WorldWideScience

Sample records for shewanella oneidensis grown

  1. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

    Directory of Open Access Journals (Sweden)

    Gen Nakagawa

    Full Text Available In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode, the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.

  2. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bendall, Matthew L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Luong, Khai [Pacific Biosciences, Menlo Park, CA (United States); Wetmore, Kelly M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blow, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Korlach, Jonas [Pacific Biosciences, Menlo Park, CA (United States); Deutschbauer, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Malmstrom, Rex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  3. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  4. Shewanella oneidensis: a new and efficient System for Expression and Maturation of heterologous [Fe-Fe] Hydrogenase from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Sybirna Kateryna

    2008-09-01

    Full Text Available Abstract Background The eukaryotic green alga, Chlamydomonas reinhardtii, produces H2 under anaerobic conditions, in a reaction catalysed by a [Fe-Fe] hydrogenase HydA1. For further biochemical and biophysical studies a suitable expression system of this enzyme should be found to overcome its weak expression in the host organism. Two heterologous expression systems used up to now have several advantages. However they are not free from some drawbacks. In this work we use bacterium Shewanella oneidensis as a new and efficient system for expression and maturation of HydA1 from Chlamydomonas reinhardtii. Results Based on codon usage bias and hydrogenase maturation ability, the bacterium S. oneidensis, which possesses putative [Fe-Fe] and [Ni-Fe] hydrogenase operons, was selected as the best potential host for C. reinhardtii [Fe-Fe] hydrogenase expression. Hydrogen formation by S. oneidensis strain AS52 (ΔhydAΔhyaB transformed with a plasmid bearing CrHydA1 and grown in the presence of six different substrates for anaerobic respiration was determined. A significant increase in hydrogen evolution was observed for cells grown in the presence of trimethylamine oxide, dimethylsulfoxide and disodium thiosulfate, showing that the system of S. oneidensis is efficient for heterologous expression of algal [Fe-Fe] hydrogenase. Conclusion In the present work a new efficient system for heterologous expression and maturation of C. reinhardtii hydrogenase has been developed. HydA1 of C. reinhardtii was purified and shown to contain 6 Fe atoms/molecule of protein, as expected. Using DMSO, TMAO or thiosulfate as substrates for anaerobic respiration during the cell growth, 0.4 – 0.5 mg l-1(OD600 = 1 of catalytically active HydA1 was obtained with hydrogen evolution rate of ~700 μmol H2 mg-1 min-1.

  5. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.

    Directory of Open Access Journals (Sweden)

    Grigoriy E Pinchuk

    2010-06-01

    Full Text Available Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii developed an approach to identify cycles (such as futile cycles and circulations, (iii classified how reaction usage affects cellular growth, (iv predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a

  6. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    Full Text Available EnvZ and OmpR constitute the bacterial two-component signal transduction system known to mediate osmotic stress response in a number of gram-negative bacteria. In an effort to understand the mechanism through which Shewanella oneidensis senses and responds to environmental osmolarity changes, structure of the ompR-envZ operon was determined with Northern blotting assay and roles of the EnvZ/OmpR two-component system in response to various stresses were investigated with mutational analysis, quantitative reverse transcriptase PCR (qRT-PCR, and phenotype microarrays. Results from the mutational analysis and qRT-PCR suggested that the EnvZ/OmpR system contributed to osmotic stress response of S. oneidensis and very likely engaged a similar strategy employed by E. coli, which involved reciprocal regulation of two major porin coding genes. Additionally, the ompR-envZ system was also found related to cell motility. We further showed that the ompR-envZ dependent regulation of porin genes and motility resided almost completely on ompR and only partially on envZ, indicating additional mechanisms for OmpR phosphorylation. In contrast to E. coli lacking ompR-envZ, however, growth of S. oneidensis did not show a significant dependence on ompR-envZ even under osmotic stress. Further analysis with phenotype microarrays revealed that the S. oneidensis strains lacking a complete ompR-envZ system displayed hypersensitivities to a number of agents, especially in alkaline environment. Taken together, our results suggest that the function of the ompR-envZ system in S. oneidensis, although still connected with osmoregulation, has diverged considerably from that of E. coli. Additional mechanism must exist to support growth of S. oneidensis under osmotic stress.

  7. Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Learman, Deric R.; Yi, Haakrho; Brown, Steven D.; Martin, Stanton L.; Geesey, Gill G.; Stevens, Ann M.; Hochella, Michael F.

    2009-01-05

    The role of LuxS in Shewanella oneidensis MR-1 has been examined by transcriptomic profiling, biochemical, and physiological experiments. The results indicate that a mutation in luxS alters biofilm development, not by altering quorum-sensing abilities but by disrupting the activated methyl cycle (AMC). The S. oneidensis wild type can produce a luminescence response in the AI-2 reporter strain Vibrio harveyi MM32. This luminescence response is abolished upon the deletion of luxS. The deletion of luxS also alters biofilm formations in static and flowthrough conditions. Genetic complementation restores the mutant biofilm defect, but the addition of synthetic AI-2 has no effect. These results suggest that AI-2 is not used as a quorum-sensing signal to regulate biofilm development in S. oneidensis. Growth on various sulfur sources was examined because of the involvement of LuxS in the AMC. A mutation in luxS produced a reduced ability to grow with methionine as the sole sulfur source. Methionine is a key metabolite used in the AMC to produce a methyl source in the cell and to recycle homocysteine. These data suggest that LuxS is important to metabolizing methionine and the AMC in S. oneidensis.

  8. Invariability of Central Metabolic Flux Distribution in Shewanella oneidensis MR-1 Under Environmental or Genetic Perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie; Martin, Hector Garcia; Deutschbauer, Adam; Feng, Xueyang; Huang, Rick; Llora, Xavier; Arkin, Adam; Keasling, Jay D.

    2009-04-21

    An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time {approx} 3 hrs), salt stressed minimal medium (doubling time {approx} 6 hrs), and minimal medium with amino acid supplementation (doubling time {approx}1.5 hrs). {sup 13}C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, ten transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism.

  9. Reconstruction of Extracellular Respiratory Pathways for Iron(III Reduction in Shewanella oneidensis strain MR-1

    Directory of Open Access Journals (Sweden)

    Dan eCoursolle

    2012-02-01

    Full Text Available Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA, an integral outer membrane β-barrel protein (MtrB and an outer membrane-anchored c-type cytochrome (MtrC. Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.

  10. Effects of Cd on reductive transformation of lepidocrocite by Shewanella oneidensis MR-1

    Institute of Scientific and Technical Information of China (English)

    Chaolei Yuan; Fangbai Li; Rui Han; Tongxu Liu; Weimin Sun; Weilin Huang

    2017-01-01

    We investigated the reduction of lepidocrocite (γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd.The results showed that Cd2+ retarded microbial reduction of γ-FeOOH and avoided formation of magnetite.The inhibitory effect on γ-FeOOH transformation may not result from Cd2+ toxicity to the bacterium;it rather was probably due to competitive adsorption between Cd2+ and Fe2+ on γ-FeOOH as its surface reduction catalyzed by adsorbed Fe2+ was eliminated by adsorption of Cd2+.

  11. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Ruebush, S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  12. Crystallization of uridine phosphorylase from Shewanella oneidensis MR-1 in the laboratory and under microgravity and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Safonova, Tatyana N.; Mordkovich, Nadezhda N.; Polyakov, Konstantin M.; Manuvera, Valentin A.; Veiko, Vladimir P.; Popov, Vladimir O.

    2012-01-01

    High-quality crystals of uridine phosphorylase from Shewanella oneidensis were grown under microgravity conditions. X-ray diffraction data were collected to a resolution of 0.95 Å. Uridine phosphorylase (UDP, EC 2.4.2.3), a key enzyme in the pyrimidine salvage pathway, catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. The gene expression of UDP from Shewanella oneidensis MR-1 was performed in the recipient strain Escherichia coli. The UDP protein was crystallized on earth (in the free form and in complex with uridine as the substrate) by the hanging-drop vapour-diffusion method at 296 K and under microgravity conditions (in the free form) aboard the Russian Segment of the International Space Station by the capillary counter-diffusion method. The data sets were collected to a resolution of 1.9 Å from crystals of the free form grown on earth, 1.6 Å from crystals of the complex with uridine and 0.95 Å from crystals of the free form grown under microgravity. All crystals belong to the space group P2 1 and have similar unit-cell parameters. The crystal of uridine phosphorylase grown under microgravity diffracted to ultra-high resolution and gave high-quality X-ray diffraction data

  13. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

    Science.gov (United States)

    Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao

    2015-03-11

    An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

  14. Enzymatic reduction of U60 nanoclusters by Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiang; Fein, Jeremy B. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences

    2018-04-01

    In this study, a series of reduction experiments were conducted using a representative uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}) and a bacterial species, Shewanella oneidensis MR-1, that is capable of enzymatic U(VI) reduction. U60 was reduced by S. oneidensis in the absence of O{sub 2}, but the reduction kinetics for U60 were significantly slower than was observed in this study for aqueous uranyl acetate, and were faster than was reported in previous studies for solid phase U(VI). Our results indicate that U60 aggregates bigger than 0.2 μm formed immediately upon mixing with the bacterial growth medium, and that these aggregates were gradually broken down during the process of reduction. Neither reduction nor dissolution of U60 was observed during 72 h of control experiments open to the atmosphere, indicating that the breakdown and dissolution of U60 aggregates is caused by the reduction of U60, and that S. oneidensis is capable of direct reduction of the U(VI) within the U60 nanoclusters, likely due to the adsorption of U60 aggregates onto bacterial cells. This study is first to show the reduction capacity of bacteria for uranyl peroxide nanoclusters, and the results yield a better understanding of the long term fate of uranium in environmental systems in which uranyl peroxide nanoclusters are present.

  15. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  16. Molecular underpinnings of nitrite effect on CymA-dependent respiration in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2016-07-01

    Full Text Available Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs. In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP production, a second messenger required for activation of cAMP-receptor protein (Crp which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.

  17. Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation.

    Science.gov (United States)

    Castillo, Hugo; Schoderbek, Donald; Dulal, Santosh; Escobar, Gabriela; Wood, Jeffrey; Nelson, Roger; Smith, Geoffrey

    2015-01-01

    The 'Linear no-threshold' (LNT) model predicts that any amount of radiation increases the risk of organisms to accumulate negative effects. Several studies at below background radiation levels (4.5-11.4 nGy h(-1)) show decreased growth rates and an increased susceptibility to oxidative stress. The purpose of our study is to obtain molecular evidence of a stress response in Shewanella oneidensis and Deinococcus radiodurans grown at a gamma dose rate of 0.16 nGy h(-1), about 400 times less than normal background radiation. Bacteria cultures were grown at a dose rate of 0.16 or 71.3 nGy h(-1) gamma irradiation. Total RNA was extracted from samples at early-exponential and stationary phases for the rt-PCR relative quantification (radiation-deprived treatment/background radiation control) of the stress-related genes katB (catalase), recA (recombinase), oxyR (oxidative stress transcriptional regulator), lexA (SOS regulon transcriptional repressor), dnaK (heat shock protein 70) and SOA0154 (putative heavy metal efflux pump). Deprivation of normal levels of radiation caused a reduction in growth of both bacterial species, accompanied by the upregulation of katB, recA, SOA0154 genes in S. oneidensis and the upregulation of dnaK in D. radiodurans. When cells were returned to background radiation levels, growth rates recovered and the stress response dissipated. Our results indicate that below-background levels of radiation inhibited growth and elicited a stress response in two species of bacteria, contrary to the LNT model prediction.

  18. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  19. Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Miao Jin

    Full Text Available Shewanella are renowned for their ability to respire on a wide range of electron acceptors, which has been partially accredited to the presence of a large number of the c-type cytochromes. In the model species S. oneidensis MR-1, at least 41 genes encode c-type cytochromes that are predicted to be intact, thereby likely functional. Previously, in-frame deletion mutants for 36 of these genes were obtained and characterized. In this study, first we completed the construction of an entire set of c-type cytochrome mutants utilizing a newly developed att-based mutagenesis approach, which is more effective and efficient than the approach used previously by circumventing the conventional cloning. Second, we investigated the cytochrome c maturation (Ccm system in S. oneidensis. There are two loci predicted to encode components of the Ccm system, SO0259-SO0269 and SO0476-SO0478. The former is proven essential for cytochrome c maturation whereas the latter is dispensable. Unlike the single operon organization observed in other γ-proteobacteria, genes at the SO0259-SO0269 locus are uniquely organized into four operons, ccmABCDE, scyA, SO0265, and ccmFGH-SO0269. Functional analysis revealed that the SO0265 gene rather than the scyA and SO0269 genes are relevant to cytochrome c maturation.

  20. Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis.

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2014-09-01

    Full Text Available Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA. TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1 previous genome-wide direct gene-essentiality assignments; and, 2 flux balance analysis (FBA predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.

  1. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Flora Ambre Honoré

    2017-04-01

    Full Text Available The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.

  2. The Shewanella oneidensis MR-1 Fluxome under Various OxygenConditions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Hwang, Judy S.; Wemmer, David E.; Keasling, Jay D.

    2006-03-17

    The central metabolic fluxes of Shewanella oneidensis MR-1were examined under carbon-limited (aerobic) and oxygen-limited(micro-aerobic) chemostat conditions using 13C labeled lactate as thesole carbon source. The carbon labeling patterns of key amino acids inbiomass were probed using both GC-MS and 13C-NMR. Based on the genomeannotation, a metabolic pathway model was constructed to quantify thecentral metabolic flux distributions. The model showed that thetricarboxylic acid (TCA) cycle is the major carbon metabolism route underboth conditions. The Entner-Doudoroff and pentose phosphate pathways weremainly utilized for biomass synthesis (flux below 5 percent of thelactate uptake rate). The anapleurotic reactions (pyruvate to malate andoxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt wereactive. Under carbon-limited conditions, a substantial amount of carbonwas oxidized via the highly reversible serine metabolic pathway. Fluxesthrough the TCA cycle were less whereas acetate production was more underoxygen limitation than under carbon limitation. Although fluxdistributions under aerobic, micro-aerobic, and shake-flask cultureconditions were dramatically different, the relative flux ratios of thecentral metabolic reactions did not vary significantly. Hence, S.oneidensis metabolism appears to be quite robust to environmentalchanges. Our study also demonstrates the merit of coupling GC-MS with 13CNMR for metabolic flux analysis to reduce the use of 13C labeledsubstrates and to obtain more accurate flux values.

  3. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-01-01

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H 2 S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater

  4. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Xiao-Bo [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, Hang [Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Du, Dao-Lin, E-mail: ddl@ujs.edu.cn [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun, Jian-Fan [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Feng, Yu-Jie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2015-05-15

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H{sub 2}S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater.

  5. Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*

    Science.gov (United States)

    Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2009-01-01

    Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057

  6. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation

    Science.gov (United States)

    Li, Xiaoping; Schilkey, Faye; Smith, Geoffrey B.

    2018-01-01

    Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth. PMID:29768440

  7. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  8. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2014-11-05

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

  9. Iron Triggers λSo Prophage Induction and Release of Extracellular DNA in Shewanella oneidensis MR-1 Biofilms

    OpenAIRE

    Binnenkade, Lucas; Teichmann, Laura; Thormann, Kai M.

    2014-01-01

    Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds...

  10. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  11. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Science.gov (United States)

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  13. Molecular Underpinnings of Fe(III Oxide Reduction by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2012-02-01

    Full Text Available In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III] (oxy(hydroxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 has evolved the machinery (i.e., metal-reducing or Mtr pathway for transferring electrons across the entire cell envelope to the surface of extracellular Fe(III oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt that is proposed to oxidize the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III oxidation have not been identified, they are believed to relay the electrons to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons across the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. Functioning as terminal reductases, the outer membrane and decaheme c-Cyts MtrC and OmcA can bind the surface of Fe(III oxides and transfer electrons directly to these minerals. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III oxides. MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III. Although our understanding of the Mtr pathway is still far from complete, it is the best characterized microbial pathway used for extracellular electron exchange. Characterizations of the Mtr pathway have made significant contributions to the molecular understanding of microbial reduction of Fe(III oxides.

  14. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    Science.gov (United States)

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  15. Real-Time Gene Expression Profiling of Live Shewanella Oneidensis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoliang Sunney Xie

    2009-03-30

    The overall objective of this proposal is to make real-time observations of gene expression in live Shewanella oneidensis cells with high sensitivity and high throughput. Gene expression, a central process to all life, is stochastic because most genes often exist in one or two copies per cell. Although the central dogma of molecular biology has been proven beyond doubt, due to insufficient sensitivity, stochastic protein production has not been visualized in real time in an individual cell at the single-molecule level. We report the first direct observation of single protein molecules as they are generated, one at a time in a single live E. coli cell, yielding quantitative information about gene expression [Science 2006; 311: 1600-1603]. We demonstrated a general strategy for live-cell single-molecule measurements: detection by localization. It is difficult to detect single fluorescence protein molecules inside cytoplasm - their fluorescence is spread by fast diffusion to the entire cell and overwhelmed by the strong autofluorescence. We achieved single-molecule sensitivity by immobilizing the fluorescence protein on the cell membrane, where the diffusion is much slowed. We learned that under the repressed condition protein molecules are produced in bursts, with each burst originating from a stochastically-transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. We also simultaneously published a paper reporting a different method using β-glactosidase as a reporter [Nature 440, 358 (2006)]. Many important proteins are expressed at low levels, inaccessible by previous proteomic techniques. Both papers allowed quantification of protein expression with unprecedented sensitivity and received overwhelming acclaim from the scientific community. The Nature paper has been identified as one of the most-cited papers in the past year [http://esi-topics.com/]. We have also an analytical framework describing the

  16. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    Directory of Open Access Journals (Sweden)

    Robert Bertram Miller

    Full Text Available Microbially induced corrosion (MIC is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly, ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  17. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis

    Science.gov (United States)

    Yin, Jianhua; Sun, Yiyang; Sun, Yijuan; Yu, Zhiliang; Qiu, Juanping; Gao, Haichun

    2018-01-01

    Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central role in the process. However, our previous studies have demonstrated that the expression of class D β-lactamase gene blaA in Shewanella oneidensis is distinct from the established paradigm since an AmpR homolog is absent and major peptidoglycan recycling enzymes play opposite roles in β-lactamase expression. Given that lytic transglycosylases (LTs), a class of peptidoglycan hydrolases cleaving the β-1,4 glycosidic linkage in glycan strands of peptidoglycan, can disturb peptidoglycan recycling, and thus may affect induction of blaA. In this study, we investigated impacts of such enzymes on susceptibility to β-lactams. Deletion of three LTs (SltY, MltB and MltB2) increased β-lactam resistance, while four other LTs (MltD, MltD2, MltF, and Slt2) seemed dispensable to β-lactam resistance. The double LT mutants ΔmltBΔmltB2 and ΔsltYΔmltB2 had β-lactam resistance stronger than any of the single mutants. Deletion of ampG (encoding permease AmpG) and mrcA (encoding penicillin binding protein 1a, PBP1a) from both double LT mutants further increased the resistance to β-lactams. Notably, all increased β-lactam resistance phenotypes were in accordance with enhanced blaA expression. Although significant, the increase in β-lactamase activity after inactivating LTs is much lower than that produced by PBP1a inactivation. Our data implicate that LTs play important roles in blaA expression in S. oneidensis. PMID:29403465

  18. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    Science.gov (United States)

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface

  19. Oxygen tension and riboflavin gradients cooperatively regulate the migration of Shewanella oneidensis MR-1 revealed by a hydrogel-based microfluidic device

    Directory of Open Access Journals (Sweden)

    Beum Jun Kim

    2016-09-01

    Full Text Available Shewanella oneidensis (S. oneidensis is a model bacterial strain for studies of bioelectrochemical systems (BESs. It has two extracellular electron transfer pathways: 1 shuttling electrons via an excreted mediator riboflavin; and 2 direct contact between the c-type cytochromes at the cell membrane and the electrode. Despite the extensive use of S. oneidensis in bioelectrochemical systems such as microbial fuel cells and biosensors, many basic microbiology questions about S. oneidensis in the context of BES remain unanswered. Here, we present studies of motility and chemotaxis of S. oneidensis under well controlled concentration gradients of two electron acceptors, oxygen and oxidized form of riboflavin (flavin+ using a newly developed microfluidic platform. Experimental results demonstrate that either oxygen or flavin+ is a chemoattractant to S. oneidensis. The chemotactic tendency of S. oneidensis in a flavin+ concentration gradient is significantly enhanced in an anaerobic in contrast to an aerobic condition. Furthermore, either a low oxygen tension or a high flavin+ concentration considerably enhances the speed of S. oneidensis. This work presents a robust microfluidic platform for generating oxygen and/or flavin+ gradients in an aqueous environment, and demonstrates that two important electron acceptors, oxygen and oxidized riboflavin, cooperatively regulate S. oneidensis migration patterns. The microfluidic tools presented as well as the knowledge gained in this work can be used to guide the future design of BESs for efficient electron production.

  20. c-Type cytochrome-dependent formation of U(IV nanoparticles by Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Matthew J Marshall

    2006-09-01

    Full Text Available Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI complexes in situ, the biomolecular mechanisms of U(VI reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI and formation of extracellular UO(2 nanoparticles. In particular, the outer membrane (OM decaheme cytochrome MtrC (metal reduction, previously implicated in Mn(IV and Fe(III reduction, directly transferred electrons to U(VI. Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS. In wild-type cells, this UO(2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2 nanoparticles with MtrC and OmcA (outer membrane cytochrome. This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2 nanoparticles. In the environment, such association of UO(2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2 or transport in soils and sediments.

  1. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2009-01-01

    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  2. Ferrihydrite-associated organic matter (OM stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    Directory of Open Access Journals (Sweden)

    R. E. Cooper

    2017-11-01

    Full Text Available The formation of Fe(III oxides in natural environments occurs in the presence of natural organic matter (OM, resulting in the formation of OM–mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III reduction in natural environments most often occurs in the presence of OM–mineral complexes rather than pure Fe(III minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III reduction by Shewanella oneidensis MR-1, a model Fe(III-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite–OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose mimics S. oneidensis under the same experimental Fe(III-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM–ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria during pure ferrihydrite incubations which are known to use Fe(III as an electron sink. Instead, OM–mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and

  3. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    Science.gov (United States)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron

  4. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    Science.gov (United States)

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  5. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors.

    Science.gov (United States)

    Harris, H Wayne; El-Naggar, Mohamed Y; Nealson, Kenneth H

    2012-12-01

    Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

  6. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma

    2015-06-01

    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  7. Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions.

    Science.gov (United States)

    Cao, Xinhua; Qi, Yueling; Xu, Chen; Yang, Yuyi; Wang, Jun

    2017-04-01

    Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.

  8. Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under Ultraviolet Light (UV) exposure

    International Nuclear Information System (INIS)

    Wu, Bing; Zhuang, Wei-Qin; Sahu, Manoranjan; Biswas, Pratim; Tang, Yinjie J.

    2011-01-01

    It has been shown that photocatalytic TiO 2 nanoparticles (NPs) can be used as an efficient anti-microbial agent under UV light due to generation of reactive oxygen species (ROS), while Shewanella oneidensis MR-1 is a metal-reducing bacterium highly susceptible to UV radiation. Interestingly, we found that the presence of Cu-doped TiO 2 NPs in the cultural medium dramatically increased the survival rates (based on colony-forming unit) of strain MR-1 by over 10,000-fold (incubation without shaking) and ∼ 200 fold (incubation with shaking) after a 2-h exposure to UV light. Gene expression results (via qPCR measurement) indicated that the DNA repair gene recA in MR-1 was significantly induced by UV exposure (indicating cellular damage under UV stress), but the influence of NPs on recA expression was not statistically evident. Plausible explanations to NP attenuation of UV stresses are: 1. TiO 2 based NPs are capable of scattering and absorbing UV light and thus create a shading effect to protect MR-1 from UV radiation; 2. more importantly, Cu-doped TiO 2 NPs can co-agglomerate with MR-1 to form large flocs that improves cells' survival against the environmental stresses. This study improves our understanding of NP ecological impacts under natural solar radiation and provides useful insights to application of photocatalytic-NPs for bacterial disinfection.

  9. WO3 nanorods-modified carbon electrode for sustained electron uptake from Shewanella oneidensis MR-1 with suppressed biofilm formation

    International Nuclear Information System (INIS)

    Zhang, Feng; Yuan, Shi-Jie; Li, Wen-Wei; Chen, Jie-Jie; Ko, Chi-Chiu; Yu, Han-Qing

    2015-01-01

    Highlights: • WO 3 nanorods-modified carbon paper was used as the anode of MFC. • WO 3 nanorods suppressed biofilm growth on the electrode surface. • Sustained electron transfer from cells to electrode via riboflavin was achieved. • C–WO 3 nanorods enable stable and efficient EET process in long-time operation. - Abstract: Carbon materials are widely used as electrodes for bioelectrochemical systems (BES). However, a thick biofilm tends to grow on the electrode surface during continuous operation, resulting in constrained transport of electrons and nutrients at the cell-electrode interface. In this work, we tackled this problem by adopting a WO 3 -nanorods modified carbon electrode (C–WO 3 nanorods), which completely suppressed the biofilm growth of Shewanella Oneidensis MR-1. Moreover, the C–WO 3 nanorods exhibited high electric conductivity and strong response to riboflavin. These two factors together make it possible for the C–WO 3 nanorods to maintain a sustained, efficient process of electron transfer from the MR-1 planktonic cells. As a consequence, the microbial fuel cells with C–WO 3 nanorods anode showed more stable performance than the pure carbon paper and WO 3 -nanoparticles systems in prolonged operation. This work suggests that WO 3 nanorods have the potential to be used as a robust and biofouling-resistant electrode material for practical bioelectrochemical applications

  10. Flavin as an Indicator of the Rate-Limiting Factor for Microbial Current Production in Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Saito, Junki; Hashimoto, Kazuhito; Okamoto, Akihiro

    2016-01-01

    Microbial electrode catalysis such as microbial fuel cells or electrosynthesis involves electron exchange with the electrodes located at the cell exterior; i.e., extracellular electron transport (EET). Despite the vast amount of research on the kinetics of EET to optimize the catalysis rate, the relevance of other factors, including upstream metabolic reactions, has scarcely been investigated. Herein, we report an in vivo electrochemical assay to confirm whether EET limits anodic current production (j) for the lactate oxidation of Shewanella oneidensis MR-1. Addition of riboflavin, which specifically enhances the EET rate, increased j only in the early phase before j saturation. In contrast, when we removed a trace metal ion necessary for upstream reactions from the electrolyte, a significant decrease in j and the lactate consumption rate was observed only after j saturation. These data suggest that the limiting factor for j shifted from EET to upstream reactions, highlighting the general importance of enhancing, for example, microbial metabolism, especially for long-standing practical applications. Our concept to specifically control the rate of EET could be applicable to other bioelectrode catalysis systems as a strategy to monitor their rate-limiting factors.

  11. Integrated Analysis of Protein Complexes and Regulatory Networks Involved in Anaerobic Energy Metabolism of Shewanella Oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, James M.

    2005-06-01

    Anaerobic Nitrate Reduction. Nitrate is an extensive co-contaminant at some DOE sites making metal and radionuclide reduction problematic. Hence, we sought to better understand the nitrate reduction pathway and its control in S. oneidensis MR-1. It is not known whether the nitrate reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, we proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, we identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant, indicating that NapA is the only nitrate reductase present. The anaerobic expression of napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO3. This indicates that these genes are not repressed by increasing concentrations of nitrate. The reduction of nitrate can generate intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose. The role of EtrA, a homolog of Fnr (global anaerobic regulator in E. coli) was examined using an etrA deletion mutant we constructed, S. oneidensis EtrA7-1.

  12. Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Wu, Ranran; Tian, Xiaochun; Xiao, Yong

    2018-01-01

    of formate with 200 mV less over-potential. Notably they show unique selective activity toward electrochemical oxidation of formate, whereas no electrochemical catalysis was found for oxidation of ethanol, methanol and acetate. This work demonstrates a sustainable and low-cost method for producing efficient......Production of molecular scale palladium (Pd) nanoparticles (NPs) is important due to their catalytic function in electrochemical oxidation of a number of core fuel molecules in fuel cells. Biogenic methods offer an economic and environmentally friendly synthesis route. In this work...... membrane surface. Mapping by conductive atomic force microscopy shows that the presence of these PdNPs promotes electron transfer and enhances the electric conductivity of the cells. Compared to electrodeposited PdNPs, PdNPs generated by S. oneidensis MR-1 catalyze electrochemically the oxidation...

  13. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

    Science.gov (United States)

    Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel

    2018-04-01

    In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms.

    Science.gov (United States)

    Binnenkade, Lucas; Teichmann, Laura; Thormann, Kai M

    2014-09-01

    Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Mónica N. Alves

    2015-06-01

    Full Text Available The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1 relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR, but not with cytochrome c nitrite reductase (ccNiR. In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA, the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB-OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC.

  16. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.

    Science.gov (United States)

    Wang, Li; Chen, Siyuan; Ding, Yiming; Zhu, Qiang; Zhang, Nijia; Yu, Shuqing

    2018-01-01

    The present work determines the anticancer activity of bio-mediated synthesized cadmium sulfide nanoparticles using the ionic liquid and bacterial cells (Shewanella oneidensis). Bacterial cells have been exposed to be important resources that hold huge potential as ecofriendly, cost-effective, evading toxic of dangerous chemicals and the alternative of conventional physiochemical synthesis. The Shewanella oneidensis is an important kind of metal reducing bacterium, known as its special anaerobic respiratory and sulfate reducing capacity. The crystalline nature, phase purity and surface morphology of biosynthesized cadmium sulfide nanoparticles were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive spectroscopy and Transmission electron microscopy. The use of imidazolium based ionic liquids as soft templating agent for controlling self-assembly and crystal growth direction of metal sulfide nanoparticles has also advanced as an important method. The microscopic techniques showed that the nanoparticles are designed on the nano form and have an excellent spherical morphology, due to the self-assembled mechanism of ionic liquid assistance. The antitumor efficiency of the cadmium sulfide nanoparticles was investigated against brain cancer cell lines using rat glioma cell lines. The effectively improved nano-crystalline and morphological structure of CdS nanoparticles in the presence of IL exhibit excellent cytotoxicity and dispersion ability on the cell shape is completely spread out showing a nice toxic environment against cancer cells. The cytotoxicity effect of cadmium sulfide nanoparticles was discussed with a diagrammatic representation. Copyright © 2017. Published by Elsevier B.V.

  17. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe

  18. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148.

    Science.gov (United States)

    Uno, Megumi; Phansroy, Nichanan; Aso, Yuji; Ohara, Hitomi

    2017-08-01

    Shewanella oneidensis MR-1 generates electricity from lactic acid, but cannot utilize starch. On the other hand, Streptococcus bovis 148 metabolizes starch and produces lactic acid. Therefore, two methods were trialed for starch-fueled microbial fuel cell (MFC) in this study. In electric generation by two-step fermentation (EGT) method, starch was first converted to lactic acid by S. bovis 148. The S. bovis 148 were then removed by centrifugation, and the fermented broth was preserved for electricity generation by S. oneidensis MR-1. Another method was electric generation by parallel fermentation (EGP) method. In this method, the cultivation and subsequent fermentation processes of S. bovis 148 and S. oneidensis MR-1 were performed simultaneously. After 1, 2, and 3 terms (5-day intervals) of S. oneidensis MR-1 in the EGT fermented broth of S. bovis 148, the maximum currents at each term were 1.8, 2.4, and 2.8 mA, and the maximum current densities at each term were 41.0, 43.6, and 49.9 mW/m 2 , respectively. In the EGP method, starch was also converted into lactic acid with electricity generation. The maximum current density was 140-200 mA/m 2 , and the maximum power density of this method was 12.1 mW/m 2 . Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  20. The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions.

    Science.gov (United States)

    Gomaa, Ola M; Fapetu, Segun; Kyazze, Godfrey; Keshavarz, Tajalli

    2017-03-01

    Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m 2 . There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (P max 76 mW/m 2 ) compared to the wild type (P max 46 mW/m 2 ) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.

  1. Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Romine, Margaret F.; Schepmoes, Athena A.; Smith, Richard D.; Lipton, Mary S.

    2010-07-19

    A simple and effective subcellular proteomic method for fractionation and analysis of gram-negative bacterial cytoplasm, periplasm, inner, and outer membranes was applied to Shewanella oneidensis to gain insight into its subcellular architecture. A combination of differential centrifugation, Sarkosyl solubilization, and osmotic lysis was used to prepare subcellular fractions. Global differences in protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution LC-MS/MS. Compared to crude cell lysates, the fractionation method achieved a significant enrichment (average ~2-fold) in proteins predicted to be localized to each subcellular fraction. Compared to other detergent, organic solvent, and density-based methods previously reported, Sarkosyl most effectively facilitated separation of the inner and outer membranes and was amenable to mass spectrometry, making this procedure ideal for probing the subcellular proteome of gram-negative bacteria via LC-MS/MS. With 40% of the observable proteome represented, this study has provided extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other gram-negative bacteria.

