh distribution.

    Science.gov (United States)

    Tsiairis, Charisios D; McMahon, Andrew P

    2008-05-15

    Dispatched1 (Disp1) is required for the release of cholesterol modified hedgehog (Hh) proteins from producing cells. We investigated the role of Disp1 in Indian hedgehog (Ihh) signaling in the developing bone bypassing the lethality of the Disp1(C829F) allele at early somite stages through the supply of non-cholesterol modified Sonic hedgehog (N-Shh). The long bones that develop in the absence of wild-type Disp1, while clearly shorter, have a juxtaposition of proliferating and non-proliferating hypertrophic chondrocytes that is markedly more normal in organization than those of ihh null mutants. Direct analysis of Ihh trafficking in the target field demonstrates that Ihh is distributed well beyond Ihh expressing cells though the range of movement and signaling action is more restricted than in wild-type long bones. Consequently, a PTHrP-Ihh feedback loop is established, but over a shorter distance, reflecting the reduced range of Ihh movement. These analyses of the Disp1(C829F) mutation demonstrate that Disp1 is not absolutely required for the paracrine signaling role of Ihh in the skeleton. However, Disp1 is critical for the full extent of signaling within the chondrocyte target field and consequently the establishment of a normal skeletal growth plate.

  15. Hedgehog pathway activity in the LADY prostate tumor model

    Directory of Open Access Journals (Sweden)

    Kasper Susan

    2007-03-01

    Full Text Available Abstract Background Robust Hedgehog (Hh signaling has been implicated as a common feature of human prostate cancer and an important stimulus of tumor growth. The role of Hh signaling has been studied in several xenograft tumor models, however, the role of Hh in tumor development in a transgenic prostate cancer model has never been examined. Results We analyzed expression of Hh pathway components and conserved Hh target genes along with progenitor cell markers and selected markers of epithelial differentiation during tumor development in the LADY transgenic mouse model. Tumor development was associated with a selective increase in Ihh expression. In contrast Shh expression was decreased. Expression of the Hh target Patched (Ptc was significantly decreased while Gli1 expression was not significantly altered. A survey of other relevant genes revealed significant increases in expression of Notch-1 and Nestin together with decreased expression of HNF3a/FoxA1, NPDC-1 and probasin. Conclusion Our study shows no evidence for a generalized increase in Hh signaling during tumor development in the LADY mouse. It does reveal a selective increase in Ihh expression that is associated with increased expression of progenitor cell markers and decreased expression of terminal differentiation markers. These data suggest that Ihh expression may be a feature of a progenitor cell population that is involved in tumor development.

  16. Oxamate, but Not Selective Targeting of LDH-A, Inhibits Medulloblastoma Cell Glycolysis, Growth and Motility

    Directory of Open Access Journals (Sweden)

    Cara J. Valvona

    2018-03-01

    Full Text Available Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4, which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C may be more appropriate than LDHA inhibition alone.

  17. Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems.

    Science.gov (United States)

    Faghihi, Faezeh; Mirzaei, Esmaeil; Ai, Jafar; Lotfi, Abolfazl; Sayahpour, Forough Azam; Barough, Somayeh Ebrahimi; Joghataei, Mohammad Taghi

    2016-04-01

    Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).

  18. Exogenous retinoic acid induces digit reduction in opossums (Monodelphis domestica) by disrupting cell death and proliferation, and apical ectodermal ridge and zone of polarizing activity function.

    Science.gov (United States)

    Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E

    2015-03-01

    Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.

  19. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    Science.gov (United States)

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.

  20. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  1. In vitro reprogramming of rat bmMSCs into pancreatic endocrine-like cells.

    Science.gov (United States)

    Li, Hong-Tu; Jiang, Fang-Xu; Shi, Ping; Zhang, Tao; Liu, Xiao-Yu; Lin, Xue-Wen; San, Zhong-Yan; Pang, Xi-Ning

    2017-02-01

    Islet transplantation provides curative treatments to patients with type 1 diabetes, but donor shortage restricts the broad use of this therapy. Thus, generation of alternative transplantable cell sources is intensively investigated worldwide. We previously showed that bone marrow-derived mesenchymal stem cells (bmMSCs) can be reprogrammed to pancreatic-like cells through simultaneously forced suppression of Rest/Nrsf (repressor element-1 silencing transcription factor/neuronal restrictive silencing factor) and Shh (sonic hedgehog) and activation of Pdx1 (pancreas and duodenal transcription factor 1). We here aimed to reprogram bmMSCs further along the developmental pathway towards the islet lineages by improving our previous strategy and by overexpression of Ngn3 (neurogenin 3) and NeuroD1 (neurogenic differentiation 1), critical regulators of the development of endocrine pancreas. We showed that compared to the previous protocol, the overexpression of only Pdx1 and Ngn3 reprogrammed bmMSCs into cells with more characteristics of islet endocrine lineages verified with bioinformatic analyses of our RNA-Seq datasets. These analyses indicated 2325 differentially expressed genes including those involved in the pancreas and islet development. We validated with qRT-PCR analysis selective genes identified from the RNA-Seq datasets. Thus, we reprogrammed bmMSCs into islet endocrine-like cells and advanced the endeavor to generate surrogate functional insulin-secreting cells.