  2. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer

  3. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dorothea K. Thompson; Robert Hettich

    2007-02-06

    Shewanella oneidensis MR-1 is a model environmental organism that possesses diverse respiratory capacities, including the ability to reduce soluble Cr(VI) to sparingly soluble, less toxic Cr(III). Chromate is a serious anthropogenic pollutant found in subsurface sediment and groundwater environments due to its widespread use in defense and industrial applications. Effective bioremediation of chromate-contaminated sites requires knowledge of the molecular mechanisms and regulation of heavy metal resistance and biotransformation by dissimilatory metal-reducing bacteria. Towards this goal, our ERSP-funded work was focused on the identification and functional analysis of genes/proteins comprising the response pathways for chromate detoxification and/or reduction. Our work utilized temporal transcriptomic profiling and whole-cell proteomic analyses to characterize the dynamic molecular response of MR-1 to an acute chromate shock (up to 90 min) as well as to a 24-h, low-dose exposure. In addition, we have examined the transcriptome of MR-1 cells actively engaged in chromate reduction. These studies implicated the involvement of a functionally undefined DNA-binding response regulator (SO2426) and a putative azoreductase (SO3585) in the chromate stress response of MR-1.

  4. Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force.

    Science.gov (United States)

    Youngblut, Matthew; Pauly, Daniel J; Stein, Natalia; Walters, Daniel; Conrad, John A; Moran, Graham R; Bennett, Brian; Pacheco, A Andrew

    2014-04-08

    Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.

  5. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Regulation of biofilm formation in Shewanella oneidensis by BpfA, BpfG, and BpfD

    Directory of Open Access Journals (Sweden)

    Guangqi eZhou

    2015-08-01

    Full Text Available Bacteria switch between two distinct life styles -- planktonic (free living and biofilm forming -- in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in S. oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

  7. Global Molecular and Morphological Effects of 24-Hour Chromium(VI)Exposure on Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Thompson, Melissa R [ORNL; Morrell-Falvey, Jennifer L [ORNL; Verberkmoes, Nathan C [ORNL; Brown, Steven D [ORNL; Shah, Manesh B [ORNL; Zhou, Jizhong [ORNL; Doktycz, Mitchel John [ORNL; Hettich, Robert {Bob} L [ORNL; Thompson, Dorothea K [ORNL

    2006-01-01

    The biological impact of 24-h ("chronic") chromium(VI) [Cr(VI) or chromate] exposure on ShewanellaoneidensisMR-1 was assessed by analyzing cellular morphology as well as genome-wide differential gene and protein expression profiles. Cells challenged aerobically with an initial chromate concentration of 0.3 mM in complex growth medium were compared to untreated control cells grown in the absence of chromate. At the 24-h time point at which cells were harvested for transcriptome and proteome analyses, no residual Cr(VI) was detected in the culture supernatant, thus suggesting the complete uptake and/or reduction of this metal by cells. In contrast to the untreated control cells, Cr(VI)-exposed cells formed apparently aseptate, nonmotile filaments that tended to aggregate. Transcriptome profiling and mass spectrometry-based proteomic charac terization revealed that the principal molecular response to 24-h Cr(VI) exposure was the induction of prophage-related genes and their encoded products as well as a number of functionally undefined hypothetical genes that were located within the integrated phage regions of the MR-1 genome. In addition, genes with annotated functions in DNA metabolism, cell division, biosynthesis and degradation of the murein (pepti doglycan) sacculus, membrane response, and general environmental stress protection were upregulated, while genes encoding chemotaxis, motility, and transport/binding proteins were largely repressed under conditions of 24-h chromate treatment.

  8. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    Document available in extended abstract form only. The safe disposal of nuclear waste is a major concern for the nuclear energy industry. The high-level long-lived waste (HLNW) should be maintained for millions of years in clay formations at 500 metres depth in order to prevent the migration of radionuclides. Thence, different kinds of materials such as, carbon steel, stainless steel, concrete, clay, etc., are chosen aiming to last as long as possible and to preserve the radioactivity properties. In contrast, the anoxic corrosion of the different metallic envelopes is an expected phenomenon due to the changes on the environmental conditions (such as re-saturation) within HLNW repositories. In this context, corrosion products like iron oxides (i.e. magnetite, Fe 3 O 4 ), and hydrogen will be also expected. On the one hand, hydrogen poses a significant threat to the nuclear waste repository when it is accumulated for a long time in the surrounding clay - such hydrogen production may damage the barrier properties of the geological formation, affecting the safety of the repository. On the other hand, hydrogen production represents a new energy source for bacterial growth, especially in such environments with low content of biodegradable organic matter. Moreover, some hydrogeno-trophic bacteria can also use Fe 3+ as an electron acceptor for their development. Therefore, the biological activity and biofilm formation could interfere in the metal corrosion behaviour. This phenomenon is widely known by MIC (Microbiologically Influenced Corrosion), which can represent a huge problem when promoting local corrosion. The objective of this study is to better understand the influence of local hydrogen formation in the carbon steel bio-corrosion process in the presence of Shewanella oneidensis MR-1, a model of Iron Reducing Bacteria (IRB), in order to evaluate the impact of the bacterial activity in terms of long term behaviour of geological disposal materials. In this study

  9. Redox sensing within the genus Shewanella

    NARCIS (Netherlands)

    Harris, Howard W.; Sánchez-Andrea, Irene; McLean, Jeffrey S.; Salas, Everett C.; Tran, William; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA). It is the result of a series of "run-and-reversal" events enabled by modulation of swimming speed and direction. The model

  10. Functional Analysis of Shewanella, a cross genome comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  11. Integrated genome-based studies of Shewanella ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Segre Daniel; Beg Qasim

    2012-02-14

    This project was a component of the Shewanella Federation and, as such, contributed to the overall goal of applying the genomic tools to better understand eco-physiology and speciation of respiratory-versatile members of Shewanella genus. Our role at Boston University was to perform bioreactor and high throughput gene expression microarrays, and combine dynamic flux balance modeling with experimentally obtained transcriptional and gene expression datasets from different growth conditions. In the first part of project, we designed the S. oneidensis microarray probes for Affymetrix Inc. (based in California), then we identified the pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, using our newly designed high-density oligonucleotide Affymetrix microarray on Shewanella cells grown with various carbon sources. Next, using a combination of experimental and computational approaches, we built algorithm and methods to integrate the transcriptional and metabolic regulatory networks of S. oneidensis. Specifically, we combined mRNA microarray and metabolite measurements with statistical inference and dynamic flux balance analysis (dFBA) to study the transcriptional response of S. oneidensis MR-1 as it passes through exponential, stationary, and transition phases. By measuring time-dependent mRNA expression levels during batch growth of S. oneidensis MR-1 under two radically different nutrient compositions (minimal lactate and nutritionally rich LB medium), we obtain detailed snapshots of the regulatory strategies used by this bacterium to cope with gradually changing nutrient availability. In addition to traditional clustering, which provides a first indication of major regulatory trends and transcription factors activities, we developed and implemented a new computational approach for Dynamic Detection of Transcriptional Triggers (D2T2). This new method allows us to infer a putative topology of transcriptional dependencies

  12. Redox Sensing within the Genus Shewanella

    Directory of Open Access Journals (Sweden)

    Howard W. Harris

    2018-01-01

    Full Text Available A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA. It is the result of a series of “run-and-reversal” events enabled by modulation of swimming speed and direction. The model proposed that the swimming cells constantly sense their surroundings with specialized outer membrane cytochromes capable of extracellular electron transport (EET. Up to this point, neither the congregation nor attachment behavior have been studied in any other strains. In this study, the wild type of S. oneidensis MR-1 and several deletion mutants as well as eight other Shewanella strains (Shewanella putrefaciens CN32, S. sp. ANA-3, S. sp. W3-18-1, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Shewanella denitrificans OS217, Shewanella baltica OS155, and Shewanella frigidimarina NCIMB400 were screened for the ability to congregate. To monitor congregation and attachment, specialized cell-tracking techniques, as well as a novel cell accumulation after photo-bleaching (CAAP confocal microscopy technique were utilized in this study. We found a strong correlation between the ability of strain MR-1 to accumulate on mineral surface and the presence of key EET genes such as mtrBC/omcA (SO_1778, SO_1776, and SO_1779 and gene coding for methyl-accepting protein (MCPs with Ca+ channel chemotaxis receptor (Cache domain (SO_2240. These EET and taxis genes were previously identified as essential for characteristic run and reversal swimming around IEA surfaces. CN32, ANA-3, and PV-4 congregated around both Fe(OH3 and MnO2. Two other Shewanella spp. showed preferences for one oxide over the other: preferences that correlated with the metal content of the environments from which the strains were isolated: e.g., W3-18-1, which was isolated from an iron-rich habitat congregated and attached preferentially to Fe(OH3, while SB2B, which was isolated from a MnO2-rich

  13. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  14. Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1.

    Science.gov (United States)

    Cherkouk, Andrea; Law, Gareth T W; Rizoulis, Athanasios; Law, Katie; Renshaw, Joanna C; Morris, Katherine; Livens, Francis R; Lloyd, Jonathan R

    2016-03-28

    Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 μM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments.

  15. Integrated Genome-Based Studies of Shewanella Ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Andrei L. Osterman, Ph.D.

    2012-12-17

    Integration of bioinformatics and experimental techniques was applied to mapping and characterization of the key components (pathways, enzymes, transporters, regulators) of the core metabolic machinery in Shewanella oneidensis and related species with main focus was on metabolic and regulatory pathways involved in utilization of various carbon and energy sources. Among the main accomplishments reflected in ten joint publications with other participants of Shewanella Federation are: (i) A systems-level reconstruction of carbohydrate utilization pathways in the genus of Shewanella (19 species). This analysis yielded reconstruction of 18 sugar utilization pathways including 10 novel pathway variants and prediction of > 60 novel protein families of enzymes, transporters and regulators involved in these pathways. Selected functional predictions were verified by focused biochemical and genetic experiments. Observed growth phenotypes were consistent with bioinformatic predictions providing strong validation of the technology and (ii) Global genomic reconstruction of transcriptional regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors, 8 riboswitches and 6 translational attenuators. Of those, 45 regulons were inferred directly from the genome context analysis, whereas others were propagated from previously characterized regulons in other species. Selected regulatory predictions were experimentally tested. Integration of this analysis with microarray data revealed overall consistency and provided additional layer of interactions between regulons. All the results were captured in the new database RegPrecise, which is a joint development with the LBNL team. A more detailed analysis of the individual subsystems, pathways and regulons in Shewanella spp included bioinfiormatics-based prediction and experimental characterization of: (i) N-Acetylglucosamine catabolic pathway; (ii)Lactate utilization machinery; (iii) Novel Nrt

  16. The genus Shewanella: from the briny depths below to human pathogen.

    Science.gov (United States)

    Janda, J Michael; Abbott, Sharon L

    2014-11-01

    The genus Shewanella is currently composed of more than 50 species that inhabit a range of marine environs and ecosystems. Several members of this genus, including S. oneidensis, have been identified that could potentially play key roles in environmental processes such as bioremediation of toxic elements and heavy metals and serving as microbial fuel cells. In contrast to this beneficial role, shewanellae are increasingly being implicated as human pathogens in persons exposed through occupational or recreational activities to marine niches containing shewanellae. Documented illnesses linked to Shewanella include skin and soft tissue infections, bacteremia, and otitis media. At present, it is unclear exactly how many Shewanella species are truly bona fide human pathogens. Recent advances in the taxonomy and phylogenetic relatedness of members of this genus, however, support the concept that most human infections are caused by a single species, S. algae. Some phylogenetic data further suggest that some current members of the genus are not true Shewanella species sensu stricto. The current review summarizes our present knowledge of the distribution, epidemiology, disease spectrum, and identification of microbial species focusing on a clinical perspective.

  17. Characterization of lead nanoparticles formed by Shewanella sp. KR-12

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chien-Liang; Yen, Jui-Hung, E-mail: sonny@ntu.edu.tw [National Taiwan University, Department of Agricultural Chemistry (China)

    2016-01-15

    The bacterial strain KR-12 was isolated from river sediment in northeast Taiwan. 16S rRNA gene sequencing revealed that it belongs to the genus Shewanella. The strain can accumulate lead (Pb) and form Pb nanoparticles (PbNPs) on exposure to Pb(NO{sub 3}){sub 2} and sodium formate in HEPES buffer. On transmission electron microscopy (TEM), the KR-12-formed PbNPs were spherical in shape and ranged from 3 to 8 nm. The PbNPs formed a line or curved pattern on bacteria. In addition, one or more pilus-like structures elongated from the bacteria. In contrast, Shewanella oneidensis MR-1 and other bacteria could not form PbNPs pattern or pilus-like structure under the same conditions. High-resolution TEM combined with energy-dispersive X-ray spectroscopy demonstrated that these PbNPs primarily contained Pb and had an amorphous structure. This is the first report of the biosynthesis of PbNPs by a Shewanella species.

  18. Integrated Genome-Based Studies of Shewanella Echophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high

  19. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  20. Removal of U(VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugoel Lake in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Abdehvand, Adib Zaheri; Keshtkar, Alireza; Fatemi, Faezeh [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School; Tarhiz, Vahideh; Hejazi, Mohammad Saeid [Tabriz Univ. of Medical Sciences (Iran, Islamic Republic of). Molecular Medicine Research Center

    2017-04-01

    Isolation, genotypic and phenotypic characterization of an aqueous bacterium, Shewanella sp RCRI7, from Qurugoel Lake in Iran and uranium removal from aqueous solutions using the isolate is described. Based on 16S rRNA gene sequence analysis and phylogenetic tree, strain RCRI7{sup T} falls into genus Shewanella. Closely related type strains include Shewanella xiamenensis S4{sup T} KJ542801, Shewanella profunda DSM15900{sup T} FR733713, Shewanella putrefaciens LMG 26268{sup T} X81623 and Shewanella oneidensis MR-1{sup T} AE014299. Anaerobic incubation of the bacteria in the presence of U(VI) led to uranium removal from the solution and formation of a black precipitate. Analysis of the precipitate using UV-vis confirmed the reduction of U(VI) to U(IV). The effects of pH, temperature, U(VI) concentration and cell density on uranium removal were elucidated. The maximum uranium removal was 97%. As a conclusion, the findings revealed the ability of the local strain RCRI7 for U(VI) bioreduction as an effective bacterium for uranium immobilization.

  1. Removal of U(VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugoel Lake in Iran

    International Nuclear Information System (INIS)

    Abdehvand, Adib Zaheri; Keshtkar, Alireza; Fatemi, Faezeh; Tarhiz, Vahideh; Hejazi, Mohammad Saeid

    2017-01-01

    Isolation, genotypic and phenotypic characterization of an aqueous bacterium, Shewanella sp RCRI7, from Qurugoel Lake in Iran and uranium removal from aqueous solutions using the isolate is described. Based on 16S rRNA gene sequence analysis and phylogenetic tree, strain RCRI7 T falls into genus Shewanella. Closely related type strains include Shewanella xiamenensis S4 T KJ542801, Shewanella profunda DSM15900 T FR733713, Shewanella putrefaciens LMG 26268 T X81623 and Shewanella oneidensis MR-1 T AE014299. Anaerobic incubation of the bacteria in the presence of U(VI) led to uranium removal from the solution and formation of a black precipitate. Analysis of the precipitate using UV-vis confirmed the reduction of U(VI) to U(IV). The effects of pH, temperature, U(VI) concentration and cell density on uranium removal were elucidated. The maximum uranium removal was 97%. As a conclusion, the findings revealed the ability of the local strain RCRI7 for U(VI) bioreduction as an effective bacterium for uranium immobilization.

  2. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    International Nuclear Information System (INIS)

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-01-01

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  3. Shewanella putrefaciens infective endocarditis

    Directory of Open Access Journals (Sweden)

    Jonathan Constant

    2014-11-01

    Full Text Available Shewanella putrefaciens rarely causes infection in humans. In the last few decades a growing number of cases have been described. The following report outlines the case of a 40-year-old immunocompetent white man with S. putrefaciens infective endocarditis. This is the first known case of infective endocarditis due to an apparently monomicrobial S. putrefaciens infection, and the second known case of S. putrefaciens-related infective endocarditis worldwide.

  4. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    NEALSON, KENNETH H.

    2013-10-15

    This project had as its goals the understanding of the ecophysiology of the genus Shewanella using various genomics approaches. As opposed to other programs involving Shewanella, this one branched out into the various areas in which Shewanella cells are active, and included both basic and applied studies. All of the work was, to some extent, related to the ability of the bacteria to accomplish electron exchange between the cell and solid state electron acceptors and/or electron donors, a process we call Extracellular Electron Transport, or EET. The major accomplishments related to several different areas: Basic Science Studies: 1. Genetics and genomics of nitrate reduction, resulting in elucidation of atypical nitrate reduction systems in Shewanella oneidensis (MR-1)[2]. 2. Influence of bacterial strain and growth conditions on iron reduction, showing that rates of reduction, extents of reduction, and the formation of secondary minerals were different for different strains of Shewanella [3,4,9]. 3. Comparative genomics as a tool for comparing metabolic capacities of different Shewanella strains, and for predicting growth and metabolism [6,10,15]. In these studies, collaboration with ORNL, PNNL, and 4. Basic studies of electron transport in strain MR-1, both to poised electrodes, and via conductive nanowires [12,13]. This included the first accurate measurements of electrical energy generation by a single cell during electrode growth [12], and the demonstration of electrical conductivity along the length of bacterial nanowires [13]. 5. Impact of surface charge and electron flow on cell movement, cell attachment, cell growth, and biofilm formation [7.18]. The demonstration that interaction with solid state electron acceptors resulted in increased motility [7] led to the description of a phenomenon called electrokinesis. The importance of this for biofilm formation and for electron flow was hypothesized by Nealson & Finkel [18], and is now under study in several

  5. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.

    Science.gov (United States)

    Kitayama, Miho; Koga, Ryota; Kasai, Takuya; Kouzuma, Atsushi; Watanabe, Kazuya

    2017-09-01

    An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 μm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes. IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis , limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current

  6. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

    Directory of Open Access Journals (Sweden)

    Gal Schkolnik

    Full Text Available Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp, thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.

  7. Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR–1 extracellular matrix

    Czech Academy of Sciences Publication Activity Database

    Motovilov, K.A.; Savinov, Maxim; Zhukova, E.S.; Pronin, A.A.; Gagkaeva, Z.V.; Grinenko, V.; Sidoruk, K.V.; Voeikova, T.A.; Barzilovich, P.Y.; Grebenko, A.K.; Lisovskii, S.V.; Torgashev, V. I.; Bednyakov, Petr; Pokorný, Jan; Dressel, M.; Gorshunov, B. P.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-11, č. článku 15731. ISSN 2045-2322 R&D Projects: GA ČR GA16-12757S Institutional support: RVO:68378271 Keywords : bovine serum-albumin * microbial fuel -cells * acterial nanowires * electron-transport * secondary structure * disordered solids * outer-membrane * ac conduction * boson peak * protein Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  8. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    Science.gov (United States)

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Integrated genome-based studies of Shewanella Ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, James M. [Michigan State Univ., East Lansing, MI (United States); Konstantinidis, Kostas [Michigan State Univ., East Lansing, MI (United States); Worden, Mark [Michigan State Univ., East Lansing, MI (United States)

    2014-01-08

    The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The tasks supporting this aim are: to study genetic and ecophysiological bases defining the core and diversification of Shewanella species; to determine gene content patterns along redox gradients; and to Investigate the evolutionary processes, patterns and mechanisms of Shewanella.

  10. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  11. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  12. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish.

    Science.gov (United States)

    Fonnesbech Vogel, Birte; Venkateswaran, Kasthuri; Satomi, Masataka; Gram, Lone

    2005-11-01

    Shewanella putrefaciens has been considered the main spoilage bacteria of low-temperature stored marine seafood. However, psychrotropic Shewanella have been reclassified during recent years, and the purpose of the present study was to determine whether any of the new Shewanella species are important in fish spoilage. More than 500 H2S-producing strains were isolated from iced stored marine fish (cod, plaice, and flounder) caught in the Baltic Sea during winter or summer time. All strains were identified as Shewanella species by phenotypic tests. Different Shewanella species were present on newly caught fish. During the warm summer months the mesophilic human pathogenic S. algae dominated the H2S-producing bacterial population. After iced storage, a shift in the Shewanella species was found, and most of the H2S-producing strains were identified as S. baltica. The 16S rRNA gene sequence analysis confirmed the identification of these two major groups. Several isolates could only be identified to the genus Shewanella level and were separated into two subgroups with low (44%) and high (47%) G+C mol%. The low G+C% group was isolated during winter months, whereas the high G+C% group was isolated on fish caught during summer and only during the first few days of iced storage. Phenotypically, these strains were different from the type strains of S. putrefaciens, S. oneidensis, S. colwelliana, and S. affinis, but the high G+C% group clustered close to S. colwelliana by 16S rRNA gene sequence comparison. The low G+C% group may constitute a new species. S. baltica, and the low G+C% group of Shewanella spp. strains grew well in cod juice at 0 degrees C, but three high G+C Shewanella spp. were unable to grow at 0 degrees C. In conclusion, the spoilage reactions of iced Danish marine fish remain unchanged (i.e., trimethylamine-N-oxide reduction and H2S production); however, the main H2S-producing organism was identified as S. baltica.

  13. Integrated genome based studies of Shewanella ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Saffarini, Daad A

    2013-03-07

    Progress is reported in these areas: Regulation of anaerobic respiration by cAMP receptor protein and role of adenylate cyclases; Identification of an octaheme c cytochrome as the terminal sulfite reductase in S. oneidensis MR-1; Identification and analysis of components of the electron transport chains that lead to reduction of thiosulfate, tetrathionate, and elemental sulfur in MR-1; Involvement of pili and flagella in metal reduction by S. oneidensis MR-1; and work suggesting that HemN1 is the major enzyme that is involved in heme biosynthesis under anaerobic conditions.

  14. [A rare cause of pneumonia: Shewanella putrefaciens].

    Science.gov (United States)

    Durdu, Bülent; Durdu, Yasemin; Güleç, Nuray; Islim, Filiz; Biçer, Mualla

    2012-01-01

    Shewanella putrefaciens is a gram-negative, non-fermentative, oxidase positive, motile bacillus that produces hydrogen sulphide. It is found widely in the nature especially in marine environments. Although it is accepted as saprophytic, different clinical syndromes, most commonly skin or soft tissue infections, have been associated with S.putrefaciens, mainly in immunocompromised cases and patients with underlying diseases. However, pneumonia cases due to S.putrefaciens are quite limited in the literature. In this report, a case of pneumonia caused by S.putrefaciens was presented. A 43-year-old female patient was admitted to our hospital with the complaints of fever, cough, sputum and weakness. The patient has had brochiectasis since childhood and has used periodical antibiotic therapies due to pneumoniae episodes. She was diagnosed to have pneumonia based on the clinical, radiological and laboratory findings, and empirical antibiotic treatment with ciprofloxacin and ceftazidime combination was initiated. Gram-stained smear of sputum yielded abundant leucocytes and gram-negative bacteria, and the isolate grown in the sputum culture was identified as S.putrefaciens by conventional methods and API 20 NE (BioMerieux, France) system. The isolate was found susceptible to ceftriaxone, ceftazidime, cefepime, ciprofloxacin, piperacillin-tazobactam, cephoperazon-sulbactam, imipenem, amikacin, gentamicin and trimethoprime-sulphametoxazole; whereas resistant to ampicillin, amoxycillin-clavulanate, cefazolin and cefuroxime, by Kirby-Bauer disk diffusion method. According to the antibiogram results, the therapy was changed to ceftriaxone (1 x 2 g, intravenous). The patient was discharged with complete cure after 14 days of therapy. In conclusion, S.putrefaciens should be considered in patients with predisposing factors as an unusual cause of pneumonia and the characteristics such as H2S production and sensitivity to third generation cephalosporins and penicillins should be used

  15. Integrated Genome-Based Studies of Shewanella Ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong [Univ. of Oklahoma, Norman, OK (United States); He, Zhili [Univ. of Oklahoma, Norman, OK (United States)

    2014-04-08

    As a part of the Shewanella Federation project, we have used integrated genomic, proteomic and computational technologies to study various aspects of energy metabolism of two Shewanella strains from a systems-level perspective.

  16. A Rare Case of Pneumonia Caused by Shewanella putrefaciens

    Directory of Open Access Journals (Sweden)

    Rajshree Patel

    2012-01-01

    Full Text Available Shewanella putrefaciens is a gram-negative, nonfermentative, oxidase positive, motile bacillus that produces hydrogen sulphide. It is found widely in the nature especially in marine environments. In some very rare cases Shewanella putrefaciens can be a human pathogen. It can produce a wide variety of clinical syndromes including bacteremia as well as skin and soft tissue infections. However, pneumonia due to S. putrefaciens is rare; there are a total of 4 reported cases in the literature. We present a case of 63-year-old male who was presented to emergency room status after cardiac arrest, fell into sea water face down. On the second day of hospitalization, he was diagnosed to have pneumonia based on the clinical, radiological, and laboratory findings. Empirical antibiotic treatment with vancomycin and piperacillin/tazobactam combination was initiated. Gram-stained smear of endotracheal aspirate yielded gram-negative bacteria, and the isolate grown from endotracheal aspirate culture was identified as S. putrefaciens by Biomerieux API 20 NE technique. On review of the literature and according to culture and sensitivity results, therapy in our patient was changed to cefepime. Patient’s pneumonia improved with treatment with cefepime. We believe that our patient developed pneumonia evidently caused by S. putrefaciens, after near drowning in sea water. The pneumonia resolved after treatment with cefepime.

  17. Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3

    Science.gov (United States)

    Aigle, Axel; Bonin, Patricia; Iobbi-Nivol, Chantal; Méjean, Vincent; Michotey, Valérie

    2017-03-01

    To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.

  18. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  19. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Science.gov (United States)

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  20. Shewanella strain isolated from black powder

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia T.S.; Contador, Luciana S.; Oliveira, Ana Lucia C.; Galvao, Mariana M. [National Institute of Technology (INT), Rio de Janeiro, RJ (Brazil); Pimenta, Gutemberg S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Black powder is a term frequently used to refer to residues formed by various types of iron sulfides mixed with contaminants eventually present in the natural gas flow. According to some researchers, the occurrence of black powder in gas pipelines, besides its chemical corrosion origin, can be directly related to the sulfate-reducing bacteria (SRB) metabolism in this environment. A black powder sample was inoculated in a Post gate E medium modified with the addition of thioglycolate. The resulting positive culture was kept in the laboratory for four years until its use. A dilution technique was then performed aiming to isolate an SRB strain. The bacterial strain isolated and identified through DNA sequencing was not an SRB but rather a Shewanella sp. Compared to the sulfate-reducing bacteria group-traditionally considered the foremost responsible for microbially-influenced corrosion (MIC) - Shewanella is a facultative anaerobe and has a versatile metabolism. Shewanella is able to reduce ferric iron and sulfite, oxidize hydrogen gas, and produce hydrogen sulfide; therefore, these bacteria can be responsible for MIC and pit formation. The isolated Shewanella was used in a corrosion experiment, and the corrosion products were characterized by X-ray diffraction, identifying iron sulfides, iron oxides, and sulfur. Our results indicate that the strain isolated, S. putrefaciens, plays a key role in corrosion problems in gas pipelines. (author)

  1. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular (Postprint)

    Science.gov (United States)

    2016-06-06

    cathodic conditions, oxidized and reduced heme states were assumed, respectively. The calculated results are summarized in Table 2. The solvation free...reports favor a flavin-bound model, proposing two one- electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to...hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at

  2. Rapid Precipitation of Amorphous Silica in Experimental Systems with Nontronite (NAu-1) and Shewanella oneidensis MR-1

    National Research Council Canada - National Science Library

    Furukawa, Yoko; O'Reilly, S. E

    2007-01-01

    ...) silica globule formation was confirmed in the immediate vicinity of bacterial cells and extracellular polymeric substances in all experimental systems that contained bacteria, whether the bacteria...

  3. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  4. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    Science.gov (United States)

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  5. Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments.

    Science.gov (United States)

    Zhou, Guangqi; Yin, Jianhua; Chen, Haijiang; Hua, Yijie; Sun, Linlin; Gao, Haichun

    2013-09-01

    Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.

  6. Recovery of Elemental Palladium by Shewanella putrefaciens

    Science.gov (United States)

    Akasaka, S.; Xia, X.; Sawada, K.; Enokida, Y.; Yamamoto, I.; Ohnuki, T.

    2006-12-01

    Microbial reduction of metals plays an important role in environmental behavior and provides a technique for the recovery of metals from industrial wastewater. Recently, demand for platinum group metals (PGMs) increases by their catalytic properties. The extreme rarity of PGMs have led to a growing interest in their recovery. Palladium, one of PGMs, has different oxidation states of Pd(II) and Pd(0). The oxidized form of Pd(II) is soluble, while the reduced form of Pd(0) is insoluble. In this study, microbial reduction of palladium by Fe(III)- reducing bacterium, Shewanella putrefaceins was conducted. This bacterium is known to be capable of reducing metals, such as Mn(IV), U(VI), or Tc(VII) with organic C or H2 as an electron donor. In order to investigate the potential of S. putrefaciens to reduce Pd(II) in solution, resting cells or heat-killed cells were suspended under anaerobic conditions with lactate or H2 as an electron donor. The cells of S. putrefaciens (NBRC3908) were grown in aerobic medium, harvested by centrifugation, and then washed with 25 mmol/dm3 HEPES and 100 mmol/dm3 NaCl (HEPES-NaCl) solution (pH 7.0). The heat-killed cells were autoclaved for 20 min at 121 degrees C. The cell suspension (21.5 mg in dry weight) was resuspended in the HEPES-NaCl solution which contained 1.0 mmol/dm3 Na2PdCl4 (Wako Pure chemical Industries, Ltd). The suspensions were bubbled with N2 for 15 min before 10 mmol/dm3 lactate or 4.8 v/v% H2 was added. The suspensions were then incubated at 30 degrees C. Redox potential (Eh) and pH of the solutions were measured in an inert glove box with Ar gas. Concentration of Pd(II) was measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Deposited Pd and cells were analyzed by X-ray powder diffraction (XRD) and Scanning Electron Microscope (SEM) with Energy-Dispersive Spectroscopy (EDS). Approximately 86% of Pd(II) of the initial concentration was removed from solution by the resting cells within 24 h when

  7. Genome Sequences of Shewanella baltica and Shewanella morhuae Strains Isolated from the Gastrointestinal Tract of Freshwater Fish.

    Science.gov (United States)

    Castillo, Daniel; Gram, Lone; Dailey, Frank E

    2018-06-21

    We present here the genome sequences of Shewanella baltica strain CW2 and Shewanella morhuae strain CW7, isolated from the gastrointestinal tract of Salvelinus namaycush (lean lake trout) and Coregonus clupeaformis (whitefish), respectively. These genome sequences provide insights into the niche adaptation of these specific species in freshwater systems. Copyright © 2018 Castillo et al.

  8. Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea

    DEFF Research Database (Denmark)

    Satomi, M.; Vogel, Birte Fonnesbech; Gram, Lone

    2006-01-01

    Two novel species belonging to the genus Shewanella are described on the basis of their phenotypic characteristics, phylogenetic analyses of 16S rRNA and gyrB gene sequences and levels of DNA-DNA hybridization. A total of 47 strains belonging to two novel Gram-negative, psychrotolerant, H2S-produ...... species, Shewanella hafniensis sp. nov. (type strain P010T=ATCC BAA-1207T=NBRC 100975T) and Shewanella morhuae sp. nov. (type strain U1417T=ATCC BAA-1205T=NBRC 100978T), are described....

  9. Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in ...

    African Journals Online (AJOL)

    Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridisation. Elise S McLeod, Raynard MacDonald, Volker S. Brozel ...

  10. Emerging infections: Shewanella - A series of five cases

    Directory of Open Access Journals (Sweden)

    Krishna Kanchan Sharma

    2010-01-01

    Full Text Available Background : Shewanella spp. are unusual cause of disease in humans; however, reports of Shewanella infections have been increasing. Shewanella is a ubiquitous organism that has been isolated from many foods, sewage, and both from fresh and salt water. Earlier it was named as Pseudomonas putrefaciens or Shewanella putrefaciens. There are several reports describing this organism causing human infections such as cellulitis, abscesses, bacteremia, wound infection, etc. It is oxidase and catalase-positive non-fermenter gram-negative rod that produces hydrogen sulfide. Aims : The study was conducted to identify Shewanella spp., which was wrongly reported as Pseudomonas spp. Materials and Methods : Clinical samples were cultured as per standard clinical laboratory procedure. We tested the non-lactose-fermenting colonies for oxidase positivity. Oxidase-positive colony was inoculated in triple sugar iron slant (TSI to know the hydrogen sulfide production. Hydrogen sulfide positive colonies were further tested for citrate, urease, indole, and amino acid decarboxylation and acid and gas production from sugars. Results : Five isolates identified as Pseudomonas spp. during preliminary testing were proved to be Shewanella spp. on further testing. Conclusions : It will help in better understanding the epidemiology, pathogenesis and risk factors associated with these and prevention of the rare pathogenic organisms.