  2. Epigenetic Silencing of DKK3 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    André Oberthuer

    2013-04-01

    Full Text Available Medulloblastoma (MB is a malignant pediatric brain tumor arising in the cerebellum consisting of four distinct subgroups: WNT, SHH, Group 3 and Group 4, which exhibit different molecular phenotypes. We studied the expression of Dickkopf (DKK 1–4 family genes, inhibitors of the Wnt signaling cascade, in MB by screening 355 expression profiles derived from four independent datasets. Upregulation of DKK1, DKK2 and DKK4 mRNA was observed in the WNT subgroup, whereas DKK3 was downregulated in 80% MBs across subgroups with respect to the normal cerebellum (p < 0.001. Since copy number aberrations targeting the DKK3 locus (11p15.3 are rare events, we hypothesized that epigenetic factors could play a role in DKK3 regulation. Accordingly, we studied 77 miRNAs predicting to repress DKK3; however, no significant inverse correlation between miRNA/mRNA expression was observed. Moreover, the low methylation levels in the DKK3 promoters (median: 3%, 5% and 5% for promoter 1, 2 and 3, respectively excluded the downregulation of gene expression by methylation. On the other hand, the treatment of MB cells with Trichostatin A (TSA, a potent inhibitor of histone deacetylases (HDAC, was able to restore both DKK3 mRNA and protein. In conclusion, DKK3 downregulation across all MB subgroups may be due to epigenetic mechanisms, in particular, through chromatin condensation.

  3. Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Chen-Hsi Hsieh

    2013-01-01

    Full Text Available Cancer stem cells (CSCs existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance, invasion, metastasis, and relapse. Self-renewal pathways, Wnt/β-catenin, Sonic hedgehog (Shh, and the Notch signaling pathway play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR is an unfavorable factor causing the failure of treatments against cancer cells. The most important and thoroughly studied mechanism involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence that Norcantharidin (NCTD, a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the medicinal insect blister beetle (Mylabris phalerata Pallas, is capable of chemoprevention and tumor inhibition. We summarize investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

  4. [The function of transcription factor P63 and its signaling pathway during limb development].

    Science.gov (United States)

    Ma, Wei; Tian, Wen

    2014-08-01

    The development of human limb is controlled by several transcription factors and signaling pathways, which are organized in precise time- and space-restricted manners. Recent studies showed that P63 and its signaling pathway play important roles in this process. Transcription factor P63, one member of the P53 family, is characterized by a similar amino acid domain, plays a crucial role in the development of limb and ectoderm differentiation, especially with its DNA binding domain, and sterile alpha motif domains. Mutated P63 gene may produce abnormal transcription factor P63 which can affect the signaling pathway. Furthermore, defective signaling protein in structure and/or quantity is synthesized though the pathway. Eventually, members of the signaling protein family are involved in the regulation of differentiation and development of stem cell, which causes deformity of limbs. In brief, three signaling pathways are related to the digit formation along three axes, including SHH-ZPA, FGFs-AER and Lmx1B-Wnt7a-En1. Each contains numerous signaling molecules which are integrated in self-regulatory modules that assure the acquisition or the correct digit complements. These finding has brought new clues for deciphering the etiology of congenital limb malformation and may provide alternatives for both prevention and treatment.

  5. Genomic features of human limb specific enhancers.

    Science.gov (United States)

    Ali, Shahid; Amina, Bibi; Anwar, Saneela; Minhas, Rashid; Parveen, Nazia; Nawaz, Uzma; Azam, Syed Sikandar; Abbasi, Amir Ali

    2016-10-01

    To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution. Copyright © 2016. Published by Elsevier Inc.

  6. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    Science.gov (United States)

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  7. The morphogenesis of feathers.

    Science.gov (United States)

    Yu, Mingke; Wu, Ping; Widelitz, Randall B; Chuong, Cheng-Ming

    2002-11-21

    Feathers are highly ordered, hierarchical branched structures that confer birds with the ability of flight. Discoveries of fossilized dinosaurs in China bearing 'feather-like' structures have prompted interest in the origin and evolution of feathers. However, there is uncertainty about whether the irregularly branched integumentary fibres on dinosaurs such as Sinornithosaurus are truly feathers, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather. Here, we use a developmental approach to analyse molecular mechanisms in feather-branching morphogenesis. We have used the replication-competent avian sarcoma retrovirus to deliver exogenous genes to regenerating flight feather follicles of chickens. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) has a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore, we show that sonic hedgehog (Shh) is essential for inducing apoptosis of the marginal plate epithelia, which results in spaces between barbs. Our analyses identify the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide insights on the possible developmental mechanisms in the evolution of feather forms.

  8. Concurrent IDH1 and SMARCB1 Mutations in Pediatric Medulloblastoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Moatasem El-Ayadi

    2018-06-01

    Full Text Available Isocitrate Dehydrogenase-1 (IDH1 is a driver gene in several cancers including brain tumors such as low-grade and high-grade gliomas. Mutations of SMARCB1 were described in atypical teratoid rhabdoid tumors and to date have not been associated with the pathogenesis of medulloblastoma. We report concurrent IDH1 and SMARCB1 mutations in a medulloblastoma patient. We searched the catalog of somatic mutations in cancer (COSMIC database and other mutation databases and -to our knowledge- this is the first reported case of medulloblastoma harboring both mutations together. Our patient is a 13-year-old male presenting with headache and vomiting at diagnosis. MRI revealed left cerebellar expansive lesion with no evidence of metastasis. A histopathological diagnosis of desmoplastic/nodular medulloblastoma was made after complete resection of the tumor. Immunophenotypic characterization and methylation profiling suggested a medulloblastoma with SHH activation. Next generation sequencing of a panel of 400 genes revealed heterozygous somatic IDH1(p.R132C, SMARCB1(p.R201Q, and CDH11(p.L625T mutations. The patient was treated according to the HIT-SIOP PNET 4 protocol. He is in complete remission more than 2 years after diagnosis. In conclusion, increasing use of high throughput sequencing will certainly increase the frequency with which rare mutations or mutation combinations are identified. The exact frequency of this mutation combination and whether it has any particular therapeutic implications or prognostic relevance requires further investigation.

  9. Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61.

    Science.gov (United States)

    Calcaterra, Andrea; Iovine, Valentina; Botta, Bruno; Quaglio, Deborah; D'Acquarica, Ilaria; Ciogli, Alessia; Iazzetti, Antonia; Alfonsi, Romina; Lospinoso Severini, Ludovica; Infante, Paola; Di Marcotullio, Lucia; Mori, Mattia; Ghirga, Francesca

    2018-12-01

    This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu -/- mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability.