  11. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile Shewanella benthica

    International Nuclear Information System (INIS)

    Wubben, Jacinta M.; Dogovski, Con; Dobson, Renwick C. J.; Codd, Rachel; Gerrard, Juliet A.; Parker, Michael W.; Perugini, Matthew A.

    2010-01-01

    Dihydrodipicolinate synthase (DHDPS) is an essential oligomeric enzyme of interest to antibiotic discovery research and studies probing the importance of quaternary structure to protein function, stability and dynamics. The cloning, expression, purification and crystallization of DHDPS from the psychrophilic (cold-dwelling) bacterium Shewanella benthica are described. Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (cold-dwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0–6.0, 23–26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2 1 2 1 2 1 and dimensions a = 73.1, b = 84.0, c = 143.7 Å. These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics

  12. Shewanella alga bacteremia in two patients with lower leg ulcers

    DEFF Research Database (Denmark)

    Domínguez, H.; Vogel, Birte Fonnesbech; Gram, Lone

    1996-01-01

    of infection. Both patients survived; however, one of them had extensive myonecrosis, while the other patient had an uncomplicated course. The strains were initially believed to be Shewanella putrefaciens on the basis of key characteristics and results of the API 20NE identification system (bioMerieux, Marcy l......The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source...

  13. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buf...... from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces...

  14. Electrocatalytic oxidation of K4[Fe(CN)6] by metal-reducing bacteriumShewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    2017-01-01

    of an inorganic redox compound K4[Fe(CN)6]. A pair of symmetric peak in the cyclic voltammetry (CV) of K4[Fe(CN)6] were found on bare glassy carbon electrode (GCE). Surprisingly, when the GCE is coated MR-1, the anodic peak almost sustained at the same level; while the cathodic peak apparently shrunk. We...

  15. Investigation of the substrate specificity of the proton coupled peptide transporter PepTSo from Shewanella oneidensis

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Aduri, Nanda Gowtham; Hald, Helle

    2015-01-01

    a strikingly high sequence identity, can be used to rationalize its mechanism and substrate preference. However, very little is known about the substrate specificity of PepTSo. To elaborate on this, the natural peptide specificity of PepTSo was investigated. Di and tri-peptides were found to be substrates...... for PepTSo in contrast to mono- and tetrapeptides as was indicated by previous competition studies. Interestingly, a negatively charged side chain was better accommodated on the dipeptide N- than the C-terminus position. Inversely, a positive charged side chain appeared to be tolerated better...

  16. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor

    Science.gov (United States)

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, li...

  17. Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Jørgensen, K.; Christensen, H.

    1997-01-01

    Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing...... methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole- cell protein profiling and ribotyping......, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently...

  18. Occurrence of Shewanella algae in Danish coastal water and effects of water temperature and culture conditions on its survival

    DEFF Research Database (Denmark)

    Gram, Lone; Bundvad, Anemone; Melchiorsen, Jette

    1999-01-01

    increased to 10(5) to 10(7) CFU/ml at room temperature. Most probable number analysis showed this result to be due to regrowth rather than resuscitation. It was hypothesized that S. algae would survive cold exposure better if in the biofilm state; however, culturable counts from S. algae biofilms decreased......The marine bacterium Shewanella algae, which was identified as the cause of human cases of bacteremia and ear infections in Denmark in the summers of 1994 and 1995, was detected in seawater only during the months (July, August, September, and October) when the water temperature was above 13 degrees...... C. The bacterium is a typical mesophilic organism, and model experiments were conducted to elucidate the fate of the organism under cold and nutrient-limited conditions. The culturable count of S. algae decreased rapidly from 10(7) CFU/ml to 10(1) CFU/ml in approximately 1 month when cells grown...

  19. Immobilization of selenium by biofilm of Shewanella putrefaciens with and without Fe(III)-citrate complex

    International Nuclear Information System (INIS)

    Suzuki, Yoshinori; Sakama, Yosuke; Saiki, Hiroshi; Kitamura, Akira; Yoshikawa, Hideki; Tanaka, Kazuya

    2014-01-01

    To investigate the effect of biofilms on selenium migration, we examined selenite reduction by biofilms of an iron-reducing bacterium, Shewanella putrefaciens, under anaerobic conditions. The biofilms were grown under static conditions on culture cover glasses coated with poly-L-lysine. Optical microscopic observation of the biofilms after staining with 0.1% crystal violet solution revealed that the cells were surrounded by filamentous extracellular polymer substances. Exposure of the biofilms to aqueous selenite resulted in the formation of red precipitates, which were assigned to nanoparticulate elemental selenium using X-ray absorption near-edge structure analysis. Micrographic observation showed that the precipitates immobilized at the biofilms. We also examined the selenite reduction in the presence of Fe(III)-citrate complex. In this case, a dark brown precipitate formed at the biofilms. X-ray absorption near-edge structure analysis revealed that the precipitate was a mixed compound with elemental selenium and iron selenide. These findings indicate that biofilms of iron-reducing bacteria in the environment can immobilize selenium by reducing Se(IV) to Se(0), and Fe(III)-citrate complex promotes the reduction of Se(0) to Se(-II). (author)

  20. Comparative systems biology across an evolutionary gradient within the Shewanella genus.

    Science.gov (United States)

    Konstantinidis, Konstantinos T; Serres, Margrethe H; Romine, Margaret F; Rodrigues, Jorge L M; Auchtung, Jennifer; McCue, Lee-Ann; Lipton, Mary S; Obraztsova, Anna; Giometti, Carol S; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M

    2009-09-15

    To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.

  1. Shewanella gelidii sp. nov., isolated from the red algae Gelidium amansii, and emended description of Shewanella waksmanii.

    Science.gov (United States)

    Wang, Yan; Chen, Hongli; Liu, Zhenhua; Ming, Hong; Zhou, Chenyan; Zhu, Xinshu; Zhang, Peng; Jing, Changqin; Feng, Huigen

    2016-08-01

    A novel Gram-stain-negative, straight or slightly curved rod-shaped, non-spore-forming, facultatively anaerobic bacterium with a single polar flagellum, designated RZB5-4T, was isolated from a sample of the red algae Gelidium amansii collected from the coastal region of Rizhao, PR China (119.625° E 35.517° N). The organism grew optimally between 24 and 28 °C, at pH 7.0 and in the presence of 2-3 % (w/v) NaCl. The strain required seawater or artificial seawater for growth, and NaCl alone did not support growth. Strain RZB5-4T contained C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0 and iso-C15 : 0 as the dominant fatty acids. The respiratory quinones detected in strain RZB5-4T were ubiquinone 7, ubiquinone 8, menaquinone 7 and methylmenaquinone 7. The polar lipids of strain RZB5-4T comprised phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, one unidentified glycolipid, one unidentified phospholipid and one unknown lipid. The DNA G+C content of strain RZB5-4T was 47 mol %. Phylogenetic analysis based on 16S rRNA and gyrase B (gyrB) gene sequences showed that strain RZB5-4T belonged to the genus Shewanella, clustering with Shewanella waksmanii ATCC BAA-643T. Strain RZB5-4T exhibited the highest 16S rRNA gene sequence similarity value (96.6 %) and the highest gyrB gene sequence similarity value (80.7 %), respectively, to S. waksmanii ATCC BAA-643T. On the basis of polyphasic analyses, strain RZB5-4T represents a novel species of the genus Shewanella, for which the name Shewanella gelidii sp. nov. is proposed. The type strain is RZB5-4T (=JCM 30804T=KCTC 42663T=MCCC 1K00697T).

  2. Isolation of Shewanella putrefaciens in an elderly man with subacute intestinal obstruction & appendicitis

    Directory of Open Access Journals (Sweden)

    Arif Maqsood Ali

    2017-01-01

    Full Text Available Shewanella is Gram-negative motile bacillus, non fermentative and facultative anaerobe. Its natural habitat is all forms of water and soil, but has also been isolated from fish, dairy products, oils, and carcasses. Often found with microflora of the marine environment. Bacterial infections with Shewanella spp. are rare. The exposure to the marine environment, sea and diary food are considered as a risk factor for Shewanella spp. infection. Clinical infections seen are otitis, soft tissue infection, bacteremia, ear infection, eye infection, infective arthritis, osteomyelitis, infective endocarditis and peritonitis.

  3. Reduction of Ferrrihydrite and Akaganeite by Shewanella alga (PAH93)

    Science.gov (United States)

    Jung, M.; Kim, Y.; Lee, Y.; Kwon, K.; Roh, Y.

    2009-12-01

    Shewanella species are capable of oxidizing diverse organic acids coupled to reducing Fe(III) (oxy)hydroxides to crystalline Fe(II)-containing phases such as magnetite, siderite, and vivianite. The objective of this study was to examine reduction of ferrihydrite and akaganeite as the electron acceptors using various organic acids as the electron donors by Shewanella alga (PAH93) isolated from Yeosu, South Korea. Microbial reduction of akaganeite (40 mM) and ferrihydrite (40 mM) was examined using acetate (10 mM), glucose (10 mM), and lactate (10 mM) as electron donors at room temperature. Ferrozine method was used to analyze both water soluble and HCl soluble Fe(II) concentrations during the microbial Fe(III) reduction. XRD and TEM-EDX analyses were used to characterize biominerals formed by PAH93. PAH93 was completely reduced ferrihydrite to Fe(II), which transformed as siderite (FeCO3). PAH93 was oxidized acetate, glucose, and lactate coupled to reducing akaganeite to magnetite or green rust. Microbial reduction of ferrihydrite resulted in higher soluble Fe(II) concentration (446 - 498 mg/L) than the reduction of akaganeite (255 - 284 mg/L) within 6 days of incubation. For 21 days of incubation, souble Fe(II) concentration during akaganeite reduction (945 - 1316 mg/L) was higher than ferrihydrite reduction (120 - 738 mg/L). It may be attributed to the differences of crystallinity of the iron minerals used for microbial iron reduction. This study indicates types of the electron acceptors, ferrihydrite and akaganeite, affect Fe(II) reduction rate and types of the biotransformed minerals.

  4. A comparison of molecular biology mechanism of Shewanella putrefaciens between fresh and terrestrial sewage wastewater

    Directory of Open Access Journals (Sweden)

    Jiajie Xu

    2016-11-01

    Full Text Available Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW, energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase, fatty acid metabolism (beta-ketoacyl synthase, secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase, and propionic acid metabolism (succinyl coenzyme A synthetase. The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol, amines (dimethylamine, ethanolamine, amino acids (alanine, leucine, amine compounds (bilinerurine, nucleic acid compounds (nucleosides, inosines, organic acids (formate, acetate. Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express and metabolites in

  5. Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers.

    Science.gov (United States)

    Li, Bing-Bing; Cheng, Yuan-Yuan; Fan, Yang-Yang; Liu, Dong-Feng; Fang, Cai-Yun; Wu, Chao; Li, Wen-Wei; Yang, Zong-Chuang; Yu, Han-Qing

    2018-05-12

    Shewanella species have a diverse respiratory ability and wide distribution in environments and play an important role in bioremediation and the biogeochemical cycles of elements. Primers with more accuracy and broader coverage are required with consideration of the increasing number of Shewanella species and evaluation of their roles in various environments. In this work, a new primer set of 640F/815R was developed to quantify the abundance of Shewanella species in natural and engineered environments. In silico tools for primer evaluation, quantitative polymerase chain reaction (qPCR) and clone library results showed that 640F/815R had a higher specificity and coverage than the previous primers in quantitative analysis of Shewanella. Another newly developed primer pair of 211F/815cR was also adopted to analyze the Shewanella diversity and demonstrated to be the best candidate in terms of specificity and coverage. We detected more Shewanella-related species in freshwater environments and found them to be substantially different from those in marine environments. Abundance and diversity of Shewanella species in wastewater treatment plants were largely affected by the process and operating conditions. Overall, this study suggests that investigations of abundance and diversity of Shewanella in various environments are of great importance to evaluate their ecophysiology and potential ecological roles. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Physiology and enzymology involved in denitrification by Shewanella putrefaciens

    Science.gov (United States)

    Krause, B.; Nealson, K. H.

    1997-01-01

    Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.

  7. A rare case of Shewanella putrefaciens bacteremia in a patient of road traffic accident

    Directory of Open Access Journals (Sweden)

    Ritesh Ranjan

    2017-01-01

    Full Text Available Shewanella putrefaciens rarely causes human infection. These are mostly found in environment and food stuffs. Shewanella are often found in mixed culture. It has been implicated in cellulitis, otitis media, and septicemia. It may be found in respiratory tract, urine, feces, and pleural fluid. There is no definite guideline for therapeutic option. In general, these are susceptible to various antimicrobial agents but are often resistant to penicillin and cephalothin. We report a rare case of bacteremia by S. putrefaciens in a patient of head injury with polytrauma after a road traffic accident.

  8. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T.

    Directory of Open Access Journals (Sweden)

    Jinwei Zhang

    Full Text Available Omega-3 fatty acids are products of secondary metabolism, essential for growth and important for human health. Although there are numerous reports of bacterial production of omega-3 fatty acids, less information is available on the biotechnological production of these compounds from bacteria. The production of eicosapentaenoic acid (EPA, 20:5ω3 by a new species of marine bacteria Shewanella electrodiphila MAR441T was investigated under different fermentation conditions. This strain produced a high percentage (up to 26% of total fatty acids and high yields (mg / g of biomass of EPA at or below the optimal growth temperature. At higher growth temperatures these values decreased greatly. The amount of EPA produced was affected by the carbon source, which also influenced fatty acid composition. This strain required Na+ for growth and EPA synthesis and cells harvested at late exponential or early stationary phase had a higher EPA content. Both the highest amounts (20 mg g-1 and highest percent EPA content (18% occurred with growth on L-proline and (NH42SO4. The addition of cerulenin further enhanced EPA production to 30 mg g-1. Chemical mutagenesis using NTG allowed the isolation of mutants with improved levels of EPA content (from 9.7 to 15.8 mg g-1 when grown at 15°C. Thus, the yields of EPA could be substantially enhanced without the need for recombinant DNA technology, often a commercial requirement for food supplement manufacture.

  9. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    Science.gov (United States)

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  10. Bio-reduction of plutonyl and neptunyl by Shewanella alga

    International Nuclear Information System (INIS)

    Reed, D.T.; Lucchini, J.F; Rittmann, B.E.; Songkasiri, W.

    2005-01-01

    Full text of publication follows: The results of a concurrent experimental and modeling study to investigate the bio-reduction of higher-valent plutonium and neptunium by Shewanella alga strain BrY are presented. S. Alga, as a facultative metal reducer, is representative of bacteria that will be important in defining the mobility of plutonium and neptunium species as they migrate from oxic to anoxic zones. This is also an important consideration in defining the long-term stability of bio-precipitated 'immobilized' plutonium phases under changing redox conditions in biologically active systems and subsequently the effectiveness of remediation/containment approaches used for bio-remediation. Neptunium (VI) is readily reduced in groundwaters by many organics. In biologically active systems, it is unlikely, for this reason, that this oxidation state of neptunium will be important. Under all conditions investigated, neptunium (V) was reduced to neptunium (IV) when anaerobic conditions were established for a wide variety of electron donors. This was evidences by 3-4 orders of magnitude reduction in solution concentration and confirmed by XANES analysis. This led to high bio-association and/or precipitation of the neptunium. Plutonium (VI), as was the case with neptunium (VI) was reduced by the organics typically present in biologically active systems. Analogous bio-reduction experiments with plutonium (V) and plutonium (VI) are in progress and are expected to show that bio-reduction will predominate under anaerobic conditions, as was the case with neptunium. These results for neptunium and plutonium show S. Alga to be an effective microbe for the bio-reduction, and consequently the immobilization, of these important actinide contaminants. (authors)

  11. [Effects of iron on azoreduction by Shewanella decolorationis S12].

    Science.gov (United States)

    Chen, Xing-Juan; Xu, Mei-Ying; Sun, Guo-Ping

    2010-01-01

    The effects of soluble and insoluble Fe(III) on anaerobic azoreduction by Shewanella decolorationis S12 were examined in a series of experiments. Results showed that the effects of iron on anaerobic azoreduction depended on the solubility and concentration of the compounds. Azoreduction was inhibited by insoluble Fe(III) and 0.05-2 mmol/L Fe2 O3 all decelerated the azoreduction activity of 0.2 mmol/L amaranth, but the increase in the concentrations of Fe2O3 did not cause an increasing inhibition. Soluble Fe(III) of which concentration less than 0.4 mmol/L enhanced azoreduction activity of 0.2 mmol/L amaranth but there was no linear relationship between the concentration of soluble Fe(III) and azoreduction activity. Soluble Fe(III) of which concentration more than 1 mmol/L inhibited azoreduction activity of 0.2 mmol/L amaranth and an increasing concentration resulted in an increased inhibition. The inhibition was strengthened under the conditions of limited electron donor. On the other hand, soluble Fe(III) and Fe(II) could relieve the inhibition of azoreduction by dicumarol which blocked quinone cycle. It suggests that in addition to quinone cycle, there is a Fe(III) Fe(II) cycle shuttling electrons in cytoplasmic and periplasmic environment. That is the reason why low concentration of soluble Fe(III) or Fe (II) can enhance azoreduction of S. decolorationis S12. It also indicates that insoluble Fe(III) and high concentration of soluble Fe(III) do compete with azo dye for electrons once it acts as electron acceptor. Thus, when iron and azo dye coexisted, iron could serve as an electron transfer agent or electron competitive inhibitor for anaerobic azoreduction under different conditions. High efficiency of azoreduction can be achieved through controlling the solubility and concentration of irons.

  12. Current trends of human infections and antibiotic resistance of the genus Shewanella.

    Science.gov (United States)

    Yousfi, K; Bekal, S; Usongo, V; Touati, A

    2017-08-01

    Shewanella spp. are commonly known as environmental bacteria and are most frequently isolated from aquatic areas. Currently, diseases syndromes and multidrug resistance have increasingly been reported in the genus Shewanella. Some species are associated with various infections, such as skin and soft tissue infections, as well as bacteremia. Generally, these bacteria are opportunistic and mostly affect people with an impaired immune system. This genus is also a probable vehicle and progenitor of antibiotic resistance genes. In fact, several resistance genes and mobile genetic elements have been identified in some resistant species isolated from environmental or clinical settings. These genes confer resistance to different antibiotic classes, including those used in therapies such as β-lactams and quinolones, and are generally located on the chromosome. Recently, a multidrug-resistant (MDR) plasmid harboring several drug resistance genes associated with transposons and integrons has been identified in Shewanella xiamenensis. These antibiotic resistance genes can circulate in the environment and contribute to the emergence of antibiotic resistance. This review describes different aspects of Shewanella, focusing on the infections caused by this genus, as well as their role in the propagation of antibiotic resistance via mobile genetic elements.

  13. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  14. Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infected sea cucumber (Apostichopus uaponicus)

    Science.gov (United States)

    Shewanella marisflavi isolate AP629 was characterized as a novel pathogen of sea cucumber. The LD50 values (14 days) in sea cucumber and swordtail fish were 3.89 × 106 and 4.85 × 104 CFU g-1 body weight, respectively. Studies on S. marisflavi had been conducted, including morphology, physiological a...

  15. Treatment Failure Due to Emergence of Resistance to Carbapenem during Therapy for Shewanella algae Bacteremia

    OpenAIRE

    Kim, Dong-Min; Kang, Cheol-In; Lee, Chang Seop; Kim, Hong-Bin; Kim, Eui-Chong; Kim, Nam Joong; Oh, Myoung-don; Choe, Kang-Won

    2006-01-01

    We describe a case of bacteremia due to imipenem-susceptible Shewanella algae. Despite treatment with imipenem, the patient developed a spinal epidural abscess, from which imipenem-resistant S. algae was isolated. The development of resistance should be monitored when S. algae infection is treated with imipenem, even though the strain is initially susceptible to imipenem.

  16. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.

    Science.gov (United States)

    Gao, Haichun; Obraztova, Anna; Stewart, Nathan; Popa, Radu; Fredrickson, James K; Tiedje, James M; Nealson, Kenneth H; Zhou, Jizhong

    2006-08-01

    A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as the electron acceptor and lactate as the electron donor. The major fatty acid detected in strain PV-4(T) was iso-C(15 : 0). Strain PV-4(T) had ubiquinones consisting mainly of Q-7 and Q-8, and possessed menaquinone MK-7. The DNA G+C content of the strain was 53.8 mol% and the genome size was about 4.5 Mbp. Phylogenetic analyses based on 16S rRNA gene sequences placed PV-4(T) within the genus Shewanella. PV-4(T) exhibited 16S rRNA gene sequence similarity levels of 99.6 and 97.5 %, respectively, with respect to the type strains of Shewanella aquimarina and Shewanella marisflavi. DNA from strain PV-4(T) showed low mean levels of relatedness to the DNAs of S. aquimarina (50.5 %) and S. marisflavi (8.5 %). On the basis of phylogenetic and phenotypic characteristics, the bacterium was classified in the genus Shewanella within a distinct novel species, for which the name Shewanella loihica sp. nov. is proposed. The type strain is PV-4(T) (=ATCC BAA-1088(T)=DSM 17748(T)).

  17. Molecular characterization and bioactivity profile of the tropical sponge-associated bacterium Shewanella algae VCDB

    Science.gov (United States)

    Rachanamol, R. S.; Lipton, A. P.; Thankamani, V.; Sarika, A. R.; Selvin, J.

    2014-06-01

    The pigmented, rod-shaped, Gram-negative, motile bacteria isolated from marine sponge Callyspongia diffusa exhibiting bioactivity was characterized as Shewanella algae (GenBank: KC623651). The 16S rRNA gene sequence-based phylogenetic analysis showed its similarity with the member of Shewanella and placed in a separate cluster with the recognized bacteria S. algae (PSB-05 FJ86678) with which it showed 99.0 % sequence similarity. Growth of the strain was optimum at temperature 30 °C, pH 8.0 in the presence of 2.0-4.0 % of NaCl. High antibiotic activity against microbes such as Escherichia coli (MTCC 40), S. typhii (MTCC 98), P. vulgaris (MTCC 426), V. fluvialis, V. anguillarum, E. cloacae, and L. lactis was recorded. The growth of fungal pathogens such as Aspergillus niger, Aspergillus fumigatus, Saccharomyces cerevisiae, and Colletotrichum gloeosporioides was effectively controlled.

  18. ORF Alignment: NC_004347 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available in ... [Shewanella oneidensis MR-1] ... Length = 108 ... Query: 5 ... LMFNGVDIERDHQGYLKNIADWHPDMAPLLAQEENIELTS...AHWEVINFVRDFYLEYKTSP 64 ... LMFNGVDIERDHQGYLKNIADWHPDMAPLLAQEENIELTS...AHWEVINFVRDFYLEYKTSP Sbjct: 1 ... LMFNGVDIERDHQGYLKNIADWHPDMAPLLAQEENIELTSAHWEVINFVRDFYLEYKTSP 60 ...

  19. ORF Alignment: NC_004347 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... [Shewanella oneidensis MR-1] ... Length = 151 ... Query: 1 ... MKITLDDLKGPEIAALLQEHLDDMRATSPPESVHALDLNG...LRQPNIRFWTLWDDRNLAGC 60 ... MKITLDDLKGPEIAALLQEHLDDMRATSPPESVHALDLNGLRQPNI...RFWTLWDDRNLAGC Sbjct: 1 ... MKITLDDLKGPEIAALLQEHLDDMRATSPPESVHALDLNGLRQPNIRFWTLWDDRNLAGC 60 ... Query: 121 RSLYAK

  20. ORF Alignment: NC_004347 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available rotein ... CinA [Shewanella oneidensis MR-1] ... Length = 160 ... Query: 1 ... MKLEMICTGEEVLSGQIVDTNAAWFASTM...MEHGIEIQRRVTVGDRLEDLIAVFQERSLHA 60 ... MKLEMICTGEEVLSGQIVDTNAAWFASTM...MEHGIEIQRRVTVGDRLEDLIAVFQERSLHA Sbjct: 1 ... MKLEMICTGEEVLSGQIVDTNAAWFASTMMEHGIEIQRRVTVGDRLEDLIAVFQERSLHA 6

  1. ORF Alignment: NC_004347 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... [Shewanella oneidensis MR-1] ... Length = 145 ... Query: 292 QEASREPGQINKLIQDIAQAEANRDGEIELALADCPEA...LFQGLAIKRVLSNLVENAFRYG 351 ... QEASREPGQINKLIQDIAQAEANRDGEIELALADCPEALFQGL...AIKRVLSNLVENAFRYG Sbjct: 1 ... QEASREPGQINKLIQDIAQAEANRDGEIELALADCPEALFQGLAIKRVLSNLVENAFRYG 60 ... Query: 412 IDR

  2. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990.

    Science.gov (United States)

    Szeinbaum, Nadia; Kellum, Cailin E; Glass, Jennifer B; Janda, J Michael; DiChristina, Thomas J

    2018-04-01

    Previously, experimental DNA-DNA hybridization (DDH) between Shewanellahaliotis JCM 14758 T and Shewanellaalgae JCM 21037 T had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis, revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758 T and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758 T , it can be confidently identified as S. algae.

  3. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; Codd, Rachel

    2011-01-01

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap Sgel ) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap Sput ) was examined at varied temperature. Irreversible deactivation of Nap Sgel and Nap Sput occurred at 54.5 and 65 °C, respectively. When Nap Sgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that Nap Sgel was poised for optimal catalysis at modest temperatures and, unlike Nap Sput , did not benefit from thermally-induced refolding. At 20 °C, Nap Sgel reduced selenate at 16% of the rate of nitrate reduction. Nap Sput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap Sgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap Sgel cold-adapted phenotype. Protein homology modeling of Nap Sgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic

  4. Enhanced biofilm formation and melanin synthesis by the oyster settlement-promoting Shewanella colwelliana is related to hydrophobic surface and simulated intertidal environment.

    Science.gov (United States)

    Mitra, Sayani; Gachhui, Ratan; Mukherjee, Joydeep

    2015-01-01

    A direct relationship between biofilm formation and melanogenesis in Shewanella colwelliana with increased oyster recruitment is already established. Previously, S. colwelliana was grown in a newly patented biofilm-cultivation device, the conico-cylindrical flask (CCF), offering interchangeable hydrophobic/hydrophilic surfaces. Melanization was enhanced when S. colwelliana was cultivated in a hydrophobic vessel compared with a hydrophilic vessel. In the present study, melanogenesis in the CCF was positively correlated with increased architectural parameters of the biofilm (mean thickness and biovolume obtained by confocal laser scanning microscopy) and melanin gene (melA) expression observed by densitometry. Niche intertidal conditions were mimicked in a process operated in an ultra-low-speed rotating disk bioreactor, which demonstrated enhanced biofilm formation, melanogenesis, exopolysaccharide synthesis and melA gene expression compared with a process where 12-h periodic immersion and emersion was prevented. The wettability properties of the settling plane as well as intermittent wetting and drying, which influenced biofilm formation and melA expression, may affect oyster settlement in nature.

  5. Electrochemical characteristics of Shewanella loihica on carbon nanotubes-modified graphite surfaces

    International Nuclear Information System (INIS)

    Zhang, Xiaoming; Epifanio, Monica; Marsili, Enrico

    2013-01-01

    Highlights: • We deposited CNT coatings on graphite electrode by electrophoretic deposition. • CNT coating increased extracellular electron transfer in Shewanella loihica biofilms. • Thick electroactive biofilms hinder the electroactivity of CNT coatings. -- Abstract: High specific surface and electrocatalytic activity of the electrode surface favour extracellular electron transfer from electrochemically active biofilms to polarized electrodes. We coated layer-by-layer carbon nanotubes (CNTs) on graphite electrodes through electrophoretic deposition, thus increasing the electrocatalytic activity. After determining the optimal number of CNT layers through electrochemical methods, we grew Shewanella loihica PV-4 biofilms on the CNT-coated electrodes to quantify the increase in extracellular electron transfer rate compared with unmodified electrodes. Current density on CNT-modified electrodes was 1.7 times higher than that observed on unmodified electrodes after 48 h from inoculation. Rapid microbial cells attachment on CNT-coated electrodes, as determined from scanning electronic microscopy, explained the rapid increase of the current. Also, the CNT reduced the charge transfer resistance of the graphite electrodes, as measured by Electrochemical Impedance Spectroscopy. However, the electrocatalytic activity of the CNT-coated electrode decreased as the biofilm grew thicker and covered the CNT-coating. These result confirmed that surface-modified electrodes improve the electron transfer rate in thin biofilms (<5 μm), but are not feasible for power production in microbial fuel cells, where the biofilm thickness is much higher

  6. Shewanella algae infection after surgical treatment of Haglund's heel and rupture of the Achilles tendon.] [Article in Danish

    DEFF Research Database (Denmark)

    Laursen, Malene

    2014-01-01

    This is a case report of soft tissue infection with the marine bacterium Shewanella algae that is rare in Denmark. The patient was a 43-year-old male and he was treated surgically for Haglund's heel, a bony protrusion at the calcaneus. After clinical healing the patient suffered a rupture...

  7. Distribution and Genetic Characteristics of SXT/R391 Integrative Conjugative Elements in Shewanella spp. From China

    Directory of Open Access Journals (Sweden)

    Yujie Fang

    2018-05-01

    Full Text Available The genus Shewanella consists of facultatively anaerobic Gram-negative bacteria, which are regarded as potential agents of food contamination and opportunistic human pathogens. Information about the distribution and genetic characteristics of SXT/R391 integrative conjugative elements (ICEs in Shewanella species is limited. Here, 91 Shewanella strains collected from diverse samples in China were studied for the presence of SXT/R391 ICEs. Three positive strains, classified as Shewanella upenei, were obtained from patients and water from a local mill. In light of their close clonal relationships and high sequence similarity, a representative ICE was selected and designated ICESupCHN110003. The BLASTn searches against GenBank showed that ICEVchBan5 was most closely related to ICESupCHN110003, with the coverage of 76% and identity of 99%. The phylogenetic tree of concatenated core genes demonstrated that ICESupCHN110003 formed a distinct branch outside the cluster comprising ICEValA056-1, ICEPmiCHN2410, and ICEPmiChn1. Comparison of the genetic structures revealed that ICESupCHN110003 encoded uncommon genes in hotspots, such as specific type III restriction-modification system, conferring adaptive functions to the host. Based on the low coverage in the sequence analysis, independent clade in the phylogenetic tree, and unique inserted fragments in hotspots, ICESupCHN110003 represented a novel SXT/R391 element, which widened the list of ICEs. Furthermore, the antibiotic resistance genes floR, strA, strB, and sul2 in ICESupCHN110003 and resistance to multiple drugs of the positive isolates were detected. A cross-species transfer capability of the SXT/R391 ICEs was also discovered. In summary, it is necessary to reinforce continuous surveillance of SXT/R391 ICEs in the genus Shewanella.

  8. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of danish marine fish

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Venkateswaran, K.; Satomi, M.

    2005-01-01

    are important in fish spoilage. More than 500 H2S-producing strains were isolated from iced stored marine fish (cod, plaice, and flounder) caught in the Baltic Sea during winter or summer time. All strains were identified as Shewanella species by phenotypic tests. Different Shewanella species were present...... unchanged (i.e., trimethylamine-N-oxide reduction and H2S production); however, the main H2S-producing organism was identified as S. baltica....

  9. Changes in cell morphology of Listeria monocytogenesnes and Shewanella putrefaciens resulting from the action of protamine

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Gill, T.; Gram, Lone

    1996-01-01

    cells. Immunoelectron microscopy of protamine-treated cells of both L. monocytogenes and S. putrefaciens showed great damage to the cell wall and condensation of the cytoplasm. Respiration of the cells was decreased due to treatment with sublethal concentrations of protamine, probably due to leakage...... or loss of cell envelope potential. It was concluded that protamine disrupted the outer surface structure and condensed the cytoplasm of sensitive cells and, in sublethal concentrations, altered membrane structures, thereby eliminating respiration......Protamine, which is an antibacterial basic peptide, was shown to alter the cell morphology of Listeria monocytogenes and Shewanella putrefaciens. Atomic force microscopy revealed that protamine smoothed the surface of cells, formed holes in the cell envelope, and caused fusion of S. putrefaciens...

  10. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Philippa J.L. [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); Codd, Rachel, E-mail: rachel.codd@sydney.edu.au [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); School of Medical Sciences (Pharmacology) and Bosch Institute, University of New South Wales, New South Wales 2006 (Australia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  11. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per

    2002-01-01

    The aim of this study is to compare the number of attached bacteria, Shewanella putrefaciens, on stainless steel with different silver surfaces. Thus evaluating if silver surfaces could contribute to a higher hygienic status in the food industry. Bacterial adhesion to three types of silver surfaces...... (new silver, tarnished silver and sulphide treated silver) was compared to adhesion to stainless steel (AISI 316). Numbers of attached bacteria (cfu cm-2) were estimated using the Malthus indirect conductance method. A lower number of attached bacteria were measured on new silver surfaces compared...... to stainless steel for samples taken after 24 hours. However this was not significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared to stainless steel and some, but not all, experiments showed statistically significant. A difference of more...

  12. MOLECULAR CLONING AND CHARACTERIZATION OF NOVEL THERMOSTABLE LIPASE FROM SHEWANELLA PUTREFACIENS AND USING ENZYMATIC BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Fahri Akbas

    2015-02-01

    Full Text Available A novel thermostable lipase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized and used in biodiesel production. Enzyme characterization was carried out by enzyme assay, SDS-PAGE and other biochemical reactions. The recombinant lipase was found to have a molecular mass of 29 kDa and exhibited lipase activity when Tween 80 was used as the substrate. The purified enzyme showed maximum activity at pH 5.0 and at 80°C. The recombinant lipase was used for the transesterification of canola oil and waste oil. The enzyme retains 50% of its activity at 90°C for 30 minutes. It is also able to retain 20% of its activity even at 100 °C for 20 minutes. These properties of the obtained new recombinant thermostable lipase make it promising as a biocatalyst for industrial processes.

  13. Isolation of Shewanella algae from rectal swabs of patients with bloody diarrhoea

    Directory of Open Access Journals (Sweden)

    R Nath

    2011-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. It was infrequently recovered from clinical specimens probably because of inadequate processing of non-fermenting oxidase-positive gram-negative bacilli. We report here isolation of S. algae in pure culture and mixed with E. coli from two cases of acute gastroenteritis with bloody mucous containing diarrhea occurring at the same time. As this organism is not a normal flora of the gut, the possible source of infection may be fish contaminated with the organism. Whether this bacterium can be considered an enteric pathogen needs to be evaluated. The cases were clinically diagnosed as acute bacillary dysentery. The bacterium was identified by 16S r-RNA gene sequence analysis.

  14. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction

    Science.gov (United States)

    Moser, D. P.; Nealson, K. H.

    1996-01-01

    The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.

  15. Whole genome sequence to decipher the resistome of Shewanella algae, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France.

    Science.gov (United States)

    Cimmino, Teresa; Olaitan, Abiola Olumuyiwa; Rolain, Jean-Marc

    2016-01-01

    We characterize and decipher the resistome and the virulence factors of Shewanella algae MARS 14, a multidrug-resistant clinical strain using the whole genome sequencing (WGS) strategy. The bacteria were isolated from the bronchoalveolar lavage of a hospitalized patient in the Timone Hospital in Marseille, France who developed pneumonia after plunging into the Mediterranean Sea. The genome size of S. algae MARS 14 was 5,005,710 bp with 52.8% guanine cytosine content. The resistome includes members of class C and D beta-lactamases and numerous multidrug-efflux pumps. We also found the presence of several hemolysins genes, a complete flagellum system gene cluster and genes responsible for biofilm formation. Moreover, we reported for the first time in a clinical strain of Shewanella spp. the presence of a bacteriocin (marinocin). The WGS analysis of this pathogen provides insight into its virulence factors and resistance to antibiotics.

  16. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V).

    Science.gov (United States)

    Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel

    2016-09-01

    Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH 2 ), avaroferrin (avH 2 ) and bisucaberin (bsH 2 ). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH 2 . The relative concentration of pbH 2 :avH 2 :bsH 2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)] + , [Fe(av)] + or [Fe(bs)] + , with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O) 2 (pb)], [Mo(O) 2 (av)] or [Mo(O) 2 (bs)]. Chromium(V) complexes of the form [CrO(pb)] + were detected from solutions of Cr(VI) and pbH 2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH 2 . The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Extracellular electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at indium tin oxide and graphite electrodes

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Connolly, J.O.; Woolley, R.; Krishnamurthy, S.; Marsili, E.

    /electrode interface [21]. After 24 h from inoculation, the sigmoidal wave disappeared and cyclic voltammetry detected reversible peaks with Em value -0.3 V, most likely due to the production of redox mediator(s) in the cell suspension under anaerobic conditions... reported earlier from the whole cell voltammetry of S. loihica PV- 4 (-0.054 V vs. Ag/AgCl) [18] as well as of S. oneidensis MR-1 (-0.07 V vs. Ag/AgCl) [29]. The Em value obtained for RC (I) was shifted to a more positive potential from those reported...

  18. Molecular Phylogenetic Exploration of Bacterial Diversity in a Bakreshwar (India) Hot Spring and Culture of Shewanella-Related Thermophiles

    Science.gov (United States)

    Ghosh, Dhritiman; Bal, Bijay; Kashyap, V. K.; Pal, Subrata

    2003-01-01

    The bacterial diversity of a hot spring in Bakreshwar, India, was investigated by a culture-independent approach. 16S ribosomal DNA clones derived from the sediment samples were found to be associated with gamma-Proteobacteria, cyanobacteria, and green nonsulfur and low-GC gram-positive bacteria. The first of the above phylotypes cobranches with Shewanella, a well-known iron reducer. This phylogenetic correlation has been exploited to develop culture conditions for thermophilic iron-reducing microorganisms. PMID:12839826

  19. Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D.

    OpenAIRE

    Coon, S L; Kotob, S; Jarvis, B B; Wang, S; Fuqua, W C; Weiner, R M

    1994-01-01

    Shewanella colwelliana D is a marine procaryote which produces a diffusible brown pigment that correlates with melA gene expression. Previously, melA had been cloned, sequenced, and expressed in Escherichia coli; however, the reaction product of MelA had not been identified. This report identifies that product as homogentisic acid, provides evidence that the pigment is homogentisic acid-melanin (pyomelanin), and suggests that MelA is p-hydroxyphenylpyruvate hydroxylase. This is the first repo...

  20. Potential for luxS related signalling in marine bacteria and production of autoinducer-2 in the genus Shewanella

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2008-01-01

    Full Text Available Abstract Background The autoinducer-2 (AI-2 group of signalling molecules are produced by both Gram positive and Gram negative bacteria as the by-product of a metabolic transformation carried out by the LuxS enzyme. They are the only non species-specific quorum sensing compounds presently known in bacteria. The luxS gene coding for the AI-2 synthase enzyme was found in many important pathogens. Here, we surveyed its occurrence in a collection of 165 marine isolates belonging to abundant marine phyla using conserved degenerated PCR primers and sequencing of selected positive bands to determine if the presence of the luxS gene is phylogenetically conserved or dependent on the habitat. Results The luxS gene was not present in any of the Alphaproteobacteria (n = 71 and Bacteroidetes strains (n = 29 tested; by contrast, these bacteria harboured the sahH gene, coding for an alternative enzyme for the detoxification of S-adenosylhomocysteine (SAH in the activated methyl cycle. Within the Gammaproteobacteria (n = 76, luxS was found in all Shewanella, Vibrio and Alteromonas isolates and some Pseudoalteromonas and Halomonas species, while sahH was detected in Psychrobacter strains. A number of Gammaproteobacteria (n = 27 appeared to have neither the luxS nor the sahH gene. We then studied the production of AI-2 in the genus Shewanella using the Vibrio harveyi bioassay. All ten species of Shewanella tested produced a pronounced peak of AI-2 towards the end of the exponential growth phase in several media investigated. The maximum of AI-2 activity was different in each Shewanella species, ranging from 4% to 46% of the positive control. Conclusion The data are consistent with those of fully sequenced bacterial genomes and show that the potential for luxS related signalling is dependent on phylogenetic affiliation rather than ecological niche and is largest in certain groups of Gammaproteobacteria in the marine environment. This is the first report on AI-2

  1. Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae

    Directory of Open Access Journals (Sweden)

    Dikow Rebecca B

    2011-05-01

    Full Text Available Abstract Background The explosion in availability of whole genome data provides the opportunity to build phylogenetic hypotheses based on these data as well as the ability to learn more about the genomes themselves. The biological history of genes and genomes can be investigated based on the taxomonic history provided by the phylogeny. A phylogenetic hypothesis based on complete genome data is presented for the genus Shewanella (Gammaproteobacteria: Alteromonadales: Shewanellaceae. Nineteen taxa from Shewanella (16 species and 3 additional strains of one species as well as three outgroup species representing the genera Aeromonas (Gammaproteobacteria: Aeromonadales: Aeromonadaceae, Alteromonas (Gammaproteobacteria: Alteromonadales: Alteromonadaceae and Colwellia (Gammaproteobacteria: Alteromonadales: Colwelliaceae are included for a total of 22 taxa. Results Putatively homologous regions were found across unannotated genomes and tested with a phylogenetic analysis. Two genome-wide data-sets are considered, one including only those genomic regions for which all taxa are represented, which included 3,361,015 aligned nucleotide base-pairs (bp and a second that additionally includes those regions present in only subsets of taxa, which totaled 12,456,624 aligned bp. Alignment columns in these large data-sets were then randomly sampled to create smaller data-sets. After the phylogenetic hypothesis was generated, genome annotations were projected onto the DNA sequence alignment to compare the historical hypothesis generated by the phylogeny with the functional hypothesis posited by annotation. Conclusions Individual phylogenetic analyses of the 243 locally co-linear genome regions all failed to recover the genome topology, but the smaller data-sets that were random samplings of the large concatenated alignments all produced the genome topology. It is shown that there is not a single orthologous copy of 16S rRNA across the taxon sampling included in this

  2. Polymicrobial bacteremia caused by Escherichia coli, Edwardsiella tarda, and Shewanella putrefaciens.

    Science.gov (United States)

    Wang, I-Kuan; Lee, Ming-Hsun; Chen, Yu-Ming; Huang, Chiu-Ching

    2004-09-01

    Edwardsiella tarda, a member of Enterobacteriaceae, is found in freshwater and marine environments and in animals living in these environments. This bacterium is primarily associated with gastrointestinal diseases, and has been isolated from stool specimens obtained from persons with or without clinical infectious diseases. Shewanella putrefaciens, a saprophytic gram-negative rod, is rarely responsible for clinical syndromes in humans. Debilitated status and exposure to aquatic environments are the major predisposing factors for E. tarda or S. putrefaciens infection. A 61-year-old woman was febrile with diarrhea 8 hours after ingesting shark meat, and two sets of blood cultures grew Escherichia coli, E. tarda and S. putrefaciens at the same time. She was successfully treated with antibiotics. We present this rare case of polymicrobial bacteremia caused by E. coli, E. tarda and S. putrefaciens without underlying disease, which is the first found in Taiwan. This rare case of febrile diarrhea with consequent polymicrobial bacteremia emphasizes that attention should always be extended to these unusual pathogens.

  3. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro, E-mail: yasuhiro@chemeng.osakafu-u.ac.j [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2010-09-15

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m{sup 3} aqueous AuCl{sub 4}{sup -} ions into elemental gold within 10 min when H{sub 2} gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  4. Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens

    Science.gov (United States)

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-01-01

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210

  5. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.

    Science.gov (United States)

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-10-15

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    International Nuclear Information System (INIS)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro

    2010-01-01

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m 3 aqueous AuCl 4 - ions into elemental gold within 10 min when H 2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  7. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  8. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics.

    Science.gov (United States)

    Wu, Yundang; Liu, Tongxu; Li, Xiaomin; Li, Fangbai

    2014-08-19

    Despite the importance of exogenous electron shuttles (ESs) in extracellular electron transfer (EET), a lack of understanding of the key properties of ESs is a concern given their different influences on EET processes. Here, the ES-mediated EET capacity of Shewanella putrefaciens 200 (SP200) was evaluated by examining the electricity generated in a microbial fuel cell. The results indicated that all the ESs substantially accelerated the current generation compared to only SP200. The current and polarization parameters were linearly correlated with both the standard redox potential (E(ES)(0)) and the electron accepting capacity (EAC) of the ESs. A thermodynamic analysis of the electron transfer from the electron donor to the electrode suggested that the EET from c-type cytochromes (c-Cyts) to ESs is a crucial step causing the differences in EET capacities among various ESs. Based on the derived equations, both E(ES)(0) and EAC can quantitatively determine potential losses (ΔE) that reflect the potential loss of the ES-mediated EET. In situ spectral kinetic analysis of ES reduction by c-Cyts in a living SP200 suspension was first investigated with the E(ES), E(c-Cyt), and ΔE values being calculated. This study can provide a comprehensive understanding of the role of ESs in EET.

  9. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  10. Oil field and freshwater isolates of Shewanella putrefaciens have lipopolysaccharide polyacrylamide gel profiles characteristic of marine bacteria

    International Nuclear Information System (INIS)

    Pickard, C.; Foght, J.M.; Pickard, M.A.; Westlake, D.W.S.

    1993-01-01

    The lipopolysaccharide structure of oil field and freshwater isolates of bacteria that reduce ferric iron, recently classified as strains of Shewanella putrefaciens, was analyzed using polyacrylamide gel electrophoresis and a lipopolysaccharide-specific silver-staining procedure. The results demonstrate that all the oil field and freshwater isolates examined exhibited the more hydrophobic R-type lipopolysaccharide, which has been found to be characteristic of Gram-negative marine bacteria. This hydrophobic lipopolysaccharide would confer an advantage on bacteria involved in hydrocarbon degradation by assisting their association with the surface of oil droplets. 15 refs., 1 fig

  11. Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis

    Digital Repository Service at National Institute of Oceanography (India)

    SatheeshBabu, S.; Mohandass, C.; VijayRaj, A.S.; Rajasabapathy, R.; Dhale, M.A.

    stream_size 41279 stream_content_type text/plain stream_name Water_Air_Soil_Pollut_224_1500a.pdf.txt stream_source_info Water_Air_Soil_Pollut_224_1500a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8...     1    Author version: Water Air Soil Pollut., vol.224(4); 2013; 1500 Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis S. Satheesh Babu, C.Mohandass*, A.S.Vijay Raj, R...

  12. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    KAUST Repository

    Chubar, Natalia

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands. © 2012 Elsevier Ltd.

  13. Graphic Grown Up

    Science.gov (United States)

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  14. Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Shewanella loihica PV-4 Electrochemically Active Biofilm and Their Enhanced Catalytic Activities

    KAUST Repository

    Ahmed, Elaf; Kalathil, Shafeer; Shi, Le; Alharbi, Ohoud; Li, Renyuan; Zaouri, Noor A.; Wang, Peng

    2018-01-01

    strain of Shewanella loihica PV-4 and successfully synthesized USNPs of noble metal Au, Pd, and Pt. The synthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. The results of this work

  15. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparisons with Other Methods

    International Nuclear Information System (INIS)

    Wu, Liyou; Yi, T.Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-01-01

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site (Hanford Reach of the Columbia River (HRCR), 11 strains), Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  16. Genome analysis of a clinical isolate of Shewanella sp. uncovered an active hybrid integrative and conjugative element carrying an integron platform inserted in a novel genomic locus.

    Science.gov (United States)

    Parmeciano Di Noto, Gisela; Jara, Eugenio; Iriarte, Andrés; Centrón, Daniela; Quiroga, Cecilia

    2016-08-01

    Shewanella spp. are currently considered to be emerging pathogens that can code for a blaOXA carbapenemase in their chromosome. Complete genome analysis of the clinical isolate Shewanella sp. Sh95 revealed that this strain is a novel species, which shares a lineage with marine isolates. Characterization of its resistome showed that it codes for genes drfA15, qacH and blaOXA-48. We propose that Shewanella sp. Sh95 acts as reservoir of blaOXA-48. Moreover, analysis of mobilome showed that it contains a novel integrative and conjugative element (ICE), named ICESh95. Comparative analysis between the close relatives ICESpuPO1 from Shewanella sp. W3-18-1 and ICE SXTMO10 from Vibrio cholerae showed that ICESh95 encompassed two new regions, a type III restriction modification system and a multidrug resistance integron. The integron platform contained a novel arrangement formed by gene cassettes drfA15 and qacH, and a class C-attC group II intron. Furthermore, insertion of ICESh95 occurred at a unique target site, which correlated with the presence of a different xis/int module. Mobility of ICESh95 was assessed and demonstrated its ability to self-transfer with high efficiency to different species of bacteria. Our results show that ICESh95 is a self-transmissible, mobile element, which can contribute to the dissemination of antimicrobial resistance; this is clearly a threat when natural bacteria from water ecosystems, such as Shewanella, act as vectors in its propagation.

  17. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  18. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  19. Isolation and Characterization of a Shewanella Phage–Host System from the Gut of the Tunicate, Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Brittany Leigh

    2017-03-01

    Full Text Available Outnumbering all other biological entities on earth, bacteriophages (phages play critical roles in structuring microbial communities through bacterial infection and subsequent lysis, as well as through horizontal gene transfer. While numerous studies have examined the effects of phages on free-living bacterial cells, much less is known regarding the role of phage infection in host-associated biofilms, which help to stabilize adherent microbial communities. Here we report the cultivation and characterization of a novel strain of Shewanella fidelis from the gut of the marine tunicate Ciona intestinalis, inducible prophages from the S. fidelis genome, and a strain-specific lytic phage recovered from surrounding seawater. In vitro biofilm assays demonstrated that lytic phage infection affects biofilm formation in a process likely influenced by the accumulation and integration of the extracellular DNA released during cell lysis, similar to the mechanism that has been previously shown for prophage induction.

  20. Connection between nitrogen and manganese cycles revealed by transcriptomic analysis in Shewanella algae C6G3

    Science.gov (United States)

    Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.

    2016-02-01

    In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level

  1. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    Science.gov (United States)

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  2. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  3. Resolution of two native monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; McKinzie, Audra A.; Codd, Rachel

    2010-01-01

    Research highlights: → Two monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina. → Sequence of napA from napEDABC-type operon and napA from NapDAGHB-type operon. → Isolation of NAP as NapA or NapAB correlated with NapA P47E amino acid substitution. -- Abstract: The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90 kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90 kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90 kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90 kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.

  4. Grown on Novel Microcarriers

    Directory of Open Access Journals (Sweden)

    Torsten Falk

    2012-01-01

    Full Text Available Human retinal pigment epithelial (hRPE cells have been tested as a cell-based therapy for Parkinson’s disease but will require additional study before further clinical trials can be planned. We now show that the long-term survival and neurotrophic potential of hRPE cells can be enhanced by the use of FDA-approved plastic-based microcarriers compared to a gelatin-based microcarrier as used in failed clinical trials. The hRPE cells grown on these plastic-based microcarriers display several important characteristics of hRPE found in vivo: (1 characteristic morphological features, (2 accumulation of melanin pigment, and (3 high levels of production of the neurotrophic factors pigment epithelium-derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A. Growth of hRPE cells on plastic-based microcarriers led to sustained levels (>1 ng/ml of PEDF and VEGF-A in conditioned media for two months. We also show that the expression of VEGF-A and PEDF is reciprocally regulated by activation of the GPR143 pathway. GPR143 is activated by L-DOPA (1 μM which decreased VEGF-A secretion as opposed to the previously reported increase in PEDF secretion. The hRPE microcarriers are therefore novel candidate delivery systems for achieving long-term delivery of the neuroprotective factors PEDF and VEGF-A, which could have a value in neurodegenerative conditions such as Parkinson’s disease.

  5. Electrochemical Catalysis of Inorganic Complex K4[Fe(CN)6] by Shewanellaoneidensis MR-1

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Wu, Ranran; Xiao, Yong

    The interaction between metal and bacteria is a universal and important biogeochemical processin environment. As a dissimilatory metal reduction bacterium, the electrochemically activebacteriium Shewanella oneidensis MR-1 can transfer intracellular electrons to minerals. This ability is attribute...... andelectrocatalysis mechanisms of S. oneidensis MR-1 are under investigation. The ability of S. oneidensis MR-1 to catalyze redoxaction of inorganic metal complex compounds will provide an insight on metal cycles in nature....

  6. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  7. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins

    Directory of Open Access Journals (Sweden)

    Andong eGong

    2015-10-01

    Full Text Available Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these pests is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production in the field and during storage.

  8. Sequence and Genetic Characterization of etrA, an fnr Analog that Regulates Anaerobic Respiration in Shewanella putrefaciens MR-1

    Science.gov (United States)

    Saffarini, Daad A.; Nelson, Kenneth H.

    1993-01-01

    An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.

  9. Associations of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Ohnuki, Toshihiko; Kimura, Takaumi; Francis, Arokiasamy J.

    2005-01-01

    We studied the association of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans by a batch method and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria rapidly proceeded. The Eu(III) adsorption on A. faecalis and P. denitrificans at pHs 3, 4, and 5, and that on S.putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multidentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halophilic microorganisms, while that of A. faecalis and S. putrefaciens was the typical one observed for non-halophilic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (author)

  10. Understanding the role of multiheme cytochromes in iron(III) reduction and arsenic mobilization by Shewanella sp. ANA-3

    Science.gov (United States)

    Reyes, C.; Duenas, R.; Saltikov, C.

    2006-12-01

    The reduction of Fe (III) to Fe (II) and of arsenate (As (V)) to arsenite (As (III)) by Fe (III) reducing and As (V) respiring prokaryotes such as the bacterium Shewanella sp. ANA-3 may contribute to arsenic mobilization in aquifers contaminated with arsenic, specifically in places such as Bangladesh. Under oxic conditions As (V) predominates and is often adsorbed onto mineral surfaces such as amorphous ferrihydrite. However, under anoxic conditions As (III) predominates, sorbs to fewer minerals, and has a greater hydrologic mobility compared to As (V). The genetic mechanism underlying arsenic release from subsurface material most likely involves a combination of respiratory gene clusters (e.g. mtr/omc and arr). In this study, we are investigating the genetic pathways underlying arsenic mobilization. We have generated various mutations in the mtr/omc gene cluster, which encodes several outermembrane decaheme c-type cytochromes. Deletions in one mtr/omc gene did not eliminate iron reduction. However, strains carrying multiple gene deletions were greatly impaired in iron reduction abilities. Work is currently underway to generate combinations of iron reduction and arsenate reduction single and double mutants that will be used to investigate microbial mobilization of arsenic in flow-through columns containing As (V)-HFO coated sand. This work will address the importance of arsenate reduction and iron reduction in the mobilization of arsenic.

  11. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    Science.gov (United States)

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Shewanella loihica PV-4 Electrochemically Active Biofilm and Their Enhanced Catalytic Activities

    KAUST Repository

    Ahmed, Elaf

    2018-02-21

    Ultra-small nanoparticles (USNPs) of noble metals have a great potential in a variety of applications due to their high surface areas and high reactivity. This works employed electrochemically active biofilms (EABs) composed of a single bacterium strain of Shewanella loihica PV-4 and successfully synthesized USNPs of noble metal Au, Pd, and Pt. The synthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. The results of this work shine lights on the use of EABs in nanoparticle synthesis.

  13. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  14. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

    Science.gov (United States)

    Zhang, Xiaojian; Liu, Huan; Wang, Jinrong; Ren, Guangyuan; Xie, Beizhen; Liu, Hong; Zhu, Ying; Jiang, Lei

    2015-11-28

    Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S. loihica PV-4) could be greatly improved that is up to ca. 115 fold, by adding antimony-doped tin oxide (ATO) nanoparticles in the electrochemical reactor. The results demonstrate that the biocompatible, electrically conductive ATO nanoparticles acted as active microelectrodes could facilitate the formation of a cells/ATO composite biofilm and the reduction of the outer membrane c-type cytochromes (OM c-Cyts) that are beneficial for the electron transfer from cells to electrode. Meanwhile, a synergistic effect between the participation of OM c-Cyts and the accelerated EET mediated by cell-secreted flavins may play an important role for the enhanced current generation in the presence of ATO nanoparticles. Moreover, it is worth noting that the TCA cycle in S. loihica PV-4 cells is activated by adding ATO nanoparticles, even if the potential is poised at +0.2 V, thereby also improving the EET process. The results presented here may provide a simple and effective strategy to boost the EET of S. loihica PV-4 cells, which is conducive to providing potential applications in bioelectrochemical systems.

  15. Skin cancer full-grown from scar

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors investigate the peculiarities of skin cancer full-grown from scar, the theory of it's descent, quote some statistical data on skin cancer full-grown from scar and variety clinical forms of skin cancer full-grown from scar was shown, quote some methods of treatment

  16. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Science.gov (United States)

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  17. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  18. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  19. Radionuclides can be mobilized by bacteria from the subsurface grown under aerobic as well as anaerobic conditions

    International Nuclear Information System (INIS)

    Johnsson, A.; Arlinger, J.; Pedersen, K.; Albinsson, Y.; Andlid, T.

    2005-01-01

    Full text of publication follows: Microbes can influence radionuclide mobility in many ways. They can change the pH or redox of their surroundings, act as nucleation sites for precipitation, transport metals sorbed to the cell surface and excrete organic compounds that form mobile radionuclide complexes. The processes behind bio-mobilization of radionuclides are important to study as they may have implications on e g radioactive waste disposal. Three bacterial species; Pseudomonas fluorescens, Pseudomonas stutzeri and Shewanella putrefaciens were selected for this study. All bacteria were grown under aerobic conditions and P. stutzeri and S. putrefaciens were also grown under anaerobic conditions. Aerobic and anaerobic cultures were centrifuged after having reached stationary phase. The supernatants, containing the exudates of the bacteria, were collected. 59 Fe(III), 147 Pm(III), 234 Th(IV) and 241 Am(III) were added to the supernatants and SiO 2 was added to the supernatant radionuclide mix. The amount of radionuclide in the liquid phase was analyzed using liquid scintillation counting and Na-I gamma spectrometry. Supernatants of all three species of aerobically grown bacteria mobilize more than 60% of all four radionuclides. High performance liquid chromatography (HPLC) analysis detected four Fe-complexing substances in the supernatant of P. fluorescens and two peaks and one peak, respectively, in the supernatants of P. stutzeri and S. putrefaciens. All substances eluted from the column varied in retention times, indicating that the microbes produced several metabolites that have different complexing abilities. Comparing HPLC data with mobilization data show that P. fluorescens mobilizes the largest percentage of radionuclide and S. putrefaciens mobilizes the least amount of radionuclides in all cases. Like aerobic supernatants the supernatants of anaerobically grown bacteria test positive for siderophores. Despite this 59 Fe(III) shows no net mobilization

  20. Effects of Fab' fragments of specific egg yolk antibody (IgY-Fab') against Shewanella putrefaciens on the preservation of refrigerated turbot.

    Science.gov (United States)

    Zhang, Qian; Lin, Hong; Sui, Jianxin; Wang, Jingxue; Cao, Limin

    2015-01-01

    In our previous studies the specific egg yolk antibody (IgY) against Shewanella putrefaciens (one of the specific spoilage organisms for marine products during aerobic chilling storage) demonstrated significant activity to prolong the shelf life of refrigerated fish. The exploitation of the antigen-binding fragment plus the hinge region (IgY-Fab') is now considered a promising method for improving the efficiency of such natural antimicrobial agents. The antimicrobial activity of IgY-Fab' against S. putrefaciens was investigated using refrigerated turbot as samples. By microbial, chemical and sensory tests, it was shown to be able to effectively inhibit bacterial growth and prolong the shelf life of samples, with an efficiency evaluated significantly higher than that of whole IgY with the same molarity. The interaction between IgY agents and S. putrefaciens cells was also investigated, and the IgY-Fab' showed a much greater ability to damage cell membranes than the whole IgY. Compared to whole IgY with the same molarity, IgY-Fab' demonstrated higher and more durable antimicrobial efficiency. Such a result was assumed to be closely related to its structural properties (such as the much lower molecular weight), which may enhance its ability to influence physiological activities of antigen bacteria, especially the property or/and structure of cell membranes. © 2014 Society of Chemical Industry.

  1. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Inês B.; Fonseca, Bruno M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Matias, Pedro M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras (Portugal); Louro, Ricardo O.; Moe, Elin, E-mail: elinmoe@itqb.unl.pt [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal)

    2016-08-09

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.

  2. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.

    Science.gov (United States)

    Deng, Qi; Pu, Yuehua; Sun, Lijun; Wang, Yaling; Liu, Yang; Wang, Rundong; Liao, Jianmeng; Xu, Defeng; Liu, Ying; Ye, Riying; Fang, Zhijia; Gooneratne, Ravi

    2017-12-01

    Shewanella putrefaciens biofilm formation is of great concern for the shrimp industry because it adheres easily to food and food-contact surfaces and is a source of persistent and unseen contamination that causes shrimp spoilage and economic losses to the shrimp industry. Different concentrations of an antimicrobial lipopeptide, the fermentation product of Bacillus subtilis, AMPNT-6, were tested for the ability to reduce adhesion and disrupt S. putrefaciens preformed biofilms on two different contact surfaces (shrimp shell, stainless steel sheet). AMPNT-6 displayed a marked dose- and time-dependent anti-adhesive effect>biofilm removal. 3MIC AMPNT-6 was able both to remove biofilm and prevent bacteria from forming biofilm in a 96-well polystyrene microplate used as the model surface. 2MIC AMPNT-6 prevented bacteria from adhering to the microplate surface to form biofilm for 3h and removed already existing biofilm within 24h. Secretion of extracellular polymeric substances incubated in LB broth for 24h by S. putrefaciens was minimal at 3× MIC AMPNT-6. Scanning electron microscopy showed that damage to S. putrefaciens bacteria by AMPNT-6 possibly contributed to the non-adherence to the surfaces. Disruption of the mature biofilm structure by AMPNT-6 contributed to biofilm removal. It is concluded that AMPNT-6 can be used effectively to prevent attachment and also detach S. putrefaciens biofilms from shrimp shells, stainless steel sheets and polystyrene surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In Situ Spectral Kinetics of Cr(VI) Reduction by c-Type Cytochromes in A Suspension of Living Shewanella putrefaciens 200

    Science.gov (United States)

    Liu, Tongxu; Li, Xiaomin; Li, Fangbai; Han, Rui; Wu, Yundang; Yuan, Xiu; Wang, Ying

    2016-07-01

    Although c-type cytochromes (c-Cyts) mediating metal reduction have been mainly investigated with in vitro purified proteins of dissimilatory metal reducing bacteria, the in vivo behavior of c-Cyts is still unclear given the difficulty in measuring the proteins of intact cells. Here, c-Cyts in living Shewanella putrefaciens 200 (SP200) was successfully quantified using diffuse-transmission UV/Vis spectroscopy due to the strong absorbance of hemes, and the in situ spectral kinetics of Cr(VI) reduction by c-Cyts were examined over time. The reduced product Cr(III) observed on the cell surface may play a role in inhibiting the Cr(VI) reduction and reducing the cell numbers with high concentrations (>200 μM) of Cr(VI) evidenced by the 16S rRNA analysis. A brief kinetic model was established with two predominant reactions, redox transformation of c-Cyts and Cr(VI) reduction by reduced c-Cyts, but the fitting curves were not well-matched with c-Cyts data. The Cr(III)-induced inhibitory effect to the cellular function of redox transformation of c-Cyts was then added to the model, resulting in substantially improved the model fitting. This study provides a case of directly examining the reaction properties of outer-membrane enzyme during microbial metal reduction processes under physiological conditions.

  4. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    Science.gov (United States)

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  5. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin.

    Science.gov (United States)

    Vance, Tyler D R; Graham, Laurie A; Davies, Peter L

    2018-04-01

    Out of the dozen different ice-binding protein (IBP) structures known, the DUF3494 domain is the most widespread, having been passed many times between prokaryotic and eukaryotic microorganisms by horizontal gene transfer. This ~25-kDa β-solenoid domain with an adjacent parallel α-helix is most commonly associated with an N-terminal secretory signal peptide. However, examples of the DUF3494 domain preceded by tandem Bacterial Immunoglobulin-like (BIg) domains are sometimes found, though uncharacterized. Here, we present one such protein (SfIBP_1) from the Antarctic bacterium Shewanella frigidimarina. We have confirmed and characterized the ice-binding activity of its ice-binding domain using thermal hysteresis measurements, fluorescent ice plane affinity analysis, and ice recrystallization inhibition assays. X-ray crystallography was used to solve the structure of the SfIBP_1 ice-binding domain, to further characterize its ice-binding surface and unique method of stabilizing or 'capping' the ends of the solenoid structure. The latter is formed from the interaction of two loops mediated by a combination of tandem prolines and electrostatic interactions. Furthermore, given their domain architecture and membrane association, we propose that these BIg-containing DUF3494 IBPs serve as ice-binding adhesion proteins that are capable of adsorbing their host bacterium onto ice. Submitted new structure to the Protein Data Bank (PDB: 6BG8). © 2018 Federation of European Biochemical Societies.