  10. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas.

    Science.gov (United States)

    Lhermitte, B; Blandin, A F; Coca, A; Guerin, E; Durand, A; Entz-Werlé, N

    2018-05-15

    Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. [Research progress in genetic abnormalities and etiological factors of congenital anorectal malformation].

    Science.gov (United States)

    Zhang, Yanli; Ren, Hongxia

    2016-01-01

    Congenital anorectal malformation (ARM) is one of the most common gastrointestinal congenital diseases, accounting for 1/4 in digestive tract malformation, and is one of the congenital malformations in routine surveillance by the World Health Organization. Because of the variety of risk factors and the complexity of the pathological changes, etiology of ARM is still not clear. It is mostly considered that ARM is resulted from hereditary factors and environmental factors in the development of embryogenesis. Through animal experiments, scholars have found that Hox, Shh, Fgf, Wnt, Cdx and TCF4, Eph and ephrin play crucial role during the development of digestive tract. When the genes/signaling pathway dysfunction occurs, ARM may happen. In addition, ARM is related to the external factors in pregnancy. Because of the complexity of related factors in the development of human embryogenesis, the research progress of human ARM is very slow. This paper reviews relevant literatures in genetic factors and environmental factors, in order to provide the theoretical basis for the treatment and prevention of ARM.

  12. Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling

    Science.gov (United States)

    Makrythanasis, Periklis; Bernard, Pascal; Kurosaka, Hiroshi; Vannier, Anne; Thauvin-Robinet, Christel; Borel, Christelle; Mazaud-Guittot, Séverine; Rolland, Antoine; Desdoits-Lethimonier, Christèle; Guipponi, Michel; Zimmermann, Céline; Stévant, Isabelle; Kuhne, Françoise; Conne, Béatrice; Santoni, Federico; Lambert, Sandy; Huet, Frederic; Mugneret, Francine; Jaruzelska, Jadwiga; Faivre, Laurence; Wilhelm, Dagmar; Jégou, Bernard; Trainor, Paul A.; Resh, Marilyn D.; Antonarakis, Stylianos E.; Nef, Serge

    2014-01-01

    The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development. PMID:24784881

  13. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy

    Directory of Open Access Journals (Sweden)

    Batra Surinder K

    2011-08-01

    Full Text Available Abstract Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2, sonic hedgehog (SHH/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB and signal transducers and activators of transcription (STATs. In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers.

  14. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    Directory of Open Access Journals (Sweden)

    Hyunjung Choi

    Full Text Available The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH-smoothened (Smo signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  15. Macroarray analysis of gene expression in hematopoietic tissues from mice continuously irradiated by low dose-rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Mikio; Nakamura, Shingo; Shirata, Katsutoshi; Yanai, Takanori; Izumi, Jun; Sugihara, Takashi; Tanaka, Satoshi; Tanaka, Kimio; Otsu, Hiroshi; Sato, Fumiaki [Inst. for Environmental Sciences, Rokkasho, Aomori (Japan)

    2002-07-01

    We found that the number of hematopoietic progenitor cells in bone marrow and spleen from 4 - 8 Gy-irradiated mice decreased about 50%, in spite of no change in the number of peripheral blood cells. To evaluate the effects of chronic irradiation by low dose-rate ionizing radiation on the gene expression in mice hematopoietic cells from bone marrow and spleen, the RNA expressions of more than 500 genes such as cytokine genes and oncogenes were measured on the membranes by the RNA macroarray analysis method at accumulated doses at 4.7 and 8 Gy in specific-pathogen-free (SPF) C3H/HeN female mice irradiated by {sup 137}Cs {gamma}-rays with the dose rate of 20 mGy/day. The RNA macroarray analysis in spleens from 8 Gy-irradiated mice showed that the expressions in 16 genes including noggin were more than 1.5 times larger than that of control, while those in 64 genes including shh (sonic hedgehog) and BMP-4 (bone morphogenesis protein 4) were more than 1.5 times smaller than that of control. (author)

  16. Foxa1 and Foxa2 are required for formation of the intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Jennifer A Maier

    Full Text Available The intervertebral disc (IVD is composed of 3 main structures, the collagenous annulus fibrosus (AF, which surrounds the gel-like nucleus pulposus (NP, and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2, we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-;Foxa2(c/c;ShhcreER(T2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.

  17. Foxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs

    Science.gov (United States)

    Maier, Jennifer A.; Lo, YinTing; Harfe, Brian D.

    2013-01-01

    The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreERT2), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1−/−;Foxa2c/c;ShhcreERT2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord. PMID:23383217

  18. Extracellular matrix in tumours as a source of additional neoplastic lesions - a review

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The review describes the role of cells of extracellular matrix (ECM as a source of neoplastic outgrowths additional to the original tumour. The cells undergo a spontaneous transformation or stimulation by the original tumour through intercellular signals, e.g. through Shh protein (sonic hedgehog. Additionally, cells of an inflammatory infiltrate, which frequently accompany malignant tumours and particularly carcinomas, may regulate tumour cell behaviour. This is either by restricting tumour proliferation or, inversely, by induction and stimulation of the proliferation of another tumour cell type, e.g. mesenchymal cells. The latter type of tumour may involve formation of histologically differentiated stromal tumours (GIST, which probably originate from interstitial cells of Cajal in the alimentary tract. Occasionally, e.g. in gastric carcinoma, proliferation involves lymphoid follicles and lymphocytes of GALT (gut-associated lymphoid tissue, which gives rise to lymphoma. The process is preceded by the earlier stage of intestinal metaplasia, or is induced by gastritis alone. This is an example of primary involvement of inflammatory infiltrate cells in neoplastic progression. Despite the numerous histogenetic classifications of tumours (zygotoma benignum et zygotoma malignum, or mesenchymomata maligna et mesenchymomata benigna, currently in oncological diagnosis the view prevails that the direction of tumour differentiation and its degree of histologic malignancy (grading are more important factors than the histogenesis of the tumour.

  19. H2S mediated thermal and photochemical methane activation

    Science.gov (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  20. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2017-08-01

    Full Text Available Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  1. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  2. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  3. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  4. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Science.gov (United States)

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  5. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.

    Science.gov (United States)

    Ito, Akira; Nosrat, Christopher A

    2009-09-01

    Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.

  6. Predictive Toxicology and Computer Simulation of Male ...

    Science.gov (United States)

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) was used to profile the bioactivity of 54 chemicals with male developmental consequences across ~800 molecular and cellular features. The in vitro bioactivity on molecular targets could be condensed into 156 gene annotations in a bipartite network. These results highlighted the role of estrogen and androgen signaling pathways in male reproductive tract development, and importantly, broadened the list of molecular targets to include GPCRs, cytochrome-P450s, vascular remodeling proteins, and retinoic acid signaling. A multicellular agent-based model was used to simulate the complex interactions between morphoregulatory, endocrine, and environmental influences during genital tubercle (GT) development. Spatially dynamic signals (e.g., SHH, FGF10, and androgen) were implemented in the model to address differential adhesion, cell motility, proliferation, and apoptosis. Under control of androgen signaling, urethral tube closure was an emergent feature of the model that was linked to gender-specific rates of ventral mesenchymal proliferation and urethral plate endodermal apoptosis. A systemic parameter sweep was used to examine the sensitivity of crosstalk between genetic deficiency and envi

  7. Multiscale Systems Modeling of Male Reproductive Tract ...

    Science.gov (United States)

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) was used to profile the bioactivity of 54 chemicals with male developmental consequences across ~800 molecular and cellular features [Leung et al., accepted manuscript]. The in vitro bioactivity on molecular targets could be condensed into 156 gene annotations in a bipartite network. These results highlighted the role of estrogen and androgen signaling pathways in male reproductive tract development, and importantly, broadened the list of molecular targets to include GPCRs, cytochrome-P450s, vascular remodeling proteins, and retinoic acid signaling. A multicellular agent-based model was used to simulate the complex interactions between morphoregulatory, endocrine, and environmental influences during genital tubercle (GT) development. Spatially dynamic signals (e.g., SHH, FGF10, and androgen) were implemented in the model to address differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent feature of the model that was linked to gender-specific rates of ventral mesenchymal proliferation and urethral plate endodermal apoptosis, both under control of androgen signaling [Leung et al., manuscript in preparation]. A systemic parameter sweep w

  8. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Satokata, Ichiro; Ohshima, Hayato; Sato, Toshiya; Yokoyama, Minesuke; Yamada, Yoshihiko; Saku, Takashi

    2011-09-01

    Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells. Copyright © 2011 International Society of Matrix Biology. All rights reserved.

  9. Ofd1 controls dorso-ventral patterning and axoneme elongation during embryonic brain development.

    Directory of Open Access Journals (Sweden)

    Anna D'Angelo

    Full Text Available Oral-facial-digital type I syndrome (OFDI is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh, a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.

  10. Role of MXD3 in proliferation of DAOY human medulloblastoma cells.

    Directory of Open Access Journals (Sweden)

    Gustavo A Barisone

    Full Text Available A subset of medulloblastomas, the most common brain tumor in children, is hypothesized to originate from granule neuron precursors (GNPs in which the sonic hedgehog (SHH pathway is over-activated. MXD3, a basic helix-look-helix zipper transcription factor of the MAD family, has been reported to be upregulated during postnatal cerebellar development and to promote GNP proliferation and MYCN expression. Mxd3 is upregulated in mouse models of medulloblastoma as well as in human medulloblastomas. Therefore, we hypothesize that MXD3 plays a role in the cellular events that lead to medulloblastoma biogenesis. In agreement with its proliferative role in GNPs, MXD3 knock-down in DAOY cells resulted in decreased proliferation. Sustained overexpression of MXD3 resulted in decreased cell numbers due to increased apoptosis and cell cycle arrest. Structure-function analysis revealed that the Sin3 interacting domain, the basic domain, and binding to E-boxes are essential for this activity. Microarray-based expression analysis indicated up-regulation of 84 genes and down-regulation of 47 genes. Potential direct MXD3 target genes were identified by ChIP-chip. Our results suggest that MXD3 is necessary for DAOY medulloblastoma cell proliferation. However, increased level and/or duration of MXD3 expression ultimately reduces cell numbers via increased cell death and cell cycle arrest.

  11. A review of genetic factors contributing to the etiopathogenesis of anorectal malformations.

    Science.gov (United States)

    Khanna, Kashish; Sharma, Shilpa; Pabalan, Noel; Singh, Neetu; Gupta, D K

    2018-01-01

    Anorectal malformation (ARM) is a common congenital anomaly with a wide clinical spectrum. Recently, many genetic and molecular studies have been conducted worldwide highlighting the contribution of genetic factors in its etiology. We summarize the current literature on such genetic factors. Literature search was done using different combinations of terms related to genetics in anorectal malformations. From 2012 to June 2017, articles published in the English literature and studies conducted on human population were included. A paradigm shift was observed from the earlier studies concentrating on genetic aberrations in specific pathways to genome wide arrays exploring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) in ARM patients. Rare CNVs (including 79 genes) and SNPs have been found to genetically contribute to ARM. Out of disrupted 79 genes one such putative gene is DKK4. Down regulation of CDX-1 gene has also been implicated in isolated ARM patients. In syndromic ARM de novo microdeletion at 17q12 and a few others have been identified. Major genetic aberrations proposed in the pathogenesis of ARM affect members of the Wnt, Hox (homebox) genes, Sonic hedgehog (Shh) and Gli2, Bmp4, Fgf and CDX1 signalling pathways; probable targets of future molecular gene therapy.