  6. Characterization of a new M13 metallopeptidase from deep-sea Shewanella sp. E525-6 and mechanistic insight into its catalysis

    Directory of Open Access Journals (Sweden)

    Jin-Yu eYang

    2016-01-01

    Full Text Available Bacterial extracellular peptidases are important for bacterial nutrition and organic nitrogen degradation in the ocean. While many peptidases of the M13 family from terrestrial animals and bacteria are studied, there has been no report on M13 peptidases from marine bacteria. Here, we characterized an M13 peptidase, PepS, from the deep-sea sedimentary strain Shewanella sp. E525-6, and investigated its substrate specificity and catalytic mechanism. The gene pepS cloned from strain E525-6 contains 2085 bp and encodes an M13 metallopeptidase. PepS was expressed in Escherichia coli and purified. Among the characterized M13 peptidases, PepS shares the highest sequence identity (47% with Zmp1 from Mycobacterium tuberculosis, indicating that PepS is a new member of the M13 family. PepS had the highest activity at 30°C and pH 8.0. It retained 15% activity at 0°C. Its half life at 40°C was only 4 min. These properties indicate that PepS is a cold-adapted enzyme. The smallest substrate for PepS is pentapeptide, and it is probably unable to cleave peptides of more than 30 residues. PepS prefers to hydrolyze peptide bonds with P1’ hydrophobic residues. Structural and mutational analyses suggested that His531, His535 and Glu592 coordinate the catalytic zinc ion in PepS, Glu532 acts as a nucleophile, and His654 is probably involved in the transition state stabilization. Asp538 and Asp596 can stablize the orientations of His531 and His535, and Arg660 can stablize the orientation of Asp596. These results help in understanding marine bacterial peptidases and organic nitrogen degradation.

  7. CONSUMER ATTITUDES TOWARD ORGANICALLY GROWN LETTUCE

    OpenAIRE

    Wolf, Marianne McGarry; Johnson, Bradey; Cochran, Kerry; Hamilton, Lynn L.

    2002-01-01

    This research shows that approximately 29 percent of lettuce purchases in California expect to purchase an organically grown lettuce product in the future. Organic lettuce purchasers are more likely to be female, have a higher household income and a higher level of education. Consumers are concerned with the freshness, quality, price, and environmental impact of the lettuce they purchase.

  8. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  9. Counting molecular-beam grown graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Plaut, Annette S. [School of Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Wurstbauer, Ulrich [Department of Physics, Columbia University, New York, New York 10027 (United States); Pinczuk, Aron [Department of Physics, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Garcia, Jorge M. [MBE Lab, IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Madrid, E-28760 (Spain); Pfeiffer, Loren N. [Electrical Engineering Department, Princeton University, New Jersey 08544 (United States)

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  10. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  11. Heteroepitaxially grown InP solar cells

    International Nuclear Information System (INIS)

    Weinberg, I.; Swartz, C.K.; Brinker, D.J.; Wilt, D.M.

    1990-01-01

    Although they are significantly more radiation resistant than either Si or GaAs solar cells, their high wafer cost presents a barrier to the widespread use of InP solar cells in space. For this reason, the authors have initiated a program aimed at producing high efficiency, radiation resistant solar cells processed from InP heteroepitaxially grown on cheaper substrates. The authors' objective is to present the most recent results emanating from this program together with the results of their initial proton irradiations on these cells. This paper reports that InP cells were processed from a 4 micron layer of InP, grown by OMCVD on a silicon substrate, with a 0.5 micron buffer layer between the InP directly grown on a GaAs substrate. Initial feasibility studies, in a Lewis sponsored program at the Spire corporation, resulted in air mass zero efficiencies of 7.1% for the former cells and 9.1% for the latter. These initial low efficiencies are attributed to the high dislocation densities caused by lattice mismatch. The authors' preirradiation analysis indicates extremely low minority carrier diffusion lengths, in both cell base and emitter, and high values of both the diffusion and recombination components of the diode reverse saturation currents. Irradiation by 10 MeV protons, to a fluence of 10 13 cm -2 , resulted in relatively low degradation in cell efficiency, short circuit current and open circuit voltage

  12. Mineral composition of organically grown tomato

    Science.gov (United States)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  13. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  14. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  15. Recent results in characterization of melt-grown and quench-melt- grown YBCO superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Poeppel, R.B.; Gangopadhyay, A.K.

    1992-02-01

    From the standpoint of applications, melt-grown (MG) and quench-melt-grown (QMG) bulk YBCO superconductors are of considerable interest. In this paper, we studied the intragranular critical current density (J c ), the apparent pinning potential (U o ), and the irreversibility temperature (T irr ) of MG and QMG samples and compared the results to those for conventionally sintered YBCO. A systematic increase in U o and a slower drop in J c with temperature indicate a systematic improvement in flux-pinning properties in progressing from the sintered YBCO to QMG and MG samples. Weaker pinning is observed in the QMG YBCO than in the MG samples

  16. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  17. pH Control Enables Simultaneous Enhancement of Nitrogen Retention and N2O Reduction in Shewanella loihica Strain PV-4

    Directory of Open Access Journals (Sweden)

    Hayeon Kim

    2017-09-01

    Full Text Available pH has been recognized as one of the key environmental parameters with significant impacts on the nitrogen cycle in the environment. In this study, the effects of pH on NO3–/NO2– fate and N2O emission were examined with Shewanella loihica strain PV-4, an organism with complete denitrification and respiratory ammonification pathways. Strain PV-4 was incubated at varying pH with lactate as the electron donor and NO3–/NO2– and N2O as the electron acceptors. When incubated with NO3– and N2O at pH 6.0, transient accumulation of N2O was observed and no significant NH4+ production was observed. At pH 7.0 and 8.0, strain PV-4 served as a N2O sink, as N2O concentration decreased consistently without accumulation. Respiratory ammonification was upregulated in the experiments performed at these higher pH values. When NO2– was used in place of NO3–, neither growth nor NO2– reduction was observed at pH 6.0. NH4+ was the exclusive product from NO2– reduction at both pH 7.0 and 8.0 and neither production nor consumption of N2O was observed, suggesting that NO2– regulation superseded pH effects on the nitrogen-oxide dissimilation reactions. When NO3– was the electron acceptor, nirK transcription was significantly upregulated upon cultivation at pH 6.0, while nrfA transcription was significantly upregulated at pH 8.0. The highest level of nosZ transcription was observed at pH 6.0 and the lowest at pH 8.0. With NO2– as the electron acceptor, transcription profiles of nirK, nrfA, and nosZ were statistically indistinguishable between pH 7.0 and 8.0. The transcriptions of nirK and nosZ were severely downregulated regardless of pH. These observations suggested that the kinetic imbalance between N2O production and consumption, but neither decrease in expression nor activity of NosZ, was the major cause of N2O accumulation at pH 6.0. The findings also suggest that simultaneous enhancement of nitrogen retention and N2O emission reduction may be

  18. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  19. 76 FR 16323 - Irish Potatoes Grown in Washington; Continuance Referendum

    Science.gov (United States)

    2011-03-23

    ...; FV11-946-1 CR] Irish Potatoes Grown in Washington; Continuance Referendum AGENCY: Agricultural... conducted among eligible Washington potato growers to determine whether they favor continuance of the marketing order regulating the handling of Irish potatoes grown in Washington. DATES: The referendum will be...

  20. Leaf anatomy of genotypes of banana plant grown under coloured ...

    African Journals Online (AJOL)

    This study aimed to evaluate the effect of spectral light quality on different anatomical features of banana tree plantlets grown under coloured shade nets. Banana plants of five genotypes obtained from micropropagation, were grown under white, blue, red and black nets, with shade of 50%, in a completely randomized ...

  1. Influence of shading on container-grown flowering dogwoods

    Science.gov (United States)

    Bare root dogwoods can be successfully grown when transplanted into a container production system. Shade treatments regardless of color or density did have an effect on the plant growth of Cherokee Brave™ and Cherokee Princess dogwood. Plants grown under 50% black and 50% white shade had more heigh...

  2. Structural Reliability of the Nigerian Grown Abura Timber Bridge ...

    African Journals Online (AJOL)

    Structural reliability analysis was carried out on the Nigerian grown Abura timber, to ascertain its structural performance as timber bridge beams. Samples of the Nigerian grown Abura timber were bought from timber market, seasoned naturally and their structural/strength properties were determined at a moisture content of ...

  3. Superconductivity in MBE grown InN

    Energy Technology Data Exchange (ETDEWEB)

    Gunes, M.; Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester (United Kingdom); Tiras, E.; Ardali, S. [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, 26470, Eskisehir (Turkey); Ajagunna, A.O.; Iliopoulos, E.; Georgakilas, A. [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion, Crete (Greece)

    2011-05-15

    We present the experimental investigation of superconductivity in unintentionally doped MBE grown InN samples with various InN film thicknesses. A significant change in resistivity was observed at 3.82 K, for an 1080 nm InN layer with carrier concentration n{sub 3D}=1.185x10{sup 19} cm{sup -3}. However, no significant resistance change was observed in the case of InN samples with carrier density of 1.024x10{sup 19} cm{sup -3}, 1.38x10{sup 19} cm{sup -3}, and thicknesses of 2070 and 4700 nm, respectively. The carrier density of all investigated samples was within the range of values between the Mott transition (2x10{sup 17} cm{sup -3}) and the superconductivity to metal transition (7x10{sup 20} cm{sup -3}). We believe that at lower temperatures ({sup 3}He) which we cannot achieve with our set-up, the phase transition in other samples is likely to be observed. The origin of the observed anisotropic type-II superconductivity is discussed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    Science.gov (United States)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  5. assessment of cadmium and lead in soil and tomatoes grown

    African Journals Online (AJOL)

    MAHMUD IMAM

    Transfer of Heavy Metals from Soil to Lettuce (Lactuca sativa) grown in irrigated farmlands of ... respectively being the highest elements absorbed by the lettuce samples from the irrigated .... radioactive elements and organic chemicals,.

  6. Metals in leafy vegetables grown in Addis Ababa and toxicological ...

    African Journals Online (AJOL)

    Metals in leafy vegetables grown in Addis Ababa and toxicological implications. ... the leafy vegetables is attributed to plant differences in tolerance to heavy metals. ... Treatment of industrial effluents and phyto-extraction of excess metals from ...

  7. Quality and Quantity Evaluations of Shade Grown Forages

    Science.gov (United States)

    K. P. Ladyman; M. S. Kerley; R. L. Kallenbach; H. E. Garrett; J. W. Van Sambeek; N. E. Navarrete-Tindall

    2003-01-01

    Seven legumes were grown during the summer-fall of 2000, at the Horticulture and Agroforestry Research Center (39? 01 ' N, 92? 46' W) near New Franklin, MO. The forages were grown in 7.5L white pots placed on light-colored gravel either under full sunlight, 45% sunlight, or 20% sunlight created by a shade cloth over a rectangular frame. Drip irrigation was...

  8. Law Enforcement Efforts to Control Domestically Grown Marijuana.

    Science.gov (United States)

    1984-05-25

    mari- juana grown indoors , the involvement of large criminal organizations, and the patterns of domestic marijuana distribution. In response to a GAO...information is particularly important if the amount of marijuana grown indoors and the number of large-scale cultiva- tion and distribution organizations... marijuana indoors is becoming increasingly popular. A 1982 narcotics assessment by the Western States Information Network (WSIN)2 of marijuana

  9. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  10. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-01-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO 2 . Both air-grown cells, that have a CO 2 concentrating system, and 5% CO 2 -grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO 2 -grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO 2 fixation by high CO 2 -grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO 2 -grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  11. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Long, Fei; Yasaei, Poya; Yao, Wentao; Salehi-Khojin, Amin; Shahbazian-Yassar, Reza

    2017-06-21

    Wrinkle structures are commonly seen on graphene grown by the chemical vapor deposition (CVD) method due to the different thermal expansion coefficient between graphene and its substrate. Despite the intensive investigations focusing on the electrical properties, the nanotribological properties of wrinkles and the influence of wrinkle structures on the wrinkle-free graphene remain less understood. Here, we report the observation of anisotropic nanoscale frictional characteristics depending on the orientation of wrinkles in CVD-grown graphene. Using friction force microscopy, we found that the coefficient of friction perpendicular to the wrinkle direction was ∼194% compare to that of the parallel direction. Our systematic investigation shows that the ripples and "puckering" mechanism, which dominates the friction of exfoliated graphene, plays even a more significant role in the friction of wrinkled graphene grown by CVD. The anisotropic friction of wrinkled graphene suggests a new way to tune the graphene friction property by nano/microstructure engineering such as introducing wrinkles.

  12. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  13. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  14. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Strontium tartrate; dopant; effect of magnetic field; thermal behaviour. 1. Introduction ... tals of such type of compounds cannot be grown by either slow evaporation or ... is observed under a stereo binocular microscope (Carl. Zeiss) and ... a depth of 1⋅8 cm due to the diffusion of the top solution. After about a week ...

  15. Nutritional diversity of leafy amaranth species grown in Kenya ...

    African Journals Online (AJOL)

    Objectives: Despite the availability of many species of amaranth in Kenya, there is inadequate information on their nutritional diversity and how they can be best used in mitigation of malnutrition. Hence, this study was aimed at investigating the nutritional diversity of five leafy amaranth species grown in Kenya. Methodology ...

  16. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  17. Copper and lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    A study was carried out to determine the levels of two heavy metals, Lead (Pb) and Copper (Cu), in two popular leafy vegetables grown around Morogoro Municipality in Tanzania. Vegetable samples of Pumpkin leaves ( Cucurbita moschata) and Chinese cabbage ( Brassica chinensis) were collected from three sites and ...

  18. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are ...

  19. Scanning tunneling microscopy of hexagonal BN grown on graphite

    International Nuclear Information System (INIS)

    Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.

    1991-01-01

    The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution

  20. Yield performance of cowpea plant introductions grown in calcareous soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at a soil pH of 7.5 or higher, co...

  1. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Plauborg, Finn

    2010-01-01

    Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after...

  2. Antioxidative properties of some phototropic microalgae grown in waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Peter

    for the screening and selection of the species. In this study,the potential antioxidant activities of 12 micro algal sample from Chlorella., Spirulina., Euglena, Scenedesmus and Haematococcus species grown in waste water in Kalundborg micro algal facilities were evaluated using three antioxidant assays, including...

  3. Responses of soilless grown tomato plants to arbuscular ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Full Length Research Paper. Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. H. Yildiz Dasgan1*, Sebnem Kusvuran1 and Ibrahim Ortas2. 1Cukurova University, Faculty of Agriculture, Department of Horticulture ...

  4. Atomically flat platinum films grown on synthetic mica

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  5. Light-emission from in-situ grown organic nanostructures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2011-01-01

    Organic crystalline nanofibers made from phenylene-based molecules exhibit a wide range of extraordinary optical properties such as intense, anisotropic and polarized luminescence that can be stimulated either optically or electrically, waveguiding and random lasing. For lighting and display...... of morphological characterization and demonstrate how appropriate biasing with an AC gate voltage enables electroluminescence from these in-situ grown organic nanostructures....

  6. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  7. Growth and yield models for Eucalyptus grandis grown in Swaziland ...

    African Journals Online (AJOL)

    The aim of this study was to develop a stand-level growth and yield model for short-rotationEucalyptus grandis grown for pulp wood production at Piggs Peak in Swaziland. The data were derived from a Nelder 1a spacing trial established with E. grandis clonal cuttings in 1998 and terminated in 2005. Planting density ...

  8. pH-sensor properties of electrochemically grown iridium oxide

    NARCIS (Netherlands)

    Olthuis, Wouter; Robben, M.A.M.; Bergveld, Piet; Bos, M.; van der Linden, W.E.

    1990-01-01

    The open-circuit potential of an electrochemically grown iridium oxide film is measured and shows a pH sensitivity between −60 and −80 mV/pH. This sensitivity is found to depend on the state of oxidation of the iridium oxide film; for a higher state of oxidation (or more of the oxide in the high

  9. Cryopreservation of in vitro -grown shoot tips of apricot ( Prunus ...

    African Journals Online (AJOL)

    In vitro grown apricot (Prunus armeniaca L.) cv. El-Hamawey shoot tips were successfully cryopreserved using an encapsulation-dehydration procedure. Shoot tips were encapsulated in calcium-alginate beads before preculture on woody plant (WP) medium supplemented with different sucrose concentrations; 0.1, 0.3, 0.5, ...

  10. 78 FR 57101 - Walnuts Grown in California; Increased Assessment Rate

    Science.gov (United States)

    2013-09-17

    ... rate currently in effect. The quantity of assessable walnuts for the 2013-14 marketing year is... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 984 [Doc. No. AMS-FV-13-0056; FV13-984-1 PR] Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  11. 75 FR 22211 - Olives Grown in California; Increased Assessment Rate

    Science.gov (United States)

    2010-04-28

    ... Executive Order 12988, Civil Justice Reform. Under the marketing order now in effect, California olive... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-09-0089; FV10-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  12. 76 FR 67320 - Walnuts Grown in California; Increased Assessment Rate

    Science.gov (United States)

    2011-11-01

    ... Justice Reform. Under the marketing order now in effect, California walnut handlers are subject to... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 984 [Doc. No. AMS-FV-11-0062; FV11-984-1 FR] Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  13. 77 FR 51684 - Olives Grown in California; Increased Assessment Rate

    Science.gov (United States)

    2012-08-27

    ... 12988, Civil Justice Reform. Under the marketing order now in effect, California olive handlers are... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-11-0093; FV12-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  14. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  15. 78 FR 77367 - Almonds Grown in California; Continuance Referendum

    Science.gov (United States)

    2013-12-23

    ... 20250-0237, or internet: regulations.gov . FOR FURTHER INFORMATION CONTACT: Maria Stobbe, Marketing... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 981 [Doc. No. AMS-FV-13-0082; FV14-981-1 CR] Almonds Grown in California; Continuance Referendum AGENCY: Agricultural Marketing...

  16. Shade periodicity affects growth of container grown dogwoods

    Science.gov (United States)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  17. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  18. Single layer porous gold films grown at different temperatures

    International Nuclear Information System (INIS)

    Zhang Renyun; Hummelgard, Magnus; Olin, Hakan

    2010-01-01

    Large area porous gold films can be used in several areas including electrochemical electrodes, as an essential component in sensors, or as a conducting material in electronics. Here, we report on evaporation induced crystal growth of large area porous gold films at 20, 40 and 60 deg. C. The gold films were grown on liquid surface at 20 deg. C, while the films were grown on the wall of beakers when temperature increased to 40 and 60 deg. C. The porous gold films consisted of a dense network of gold nanowires as characterized by TEM and SEM. TEM diffraction results indicated that higher temperature formed larger crystallites of gold wires. An in situ TEM imaging of the coalescence of gold nanoparticles mimicked the process of the growth of these porous films, and a plotting of the coalescence time and the neck radius showed a diffusion process. The densities of these gold films were also characterized by transmittance, and the results showed film grown at 20 deg. C had the highest density, while the film grown at 60 deg. C had the lowest consistent with SEM and TEM characterization. Electrical measurements of these gold films showed that the most conductive films were the ones grown at 40 deg. C. The conductivities of the gold films were related to the amount of contamination, density and the diameter of the gold nanowires in the films. In addition, a gold film/gold nanoparticle hybrid was made, which showed a 10% decrease in transmittance during hybridization, pointing to applications as chemical and biological sensors.

  19. North American International Society for Microbial Electrochemical Technologies Meeting (Abstracts)

    Science.gov (United States)

    2016-04-18

    electrode interface in Shewanella oneidensis MR-1 Catarina Paquete1, Bruno Fonseca1, Ricardo O. Louro1 1 Instituto de Tecnologia Química e Biológica...response to anodic pH variation in a dual chamber microbial fuel cell Valentina Margaria, Instituto Italiano di Tecnologia , Italy 2-15 Microbial...SnO2 nanostructured composite for cathode oxygen reduction reaction in microbial fuel cells Adriano Sacco, Instituto Italiano di Tecnologia , Italy 2

  20. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Michael J.

    2007-07-23

    Progress is briefly summarized in these areas: ionizing radiation resistance in bacteria; a hypothesis regarding ionizing radiation resistance emerging for bacterial cells; transcriptome analysis of irradiated D. radiodurans and Shewanella oneidensis; the role of metal reduction in Mn-dependnet Deinococcal species; and engineered Deinococcus strains as models for bioremediation. Key findings are also reported regarding protein oxidation as a possible key to bacterial desiccation resistance, and the whole-genome sequence of the thermophile Deinococcus geothermalis.

  1. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.

    2011-10-14

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  2. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.; Logan, B. E.

    2011-01-01

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  3. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    Science.gov (United States)

    2004-01-01

    predicted protein of 24 kDa that shows 33% identity and 56% similarity to an invertase from Shewanella oneidensis. Invertases and resolvases have been...genes encoding the putative enzymes involved in DNA processing and transfer such as the nickase, helicase, primase, invertase and single-stand-binding...139–153. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology. Pansegrau, W. & Lanka, E. (1996). Enzymology of

  4. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    Science.gov (United States)

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Shock initiation experiments on ratchet grown PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Richard L [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Olinger, Barton W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Pierce, Timothy H [Los Alamos National Laboratory; Sanchez, Nathaniel J [Los Alamos National Laboratory

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  6. Changes in Translational Efficiency is a Dominant Regulatory Mechanism in the Environmental Response of Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Webb-Robertson, Bobbie-Jo M.; Markillie, Lye Meng; Serres, Margrethe H.; Linggi, Bryan E.; Aldrich, Joshua T.; Hill, Eric A.; Romine, Margaret F.; Lipton, Mary S.; Wiley, H. S.

    2013-09-23

    To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either aerobic or suboxic conditions. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily caused by differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Altered transcription levels appeared responsible for 26% of the protein changes, altered translational efficiency appeared responsible for 46% and a combination of both were responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part caused by altered tRNA pools, is a major determinant of regulated protein expression in bacteria.

  7. Facile in-situ fabrication of graphene/riboflavin electrode for microbial fuel cells

    International Nuclear Information System (INIS)

    Wang, Qian-Qian; Wu, Xia-Yuan; Yu, Yang-Yang; Sun, De-Zhen; Jia, Hong-Hua; Yong, Yang-Chun

    2017-01-01

    A novel graphene/riboflavin (RF) composite electrode was developed and its potential application as microbial fuel cell (MFC) anode was demonstrated. Graphene layers were first grown on the surface of graphite electrode by a one-step in-situ electrochemical exfoliation approach. Then, noncovalent functionalization of the graphene layers with RF was achieved by a simple spontaneous adsorption process. The graphene/RF electrode was extensively characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman analysis, and cyclic voltammetry analysis. Remarkably, when applied as the anode of Shewanella oneidensis MR-1 inoculated MFCs, the graphene/RF electrode significantly decreased charge transfer over-potential and enhanced cell attachment, which in turn delivered about 5.3- and 2.5-fold higher power output, when compared with that produced by the bare graphite paper electrode and graphene electrode, respectively. These results demonstrated that electron shuttle immobilization on the electrode surface could be a promising and practical strategy for improving the performance of microbial electrochemical systems.

  8. Large local lattice expansion in graphene adlayers grown on copper

    Science.gov (United States)

    Chen, Chaoyu; Avila, José; Arezki, Hakim; Nguyen, Van Luan; Shen, Jiahong; Mucha-Kruczyński, Marcin; Yao, Fei; Boutchich, Mohamed; Chen, Yue; Lee, Young Hee; Asensio, Maria C.

    2018-05-01

    Variations of the lattice parameter can significantly change the properties of a material, and, in particular, its electronic behaviour. In the case of graphene, however, variations of the lattice constant with respect to graphite have been limited to less than 2.5% due to its well-established high in-plane stiffness. Here, through systematic electronic and lattice structure studies, we report regions where the lattice constant of graphene monolayers grown on copper by chemical vapour deposition increases up to 7.5% of its relaxed value. Density functional theory calculations confirm that this expanded phase is energetically metastable and driven by the enhanced interaction between the substrate and the graphene adlayer. We also prove that this phase possesses distinctive chemical and electronic properties. The inherent phase complexity of graphene grown on copper foils revealed in this study may inspire the investigation of possible metastable phases in other seemingly simple heterostructure systems.

  9. Locally Grown Foods and Farmers Markets: Consumer Attitudes and Behaviors

    Directory of Open Access Journals (Sweden)

    Susan B. Smalley

    2010-03-01

    Full Text Available Farm viability poses a grave challenge to the sustainability of agriculture and food systems: the number of acres in production continues to decline as the majority of farms earn negative net income. Two related and often overlapping marketing strategies, (i locally grown foods and (ii distribution at farmers markets, can directly enhance food system sustainability by improving farm profitability and long-term viability, as well as contributing to an array of ancillary benefits. We present results of a representative Michigan telephone survey, which measured consumers’ perceptions and behaviors around local foods and farmers markets. We discuss the implications of our findings on greater farm profitability. We conclude with suggestions for future research to enhance the contributions of locally grown foods and farmers markets to overall food system sustainability.

  10. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  11. X-ray diffraction study of directionally grown perylene crystallites

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Lemke, H. T.; Hammershøj, P.

    2008-01-01

    Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel to the subst......Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel...... to the substrate. The scattering data is interpreted as a trimodal texture of oriented perylene crystallites, induced by interactions between the perylene molecules and the oriented PTFE substrate. Three families of biaxial orientations are seen, with the axes (h = 1, 2, or 3) parallel to the PTFE alignment......, all having the ab-plane parallel to the substrate. About 92% of the scattered intensity corresponds to a population with highly parallel to (PTFE)....

  12. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    Science.gov (United States)

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  13. Thermoelectric properties of ZnSb films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Watko, E; Colpitts, T

    1997-07-01

    The thermoelectric properties of ZnSb films grown by metallorganic chemical vapor deposition (MOCVD) are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the thicker ZnSb films offer improved carrier mobilities and lower free-carrier concentration levels. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 C. The thicker films, due to the lower doping levels, indicate higher Seebeck coefficients between 25 to 200 C. A short annealing of the ZnSb film at temperatures of {approximately}200 C results in reduced free-carrier level. Thermal conductivity measurements of ZnSb films using the 3-{omega} method are also presented.

  14. Present and future applications of magnetic nanostructures grown by FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Teresa, J.M. de [CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon (ICMA), Saragossa (Spain); Universidad de Zaragoza, Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Saragossa (Spain); Fernandez-Pacheco, A. [University of Cambridge, TFM Group, Cavendish Laboratory, Cambridge (United Kingdom)

    2014-12-15

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems. (orig.)

  15. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  16. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    OpenAIRE

    Teekachunhatean, Supanimit; Hanprasertpong, Nutthiya; Teekachunhatean, Thawatchai

    2013-01-01

    Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed qual...

  17. Polyol concentrations in Aspergillus repens grown under salt stress.

    Science.gov (United States)

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Na(+), K(+) and the ratio of Na(+)/K(+) were higher in cells of the halotolerant Aspergillus repens grown with 2 M NaCl than without NaCl. The osmolytes, proline, glycerol, betaine and glutamate, did not affect the Na(+)/K(+) ratio, nor the polyol content of cells under any conditions. The concentrations of polyols, consisting of glycerol, arabitol, erythritol and mannitol, changed markedly during growth, indicating that they have a crucial role in osmotic adaptation.

  18. Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates

    Science.gov (United States)

    Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN

    2012-03-27

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.

  19. Spectral response of THM grown CdZnTe crystals

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Harris, F.

    2008-01-01

    The spectral response of several crystals grown by the Traveling Heater Method (THM) were investigated. An energy resolution of 0.98% for a Pseudo Frisch-Grid of 4 × 4 × 9 mm3 and 2.1% FWHM for a coplanar-grid of size 11 × 11 × 5 mm3 were measured using 137Cs-662 keV. In addition a 4% FWHM at 122...

  20. Electrolytic coloration of air-grown sodium fluoride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Han Li; Song Cuiying; Guo Meili; Wang Na

    2007-01-01

    Air-grown sodium fluoride crystals were colored electrolytically by using a pointed cathode at various temperatures and electric field strengths, which should mainly benefit appropriate coloration temperatures and electric field strengths. O 2 - , F, M, N 1 , N 2 color centers and O 2- -F + complexes were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V color center migration was determined. The formation of the color centers was explained

  1. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    Science.gov (United States)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  2. Accumulation of heavy metals by vegetables grown in mine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, G.P.; Sands, K.; Waters, M.; Wixson, B.G.; Dorward-King, E.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assess metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.

  3. Expression of virulence factors by Staphylococcus aureus grown in serum.

    Science.gov (United States)

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  4. InN-based layers grown by modified HVPE

    International Nuclear Information System (INIS)

    Syrkin, A.; Usikov, A.; Soukhoveev, V.; Kovalenkov, O.; Ivantsov, V.; Dmitriev, V.; Collins, C.; Readinger, E.; Shmidt, N.; Davydov, V.; Nikishin, S.; Kuryatkov, V.; Song, D.; Rosenbladt, D.; Holtz, Mark

    2006-01-01

    This paper contains results on InN and InGaN growth by Hydride Vapor Phase Epitaxy (HVPE) on various substrates including sapphire and GaN/sapphire, AlGaN/sapphire, and AlN/sapphire templates. The growth processes are carried out at atmospheric pressure in a hot wall reactor in the temperature range from 500 to 750 and ordm;C. Continuous InN layers are grown on GaN/sapphire template substrates. Textured InN layers are deposited on AlN/sapphire and AlGaN/sapphire templates. Arrays of nano-crystalline InN rods with various shapes are grown directly on sapphire substrates. X-ray diffraction rocking curves for the (002)InN reflection have the full width at half maximum (FWHM) as narrow as 270 arcsec for the nano-rods and 460 arcsec for the continuous layers. In x Ga 1-x N layers with InN content up to 10 mol.% are grown on GaN/sapphire templates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Assessing biodiesel quality parameters for wastewater grown Chlorella sp.

    Science.gov (United States)

    Bagul, Samadhan Yuvraj; K Bharti, Randhir; Dhar, Dolly Wattal

    2017-07-01

    Microalgae are reported as the efficient source of renewable biodiesel which should be able to meet the global demand of transport fuels. Present study is focused on assessment of wastewater grown indigenous microalga Chlorella sp. for fuel quality parameters. This was successfully grown in secondary treated waste water diluted with tap water (25% dilution) in glass house. The microalga showed a dry weight of 0.849 g L -1 with lipid content of 27.1% on dry weight basis on 21st day of incubation. After transesterification, the yield of fatty acid methyl ester was 80.64% with major fatty acids as palmitic, linoleic, oleic and linolenic. The physical parameters predicted from empirical equations in the biodiesel showed cetane number as 56.5, iodine value of 75.5 g I 2 100 g -1 , high heating value 40.1 MJ kg -1 , flash point 135 °C, kinematic viscosity 4.05 mm 2 s -1 with density of 0.86 g cm 3 and cold filter plugging point as 0.7 °C. Fourier transform infra-red (FTIR), 1 H, 13 C NMR spectrum confirmed the chemical nature of biodiesel. The results indicated that the quality of biodiesel was almost as per the criterion of ASTM standards; hence, wastewater grown Chlorella sp. can be used as a promising strain for biodiesel production.

  6. Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plants grown in a UV-free environmental chamber

    International Nuclear Information System (INIS)

    Takayanagi, Shinnosuke; Trunk, J.G.; Sutherland, J.C.; Sutherland, B.M.

    1994-01-01

    The relative UV sensitivities of alfalfa seedlings grown outdoors versus plants grown in a growth chamber under UV-filtered cool white fluorescent bulbs have been determined using three criteria: (1) level of endogenous DNA damage as sites for the UV endonuclease from Micrococcus luteus, (2) susceptibility to pyrimidine dimer induction by a UV challenge exposure and (3) ability to repair UV-induced damage. We find that outdoor-grown plants contain approximately equal frequencies of endogenous DNA damages, are less susceptible to dimer induction by a challenge exposure of broad-spectrum UV and photorepair dimers more rapidly than plants grown in an environmental chamber under cool white fluorescent lamps plus a filter removes most UV radiation. These data suggest that plants grown in a natural environment would be less sensitive to UVB-induced damage than would be predicted on the basis of studies on plants grown under minimum UV. (author)

  7. 78 FR 28118 - Vidalia Onions Grown in Georgia; Change in Reporting and Assessment Requirements

    Science.gov (United States)

    2013-05-14

    ... onion producers in the designated production area. Small agricultural service firms, which include...; FV13-955-1 IR] Vidalia Onions Grown in Georgia; Change in Reporting and Assessment Requirements AGENCY... Vidalia onions grown in Georgia (order). The order regulates the handling of Vidalia onions grown in...

  8. Leaf chemical composition of twenty-one Populus hybrid clones grown under intensive culture

    Science.gov (United States)

    Richard E. Dickson; Philip R. Larson

    1976-01-01

    Leaf material from 21 nursery-grown Populus hybrid clones was analyzed for three nitrogen fractions (total N, soluble protein, and soluble amino acids) and three carbhydrate fractions (reducing sugars, total soluble sugars, and total nonstructural carbohydrates-TNC). In addition, nursery-grown green ash and silver maple, field-grown bigtooth and trembling aspen, and...

  9. Response of container-grown flowering dogwood cultivars to sun/shade production regime, 2015

    Science.gov (United States)

    Flowering dogwood, Cornus florida, ‘Cherokee Brave™’ and ‘Cherokee Princess’ were grown in #5 nursery containers in an amended 100% bark substrate. Treatments were assigned based on exposure time to a full sun/shade condition during the growing season: 1) plants grown in full sun, 2) plants grown in...