  12. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

    Directory of Open Access Journals (Sweden)

    Emily J Lodge

    2016-03-01

    Full Text Available The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

  13. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  14. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  15. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  16. The origin and loss of periodic patterning in the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Zimm, Roland; Cebra-Thomas, Judith; Lempiäinen, Netta K; Kallonen, Aki; Mitchell, Katherine L; Hämäläinen, Keijo; Salazar-Ciudad, Isaac; Jernvall, Jukka; Gilbert, Scott F

    2014-08-01

    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell. © 2014. Published by The Company of Biologists Ltd.

  17. Medulloblastoma in adults. A retrospective single institution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Indrawati; Roengvoraphoj, Olarn; Niyazi, Maximilian; Nachbichler, Silke Birgit [LMU Munich, Department of Radiation Oncology, University Hospital, Munich (Germany); Roeder, Falk [LMU Munich, Department of Radiation Oncology, University Hospital, Munich (Germany); German Cancer Research Center (DKFZ), Molecular Radiation Oncology, Heidelberg (Germany); Schueller, Ulrich [University Medical Center, Institute of Neuropathology, Hamburg-Eppendorf (Germany); Research Institute Children' s Cancer Center, Hamburg (Germany); University Medical Center, Department of Pediatric Hematology and Oncology, Hamburg-Eppendorf (Germany); Belka, Claus [LMU Munich, Department of Radiation Oncology, University Hospital, Munich (Germany); German Cancer Consortium (DKTK), Munich (Germany)

    2018-03-15

    Adult medulloblastoma is a rare disease treated according to the current pediatric treatment guidelines. This retrospective analysis investigated the clinical outcomes and prognostic factors of adult medulloblastoma patients, who received multimodal therapy at our institution. Treatment charts of all patients over the age of 15 years of age with de novo medulloblastoma, who had been treated at our institution between 2001 and 2014, were retrospectively analyzed. Patients' demographic parameters, initial symptoms, treatment modalities, toxicities, and survival outcomes were investigated. In all, 21 patients with a median age of 30.2 years were identified. The most frequent histologies were desmoplastic and classic, and the most common molecular subtype was sonic hedgehog (SHH). After tumor resection, all patients received craniospinal irradiation (median dose 35.2 Gy) and a boost to the posterior fossa (median dose 19.8 Gy). Simultaneous chemotherapy with vincristine was given to 20 patients and sequential chemotherapy to 15 patients. The most common side effects were hematological toxicities. Median overall survival (OS) has not been reached after a median follow-up of 92 months. Estimated 5- and 10-year OS was 89 and 80%, respectively. Estimated 5- and 10-year progression-free survival (PFS) was 89 and 81%, respectively. In univariate analysis, a shorter interval between tumor resection and end of irradiation was significantly associated with improved OS and PFS, anaplastic histology with worse OS and PFS. The combined modality treatment showed a good outcome in adults with medulloblastoma. Treatment time was revealed to be prognostic and should be kept as short as possible. (orig.) [German] Das Medulloblastom des Erwachsenen ist eine seltene Erkrankung, die analog paediatrischer Behandlungsprotokolle therapiert wird. Diese retrospektive Analyse untersuchte die klinischen Ergebnisse und prognostischen Faktoren von erwachsenen Medulloblastompatienten, die eine

  18. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis.

    Science.gov (United States)

    Thompson, Eric M; Hielscher, Thomas; Bouffet, Eric; Remke, Marc; Luu, Betty; Gururangan, Sridharan; McLendon, Roger E; Bigner, Darell D; Lipp, Eric S; Perreault, Sebastien; Cho, Yoon-Jae; Grant, Gerald; Kim, Seung-Ki; Lee, Ji Yeoun; Rao, Amulya A Nageswara; Giannini, Caterina; Li, Kay Ka Wai; Ng, Ho-Keung; Yao, Yu; Kumabe, Toshihiro; Tominaga, Teiji; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Low, David C Y; Seow, Wan Tew; Chang, Kenneth T E; Mora, Jaume; Pollack, Ian F; Hamilton, Ronald L; Leary, Sarah; Moore, Andrew S; Ingram, Wendy J; Hallahan, Andrew R; Jouvet, Anne; Fèvre-Montange, Michelle; Vasiljevic, Alexandre; Faure-Conter, Cecile; Shofuda, Tomoko; Kagawa, Naoki; Hashimoto, Naoya; Jabado, Nada; Weil, Alexander G; Gayden, Tenzin; Wataya, Takafumi; Shalaby, Tarek; Grotzer, Michael; Zitterbart, Karel; Sterba, Jaroslav; Kren, Leos; Hortobágyi, Tibor; Klekner, Almos; László, Bognár; Pócza, Tímea; Hauser, Peter; Schüller, Ulrich; Jung, Shin; Jang, Woo-Youl; French, Pim J; Kros, Johan M; van Veelen, Marie-Lise C; Massimi, Luca; Leonard, Jeffrey R; Rubin, Joshua B; Vibhakar, Rajeev; Chambless, Lola B; Cooper, Michael K; Thompson, Reid C; Faria, Claudia C; Carvalho, Alice; Nunes, Sofia; Pimentel, José; Fan, Xing; Muraszko, Karin M; López-Aguilar, Enrique; Lyden, David; Garzia, Livia; Shih, David J H; Kijima, Noriyuki; Schneider, Christian; Adamski, Jennifer; Northcott, Paul A; Kool, Marcel; Jones, David T W; Chan, Jennifer A; Nikolic, Ana; Garre, Maria Luisa; Van Meir, Erwin G; Osuka, Satoru; Olson, Jeffrey J; Jahangiri, Arman; Castro, Brandyn A; Gupta, Nalin; Weiss, William A; Moxon-Emre, Iska; Mabbott, Donald J; Lassaletta, Alvaro; Hawkins, Cynthia E; Tabori, Uri; Drake, James; Kulkarni, Abhaya; Dirks, Peter; Rutka, James T; Korshunov, Andrey; Pfister, Stefan M; Packer, Roger J; Ramaswamy, Vijay; Taylor, Michael D

    2016-04-01

    Patients with incomplete surgical resection of medulloblastoma are controversially regarded as having a marker of high-risk disease, which leads to patients undergoing aggressive surgical resections, so-called second-look surgeries, and intensified chemoradiotherapy. All previous studies assessing the clinical importance of extent of resection have not accounted for molecular subgroup. We analysed the prognostic value of extent of resection in a subgroup-specific manner. We retrospectively identified patients who had a histological diagnosis of medulloblastoma and complete data about extent of resection and survival from centres participating in the Medulloblastoma Advanced Genomics International Consortium. We collected from resections done between April, 1997, and February, 2013, at 35 international institutions. We established medulloblastoma subgroup affiliation by gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. We classified extent of resection on the basis of postoperative imaging as gross total resection (no residual tumour), near-total resection (30 Gy vs no craniospinal irradiation). The primary analysis outcome was the effect of extent of resection by molecular subgroup and the effects of other clinical variables on overall and progression-free survival. We included 787 patients with medulloblastoma (86 with WNT tumours, 242 with SHH tumours, 163 with group 3 tumours, and 296 with group 4 tumours) in our multivariable Cox models of progression-free and overall survival. We found that the prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. We identified a progression-free survival benefit for gross total resection over sub-total resection (hazard ratio [HR] 1·45, 95% CI 1·07-1·96, p=0·16) but no overall survival benefit (HR 1·23, 0·87-1·72, p=0·24). We saw no progression-free survival or overall survival

  19. OS02.1 Multicenter pilot study of radio-chemotherapy as first-line treatment for adults with medulloblastoma - the NOA-07 trial

    Science.gov (United States)

    Beier, D.; Proescholdt, M.; Reinert, C.; Hattingen, E.; Seidel, C.; Dirven, L.; Lürding, R.; Pfister, S.; Pietsch, T.; Hau, P.

    2017-01-01

    Abstract Background: Medulloblastoma in adult patients has a low incidence, with 0.6 cases per million. Prognosis depends on clinical factors and medulloblastoma entity. In contrast to children, no prospective data on the feasibility of radio-chemotherapy in adults exists. The German Neuro-Oncology Working Group (NOA) performed a prospective multicenter single-arm Phase II trial to evaluate the feasibility and toxicity of radio-chemotherapy in this population. Methods: The NOA-07 trial combined cranio-spinal irradiation with vincristine, followed by a maximum of eight cycles of cisplatin, lomustine and vincristine. Adverse events, imaging and progression patterns, combined histological and genetic markers, health-related quality of life (HRQoL) and cognition were evaluated prospectively. The primary endpoints were the rate of toxicity-related treatment terminations after four cycles of chemotherapy, and the toxicity profile. Findings: Thirty patients were evaluable. Fifty percent of patients showed classic, and 50% desmoplastic-nodular histology. Sixty-eight percent of patients were genetically classified into the sonic hedgehog (SHH) subgroup without TP53 alterations, 13.6% in wingless (WNT), and 17.7% in Non-WNT/Non-SHH (Group 4). Four cycles of chemotherapy were feasible in the majority of patients (n=21; 70.0%). Leukopenia was the major toxicity, with 79 events of CTC grade 3 and 4 in 17 patients. Polyneuropathy and ototoxicity were the only grade 3 or 4 non-haematological toxicities during the active treatment phase and occurred 12 times in eight patients and one time in one patient, respectively. Events were also calculated per cycle and showed an increase of toxicity over treatment time. Feasibility appeared to be age-dependent, leading to application of four cycles of chemotherapy in 72.7% of patients below age 45 and 62.5% of patients 45 or above. Testing for all eight adjuvant cycles revealed that 45.5% of all patients younger than 45 years completed

  20. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival

    International Nuclear Information System (INIS)

    Haaf, Anette ten; Bektas, Nuran; Serenyi, Sonja von; Losen, Inge; Arweiler, Elfriede Christel; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2009-01-01

    The transcription factor GLI1, a member of the GLI subfamily of Krüppel-like zinc finger proteins is involved in signal transduction within the hedgehog pathway. Aberrant hedgehog signalling has been implicated in the development of different human tumour entities such as colon and lung cancer and increased GLI1 expression has been found in these tumour entities as well. In this study we questioned whether GLI1 expression might also be important in human breast cancer development. Furthermore we correlated GLI1 expression with histopathological and clinical data to evaluate whether GLI1 could represent a new prognostic marker in breast cancer treatment. Applying semiquantitative realtime PCR analysis and immunohistochemistry (IHC) GLI1 expression was analysed in human invasive breast carcinomas (n = 229) in comparison to normal human breast tissues (n = 58). GLI1 mRNA expression was furthermore analysed in a set of normal (n = 3) and tumourous breast cell lines (n = 8). IHC data were statistically interpreted using SPSS version 14.0. Initial analysis of GLI1 mRNA expression in a small cohort of (n = 5) human matched normal and tumourous breast tissues showed first tendency towards GLI1 overexpression in human breast cancers. However only a small sample number was included into these analyses and values for GLI1 overexpression were statistically not significant (P = 0.251, two-tailed Mann-Whitney U-test). On protein level, nuclear GLI1 expression in breast cancer cells was clearly more abundant than in normal breast epithelial cells (P = 0.008, two-tailed Mann-Whitney U-test) and increased expression of GLI1 protein in breast tumours significantly correlated with unfavourable overall survival (P = 0.019), but also with higher tumour stage (P < 0.001) and an increased number of tumour-positive axillar lymph nodes (P = 0.027). Interestingly, a highly significant correlation was found between GLI1 expression and the expression of SHH, a central upstream molecule of