  10. Polyphenol content and antioxidant capacity in organically and conventionally grown vegetables

    Directory of Open Access Journals (Sweden)

    Kevser Unal

    2014-11-01

    Full Text Available Objective: To evaluate the polyphenol content and antioxidant capacity of ethanol extracts of some organically and conventionally grown leafy vegetables. Methods: The ethanol extracts of kailan (Brassica alboglabra, bayam (Amaranthus spp. and sawi (Brassica parachinensis were tested for total phenolic content (TPC, total flavonoid content (TFC, and total anthocyanin content (TAC and the antioxidant capacity of the extracts measured using 2,2-diphenyl-1-picrylhydrazyl assay. Results: In TPC test, sawi extract showed the highest phenolic content while bayam contained the least phenolic content for both organically and conventionally grown types. In TFC test, organically grown sawi extract showed the highest flavonoid content, while organically grown kailan extract showed the least flavonoid content among all types of vegetables. The flavonoid content of the conventionally grown types of vegetable extracts was the highest in kalian and the least in sawi. For 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, the activity increased with the increasing concentration of each extract. All conventionally grown vegetable extracts showed higher antioxidant activity compared to their organically grown counterparts. Extracts of conventionally grown sawi showed the highest percentage inhibition followed by conventionally grown kailan and organically grown sawi. There were no correlation between TPC, TFC, TAC and IC25 of both organically and conventionally grown vegetables. However, there was a correlation between TAC and IC25 of conventionally grown vegetable extracts. The results showed relatively similar polyphenol content between organically and conventionally grown vegetable extracts. However, the conventionally grown vegetables extracts generally have higher antioxidant activity compared to the organically grown extracts. Conclusions: These results suggested that the different types of agricultural practice had a significant contribution to the

  11. Synthesis and Secretion of Isoflavones by Field-Grown Soybean.

    Science.gov (United States)

    Sugiyama, Akifumi; Yamazaki, Yumi; Hamamoto, Shoichiro; Takase, Hisabumi; Yazaki, Kazufumi

    2017-09-01

    Isoflavones play important roles in rhizosphere plant-microbe interactions. Daidzein and genistein secreted by soybean roots induce the symbiotic interaction with rhizobia and may modulate rhizosphere interactions with microbes. Yet despite their important roles, little is known about the biosynthesis, secretion and fate of isoflavones in field-grown soybeans. Here, we analyzed isoflavone contents and the expression of isoflavone biosynthesis genes in field-grown soybeans. In roots, isoflavone contents and composition did not change with crop growth, but the expression of UGT4, an isoflavone-specific 7-O-glucosyltransferase, and of ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) was decreased during the reproductive stages. Isoflavone contents were higher in rhizosphere soil than in bulk soil during both vegetative and reproductive stages, and were comparable in the rhizosphere soil between these two stages. We analyzed the degradation dynamics of daidzein and its glucosides to develop a model for predicting rhizosphere isoflavone contents from the amount of isoflavones secreted in hydroponic culture. Conjugates of daidzein were degraded much faster than daidzein, with degradation rate constants of 8.51 d-1 for malonyldaidzin and 11.6 d-1 for daidzin, vs. 9.15 × 10-2 d-1 for daidzein. The model suggested that secretion of isoflavones into the rhizosphere is higher during vegetative stages than during reproductive stages in field-grown soybean. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. InN layers grown by the HVPE

    International Nuclear Information System (INIS)

    Syrkin, A.L.; Ivantsov, V.; Usikov, A.; Dmitriev, V.A.; Chambard, G.; Ruterana, P.; Davydov, A.V.; Sundaresan, S.G.; Lutsenko, E.; Mudryi, A.V.; Readinger, E.D.; Chern-Metcalfe, G.D.; Wraback, M.

    2008-01-01

    We report on the properties of high quality HVPE InN and on successful subsequent MBE growth of InN layers with improved characteristics on HVPE InN template substrates. InN layers were grown by HVPE on GaN/sapphire HVPE templates. The (00.2) XRD rocking curve of the best InN layer (RC) had the FWHM of about 375 arc sec, being the narrowest XRD RCs ever reported for HVPE InN. Transmission Electron Microscopy (TEM) revealed that at the GaN/InN interface, the threading dislocations that come from GaN were transmitted into the InN layer. We estimated the dislocation density in HVPE grown InN to be in the low 10 9 cm -2 range. Reflection high energy electron diffraction (RHEED) confirmed monocrystalline structure of the InN layers surface. Layers photoluminescence (PL) showed edge emission around 0.8 eV. Hall measured free electron concentration was in the range of 10 19 -10 20 cm -3 and electron mobility was ∝200 cm 2 /V s. MBE growth of InN was performed on the HVPE grown InN template substrate demonstrating the improvement of material quality in the case of homo-epitaxial growth of InN. Demonstration of the high quality HVPE InN materials opens a new way for InN substrate development. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spherical Nb single crystals containerlessly grown by electrostatic levitation

    International Nuclear Information System (INIS)

    Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.

    2003-01-01

    Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals

  14. Optical transparency of graphene layers grown on metal surfaces

    International Nuclear Information System (INIS)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S.; Gall, N. R.

    2017-01-01

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  15. Loose smut of barley grown in three types of farming

    Directory of Open Access Journals (Sweden)

    T. Nedelcheva

    2016-09-01

    Full Text Available Abstract. Over the period of 2014-2015, on the experimental field of the Institute of Agriculture in Karnobat, Bulgaria, was set a field trial with twenty cultivars of barley – 15 two-row: Obzor, Emon, Perun, Orfey, Lardeya, Asparuh, Kuber, Zagorets, Imeon, Sayra, Devinya, Sitara, Krami, Vicky, Potok; 3 four-row: Veslets, Aheloy 2, Tamaris; and 2 six-row cultivars – IZ Bori and Bozhin. All the cultivars were grown in three types of farming: conventional, organic and biodynamic. In conventional farming were applied pesticides and nitrogen fertilization. In the organic production were not used pesticides, mineral and organic fertilizers; and in biodynamic farming was applied biodynamic compost prepared from manure and biodynamic preparations (also organic. In conventional farming, the seeds were disinfected before sowing with Kinto plus (Triticonazole 20 g/l + Prochloraz 60 g/l, at a rate of 150 ml/100 kg seeds. In organic and biodynamic farming were used nondisinfected seeds. In the phenophase of full maturity of barley was conducted monitoring survey for plants infected with loose smut in all 2 the trial variants, the number of infected plants per m were counted and the infection rates were calculated. Infected plants of Tamaris grown in the three types of farming underwent microscopic analysis and measurement of 100 teliospores from each variant. The aim of this experiment was to investigate varietal susceptibility of barley to Ustilago nuda, grown in three types of farming, and to establish if the growing method affects the size of the teliospores of the pathogen. With two-row barley were found plants of Lardeya, Kuber, Devinya, Krami and Vicky infected with Ustilago nuda. Krami manifested the lowest resistance in the three types of farming. With four-row barley, Tamaris was found to be highly susceptible and Veslets was poorly resistant. Both cultivars expressed weaker susceptibility in conventional and biodynamic farming and stronger in

  16. The uptake of 131I by some hydroponically grown crops

    International Nuclear Information System (INIS)

    Asprer, G.A.; Lansangan, L.M.; de la Paz, L.R.

    1982-01-01

    Biologically labelled vegetables which include kangkong and sweet potato tops were grown hydroponically in a modified Hoagland-Arnon nutrient solution containing radioiodine with 0.5% non-radioactive Nal solution as the medium. The crops considered in this study are commonly eaten by Filipinos. The concentration of the solution as well as the uptake in the plant system were determined at various time intervals. The extent of radioiodine uptake through air-water-plant pathway is one of the parameters needed for calculating the dose that the general populace could be exposed to, due to radioactivity in the environment. (author)

  17. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  18. Optical transparency of graphene layers grown on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rut’kov, E. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lavrovskaya, N. P. [State University of Aerospace Instrumentation (Russian Federation); Sheshenya, E. S., E-mail: sheshenayket@gmail.ru; Gall, N. R. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  19. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    Directory of Open Access Journals (Sweden)

    Supanimit Teekachunhatean

    2013-01-01

    Full Text Available Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed quality, crop year, planting date (even in the same crop year, and planting location. Most varieties (except for Nakhon Sawan 1 and Sukhothai 1 had significantly higher isoflavone content when planted in early rather than in late dry season. Additionally, seed viability as well as long-term storage at 10∘C or at ambient condition seemed unlikely to affect isoflavone content in Thai soybean varieties. Isoflavone content in soybean seeds grown in Thailand depends on multiple genetic and environmental factors. Some varieties (Nakhon Sawan 1 and Sukhothai 1 exhibited moderately high isoflavone content regardless of sowing date. Soybeans with decreased seed viability still retained their isoflavone content.

  20. Pb-210 in beans grown in normal background environments

    International Nuclear Information System (INIS)

    Mingote, Raquel M.; Nogueira, Regina A.

    2013-01-01

    A survey was carried out on the activity concentration of 210 Pb in common beans (Phaseolus vulgaris L.) grown in normal background environments in Brazil. The Carioca beans and the black type were analyzed, which contribute with 90% of the Brazilian market share of the common beans. To this study 18 bean samples sowing in the Middle-Western and Southern regions of Brazil during the years 2010-2011 were analyzed. The proportion per bean type was similar to the national production: most of the Carioca beans (n=13; 72%) and black beans (n=5; 28%). Other 17 values of 210 Pb activity concentration in beans grown in Southeastern region available in the GEORAD, a dataset of radioactivity in Brazil, were added to the statistic analysis of the data. Considering the information contained in censored observations (60%), representative value of 210 Pb activity concentration in beans was estimated by using robust ROS, a censored data analysis method. The value 0.047 Bq kg -1 fresh wt. obtained here is according to 210 Pb activity concentration in grains reported by UNSCEAR 0.05 Bq kg -1 . (author)

  1. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour

    Science.gov (United States)

    Alves, Ariana Vieira; Sanjinez-Argandoña, Eliana Janet; Linzmeier, Adelita Maria; Cardoso, Claudia Andrea Lima; Macedo, Maria Lígia Rodrigues

    2016-01-01

    Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae. PMID:26974840

  2. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour.

    Directory of Open Access Journals (Sweden)

    Ariana Vieira Alves

    Full Text Available Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae, which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq. Lodd is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83% and lipid (40.45%, with significant levels of unsaturated fatty acids (65.99%, antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae.

  3. Gene expression from plants grown on the International Space Station

    Science.gov (United States)

    Stimpson, Alexander; Pereira, Rhea; Kiss, John Z.; Correll, Melanie

    Three experiments were performed on the International Space Station (ISS) in 2006 as part of the TROPI experiments. These experiments were performed to study graviTROPIsm and photoTROPIsm responses of Arabidopsis in microgravity (µg). Seedlings were grown with a variety of light and gravitational treatments for approximately five days. The frozen samples were returned to Earth during three space shuttle missions in 2007 and stored at -80° C. Due to the limited amount of plant biomass returned, new protocols were developed to minimize the amount of material needed for RNA extraction as a preparation for microarray analysis. Using these new protocols, RNA was extracted from several sets of seedlings grown in red light followed by blue light with one sample from 1.0g treatment and the other at µg. Using a 2-fold change criterion, microarray (Affymetrix, GeneChip) results showed that 613 genes were upregulated in the µg sample while 757 genes were downregulated. Upregulated genes in response to µg included transcription factors from the WRKY (15 genes), MYB (3) and ZF (8) families as well as those that are involved in auxin responses (10). Downregulated genes also included transcription factors such as MYB (5) and Zinc finger (10) but interestingly only two WRKY family genes were down-regulated during the µg treatment. Studies are underway to compare these results with other samples to identify the genes involved in the gravity and light signal transduction pathways (this project is Supported By: NASA NCC2-1200).

  4. Pb-210 in beans grown in normal background environments

    Energy Technology Data Exchange (ETDEWEB)

    Mingote, Raquel M.; Nogueira, Regina A., E-mail: mingote@cnen.gov.br, E-mail: rnogueira@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil)

    2013-07-01

    A survey was carried out on the activity concentration of {sup 210}Pb in common beans (Phaseolus vulgaris L.) grown in normal background environments in Brazil. The Carioca beans and the black type were analyzed, which contribute with 90% of the Brazilian market share of the common beans. To this study 18 bean samples sowing in the Middle-Western and Southern regions of Brazil during the years 2010-2011 were analyzed. The proportion per bean type was similar to the national production: most of the Carioca beans (n=13; 72%) and black beans (n=5; 28%). Other 17 values of {sup 210}Pb activity concentration in beans grown in Southeastern region available in the GEORAD, a dataset of radioactivity in Brazil, were added to the statistic analysis of the data. Considering the information contained in censored observations (60%), representative value of {sup 210}Pb activity concentration in beans was estimated by using robust ROS, a censored data analysis method. The value 0.047 Bq kg{sup -1} fresh wt. obtained here is according to {sup 210}Pb activity concentration in grains reported by UNSCEAR 0.05 Bq kg{sup -1}. (author)

  5. Weak localization behavior observed in graphene grown on germanium substrate

    Directory of Open Access Journals (Sweden)

    Yinbo Sun

    2018-04-01

    Full Text Available Two dimensional electron systems (2DES usually show the weak localization behavior in consequence of electron interaction in the limited dimension. Distinct from other 2DES, the monolayer graphene, due to the chirality, exhibits unique weak localization behavior sensitive to not only inelastic but also elastic carrier scattering. Grain boundaries, which usually exist in monolayer graphene, are apparently related to the elastic carrier scattering process, thus affecting the weak localization behavior. However, their effect is scarcely studied due to the lack of an ideal platform. Here, a complementary system consisting of both single-crystalline graphene grown on Ge (110 and poly-crystalline graphene grown on Ge (111 is constructed. From the comparison of magnetoresistivity measurements, the weak localization effect is found to be greatly enhanced for the poly-crystalline graphene on Ge(111 compared to the single-crystalline graphene on Ge(110. The degraded transport performance in graphene/Ge(111 is due to the presence of grain boundary in poly-crystalline graphene, which results in the enhanced elastic intervalley scattering. In addition, the inelastic scattering originating from the strong electron-electron interaction at low temperature also contributes to weak localization of poly-crystalline graphene/Ge(111.

  6. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour.

    Science.gov (United States)

    Alves, Ariana Vieira; Sanjinez-Argandoña, Eliana Janet; Linzmeier, Adelita Maria; Cardoso, Claudia Andrea Lima; Macedo, Maria Lígia Rodrigues

    2016-01-01

    Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae.

  7. 2-undecanone and 2-tridecanone in field-grown onion.

    Science.gov (United States)

    Antonious, George F

    2013-01-01

    A field study was conducted to investigate the impact of soil amendments on concentrations of two volatile organic compounds, 2-undecanone and 2-tridecanone, in onion bulbs. The soil in five plots was mixed with sewage sludge, five plots were mixed with yard waste compost, five plots were mixed with laying hen manure each at 15 t acre(-1), and five unamended plots that never received soil amendments were used for comparison purposes. Plots (n = 20) were planted with onion, Allium cepa L. var. Super Star-F1 bulbs. Gas chromatographic/mass spetrometric (GC/MS) analyses of mature onion bulbs crude extracts revealed the presence of two major fragment ions that correspond to 2-undecanone and 2-tridecanone. Soil amended with yard waste compost enhanced 2-undecanone and 2-tridecanone production by 31 and 59%, respectively. Soil amended with chicken manure enhanced 2-undecanone and 2-tridecanone production by 28 and 43%, respectively. Concentrations of 2-undecanone and 2-tridecanone were lowest in onion bulbs of plants grown in sewage sludge and unamended soil, respectively. The increased concentrations of 2-undecanone and 2-tridecanone in onion bulbs may provide a protective character against insect and spider mite attack in field grown onions.

  8. Root exudation of phytosiderophores from soil-grown wheat

    Science.gov (United States)

    Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus

    2014-01-01

    For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21–47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330

  9. Characterization of Cellulolytic Bacterial Cultures Grown in Different Substrates

    Directory of Open Access Journals (Sweden)

    Mohamed Idris Alshelmani

    2013-01-01

    Full Text Available Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ and the American Type Culture Collection (ATCC. The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF of palm kernel cake (PKC. The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30∘C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.

  10. Yield of lettuce grown in aquaponic system using different substrates

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Jordan

    Full Text Available ABSTRACT In the aquaponic system, the characteristics of the materials used as substrate directly affect plant development, because besides acting as a support base, they must present a surface to fix microorganisms, responsible for the conversion of nutrients into forms more easily available to plants. Thus, the objective of this study was to evaluate the effect of four growing substrates on the yield of lettuce grown in aquaponic system. The experimental design was randomized blocks with four treatments, which corresponded to the substrates, and six replicates. Plants were grown using the nutrient film technique (NFT system. The substrates used in the experiment were: coconut shell fiber with crushed stone #3, expanded vermiculite, zeolite and phenolic foam. The treatment with phenolic foam was considered as the least suitable for lettuce cultivation in aquaponic system, because it caused lower yield (20.8 t ha-1. The treatment using coconut shell fiber with crushed stone #3 was considered as the most adequate, since it led to higher yield (39.9 t ha-1 compared with the other substrates analyzed.

  11. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  12. Physiological and Growth Characteristics of Shewanella Species

    Science.gov (United States)

    2016-05-01

    with B vitamins in the MMB. After the addition of riboflavin, DPV scans revealed a peak at -0.419 ± 0.005 V; n = 3. DPV scans performed on CF 31 h...0.008. The DM was supplemented with Wolfe’s mineral and vitamin solutions [20]. Peptone and yeast extract were omitted and replaced with high-purity...containing MB, cell elongation was observed when cultures entered stationary phase. Under DM conditions, agarose was in excess throughout the

  13. Stress determination in thermally grown alumina scales using ruby luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch [Argonne National Lab., IL (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  14. Photosensitivity of nanocrystalline ZnO films grown by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Bentes, L.; Casteleiro, C.; Conde, O.; Marques, C.P.; Alves, E.; Moutinho, A.M.C.; Marques, H.P.; Teodoro, O.; Schwarz, R.

    2009-01-01

    We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al 2 O 3 ), under substrate temperatures around 400 deg. C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature

  15. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  16. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  17. InN grown by migration enhanced afterglow (MEAglow)

    International Nuclear Information System (INIS)

    Butcher, Kenneth Scott A.; Alexandrov, Dimiter; Terziyska, Penka; Georgiev, Vasil; Georgieva, Dimka; Binsted, Peter W.

    2012-01-01

    InN thin films were grown by a new technique, migration enhanced afterglow (MEAglow), a chemical vapour deposition (CVD) form of migration enhanced epitaxy (MEE). Here we describe the apparatus used for this form of film deposition, which includes a scalable hollow cathode nitrogen plasma source. Initial film growth results for InN are also presented including atomic force microscopy (AFM) images that indicate step flow growth with samples having root mean square (RMS) surface roughness of as little as 0.103 nm in some circumstances for film growth on sapphire substrates. X-ray diffraction (XRD) results are also provided for samples with a full width half maximum (FWHM) of the (0002) ω-2θ peak of as little as 290 arcsec. Low pressure conditions that can result in damage to the InN during growth are described. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Optical absorption in gel grown cadmium tartrate single crystals

    International Nuclear Information System (INIS)

    Arora, S K; Kothari, A J; Patel, R G; Chauha, K M; Chudasama, B N

    2006-01-01

    Single crystals of cadmium tartrate pentahydrate (CTP) have been grown by the famous gel technique. The slow and controlled reaction between Cd 2+ and (C 4 H 4 O 6 ) 2- ions in silica hydrogel results in formation of the insoluble product, CdC 4 H 4 O 6 .5H 2 O. Optical absorption spectra have been recorded in the range 200 to 2500 nm. Fundamental absorption edge for electronic transition has been analyzed. The direct allowed transition is found to be present in the region of relatively higher photon energy. Analysis of the segments of α 1/2 versus hν graph has been made to separate individual contribution of phonons. The phonons involved in the indirect transition are found to correspond to 335 and 420 cm -1 . Scattering of charge carriers in the lattice is found due to acoustic phonons

  19. Alkaline-doped manganese perovskite thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Bibes, M.; Gorbenko, O.; Martinez, B.; Kaul, A.; Fontcuberta, J.

    2000-01-01

    We report on the preparation and characterization of La 1-x Na x MnO 3 thin films grown by MOCVD on various single-crystalline substrates. Under appropriate conditions epitaxial thin films have been obtained. The Curie temperatures of the films, which are very similar to those of bulk samples of similar composition, reflect the residual strain caused by the substrate. The anisotropic magnetoresistance AMR of the films has been analyzed in some detail, and it has been found that it has a two-fold symmetry at any temperature. Its temperature dependence mimics that of the electrical resistivity and magnetoresistance measured at similar fields, thus suggesting that the real structure of the material contributes to the measured AMR besides the intrinsic component

  20. Heavy metal absorption by vegetables grown in different soils

    International Nuclear Information System (INIS)

    Canova, F.; Riolfatti, M.; Ravazzolo, E.; Da Ros, D.; Brigato, L.

    1995-01-01

    The authors study the bibliographic and experimental data on absorption by vegetables of several heavy metals present in the soil or brought to it via fertilizations, especially with the use of compost coming from waste treatment plants. The presence of heavy metals in the soil causes increased levels of these toxic substances in the edible parts of the vegetables grown in that soil. Not to be neglected is also the absorption by the leaf apparatus of airborne particulate containing heavy metals which deposit on the parts of the vegetable exposed to the air. The available data lack homogeneity of investigation as they have been draw from studies which followed different methodologies. Therefore further studies are required in order to: eliminate some of the variables that might affect the absorption of metals from the soil and supply comparable data. Moreover, a greater number of vegetable species and their different edible parts will have to be taken into consideration

  1. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  2. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  3. Initial spacing of poplars and willows grown as arable coppice

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, A.; Johns, C.

    1997-11-01

    Two clones of poplar and two clones of willow were grown at two sites, on a three year cutting cycle, at six different square spacings, between 0.8 metres and 1.5 metres. The two willow clones 'Bowles hybrid' and 'Dasyclados' were planted at both sites. The poplar clones Populus interamericana 'Beaupre' and Populus trichocarpa 'Columbia River'' were planted at Wishanger in Hampshire. The poplar clones Populus interamericana 'Boelare' and Populus trichocarpa 'Trichobel' were planted at Downham Market in Norfolk. The highest yield of 17.55 oven dry tonnes per hectare (odt/ha/annum) was obtained from 'Bowles hybrid', at the closest spacing, grown on a water meadow adjacent to the River Wey at Wishanger. The highest yield for all clones at both sites was achieved at the closest spacing (in this first rotation). There was a significant linear effect. One of the most interesting observations was that when comparing the gradient of the linear relationship, within species, the gradient was steeper for the higher yielding clone. This was particularly so for the willows. This would suggest that higher yielding clones are more tolerant of crowding, or, that upright Salix viminalis make better use of close space than the more spreading Salix dasyclados. The new Salix x Salix schwerinnii hybrids should therefore also be responsive to closer spacing. The same effect was observed for the poplars at Wishanger only, but the difference was not as dramatic. There was a suggestion from the highest yielding poplar plots that optimum yield may still be obtained at the currently recommended spacing of 1.0 metre x 1.0 metre. (author)

  4. Understanding the defect structure of solution grown zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Laura-Lynn [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Sankar, Gopinathan, E-mail: g.sankar@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Handoko, Albertus D. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Goh, Gregory K.L., E-mail: g-goh@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Kohara, Shinji [Japan Synchrotron Radiation Research Institute (JASRI), Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  5. Relaxor properties of barium titanate crystals grown by Remeika method

    Science.gov (United States)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  6. Increased root production in soybeans grown under space flight conditions.

    Science.gov (United States)

    Levine, H. G.; Piastuch, W. C.

    The GENEX ({Gen}e {Ex}pression) spaceflight experiment (flown on STS-87) was developed to investigate whether direct and/or indirect effects of microgravity are perceived as an external stimulus for soybean seedling response. Protocols were designed to optimize root and shoot formation, gas exchange and moisture uniformity. Six surface sterilized soybean seeds (Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to each pouch (thereby initiating the process of seed germination on-orbit), and subsequently transferred them to four passive, light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight material, (2) the corresponding ground control population, plus (3) additional controls grown on the ground under clinostat conditions. No significant growth differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. The mechanism underlying this phenomenon is open to speculation. Funded under NASA Contract NAS10-12180.

  7. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  8. Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source.

    Science.gov (United States)

    West, T P; Strohfus, B

    1996-01-01

    Pullulan production by Aureobasidium pullulans strain RP-1 using thin stillage from fuel ethanol production as a nitrogen source was studied in a medium using corn syrup as a carbon source. The use of 1% thin stillage as a nitrogen source instead of ammonium sulphate elevated polysaccharide production by strain RP-1 cells when grown on a concentration of up to 7.5% corn syrup, independent of yeast extract supplementation. Dry weights of cells grown in medium containing ammonium sulphate as the nitrogen source were higher than the stillage-grown cells after 7 days of growth. The viscosity of the polysaccharide on day 7 was higher for cells grown on thin stillage rather than ammonium sulphate as a nitrogen source. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 was higher than the pullulan content of polysaccharide produced by stillage-grown cells regardless of whether yeast extract was added to the culture medium.

  9. The Ties That Bind: Midlife Parents' Daily Experiences With Grown Children.

    Science.gov (United States)

    Fingerman, Karen L; Kim, Kyungmin; Birditt, Kira S; Zarit, Steven H

    2016-04-01

    Daily pleasant or stressful experiences with grown children may contribute to parental well-being. This diary study focused on midlife parents' ( N = 247) reports regarding grown children for 7 days. Nearly all parents (96%) had contact with a child that week via phone, text, or in person. Nearly all parents shared laughter or enjoyable interactions with grown children during the study week. More than half of parents experienced stressful encounters (e.g., child got on nerves) or stressful thoughts about grown children (e.g., worrying, fretting about a problem). Pleasant and stressful experiences with grown children were associated with parents' positive and negative daily moods. A pleasant experience with a grown child the same day as a stressful experience mitigated effects of those stressful experiences on negative mood, however. The findings have implications for understanding intergenerational ambivalence and stress buffering in this tie.

  10. The Ties That Bind: Midlife Parents’ Daily Experiences With Grown Children

    Science.gov (United States)

    Fingerman, Karen L.; Kim, Kyungmin; Birditt, Kira S.; Zarit, Steven H.

    2015-01-01

    Daily pleasant or stressful experiences with grown children may contribute to parental well-being. This diary study focused on midlife parents’ (N = 247) reports regarding grown children for 7 days. Nearly all parents (96%) had contact with a child that week via phone, text, or in person. Nearly all parents shared laughter or enjoyable interactions with grown children during the study week. More than half of parents experienced stressful encounters (e.g., child got on nerves) or stressful thoughts about grown children (e.g., worrying, fretting about a problem). Pleasant and stressful experiences with grown children were associated with parents’ positive and negative daily moods. A pleasant experience with a grown child the same day as a stressful experience mitigated effects of those stressful experiences on negative mood, however. The findings have implications for understanding intergenerational ambivalence and stress buffering in this tie. PMID:27022198

  11. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  12. Crops for biodiesel to be grown on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Ulrichsen, H.

    2007-12-01

    Natural Resources Canada has launched a feasibility project along with several branches of the federal government, provincial government, Laurentian University and mining and forestry companies to determine if crops suitable for producing biodiesel fuel can be grown on mine tailings. The concept first came about when a biodiesel plant was proposed to be built in Sudbury. Although plans for the plant have been abandoned, the biodiesel crop project is still going ahead. Crops will be cultivated on 2 half-hectare plots on the CVRD Inco tailings in Sudbury, 1 half-hectare plot on the Xstrata Nickel tailings in Sudbury and 1 half-hectare plot on the Goldcorp tailings in Timmins. Paper sludge from St. Marys Paper Company in Sault Ste. Marie and Domtar in Espanola will be spread on the plots in January when the frozen ground is easier to work on with heavy equipment. In the spring, the plots will be seeded with corn, canola or soy, with the possibility of alder and willow in the future. Instruments to monitor groundwater on the sites will also be installed. Biodiesel produced with vegetable or meat oils has been touted as being an environmentally sound diesel fuel. Emissions from vehicles fueled by biodiesel are 40 to 100 per cent lower than those from conventional diesel engines. Proponents of the project emphasize the value of using marginal lands like mine tailings to grow crops for biodiesel fuel instead of prime agricultural land. There are 2,500 hectares of tailings in Sudbury that could be potentially used for this purpose, and about 2,000 hectares at one mine site in Timmins. A Sudbury-area farmer will provide advice about growing the crops and will also grow the same crops on a portion of his land for a comparative evaluation of crop yield. The paper sludge offers the benefit of allowing crops to be grown, but it also cuts off oxygen flow to the tailings underneath, thereby preventing sulphides in the tailings from rusting. The paper sludge may even help the

  13. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    Science.gov (United States)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  14. Effect Of Bird Manure On Cotton Plants Grown On Soils Sampled ...

    African Journals Online (AJOL)

    Cotton plant had a better development and growth when bird manure was only applied to soil or combined with mineral fertilizer and when cotton was grown on a soil where the previous crops were cereals (maize or sorghum). Planting cotton on a soil where the previous crop grown was maize or sorghum had no significant ...

  15. 76 FR 34181 - Pistachios Grown in California, Arizona, and New Mexico; Proposed Amendments to Marketing Order

    Science.gov (United States)

    2011-06-13

    ...; FV11-983-1 PR] Pistachios Grown in California, Arizona, and New Mexico; Proposed Amendments to... amendments to Marketing Agreement and Order No. 983, which regulates the handling of pistachios grown in California, Arizona, and New Mexico, were proposed by the Administrative Committee for Pistachios (Committee...

  16. 75 FR 64681 - Pistachios Grown in California, Arizona, and New Mexico; Continuance Referendum

    Science.gov (United States)

    2010-10-20

    ... Service 7 CFR Part 983 [Doc. No. AMS-FV-10-0077; FV10-983-3 CR] Pistachios Grown in California, Arizona..., Arizona, and New Mexico pistachio producers to determine whether they favor continuance of the marketing order regulating the handling of pistachios grown in California, Arizona, and New Mexico. DATES: The...

  17. 78 FR 21520 - Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2013-04-11

    ...; FV12-923-1 FIR] Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate... 2012-2013 and subsequent fiscal periods from $0.40 to $0.18 per ton of sweet cherries handled. The Committee locally administers the marketing order for sweet cherries grown in designated counties in...

  18. 78 FR 76031 - Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2013-12-16

    ... FIR] Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate AGENCY... subsequent fiscal periods from $0.18 to $0.15 per ton of sweet cherries handled. The Committee locally administers the marketing order for sweet cherries grown in designated counties in Washington. The Committee's...

  19. 76 FR 4254 - Irish Potatoes Grown in Certain Designated Counties in Idaho, and Malheur County, Oregon...

    Science.gov (United States)

    2011-01-25

    ... Service 7 CFR Part 945 [Doc. No. AMS-FV-10-0109; FV11-945-1] Irish Potatoes Grown in Certain Designated... among eligible producers of Irish potatoes in certain designated counties in Idaho, and Malheur County... Irish potatoes grown in the production area. DATES: The referendum will be conducted from March 5 to...

  20. 76 FR 33967 - Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions

    Science.gov (United States)

    2011-06-10

    ... IR] Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions AGENCY... suspends the marketing order for Irish potatoes grown in Southeastern states (order), and the rules and regulations implemented thereunder, through March 1, 2014. The order regulates the handling of Irish potatoes...

  1. Quantification of the growth response of light quantity of greenhouse grown crops

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Nijs, E.M.F.M.; Raaphorst, M.G.M.

    2006-01-01

    Growers have often assumed that a 1% increment in light results in a 1% yield increase. In this study, this rule of thumb has been evaluated for a number of greenhouse grown crops: fruit vegetables (cucumber, tomato, sweet pepper), soil grown vegetables (lettuce, radish), cut flowers (rose,

  2. Characterization of GaN/AlGaN epitaxial layers grown

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers ...

  3. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION....506 Dependence of exemption on shade-grown tobacco operations. The exemption provided by section 13(a...

  4. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-05-23

    ... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No... Irish potatoes grown in Colorado. This action modifies the Committee membership structure by amending...

  5. Mid-Atlantic Consumer Purchasing Behavior and Knowledge of Locally Grown and Seasonal Produce

    Science.gov (United States)

    Chamberlain, Amy J.; Kelley, Kathleen M.; Hyde, Jeffrey

    2013-01-01

    Mid-Atlantic urban consumers were surveyed on their fruit and vegetable purchasing behaviors and their knowledge of produce grown in the region. Consumers were generally unaware of what produce is grown in the mid-Atlantic and during what months they are harvested. Additionally, differences pertaining to number of produce items purchased were…

  6. Helicopter Parents and Landing Pad Kids: Intense Parental Support of Grown Children

    Science.gov (United States)

    Fingerman, Karen L.; Cheng, Yen-Pi; Wesselmann, Eric D.; Zarit, Steven; Furstenberg, Frank; Birditt, Kira S.