  1. Compilation of 1991 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program. Volume 2: Tabs C-F

    Science.gov (United States)

    1992-08-01

    involved in the detection by foraging honeybees of localized magnetic anomalies associated with nectar rewards (Walker and Bitterman, 1989; Kirschvink...years, embryos were checked carefully for abnormalities of the developing head, including brain, eye and 3 ear, branchial arches, heart, spinal cord...1989), 2 (11%) involved the limbs, and 1 (5%) was primarily a mandible- branchial arch abnormality. Six 3 I eggs (32% of the abnormals) from 5 nests

  2. Acute complicated diverticulitis managed by laparoscopic lavage

    DEFF Research Database (Denmark)

    Alamili, Mahdi; Gögenur, Ismail; Rosenberg, Jacob

    2009-01-01

    with antibiotics and laparoscopic lavage. Conversion to laparotomy was made in six (3%) patients and the mean hospital stay was nine days. Ten percent of the patients had complications. During the mean follow-up of 38 months, 38% of the patients underwent elective sigmoid resection with primary anastomosis....... CONCLUSION: Primary laparoscopic lavage for complicated diverticulitis may be a promising alternative to more radical surgery in selected patients. Larger studies have to be made before clinical recommendations can be given....

  3. The Programs of Japan in the Philippines

    Science.gov (United States)

    1944-07-29

    functions of theI U cii’?rsi:rity in tho follo,:ing way: : ’"The purposo an’d - fanc - tion of th Unive-rsiy o.f ti.e Phil) ippines shall be to provide for...to .. ;i :if Japan co to the P’hilippines very soon tor a, series of genes wv-h.:i t - local- players. The ( loa.ding) teoia is (T" ..:yo. Six - .3

  4. ISSN 2073-9990 East Cent. Afr. J. surg

    African Journals Online (AJOL)

    Valued eMachines Customer

    especially between 5 and 7years because fusion of the distal humeral physis peaks at age six.3 There are two major types of supracondylar humerus fractures extension (95% of cases) and flexion (5% of cases)1,2. While different ..... P.J. Walmsley, H.B. Kelly, J.E. Robb, I.H. Annan, D.E. Porter. Delay increases the need for.

  5. Epidemiology, Etiology, and Treatment of Isolated Cleft Palate

    Science.gov (United States)

    Burg, Madeleine L.; Chai, Yang; Yao, Caroline A.; Magee, William; Figueiredo, Jane C.

    2016-01-01

    Isolated cleft palate (CPO) is the rarest form of oral clefting. The incidence of CPO varies substantially by geography from 1.3 to 25.3 per 10,000 live births, with the highest rates in British Columbia, Canada and the lowest rates in Nigeria, Africa. Stratified by ethnicity/race, the highest rates of CPO are observed in non-Hispanic Whites and the lowest in Africans; nevertheless, rates of CPO are consistently higher in females compared to males. Approximately fifty percent of cases born with cleft palate occur as part of a known genetic syndrome or with another malformation (e.g., congenital heart defects) and the other half occur as solitary defects, referred to often as non-syndromic clefts. The etiology of CPO is multifactorial involving genetic and environmental risk factors. Several animal models have yielded insight into the molecular pathways responsible for proper closure of the palate, including the BMP, TGF-β, and SHH signaling pathways. In terms of environmental exposures, only maternal tobacco smoke has been found to be strongly associated with CPO. Some studies have suggested that maternal glucocorticoid exposure may also be important. Clearly, there is a need for larger epidemiologic studies to further investigate both genetic and environmental risk factors and gene-environment interactions. In terms of treatment, there is a need for long-term comprehensive care including surgical, dental and speech pathology. Overall, five main themes emerge as critical in advancing research: (1) monitoring of the occurrence of CPO (capacity building); (2) detailed phenotyping of the severity (biology); (3) understanding of the genetic and environmental risk factors (primary prevention); (4) access to early detection and multidisciplinary treatment (clinical services); and (5) understanding predictors of recurrence and possible interventions among families with a child with CPO (secondary prevention). PMID:26973535

  6. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  7. Differentiation of chondrocytes and scleroblasts during dorsal fin skeletogenesis in flounder larvae.

    Science.gov (United States)

    Suzuki, Tohru; Haga, Yutaka; Takeuchi, Toshio; Uji, Susumu; Hashimoto, Hisashi; Kurokawa, Tadahide

    2003-01-01

    In teleosts, the embryonic fin fold consists of a peridermis, an underlying epidermis and a small number of mesenchymal cells. Beginning from such a simple structure, the fin skeletons, including the proximal and distal radials and lepidotrichia (finrays), develop in the dorsal fin fold at the larval stage. Their process of skeletogenesis and embryonic origin are unclear. Using flounder larvae, we report the differentiation process for chondrocytes and scleroblasts prior to fin skeletogenesis and the effects of retinoic acid (RA) on it. In early larvae, the mesenchymal cells grow between the epidermis and spinal cord to form a line of periodical condensations, which are proximal radial primordia, to produce chondrocytes. The prescleroblasts, which ossify the proximal radial cartilages, differentiate in the mesenchymal cells remaining between the cartilages. Then, mesenchymal condensations occur between the distal ends of the proximal radials, forming distal radial primordia, to produce chondrocytes. Simultaneously, condensations occur between the distal radial primordia and peridermis, which are lepidotrichia primordia, to produce prescleroblasts. Exogenous RA specifically inhibits the mesenchymal condensation prior to the proximal radial formation together with the down-regulation of sonic hedgehog (shh) and patched (pta) expression, resulting in the loss of proximal radials. Thus, it was indicated that differentiation of the precursor cells of radials and lepidotrichia begins in the proximal part of the fin fold and that the initial mesenchymal condensation prior to the proximal radial formation is highly susceptible to the effects of RA. Lepidotrichia formation does not occur where proximal radials are absent, indicating that lepidotrichia differentiation requires interaction with the radial cartilages. To examine the suggestion that neural crest cells contribute to the medial fin skeletons, we localized the HNK-1 positive cells in flounder embryos and slug and