    2012-01-01

    Popular media describe adverse effects of helicopter parents who provide intense support to grown children, but few studies have examined implications of such intense support. Grown children (N = 592, M age = 23.82 years, 53% female, 35% members of racial/ethnic minority groups) and their parents (N = 399, M age = 50.67 years, 52% female; 34%…

  7. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Science.gov (United States)

    2010-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2010-07-01 2010-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR...

  8. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  9. ARSENIC AND COPPER UPTAKE BY CABBAGES GROWN ON POLLUTED SOILS

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Kim Phuong

    2017-11-01

    Full Text Available Cabbages (Brassica Juncea (L. Czern were grown in pot experiments on typical unpolluted and polluted soils with concentration changing from 20.50 - 50.00 mg As/kg and 156.00 - 413.00 mg Cu/kg dry soil. The results demonstrate the elevation of As and Cu in soil may lead to increased uptake by these cabbages subsequent entry into human food chain. It was found 11.84- 32.12 mg As/kg and 46.86 - 94.47 mg Cu/kg dry leaves. It has tendency increase uptake and accumulation of Cu in cabbage tissue with increasing cultivated time, whereas, it was found accumulation of As in cabbages tissue decreased with time prolonging. The quantity of As and Cu in these cabbages, were significant higher than 0.2 mg As/kg and 5.0 mg Cu/kg fresh vegetable, the permissible limit concentration in fresh vegetable. This indicated that human may As and Cu exposure occur through eating these vegetables.

  10. Nutritional Characteristics of Forage Grown in South of Benin

    Directory of Open Access Journals (Sweden)

    Nadia Musco

    2016-01-01

    Full Text Available In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability. The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM] and crude protein level (16.10% vs 19.91% DM and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM, respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins. Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries.

  11. Sample sufficiency of chinese pink grown in different substrates

    Directory of Open Access Journals (Sweden)

    Sidinei José lopes

    2016-04-01

    Full Text Available The cravina is an excellent plant to build up gardens due to its early flowering, abundant flowering and great performance in spring and autumn. The objective was to estimate the sample size for plant chinese pink, grown on different substrates, and check the variability of the sample size between growth parameters and production and substrates. They used seven treatments (substrates: S1 = 50% soil + 50% rice husk ash; S2 = 80% soil + 20% earthworm castings; S3 = 80% rice husk ash + 20% earthworm castings; S4 = 40% soil + 40% rice husk ash + 20% earthworm castings; S5 = 100% peat; S6 = 100% commercial substrate Mecplant®; S7 = 50% peat + 50% rice husk ash, with 56 repetitions each, totaling 392 plants of garden pink, which was evaluated in 17 of growth and production parameters. The methodology used to bootstrap resampling, with replacement, for each character within each substrate with predetermined error: 5, 10, 20 and 40% of the average (D%. To a 95% confidence interval, with D = 20%, the substrate 50% soil and 50% of rice husk ash had the largest sample size 11 characters; when comparing the characters , the number of flower buds had the highest sample size on average 113 plants. Using samples of 44 plant chinese pink for commercial substrate Mecplant® meet the lower precisions or equal to 20% for all variables. There is variation in sample size in relation to the substrate used and the variable evaluated in chinese pink plants.

  12. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  13. The structure of Ta nanopillars grown by glancing angle deposition

    International Nuclear Information System (INIS)

    Zhou, C.M.; Gall, D.

    2006-01-01

    Regular arrays of Ta nanopillars, 200 nm wide and 500 nm tall, were grown on SiO 2 nanosphere patterns by glancing angle sputter deposition (GLAD). Plan-view and cross-sectional scanning electron microscopy analyses show dramatic changes in the structure and morphology of individual nanopillars as a function of growth temperature T s ranging from 200 to 700 deg. C. At low temperatures, T s ≤ 300 deg. C, single nanopillars develop on each sphere and branch into subpillars near the pillar top. In contrast, T s ≥ 500 deg. C leads to branching during the nucleation stage at the pillar bottom. The top branching at low T s is associated with surface mounds on a growing pillar that, due to atomic shadowing, develop into separated subpillars. At high T s , the branching occurs during the nucleation stage where multiple nuclei on a single SiO 2 sphere develop into subpillars during a competitive growth mode which, in turn, leads to intercolumnar competition and the extinction of some nanopillars

  14. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  15. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  16. Thermoelectric properties of ZnSb films grown by MOCVD

    International Nuclear Information System (INIS)

    Venkatasubramanian, R.; Watko, E.; Colpitts, T.

    1997-04-01

    The thermoelectric properties of metallorganic chemical vapor deposited (MOCVD) ZnSb films are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the growth of thicker ZnSb films lead to improved carrier mobilities and lower free-carrier concentrations. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 to 170 C, with peak Seebeck coefficients as high as 470 microV/K at 220 C. The various growth conditions, including the use of intentional dopants, to improve the Seebeck coefficients at room temperature and above, are discussed. A short annealing of the ZnSb films at temperatures of ∼ 200 C resulted in reduced free-carrier levels and higher Seebeck coefficients at 300 K. Finally, ZT values based on preliminary thermal conductivity measurements using the 3-ω method are reported

  17. Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions.

    Science.gov (United States)

    Xu, J; Feng, Y; Wang, Y; Lin, X

    2013-11-01

    As a consequence of the large-scale cultivation of Stevia plants, releases of plant residues, the byproduct after sweetener extraction, to the environment are inevitable. Stevia residue and its effluent after batching up contain large amounts of organic matters with small molecular weight, which therefore are a potential pollution source. Meanwhile, they are favourite substrates for micro-organism growths. This investigation was aimed to utilize the simulated effluent of Stevia residue to enrich the representative purple nonsulfur bacterium (PNSB), Rhodopseudomonas palustris (Rps. palustris), which has important economic values. The growth profile and quality of Rps. palustris were characterized by spectrophotometry, compared to those grown in common PNSB mineral synthetic medium. Our results revealed that the simulated effluent of Stevia residue not only stimulated Rps. palustris growth to a greater extent, but also increased its physiologically active cytochrome concentrations and excreted indole-3-acetic acid (IAA) content. This variation in phenotype of Rps. palustris could result from the shift in its genotype, further revealed by the repetitive sequence-based PCR (rep-PCR) fingerprinting analysis. Our results showed that the effluent of Stevia residue was a promising substrate for microbial growth. © 2013 The Society for Applied Microbiology.

  18. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  19. Resilience among abused and neglected children grown up.

    Science.gov (United States)

    McGloin, J M; Widom, C S

    2001-01-01

    Although an extensive literature has accumulated documenting the maladaptive outcomes associated with childhood victimization, a limited body of knowledge addresses resilience. This paper sought to operationalize the construct of resilience across a number of domains of functioning and time periods and to determine the extent to which abused and neglected children grown up demonstrate resilience. Substantiated cases of child abuse and neglect from 1967 to 1971 were matched on gender, age, race, and approximate family social class with nonabused and nonneglected children and followed prospectively into young adulthood. Between 1989 and 1995. 1,196 participants (676 abused and neglected and 520 controls) were administered a 2-hr in-person interview, including a psychiatric assessment. Resilience requires meeting the criteria for success across six of eight domains of functioning: employment, homelessness, education, social activity, psychiatric disorder, substance abuse, and two domains assessing criminal behavior (official arrest and self-reports of violence). Results indicate that 22% of abused and neglected individuals meet the criteria for resilience. More females met the criteria for resilience and females were successful across a greater number of domains than males. We speculate on the meaning of these findings and discuss implications for the child maltreatment field. Limitations of the study are also acknowledged.

  20. Characterization of traditional tomato varieties grown in organic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Cebrino, F.; Lozano, M.; Ayuso, M. C.; Bernalte, M. J.; Vidal-Aragon, M. C.; Gonzalez-Gomez, D.

    2011-07-01

    Organic horticulture is a sustainable agricultural model that can provide high quality products and allows conservation of genetic diversity. Traditional tomato varieties are well adapted to organic production and they have the organoleptic characteristics demanded by consumers. Seven traditional tomato varieties were studied: BGV-001020, BGV-000998, BGV-001000, BGV-004123, CIDA-44-A, CIDA-62, CIDA-59-A, and they were compared with a tomato Marmandetype commercial cv. Baghera, all them grown under organic production. Several quality variables were measured to establish whether any of the traditional varieties might be suitable for commercial production. CIDA-62 was shown to be the most promising variety. It produces tomatoes of very high quality under organic conditions. It excels in terms of bioactive compounds such as vitamin C (459.22 mg kg{sup -}1 fw) and lycopene (62.25 mg kg{sup -}1 fw) and in its total antioxidant activity (43.58 mg Trolox/100 g fw). It is also outstanding in terms of its sugar content (4.56% fructose and glucose combined) and of its total soluble solids content (6.22 degree centigrade Brix). All of these variables are associated with both sensory quality and health benefits. Other varieties that emerged with relatively high levels of total soluble solids content, lycopene, vitamin C and total antioxidant activity were BGV-004123 and BGV-001020. (Author) 41 refs.

  1. A novel conformation of gel grown biologically active cadmium nicotinate

    Science.gov (United States)

    Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.

    2017-11-01

    The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.

  2. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates.

    Science.gov (United States)

    Gómez-Mendoza, Diana Paola; Junqueira, Magno; do Vale, Luis Henrique Ferreira; Domont, Gilberto Barbosa; Ferreira Filho, Edivaldo Ximenes; Sousa, Marcelo Valle de; Ricart, Carlos André Ornelas

    2014-04-04

    The present work aims at characterizing T. harzianum secretome when the fungus is grown in synthetic medium supplemented with one of the four substrates: glucose, cellulose, xylan, and sugarcane bagasse (SB). The characterization was done by enzymatic assays and proteomic analysis using 2-DE/MALDI-TOF and gel-free shotgun LC-MS/MS. The results showed that SB induced the highest cellulolytic and xylanolytic activities when compared with the other substrates, while remarkable differences in terms of number and distribution of protein spots in 2-DE gels were also observed among the samples. Additionally, treatment of the secretomes with PNGase F revealed that most spot trails in 2-DE gels corresponded to N-glycosylated proteoforms. The LC-MS/MS analysis of the samples identified 626 different protein groups, including carbohydrate-active enzymes and accessory, noncatalytic, and cell-wall-associated proteins. Although the SB-induced secretome displayed the highest cellulolytic and xylanolytic activities, it did not correspond to a higher proteome complexity because CM-cellulose-induced secretome was significantly more diverse. Among the identified proteins, 73% were exclusive to one condition, while only 5% were present in all samples. Therefore, this study disclosed the variation of T. harzianum secretome in response to different substrates and revealed the diversity of the fungus enzymatic toolbox.

  3. Prospects of III-nitride optoelectronics grown on Si

    International Nuclear Information System (INIS)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-01-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al 2 O 3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. (review article)

  4. Suppression of Mg propagation into subsequent layers grown by MOCVD

    Science.gov (United States)

    Agarwal, Anchal; Tahhan, Maher; Mates, Tom; Keller, Stacia; Mishra, Umesh

    2017-01-01

    Low temperature (LT) flow modulation epitaxy (FME) or "pulsed" growth was successfully used to prevent magnesium from Metalorganic Chemical Vapor Deposition (MOCVD) grown p-GaN:Mg layers riding into subsequently deposited n-type layers. Mg concentration in the subsequent layers was lowered from ˜1 × 1018 cm-3 for a medium temperature growth at 950 °C to ˜1 × 1016 cm-3 for a low temperature growth at 700 °C via FME. The slope of the Mg concentration drop in the 700 °C FME sample was 20 nm/dec—the lowest ever demonstrated by MOCVD. For growth on Mg implanted GaN layers, the drop for a medium temperature regrowth at 950 °C was ˜10 nm/dec compared to >120 nm/dec for a high temperature regrowth at 1150 °C. This drop-rate obtained at 950 °C or lower was maintained even when the growth temperature in the following layers was raised to 1150 °C. A controlled silicon doping series using LT FME was also demonstrated with the lowest and highest achieved doping levels being 5 × 1016 cm-3 and 6 × 1019 cm-3, respectively.

  5. Productive performance of soybean cultivars grown in different plant densities

    Directory of Open Access Journals (Sweden)

    Augusto Belchior Marchetti Ribeiro

    Full Text Available ABSTRACT: Plants density in soybean cultivation is an important management practice to achieve high grain yield. In this way, the objective was to evaluate the agronomic traits and grain yield in soybean in different plant densities, in two locations in the south of Minas Gerais. The experimental design was in randomized blocks, arranged in a split plot design, with three replications. Plots were composed of four population densities (300, 400, 500 and 600 thousand plants per hectare and the subplots were composed of six cultivars (‘BMX Força RR’, ‘CD 250 RR’, ‘FMT 08 - 60.346/1’, ‘NA 5909 RR’, ‘TMG 7161 RR’ and ‘V - TOP RR’ grown in Lavras and Inconfidentes, both in Minas Gerais. At the time of harvest was determined the plant height, lodging, insertion of the first pod, harvest index, number of pods per plant, number of grains, number of grains per pod and yield. Regardless of the soybean cultivar, the plant density of up to 600,000 per ha does not affect grain yield, plant height, lodging, harvest index, and number of grains per pod. The cultivars ‘V-TOP RR’ and ‘BMX FORÇA RR’ showed high grain yield and good agronomic traits in Lavras and Incofidentes.

  6. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce.

    Science.gov (United States)

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-07-17

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  7. Arsenic uptake and speciation in vegetables grown under greenhouse conditions.

    Science.gov (United States)

    Smith, E; Juhasz, A L; Weber, J

    2009-04-01

    The accumulation of arsenic (As) by vegetables is a potential human exposure pathway. The speciation of As in vegetables is an important consideration due to the varying toxicity of different As species. In this study, common Australian garden vegetables were hydroponically grown with As-contaminated irrigation water to determine the uptake and species of As present in vegetable tissue. The highest concentrations of total As were observed in the roots of all vegetables and declined in the aerial portions of the plants. Total As accumulation in the edible portions of the vegetables decreased in the order radish > mung bean > lettuce = chard. Arsenic was present in the roots of radish, chard, and lettuce as arsenate (As(V)) and comprised between 77 and 92% of the total As present, whereas in mung beans, arsenite (As(III)) comprised 90% of the total As present. In aerial portions of the vegetables, As was distributed equally between both As(V) and As(III) in radish and chard but was present mainly as As(V) in lettuce. The presence of elevated As in vegetable roots suggests that As species may be complexed by phytochelatins, which limits As translocation to aerial portions of the plant.

  8. Insitu CCVD grown bilayer graphene transistors for applications in nanoelectronics

    International Nuclear Information System (INIS)

    Wessely, Pia Juliane; Schwalke, Udo

    2014-01-01

    We invented a method to fabricate graphene field effect transistors (GFETs) on oxidized silicon wafers in a Silicon CMOS compatible process. The graphene layers needed are grown in situ by means of a transfer-free catalytic chemical vapor deposition (CCVD) process directly on silicon dioxide. Depending on the process parameters the fabrication of single, double or multi-layer graphene FETs (GFETs) is possible. The produced graphene layers have been characterized by SEM, TEM, TEM-lattice analysis as well as Raman-Spectroscopy. Directly after growth, the fabricated GFETs are electrically functional and can be electrically characterized via the catalyst metals which are used as contact electrodes. In contrast to monolayer graphene FETs, the fabricated bilayer graphene FETs (BiLGFETs) exhibit unipolar p-type MOSFET behavior. Furthermore, the on/off current-ratio of 10 4 up to several 10 7 at room temperature of the fabricated BiLGFETs allows their use in digital logic applications [1]. In addition, a stable hysteresis of the GFETs enables their use as memory devices without the need of storage capacitors and therefore very high memory device-densities are possible. The whole fabrication process is fully Si-CMOS compatible, enabling the use of hybrid silicon/graphene electronics.

  9. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  10. Weed flora in organically grown spring cereals in Finland

    Directory of Open Access Journals (Sweden)

    J. SALONEN

    2008-12-01

    Full Text Available The weed flora in organically grown spring cereals was investigated in southern and central Finland in 1997-1999 with the primary purpose of determining the species composition and the level of weed infestation. Altogether 165 fields were surveyed in the middle of the growing season. A total of 126 weed species were found, of which 42 exceeded the frequency level of 10%. The most frequent weed species were Chenopodium album, Stellaria media, Galeopsis spp. and Viola arvensis. Elymus repens was the most frequent grass species. The average density of weeds was 469 plants m-2 (median 395, and the air-dry biomass was 678 kg ha-1 (median 567 which accounted for 17% of the total biomass of the crop stand. Infestation by Chenopodium album and the perennial species Elymus repens, Cirsium arvense and Sonchus arvensis is of major concern. Weed control strategies should include direct control measures to overcome weed problems related to the conversion period from conventional to organic growing.

  11. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    Energy Technology Data Exchange (ETDEWEB)

    Maheswari, J. Uma, E-mail: umak.anand@gmail.com [Department of Physics, The M.D.T.Hindu College, Tirunelveli 627010, Tamilnadu (India); Krishnan, C. [Department of Physics, Arignar Anna College, Aralvoymoli 629301, Tamilnadu (India); Kalyanaraman, S. [Physics Research Centre, Sri Paramakalyani College, Alwarkurichi 627412, Tamilnadu (India); Selvarajan, P. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamilnadu (India)

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV–Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  12. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    Directory of Open Access Journals (Sweden)

    Wu Jiang

    2010-01-01

    Full Text Available Abstract The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100, (210, (311, and (731 substrates. A broad photoluminescence emission peak (~950 nm with a full width at half maximum (FWHM of 48 nm is obtained from the sample grown on (210 substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100 substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311 with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications.

  13. Element distribution of the barley plant grown in an agar slice suspended culture

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi

    1991-01-01

    An agar slice suspended culture was devised for the further study of the barley root. The roots were placed into an agar covered with a nylon cloth and suspended in a water culture vessel. Barley roots grown in the agar developed hardly any root hair. The element contents of the root grown in the agar culture and that in the water culture were measured by neutron activation analysis. The concentrations of K, Mg and Cl in the root grown in the agar were about half of these grown in the water. Na and Mn concentrations were the same and Ca concentration was slightly higher when grown in the agar. The agar system is expected to provide more information to study the root hair. (author)

  14. Point defects in ZnO crystals grown by various techniques

    International Nuclear Information System (INIS)

    Čížek, J; Vlček, M; Hruška, P; Lukáč, F; Melikhova, O; Anwand, W; Selim, F; Hugenschmidt, Ch; Egger, W

    2017-01-01

    In the present work point defects in ZnO crystals were characterized by positron lifetime spectroscopy combined with back-diffusion measurement of slow positrons. Defects in ZnO crystals grown by various techniques were compared. Hydrothermally grown ZnO crystals contain defects characterized by lifetime of ≈181 ps. These defects were attributed to Zn vacancies associated with hydrogen. ZnO crystals prepared by other techniques (Bridgman, pressurized melt growth, and seeded chemical vapour transport) exhibit shorter lifetime of ≈165 ps. Positron back-diffusion studies revealed that hydrothermally grown ZnO crystals contain higher density of defects than the crystals grown by other techniques. The lowest concentration of defects was detected in the crystal grown by seeded chemical vapor transport. (paper)

  15. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce

    Directory of Open Access Journals (Sweden)

    Annalaura Carducci

    2015-07-01

    Full Text Available Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  16. Quality of Heliconia psittacorum seedlings grown on different substrates

    Directory of Open Access Journals (Sweden)

    Raimundo Luiz Laurinho dos Santos

    2016-01-01

    Full Text Available The production of good seedlings depends on the quality of the matrix and propagation techniques used. In choosing a substrate should be particularly observed physical and chemical characteristics. The objective of this study was to assess the development and vigor of heliconia seedlings from Heliconia psittacorum species, grown on different substrates and mixtures. The materials that form the treatments were: burnt rice husk (RHB, vermiculite (VC, sugarcane waste burnt (SWB, subsoil (S, chicken bedding (CB, cattle manure (CM, earthworm humus (EH, coconut husk powder (CSP and Horticultural Plantmax (HP. The treatments chosen were: 1( ⅔ CM + ⅓ CSP, 2( ⅔CM + ⅓RHB, 3( ⅔CB + ⅓ SWB, 4(CSP, 5(½VC+ ½SWB, 6(⅔ S + ⅓ CB, 7(⅓CM + ⅔SWB, 8(⅔ CM + ⅓SWB, 9(⅔CB + ⅓RHB, 10(⅓CM + ⅔RHB, 11(⅓CB + ⅔SWB, 12(⅔CB + ⅓CSP, 13(⅔EH + ⅓CSP, 14(⅔EH + ⅓SWB, 15(⅓CB + ⅔RHB, 16(⅓EH + ⅔SWB, 17(⅔EH + ⅓RHB, 18( ½VC + ½RHB, 19(S, 20(⅔ S + ⅓ CM, 21(⅔ S + ⅓ EH, 22(EH, 23(HP, 24(⅓EH + ⅔RHB. Samples of all treatment compositions were taken and carried out chemical and physical analysis. A set of ten treatments (1, 2, 5, 7, 8, 10, 14, 16, 20 and 22 basically consisting of CM EH, RHB, CSP and SWB produced the best seedlings and treatment with CB as a main component or not produced the worst seedlings due to high electrical conductivity

  17. Some analytical characters of cottonseed varieties grown in Turkey

    Directory of Open Access Journals (Sweden)

    Nergiz, Cevdet

    1997-12-01

    Full Text Available Sixteen cottonseed varieties grown in Turkey were analysed. The average oil content in varieties ranged from 309.7g Kg-1 to 379.5g Kg-1 whereas the range in values of gossypol content for glanded varieties was 7.4-12.8g Kg-1. One glandless variety contained gossypol as 0.2g Kg-1. The samples contained 337.2- 466.5g Kg-1 protein. Fatty acid composition of the oils obtained from cottonseed varieties were also determined. Generally total gossypol content of cottonseed varieties were below the limits established by the some nations for human food or animal feed.

    Se han analizado dieciséis variedades de semillas de algodón cultivadas en Turquía. El contenido medio de aceite en las distintas variedades osciló entre 309,7g Kg-1 y 379,5g Kg-1 mientras que el contenido en gosipol para variedades con glándulas fue desde 7,4 a 12,8g Kg-1. Una variedad sin glándula tuvo un valor en gosipol de 0, Kg-1. El valor en proteínas de las muestras osciló entre 337,2 y 466,5g Kg-1. También se determinó la composición en ácidos grasos de los aceites obtenidos de las distintas variedades de semilla de algodón. Por lo general el contenido total en gosipol en las distintas variedades fue inferior a los límites establecidos por algunas naciones para su consumo humano o para alimentación animal.

  18. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose.

    Science.gov (United States)

    Do Vale, Luis H F; Gómez-Mendoza, Diana P; Kim, Min-Sik; Pandey, Akhilesh; Ricart, Carlos A O; Ximenes F Filho, Edivaldo; Sousa, Marcelo V

    2012-08-01

    Trichoderma harzianum is a mycoparasitic filamentous fungus that produces and secretes a wide range of extracellular hydrolytic enzymes used in cell wall degradation. Due to its potential in biomass conversion, T. harzianum draws great attention from biofuel and biocontrol industries and research. Here, we report an extensive secretome analysis of T. harzianum. The fungus was grown on cellulose medium, and its secretome was analyzed by a combination of enzymology, 2DE, MALDI-MS and -MS/MS (Autoflex II), and LC-MS/MS (LTQ-Orbitrap XL). A total of 56 proteins were identified using high-resolution MS. Interestingly, although cellulases were found, the major hydrolytic enzymes secreted in the cellulose medium were chitinases and endochitinases, which may reflect the biocontrol feature of T. harzianum. The glycoside hydrolase family, including chitinases (EC 3.2.1.14), endo-N-acetylglucosaminidases (EC 3.2.1.96), hexosaminidases (EC 3.2.1.52), galactosidases (EC 3.2.1.23), xylanases (EC 3.2.1.8), exo-1,3-glucanases (EC 3.2.1.58), endoglucanases (EC 3.2.1.4), xylosidases (EC 3.2.1.37), α-L-arabinofuranosidase (EC 3.2.1.55), N-acetylhexosaminidases (EC 3.2.1.52), and other enzymes represented 51.36% of the total secretome. Few representatives were classified in the protease family (8.90%). Others (17.60%) are mostly intracellular proteins. A considerable part of the secretome was composed of hypothetical proteins (22.14%), probably because of the absence of an annotated T. harzianum genome. The T. harzianum secretome composition highlights the importance of this fungus as a rich source of hydrolytic enzymes for bioconversion and biocontrol applications. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  20. Organic solar cells using CVD-grown graphene electrodes

    International Nuclear Information System (INIS)

    Kim, Hobeom; Han, Tae-Hee; Lim, Kyung-Geun; Lee, Tae-Woo; Bae, Sang-Hoon; Ahn, Jong-Hyun

    2014-01-01

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create ‘GraHEL’, which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (V oc ), short-circuit current (J sc ), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while J sc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge. (paper)

  1. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  2. Nitrogen utilisation of lowland cauliflower grown on coconut coir dust

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Asiah

    2004-07-01

    Strong wind, high rainfall, the spread of diseases during rainy season and pests problems in open field agriculture have led to the current trend in growing vegetables under protected environment. The occurrence of soil borne disease, and limited suitable land for agriculture are some of the reasons to look for alternative media such as coconut coir dust. The basic properties of coconut coir dust as a soil less growing medium and the utilisation of nitrogen (n) fertiliser for the lowland cauliflower grown in them have not been thoroughly investigated and are therefore not well understood. This study has been conducted by the need to provide a basis for determining optimal levels/ concentration and forms of nitrogen supply, and by the need to minimize environmental consequences of lowland cauliflower production. It focuses on the effects of N supply in terms of different levels of N and ionic N forms in the nutrient solution, on the growth, development and N utilisation of cauliflower grown in coconut coir dust under greenhouse condition in the lowlands. Based on the plant growth parameters studied coconut coir dust was found to be more suitable than oil palm empty fruit bunch as a growing medium. From the growth and development study using coconut coir dust, it can be deduced that the N requirement by the plant is less at later growth stage regardless of low or high level of N in the nutrient solution. However, low level of N of 50 mg l{sup -1} was found to be inadequate for plant growth and curd yield. The N concentration levels of 200 mg l{sup -1} in the nutrient solution optimised both the vegetative and curd production. A somewhat lower level of N (170 mg l{sup -1}) produced curd weight not significantly different from N level of 200 mg l{sup -1}. The plant growth and curd yield was reduced by about 29.0 % at 400 mg N l{sup -1}. The N level of 400 mg l{sup -1} in the nutrient solution may be in excess to that actually required by the plant, resulting in a high

  3. Nitrogen utilisation of lowland cauliflower grown on coconut coir dust

    International Nuclear Information System (INIS)

    Asiah Ahmad

    2004-01-01

    Strong wind, high rainfall, the spread of diseases during rainy season and pests problems in open field agriculture have led to the current trend in growing vegetables under protected environment. The occurrence of soil borne disease, and limited suitable land for agriculture are some of the reasons to look for alternative media such as coconut coir dust. The basic properties of coconut coir dust as a soil less growing medium and the utilisation of nitrogen (n) fertiliser for the lowland cauliflower grown in them have not been thoroughly investigated and are therefore not well understood. This study has been conducted by the need to provide a basis for determining optimal levels/ concentration and forms of nitrogen supply, and by the need to minimize environmental consequences of lowland cauliflower production. It focuses on the effects of N supply in terms of different levels of N and ionic N forms in the nutrient solution, on the growth, development and N utilisation of cauliflower grown in coconut coir dust under greenhouse condition in the lowlands. Based on the plant growth parameters studied coconut coir dust was found to be more suitable than oil palm empty fruit bunch as a growing medium. From the growth and development study using coconut coir dust, it can be deduced that the N requirement by the plant is less at later growth stage regardless of low or high level of N in the nutrient solution. However, low level of N of 50 mg l -1 was found to be inadequate for plant growth and curd yield. The N concentration levels of 200 mg l -1 in the nutrient solution optimised both the vegetative and curd production. A somewhat lower level of N (170 mg l -1 ) produced curd weight not significantly different from N level of 200 mg l -1 . The plant growth and curd yield was reduced by about 29.0 % at 400 mg N l -1 . The N level of 400 mg l -1 in the nutrient solution may be in excess to that actually required by the plant, resulting in a high unused N nutrient

  4. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    International Nuclear Information System (INIS)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru; Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka; Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu

    2012-01-01

    Traps of energy levels E c -0.26 and E c -0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E c -0.13 and E c -0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E c -0.13 and E c -0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  5. Conformity and structure of titanium oxide films grown by atomic layer deposition on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jogi, Indrek [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia)], E-mail: indrek.jogi@ut.ee; Paers, Martti; Aarik, Jaan; Aidla, Aleks [University of Tartu, Institute of Physics, Riia 142, 51014, Tartu (Estonia); Laan, Matti [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia); Sundqvist, Jonas; Oberbeck, Lars; Heitmann, Johannes [Qimonda Dresden GmbH and Co. OHG, Koenigsbruecker Strasse 180, 01099, Dresden (Germany); Kukli, Kaupo [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia)

    2008-06-02

    Conformity and phase structure of atomic layer deposited TiO{sub 2} thin films grown on silicon substrates were studied. The films were grown using TiCl{sub 4} and Ti(OC{sub 2}H{sub 5}){sub 4} as titanium precursors in the temperature range from 125 to 500 {sup o}C. In all cases perfect conformal growth was achieved on patterned substrates with elliptical holes of 7.5 {mu}m depth and aspect ratio of about 1:40. Conformal growth was achieved with process parameters similar to those optimized for the growth on planar wafers. The dominant crystalline phase in the as-grown films was anatase, with some contribution from rutile at relatively higher temperatures. Annealing in the oxygen ambient resulted in (re)crystallization whereas the effect of annealing depended markedly on the precursors used in the deposition process. Compared to films grown from TiCl{sub 4}, the films grown from Ti(OC{sub 2}H{sub 5}){sub 4} were transformed into rutile in somewhat greater extent, whereas in terms of step coverage the films grown from Ti(OC{sub 2}H{sub 5}){sub 4} remained somewhat inferior compared to the films grown from TiCl{sub 4}.

  6. Nucleoli from growing oocytes support the development of enucleolated full-grown oocytes in the pig.

    Science.gov (United States)

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2010-02-01

    Recent research has shown that the maternal nucleolus is essential for embryonic development. The morphology of the nucleolus in growing oocytes differs from that in full-grown oocytes. We determined the ability of nucleoli from growing oocytes to substitute for nucleoli of full-grown oocytes in terms of supporting embryonic development in this study. Growing (around 100 microm in diameter) and full-grown porcine oocytes (120 microm) were collected from small (0.6-1.0 mm) and large antral follicles (4-5 mm), respectively. The nucleolus was aspirated from full-grown oocytes by micromanipulation, and the resulting enucleolated oocytes were matured to metaphase II; the nucleoli originating from full-grown and growing oocytes were then injected into the oocytes. The Chromatin of growing oocytes was aspirated with the nucleolus during the enucleolation process. Growing oocytes were thus treated with actinomycin D to release the chromatin from their nucleoli, and the nucleoli were collected and transferred to the enucleolated and matured full-grown oocytes. After activation by electro-stimulation, nucleoli were formed in pronuclei of sham-operated oocytes. Enucleolated oocytes that had been injected with nucleoli from either full-grown or growing, however, did not form any nucleoli in the pronuclei. No enucleolated oocytes developed to blastocysts, whereas enucleolated oocytes injected with nucleoli from full-grown oocytes (15%) or growing oocytes (18%) developed to blastocysts. These results indicate that the nucleoli from growing oocytes can substitute for nucleoli from full-grown oocytes during early embryonic development. (c) 2009 Wiley-Liss, Inc.

  7. Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Agnarsson, B.; Magnus, F.; Tryggvason, T.K.; Ingason, A.S.; Leosson, K.; Olafsson, S.; Gudmundsson, J.T.

    2013-01-01

    Thin TiO 2 films were grown on Si(001) substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Optical and structural properties of films were compared both before and after post-annealing using scanning electron microscopy, low angle X-ray reflection (XRR), grazing incidence X-ray diffractometry and spectroscopic ellipsometry. Both dcMS- and HiPIMS-grown films reveal polycrystalline rutile TiO 2 , even prior to post-annealing. The HiPIMS-grown films exhibit significantly larger grains compared to that of dcMC-grown films, approaching 100% of the film thickness for films grown at 700 °C. In addition, the XRR surface roughness of HiPIMS-grown films was significantly lower than that of dcMS-grown films over the whole temperature range 300–700 °C. Dispersion curves could only be obtained for the HiPIMS-grown films, which were shown to have a refractive index in the range of 2.7–2.85 at 500 nm. The results show that thin, rutile TiO 2 films, with high refractive index, can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing. Furthermore, these films are smoother and show better optical characteristics than their dcMS-grown counterparts. - Highlights: • We demonstrate growth of rutile TiO 2 on Si (111) by high power impulse magnetron sputtering. • The films exhibit significantly larger grains than dc magnetron sputtered films • TiO 2 films with high refractive index are obtained without post-growth annealing

  8. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  9. Study of CdTe quantum dots grown using a two-step annealing method

    Science.gov (United States)

    Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2006-02-01

    High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.