  8. Distinct patterns of primary and motile cilia in Rathke's cleft cysts and craniopharyngioma subtypes.

    Science.gov (United States)

    Coy, Shannon; Du, Ziming; Sheu, Shu-Hsien; Woo, Terri; Rodriguez, Fausto J; Kieran, Mark W; Santagata, Sandro

    2016-12-01

    Cilia are highly conserved organelles, which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke's cleft cysts, whereas characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke's cleft cysts. FOXJ1 expression discriminates Rathke's cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared with papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A, and

  9. PROGNOSTIC SIGNIFICANCE OF CLINICAL, HISTOPATHOLOGICAL, AND MOLECULAR CHARACTERISTICS OF MEDULLOBLASTOMAS IN THE PROSPECTIVE HIT2000 MULTICENTER CLINICAL TRIAL COHORT

    Science.gov (United States)

    Pietsch, Torsten; Schmidt, Rene; Remke, Marc; Korshunov, Andrey; Hovestadt, Volker; Jones, David TW; Felsberg, Jörg; Kaulich, Kerstin; Goschzik, Tobias; Kool, Marcel; Northcott, Paul A.; von Hoff, Katja; von Bueren, André O.; Friedrich, Carsten; Skladny, Heyko; Fleischhack, Gudrun; Taylor, Michael D.; Cremer, Friedrich; Lichter, Peter; Faldum, Andreas; Reifenberger, Guido; Rutkowski, Stefan; Pfister, Stefan M.

    2014-01-01

    BACKGROUND: This study aimed to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. METHODS: Patients from the HIT2000 cooperative clinical trial were prospectively enrolled based on the availability of sufficient tumor material and complete clinical information. This revealed a cohort of 184 patients (median age 7.6 years), which was randomly split at a 2:1 ratio into a training (n = 127), and a validation (n = 57) dataset. All samples were subjected to thorough histopathological investigation, CTNNB1 mutation analysis, quantitative PCR, MLPA and FISH analyses for cytogenetic variables, and methylome analysis. RESULTS: By univariable analysis, clinical factors (M-stage), histopathological variables (large cell component, endothelial proliferation, synaptophysin pattern), and molecular features (chromosome 6q status, MYC amplification, TOP2A copy-number, subgrouping) were found to be prognostic. Molecular consensus subgrouping (WNT, SHH, Group 3, Group 4) was validated as an independent feature to stratify patients into different risk groups. When comparing methods for the identification of WNT-driven medulloblastoma, this study identified CTNNB1 sequencing and methylation profiling to most reliably identify these patients. After removing patients with particularly favorable (CTNNB1 mutation, extensive nodularity) or unfavorable (MYC amplification) markers, a risk score for the remaining “intermediate molecular risk” population dependent on age, M-stage, pattern of synaptophysin expression, and MYCN copy-number status was identified and validated, with speckled synaptophysin expression indicating worse outcome. CONCLUSIONS: Methylation subgrouping and CTNNB1 mutation status represent robust tools for the risk-stratification of medulloblastoma. A simple clinico-pathological risk score for “intermediate molecular risk” patients was identified, which deserves further validation

  10. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    International Nuclear Information System (INIS)

    Andrade, Sheila Siqueira; Gouvea, Iuri Estrada; Silva, Mariana Cristina C.; Castro, Eloísa Dognani; Paula, Cláudia A. A. de; Okamoto, Debora; Oliveira, Lilian; Peres, Giovani Bravin; Ottaiano, Tatiana; Facina, Gil; Nazário, Afonso Celso Pinto; Campos, Antonio Hugo J. F. M.; Paredes-Gamero, Edgar Julian; Juliano, Maria; Silva, Ismael D. C. G. da; Oliva, Maria Luiza V.; Girão, Manoel J. B. C.

    2016-01-01

    Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users

  11. High-throughput genetic analysis in a cohort of patients with Ocular Developmental Anomalies

    Directory of Open Access Journals (Sweden)

    Suganya Kandeeban

    2017-10-01

    Full Text Available Anophthalmia and microphthalmia (A/M are developmental ocular malformations in which the eye fails to form or is smaller than normal with both genetic and environmental etiology. Microphthalmia is often associated with additional ocular anomalies, most commonly coloboma or cataract [1, 2]. A/M has a combined incidence between 1-3.2 cases per 10,000 live births in Caucasians [3, 4]. The spectrum of genetic abnormalities (chromosomal and molecular associated with these ocular developmental defects are being investigated in the current study. A detailed pedigree analysis and ophthalmic examination have been documented for the enrolled patients followed by blood collection and DNA extraction. The strategies for genetic analysis included chromosomal analysis by conventional and array based (affymetrix cytoscan HD array methods, targeted re-sequencing of the candidate genes and whole exome sequencing (WES in Illumina HiSEQ 2500. WES was done in families excluded for mutations in candidate genes. Twenty four samples (Microphthalmia (M-5, Anophthalmia (A-7,Coloboma-2, M&A-1, microphthalmia and coloboma / other ocular features-9 were initially analyzed using conventional Geimsa Trypsin Geimsa banding of which 4 samples revealed gross chromosomal aberrations (deletions in 3q26.3-28, 11p13 (N=2 and 11q23 regions. Targeted re sequencing of candidate genes showed mutations in CHX10, PAX6, FOXE3, ABCB6 and SHH genes in 6 samples. High throughput array based chromosomal analysis revealed aberrations in 4 samples (17q21dup (n=2, 8p11del (n=2. Overall, genetic alterations in known candidate genes are seen in 50% of the study subjects. Whole exome sequencing was performed in samples that were excluded for mutations in candidate genes and the results are discussed.

  12. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish.

    Science.gov (United States)

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from str