  10. Study on grown-in defects in CZ-Si by positron annihilation

    International Nuclear Information System (INIS)

    Nakagawa, S.; Hori, F.; Oshima, R.

    2004-01-01

    In order to study the nature of grown-in microdefects of a silicon wafer taken from a czochralski-grown single crystal (CZ-Si) in which ring oxidation-induced stacking faults (ring-OSF) are formed after oxidation heat treatment, positron annihilation coincidence Doppler broadening experiments (CDB) have been performed. Vacancy-type defects were detected in the central region of a wafer of an as-grown crystal, and they were changed with annealing. It was confirmed that different types of defects were formed in the regions of outside and inside of the ring-OSF. (orig.)

  11. Characterization of Si(100) homoepitaxy grown in the STM at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grube, H. (Holger); Brown, G. W. (Geoffrey W.); Pomeroy, J. M. (Joshua M.); Hawley, M. E. (Marilyn E.)

    2002-01-01

    We explore the growth of low-temperature bulk-like Si(100) homoepitaxy with regard to microscopic surface roughness and defects We characterize films grown at different temperatures up to 500K in-situ by means of an effusion cell added to our UHVSTM. The development of novel architectures for future generation computers calls for high-quality homoepitaxial (WOO) grown at low temperature. Even though Si(100) can be grown crystalline up to a limited thickness: the microstructure reveals significant small-scale surface roughness and defects specific to low-temperature growth. Both can he detrimental to fabrication and operation of small-scale electronic devices.

  12. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  13. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  14. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  15. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.

    Science.gov (United States)

    Bennett, Brittany D; Redford, Kaitlyn E; Gralnick, Jeffrey A

    2018-04-15

    Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe 2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe 2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis , which demonstrate that the protease ClpXP is required for anaerobic Fe 2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe 2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe 2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe 2+ anaerobically, indicating Fe 2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe 2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe 2+ and that the ClpXP protease system is necessary for their turnover. IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe 2+ from iron oxide minerals

  16. 76 FR 31295 - Nectarines and Peaches Grown in California; Notice of Withdrawal

    Science.gov (United States)

    2011-05-31

    ... forms to collect information related to the Federal marketing orders for nectarines and peaches grown in... FURTHER INFORMATION CONTACT: Andrew Hatch, Supervisory Marketing Specialist, Marketing Order... Email: [email protected] . SUPPLEMENTARY INFORMATION: Marketing Order Nos. 916 and 917...

  17. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Yasar, M., E-mail: Muhammad.yasar@ieee.org [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  18. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  19. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Amir Abul; Bae, Joon Ho [Dept. of Nano-physics, Gachon University, Seongnam (Korea, Republic of); Park, Soo Bin; Seo, Yong Ho [Nanotechnology and Advanced Material Engineering, HMC, and GRI, Sejong University, Seoul (Korea, Republic of)

    2015-08-15

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs.

  20. 77 FR 72197 - Pears Grown in Oregon and Washington; Assessment Rate Decrease for Processed Pears

    Science.gov (United States)

    2012-12-05

    ... Agricultural Statistics Service, the total farm-gate value of summer/fall processed pears grown in Oregon and... introductory text and paragraph (a) are revised to read as follows: Sec. 927.237 Processed pear assessment rate...

  1. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kalam, Amir Abul; Bae, Joon Ho; Park, Soo Bin; Seo, Yong Ho

    2015-01-01

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs

  2. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N. M.; Shaharun, M. S.; Yasar, M.

    2014-01-01

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure

  3. Helicopter Parents and Landing Pad Kids: Intense Parental Support of Grown Children

    OpenAIRE

    Fingerman, Karen L.; Cheng, Yen-Pi; Wesselmann, Eric D.; Zarit, Steven; Furstenberg, Frank; Birditt, Kira S.

    2012-01-01

    Popular media describe adverse effects of helicopter parents who provide intense support to grown children, but few studies have examined implications of such intense support. Grown children (N = 592, M age = 23.82 years, 53% female, 35% members of racial/ethnic minority groups) and their parents (n = 399, M age = 50.67 years, 52% female; 34% members of racial/ethnic minority groups) reported on the support they exchanged with one another. Intense support involved parents’ providing several t...

  4. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig.

    Science.gov (United States)

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi; Fulka, Josef

    2011-06-01

    In mammals, the nucleolus of full-grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full-grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non-treated or actinomycin D-treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re-injection of nucleoli from growing oocytes (23%), but not when nucleoli from full-grown oocytes were re-injected into enucleolated, growing oocytes (49%). When enucleolated, full-grown oocytes were injected with nucleoli from growing or full-grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full-grown oocytes injected with nucleoli from full-grown oocytes matured to metaphase II (56%), whereas injection with growing-oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing-oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full-grown oocyte nucleolus has lost the ability. Copyright © 2011 Wiley-Liss, Inc.

  5. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  6. Composition of Whiskers Grown on Copper in Repository Environment

    International Nuclear Information System (INIS)

    Hermansson, Hans-Peter; Tarkpea, Peeter; Holgersson, Stellan

    2001-11-01

    There is a hypothesis that a special family of local attack on copper based on growth of whiskers of sulfide, oxide/hydroxide and also carbonate/malachite could appear in the repository environment. It was earlier demonstrated that such whiskers could grow in a laboratory simulated repository environment, containing sulfide. A suggested composition of whiskers has earlier been forwarded but was not demonstrated. In the present work whiskers and their substrates were grown and characterized by investigations with a combination of SEM-EDS, XRD and LRS (Laser Raman Spectroscopy) techniques. SEM-EDS was used to determine the morphology and an elemental composition and distribution of whiskers and their substrate. A special effort was made to find out if the whisker growth is of a local or global character. The phase status could be determined locally and globally by combining XRD and LRS techniques on whiskers and substrates. Ideally, LRS gives a phase resolution down to a radius of 1 μm on the sample surface. This is of great value as it is of interest to study if there are phase differences in different parts of a whisker. Such information is important to understand the whisker growth mechanism. Cylindrical samples of pure copper were prepared and exposed to the selected de-aerated model groundwater containing, among other ions, chloride and sulfide. Exposure was performed in sealed glass flasks under de-aerated conditions. After exposure the copper sample was investigated on the surface, in cross section and on whiskers using the mentioned techniques. The results show that a black, easily detached layer of corrosion products is formed on the sample surface. The corrosion layer was subdivided into at least five parallel strata (probably more) of different composition. Numerous small pits and shallow pitting attacks with a larger radius were observed in the copper metal and the metal surface was in general very rough. A multitude of very easily detached whiskers or

  7. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    International Nuclear Information System (INIS)

    Li, Yi; Walton, D.C.

    1990-01-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9'-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an 18 O 2 -containing atmosphere resulted in the synthesis of ABA with levels of 18 O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA

  8. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, L., E-mail: lsg09_phy089@student.usm.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new kind of substrate (porous silicon) was used. Black-Right-Pointing-Pointer Also this research introduces an easy and safe method to grow high quality GaN NWs. Black-Right-Pointing-Pointer This is a new growth process to decrease the cost, complexity of growth of GaN NWs. Black-Right-Pointing-Pointer It is a controllable method to synthesize GaN NWs by thermal evaporation. - Abstract: Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  9. VLS-grown diffusion doped ZnO nanowires and their luminescence properties

    International Nuclear Information System (INIS)

    Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi

    2015-01-01

    Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)

  10. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Walton, D.C. (State Univ. of New York, Syracuse (USA))

    1990-03-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9{prime}-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an {sup 18}O{sub 2}-containing atmosphere resulted in the synthesis of ABA with levels of {sup 18}O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.

  11. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    Science.gov (United States)

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather

  12. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment

    International Nuclear Information System (INIS)

    Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R.

    2016-01-01

    Highlights: • The present study demonstrated the high reductive capacity of both strains: the collection S. oneidensis and the wild strain Geobacter spp. (soil isolate). • The experimental strains were successful in Fe 3+ reduction for both states: soluble and crystalline (originally prepared from rust). • Rust dissolution can be improved by: addition of AFC at low concentration (0.2 g/l), increasing bacterial initial inoculum and rust reactive surface. • Both experimental IRB strains were able to completely remove previously formed rust on carbon steel coupons. • Additional results (not showed) revealed that culture S. oneidensis and the environmental isolate Geobacter spp., apparently have a different mechanism of iron reduction that requires further study. - Abstract: Iron reducing bacteria (IRB), to be used in rust dissolution and removal, have been isolated and enriched from different environmental sources. Comparative measurements revealed that a soil isolate (Geobacter sulfurreducens sp.) had the highest reductive activity equivalent to Shewanella oneidensis (strain CIP 106686, pure culture). Both reductive microorganisms can use Fe 3+ ions as electron acceptors from soluble as well as from crystalline sources. In nutrient medium containing soluble Fe 3+ , the highest reductive activity obtained for G. sulfurreducens sp. and S. oneidensis was 93 and 97% respectively. Successful removal of rust from carbon steel coupons has been achieved with both experimental bacteria.

  13. Fast-grown CdS quantum dots: Single-source precursor approach vs microwave route

    Energy Technology Data Exchange (ETDEWEB)

    Fregnaux, Mathieu [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France); Dalmasso, Stéphane, E-mail: stephane.dalmasso@univ-lorraine.fr [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France); Durand, Pierrick [Laboratoire de Cristallographie, Résonance Magnétique et Modélisations, Institut Jean Barriol, Université de Lorraine, UMR CNRS 7036, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy (France); Zhang, Yudong [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux, Université de Lorraine, UMR CNRS 7239, Ile du Saulcy, 57045 Metz cedex 01 (France); Gaumet, Jean-Jacques; Laurenti, Jean-Pierre [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France)

    2013-10-01

    A cross-disciplinary protocol of characterization by joint techniques enables one to closely compare chemical and physical properties of CdS quantum dots (QDs) grown by single source precursor methodology (SSPM) or by microwave synthetic route (MWSR). The results are discussed in relation with the synthesis protocols. The QD average sizes, reproducible as a function of the temperatures involved in the growth processes, range complementarily in 2.8–4.5 nm and 4.5–5.2 nm for SSPM and MWSR, respectively. Hexagonal and cubic structures after X-ray diffraction on SSPM and MWSR grown CdS QDs, respectively, are tentatively correlated to a better crystalline quality of the latter with respect to the further ones, suggested by (i) a remarkable stability of the MWSR grown QDs after exposure to air during several days and (ii) no evidence of their fragmentation during mass spectrometry (MS) analyses, after a fair agreement between size dispersities obtained by transmission electron microscopy (TEM) and MS, in contrast with the discrepancy found for the SSPM grown QDs. Correlatively, a better optical quality is suggested for the MWSR grown QDs by the resolution of n > 1 excitonic transitions in their absorption spectra. The QD average sizes obtained by TEM and deduced from MS are in overall agreement. This agreement is improved for the MWSR grown QDs, taking into account a prolate shape of the QDs also observed in the TEM images. For both series of samples, the excitonic responses vs the average sizes are consistent with the commonly admitted empirical energy-size correspondence. A low energy PL band is observed in the case of the SSPM grown QDs. Its decrease in intensity with QD size increase suggests a surface origin tentatively attributed to S vacancies. In the case of the MWSR grown QDs, the absence of this PL is tentatively correlated to an absence of S vacancies and therefore to the stable behavior observed when the QDs are exposed to air. - Highlights: • Single

  14. Protein profile of mouse ovarian follicles grown in vitro.

    Science.gov (United States)

    Anastácio, Amandine; Rodriguez-Wallberg, Kenny A; Chardonnet, Solenne; Pionneau, Cédric; Fédérici, Christian; Almeida Santos, Teresa; Poirot, Catherine

    2017-12-01

    Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to

  15. Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.

    Science.gov (United States)

    Williams, R S; Lincoln, D E; Thomas, R B

    1994-06-01

    Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.

  16. Temporal expression-based analysis of metabolism.

    Directory of Open Access Journals (Sweden)

    Sara B Collins

    Full Text Available Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM. We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such "history-dependent" sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.

  17. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  18. Investigation of ZnTe thin films grown by Pulsed Laser Deposition method

    International Nuclear Information System (INIS)

    Kotlyarchuk, B.; Savchuk, V.

    2007-01-01

    This paper is devoted to optimization of the Pulsed Laser Deposition (PLD) growth condition of ZnTe films on various substrates and subsequent investigation of relevant parameters of growth process, structural, optical and electrical properties of grown films. Studies of the effect of growth parameters on the structural quality and properties of grown films were carried out. X-ray diffraction measurements showed that the ZnTe films, which have been deposited at optimal substrate temperatures, were characterized by a (111) preferred orientation with large average grain size. The optical transmission and reflectance in the energy range 1.5-5.5 eV for films grown at various substrate temperatures were measured. We calculated the variation in the absorption coefficient with the photon energy from the transmittance spectrum for samples grown at various substrate temperatures. Obtained data were analyzed and the value of the absorption coefficient, for allowed direct transitions, has been determined as a function of photon energy. We found that the undoped ZnTe films, which were grown by the PLD method, are typically p-type and possess resistivity in the range of 10 3 Ωcm at room temperature. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Growth and electrical properties of AlOx grown by mist chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawaharamura

    2013-03-01

    Full Text Available Aluminum oxide (AlOx thin films were grown using aluminum acetylacetonate (Al(acac3 as a source solute by mist chemical vapor deposition (mist CVD. The AlOx thin films grown at temperatures above 400°C exhibited a breakdown field (EBD over 6 MV/cm and a dielectric constant (κ over 6. It is suggested that residual OH bonding in the AlOx thin films grown at temperatures below 375°C caused degradation of the breakdown field (EBD. With FC type mist CVD, the reaction proceeded efficiently (Ea = 22–24 kJ/mol because the solvent, especially H2O, worked as a stronger oxygen source. The AlOx film could be grown at 450°C with a high deposition rate (23 nm/min and smooth surface (RMS = 1.5 nm. Moreover, the AlOx thin films grown by mist CVD had excellent practicality as insulators because the gate leakage current (IG of the oxide thin film transistor (TFT with an IGZO/AlOx stack was suppressed below 1 pA at a gate voltage (VG of 20 V.

  20. Increased sensitivity of the respiratory system of plants grown in Gibberellic acid toward fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Lustinec, J; Pokorna, V; Ruzicka, J

    1962-01-01

    Gibberellic acid in concentrations between 2 and 80 mg/l does not affect the ratio of radioactivities of /sup 14/CO/sub 2/ liberated from glucose-6-/sup 14/C and -1-/sup 14/C(C/sub 6//C/sub 1/) when acting for several hours on sliced wheat leaves, and that at a concentration of 10 mg/l it does not alter the degree of inhibition of respiration due to fluoride, iodoacetate and malonate or the consumption of oxygen. A linear relationship was established between the decrease in /sup 14/CO/sub 2/ liberation from glucose-/sup 14/C and the concentration of gibberellic acid. The C/sub 6//C/sub 1/ ratio as well as the absolute values of radioactivity decrease more rapidly in the course of several days after the germination of plants grown in a solution of gibberellic acid (10-20 mg/l) than in the water-grown controls. Fluoride inhibits the respiration of plants grown in gibberellic acid more than of those grown in water, its tissue concentration being either equal or less in the gibberellic -grown plants; the effect of iodoacetate and malonate is the same with plants of equal age (4 days) in both variants. 11 references, 1 figure, 4 tables.

  1. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    Science.gov (United States)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  2. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency

    Directory of Open Access Journals (Sweden)

    Viyachai Taweesak

    2014-01-01

    Full Text Available Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White” were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL, 6 (400 mL, and 8 (533 mL times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.

  3. EVALUATION OF ANTIBACTERIAL, ANTITUMOR, ANTIOXIDANT ACTIVITIES AND PHENOLIC CONSTITUENTS OF FIELD-GROWN AND IN VITRO-GROWN LYSIMACHIA VULGARIS L.

    Science.gov (United States)

    Yildirim, Arzu Birinci; Guner, Birgul; Karakas, Fatma Pehlivan; Turker, Arzu Ucar

    2017-01-01

    Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant in the family Myrsinaceae. It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. It has also analgesic, expectorant, astringent and anti-inflammatory activities. Two different sources of the plant (field-grown and in vitro -grown) were used to evaluate the biological activities (antibacterial, antitumor and antioxidant) of L. vulgaris. In vitro-grown plant materials were collected from L. vulgaris plants that were previously regenerated in our laboratory. Plant materials were extracted with water, ethanol and acetone. For antibacterial test, disc diffusion method and 10 different pathogenic bacteria were used. Antioxidant activity was indicated by using DPPH method. The total phenol amount by using Folin-Ciocaltaeu method and the total flavonoid amount by using aluminum chloride (AlCl 3 ) colorimetric method were determined. Generally, yellow loosestrife extracts demonstrated antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, S. epidermidis and Streptococcus pyogenes) . Strong antitumor activity of yellow loosestrife was observed via potato disc diffusion bioassay. Nine different phenolics were also determined and compared by using High-Performance Liquid Chromatography (HPLC). Future investigations should be focused on fractionation of the extracts to identify active components for biological activity.

  4. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    Science.gov (United States)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  5. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Surface characterization of ZnO nanorods grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mbulanga, C.M., E-mail: crispin.mbulanga@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Urgessa, Z.N.; Tankio Djiokap, S.R.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Duvenhage, M.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O Box 77000, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The surface composition of as-grown and annealed ZnO nanorods (ZNs) grown by a two-step chemical bath deposition method is investigated by the following surface-sensitive techniques: Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The presence of H on the surface and throughout the entire thickness of ZNs is confirmed by TOF-SIMS. Based on TOF-SIMS results, the O2 XPS peak mostly observable at ~531.5 is assigned to O bound to H. Furthermore, it is found that the near surface region of as-grown ZNs is Zn-rich, and annealing at high temperature (~850 °C) removes H-related defects from the surface of ZNs and affect the balance of zinc and oxygen concentrations.

  7. Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Ai Lei; Xiang Qi; Zhao Dongshan; Pan Chunxu; Zhao Xingzhong

    2007-01-01

    The field emission (FE) properties of carbon nanotube (CNT) bundle arrays grown on vertically self-aligned ZnO nanorods (ZNRs) are reported. The ZNRs were first synthesized on ZnO-seed-coated Si substrate by the vapour phase transport method, and then the radically grown CNTs were grown directly on the surface of the ZNRs from ethanol flames. The CNT/ZNR composite showed a turn-on field of 1.5 V μm -1 (at 0.1 μA cm -2 ), a threshold field of 4.5 V μm -1 (at 1 mA cm -2 ) and a stable emission current with fluctuations of 5%, demonstrating significantly enhanced FE of ZNRs due to the low work function and high aspect ratio of the CNTs, and large surface-to-volume ratio of the underlying ZNRs

  8. Low temperature grown GaNAsSb: A promising material for photoconductive switch application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. H.; Yoon, S. F.; Wicaksono, S.; Loke, W. K.; Li, D. S. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Saadsaoud, N.; Tripon-Canseliet, C. [Laboratoire d' Electronique et Electromagnétisme, Pierre and Marie Curie University, 4 Place Jussieu, 75005 Paris (France); Lampin, J. F.; Decoster, D. [Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Universite des Sciences et Technologies de Lille, BP 60069, 59652 Villeneuve d' Ascq Cedex (France); Chazelas, J. [Thales Airborne Systems, 2 Avenue Gay Lussac, 78852 Elancourt (France)

    2013-09-09

    We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductive switch application.

  9. Nitrogen and amino acids content in lake Drukshyaj plancton organisms biocenoses grown in model experiments

    International Nuclear Information System (INIS)

    Krevsh, A.V.; Budrene, S.F.; Yankyavichyus, K.K.

    1989-01-01

    Biocenoses growth in lake Drukshyaj (from 1984 water reservoir of the Ignalina NPP) collected in July 1985 and grown in 2 various in composition culture media: in medium close in composition of main minerals to water of high capacity reservoir (medium 1) and in medium Fitzjarld (medium 2), has shown that the medium affects the component composition of plancton, as well as dominating types of algae. Phytoplancton was dominating component in biomass in both media. In medium 1 dominate green and diatoms, in medium 2 - blue-green algae. Content of proteins and amino acids in biomass changed depending on duration of biocenoses growth when dominating green and diatoms in biocenoses mass grown in medium 1, it reached maximum on the 15th day, and when dominating blue-green algae in biocenoses biomass grown in medium 2 - on the 30th day

  10. Observation of Zn vacancies in ZnO grown by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK (Finland); Grasza, K.; Mycielski, A. [Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw (Poland)

    2006-03-15

    We have used positron annihilation spectroscopy to study the vacancy defects in ZnO crystals grown by both the conventional and contactless chemical vapor transport (CVT and CCVT). Our results show that Zn vacancies or Zn vacancy related defects are present in as-grown ZnO, irrespective of the growth method. Zn vacancies are observed in CVT-grown undoped ZnO and (Zn,Mn)O. The Zn vacancies present in undoped CCVT-ZnO are the dominant negatively charged point defect in the material. Doping the material with As introduces also Zn vacancy-related defect complexes with larger open volume. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  12. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  13. The performance studies of DKDP crystals grown by a rapid horizontal growth method

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Wang, Bin; Wang, Hu; Chen, Duanyang; Shao, Jianda

    2018-04-01

    A deuterated potassium dihydrogen phosphate (DKDP) crystal with about 70% deuterium level was grown by a rapid horizontal growth method with independent design equipment, which includes a continuous filtration system. The cooling program during crystal growth was designed according to a self-developed software to catch the size of growing crystal in real time. The crystal structure, optical performance and laser induced damage threshold (LIDT) of this DKDP crystal were investigated in this paper. The deuterium concentration of the crystal was confirmed by the neutron diffraction technique, which was effective and available in determining a complete range of deuteration level. The dielectric property was measured to evaluate the perfection of the lattice. The transmittance and LIDT were carried out further to evaluate the optical and functional properties of this DKDP crystal grown in the rapid horizontal growth technique. All of the detailed characterization for DKDP figured out that the 70% deuterated KDP crystal grown in this way had relatively good qualities.

  14. Enhancement of optical properties of InAs quantum dots grown by using periodic arsine interruption

    International Nuclear Information System (INIS)

    Kim, Jungsub; Yang, Changjae; Sim, Uk; Lee, Jaeyel; Yoon, Euijoon; Lee, Youngsoo

    2009-01-01

    We investigated the morphological and optical properties of InAs quantum dots (QDs) grown by using periodic arsine interruption (PAI) and compared them with QDs grown conventionally. In the conventional growth, the formation of large islands was observed, which suppresses the nucleation and growth of QDs. Furthermore, the growth of capping layers was significantly degraded by these large islands. On the other hand, in the PAI growth, the formation of large islands was completely suppressed, resulting in the increase of the density and aspect ratio of QDs and the uniform growth of capping layers. As a result of photoluminescence (PL) measurements, we found that the emission efficiency was enhanced and the full-width-half-maximum was reduced to 32 meV. The temperature dependence of these optical properties also revealed the enhancement of the uniformity of QDs grown by the PAI method.

  15. Bacterial Electrocatalysis of K4[Fe(CN)6] Oxidation

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    Shewanella oneidensis MR-1 (MR-1), a model strain of electrochemically active bacteria, can transfer electrons from cell to extracellular electron acceptors including Fe(III) (hydro)oxides. It has been reported that several redox species such as cytochromes in membranes and flavins assist...... in the electron transport (ET) processes. However, the oxidization of metal compounds was barely described. Here we report electrocatalysis of K4[Fe(CN)6] oxidation by MR-1. K4[Fe(CN)6] is a redox inorganic compound and shows a reversible redox process on bare glassy carbon (GCE). This is reflected by a pair...

  16. Extracellular polymeric substances are transient media for microbial extracellular electron transfer

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, Enhua; Zhang, Jingdong

    2017-01-01

    in microbiology and microbial exploitation for mineral bio-respiration, pollutant conversion, and bioenergy production. We have addressed these challenges by comparing pure and EPS-depleted samples of three representative electrochemically active strains viz Gram-negative Shewanella oneidensis MR-1, Gram......-positive Bacillus sp. WS-XY1, and yeast Pichia stipites using technology from electrochemistry, spectroscopy, atomic force microscopy, and microbiology. Voltammetry discloses redox signals from cytochromes and flavins in intact MR-1 cells, whereas stronger signals from cytochromes and additional signals from both...

  17. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    Science.gov (United States)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  18. Annihilation characteristics in as-grown and electron irradiated Zn II-VI semiconductors

    International Nuclear Information System (INIS)

    Moser, P.; La Cruz, R.M. de; Pareja, R.

    1991-01-01

    The temperature dependence of the positron lifetime has been investigated in as-grown crystals of Zns, ZnSe and ZnTe over the temperature range 8-320 K. Also, isochronal annealing experiments up to 1175 K have been performed on these crystals. Zns and ZnSe crystals have been electron irradiated at room temperature and at 77 K. From the results in as-grown and annealed crystals, the values of (230±3), (240±5) and (266±3) ps are attributed to the positron lifetime in the bulk of Zns, ZnSe and ZnTe, respectively. 8 refs., 3 figs

  19. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  20. Lead, arsenic, and copper content of crops grown on lead arsenate-treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, D

    1972-01-01

    Increased lead and arsenic concentrations in the surface soil (0-15 cm), resulting from applications of lead arsenate (PbHAs0/sub 1/), increased both lead and arsenic levels in crops grown on treated plots. The lead levels in some crops approached or exceeded the Canadian residue tolerance of 2.0 ppM. Lead arsenate soil treatments did not affect copper absorption by crops. On areas such as old orchard land contaminated with lead arsenate residues it may be advisable to ascertain crops, and also to determine the lead affinity and arsenic sensitivity of the plants to be grown.

  1. GaSb grown from Sn solvent at low temperatures by LPE

    Energy Technology Data Exchange (ETDEWEB)

    Compean, V H; Anda, F de; Mishurnyi, V A; Gorbatchev, A Yu, E-mail: fdeanda@cactus.iico.uaslp.m [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico)

    2009-05-01

    The LPE growth of GaSb using Sn as a solvent has been studied in the temperature range 250-370 C and using liquid solutions covering a wide range of compositions. In order to find the growth conditions the phase diagram has been determined experimentally around the same temperature region. It is shown the Sn incorporates into the grown layers and that it behaves as an acceptor. The photoluminescence spectra of the grown layers with different Sn contents show characteristic peaks that can be attributed to different recombination processes.

  2. Electrical properties of ZnO thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Pagni, O.; Somhlahlo, N.N.; Weichsel, C.; Leitch, A.W.R.

    2006-01-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies

  3. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  4. Annihilation characteristics in As-grown and electron irradiated Zn II-VI semiconductors

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.; Moser, P.

    1992-01-01

    The temperature dependence of the positron lifetime has been investigated in as-grown crystals of ZnS, ZnSe and ZnTe over the temperature range 8-320 K. Also, isochronal annealing experiments up to 1175 K have been performed on these crystals. ZnS and ZnSe crystals have been electron irradiated at room temperature and at 77 K. From the results in as-grown and annealed crystals, the values of (230±3), (240±5) and (266±3) ps are attributed to the positron lifetime in the bulk of ZnS, ZnSe and ZnTe, respectively

  5. Fabrication of radiation detectors with HgI2 crystals grown from a solution

    International Nuclear Information System (INIS)

    Friant, Alain; Mellet, Jean; Saliou, Charles; Mohammed Brahim, Tayeb.

    1979-01-01

    Mercuric Iodide crystals grown from a solution of molecular complexes with dimethylsulfoxide have been evaluated as γ-ray and X-ray room temperature detectors. Compared with materials grown from the vapor phase these crystals are characterized by a larger size, a lower level of native defects, but a higher impurity level. Detector technology, X-ray and γ-ray (up to 662 keV) detection properties and characterization measurements (T.S.C., photoconductivity, photovoltaic effect) are described. The effect of light on crystal properties is briefly discussed [fr

  6. Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4

    Science.gov (United States)

    Vijayalakshmi, V.; Dhanasekaran, P.

    2018-05-01

    In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.

  7. Anisotropy of electrical resistivity in PVT grown WSe2-x crystals

    Science.gov (United States)

    Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.

    2018-05-01

    Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.

  8. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

    Science.gov (United States)

    Yong, Yang-Chun; Yu, Yang-Yang; Zhang, Xinhai; Song, Hao

    2014-04-22

    Low extracellular electron transfer performance is often a bottleneck in developing high-performance bioelectrochemical systems. Herein, we show that the self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed an electroactive, reduced-graphene-oxide-hybridized, three-dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact-based extracellular electron transfer. This 3D electroactive biofilm delivered a 25-fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74-fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative study for antibacterial potential of in vitro and in vivo grown Ocimum basilicum L. plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Shafique, M; Khan, S J [Pakistan Councile of Scientific and Industrial Research, Lahore (Pakistan). Dept. of Food and Biotechnology

    2011-09-15

    The antimicrobial activities of in vitro grown callus extract and in vivo grown Ocimum basilicum L. plant leaves extracts were studied and compared. Effect of extraction solvent was also assessed. These extracts were tested in vitro against eight bacterial strains following disc diffusion method. The results indicated that in vitro grown callus extracts of O. basilicum exhibited higher antimicrobial activity against tested Gram positive microorganisms as compared to in vivo grown plant material extract. These findings indicate towards potential use of biotechnology for natural therapeutic agent production. (author)

  10. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  11. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  12. Comparative study for antibacterial potential of in vitro and in vivo grown Ocimum basilicum L. plant extracts

    International Nuclear Information System (INIS)

    Shafique, M.; Khan, S.J.

    2011-01-01

    The antimicrobial activities of in vitro grown callus extract and in vivo grown Ocimum basilicum L. plant leaves extracts were studied and compared. Effect of extraction solvent was also assessed. These extracts were tested in vitro against eight bacterial strains following disc diffusion method. The results indicated that in vitro grown callus extracts of O. basilicum exhibited higher antimicrobial activity against tested Gram positive microorganisms as compared to in vivo grown plant material extract. These findings indicate towards potential use of biotechnology for natural therapeutic agent production. (author)

  13. Effect of amaranth dye on the growth and properties of conventional and SR method grown KAP single crystals

    Science.gov (United States)

    Babu Rao, G.; P., Rajesh; Ramasamy, P.

    2018-04-01

    The 0.1 mol% amaranth added KAP single crystals were grown from aqueous solutions by both slow evaporation solution technique and Sankaranarayanan-Ramasamy method. The single crystal having dimension of 45 mm length and 12 mm diameter was grown with growth rate of 1.5 mm/day using SR method. 87 % transmittance is obtained for SR method grown amaranth added KAP single crystal. The high intense luminescence at 661 nm is obtained from amaranth added conventional and SR method grown KAP single crystal. The amaranth added KAP single crystal possesses good mechanical and laser damage threshold stability.

  14. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    Science.gov (United States)

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  15. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  16. Phenotypic Characteristics Of Ten Garlic Cultivars Grown At Different North American Locations

    Science.gov (United States)

    Garlic (Allium sativum L.) bulbs are marketed for their health and culinary values. It is difficult to identify garlic cultivars or classes grown under diverse conditions as a result of their highly elastic environmental responses, particularly relating to skin color and clove arrangement of bulbs....

  17. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.d...

  18. Postharvest evaluation of soilless-grown table grape during storage in modified atmosphere.

    Science.gov (United States)

    Cefola, Maria; Pace, Bernardo; Buttaro, Donato; Santamaria, Pietro; Serio, Francesco

    2011-09-01

    Soilless growth systems, developed mainly for vegetables and ornamental crops, have also been used recently as an alternative to soil culture for table grape in order to achieve optimal production performance. In this study, sensory, physical and chemical parameters were analysed in table grapes obtained from soil and soilless growth systems at harvest and during storage in air or modified atmosphere. At harvest, soilless-grown berries were 30% firmer than those grown in soil. Moreover, they showed 60% higher antioxidant activity and total phenol content than soil-grown fruits. Modified atmosphere storage resulted in a better quality of table grapes compared with those stored in air. Furthermore, soilless growth was more suitable than soil growth for preserving visual quality and controlling rachis browning and weight loss. Since the soilless system produces berries that are cleaner and of higher quality than those grown in soil, the implementation of soilless growth for the production of health-promoting and convenience fruits is suggested. Copyright © 2011 Society of Chemical Industry.

  19. Low Temperature CVD Grown Graphene for Highly Selective Gas Sensors Working under Ambient Conditions

    NARCIS (Netherlands)

    Ricciardella, F.; Vollebregt, S.; Polichetti, T.; Alfano, B.; Massera, E.; Sarro, P.M.

    2017-01-01

    In this paper we report on gas sensors based on graphene grown by Chemical Vapor Deposition at 850 °C. Mo was used as catalyst for graphene nucleation. Resistors were directly designed on pre-patterned Mo using the transfer-free process we recently developed, thus avoiding films damage during the

  20. Study of gel grown mixed crystals of Bax Ca ((IO3) 4

    Indian Academy of Sciences (India)

    The growth of mixed crystals of BaCa1–(IO3)4 were carried out with simple gel method. The effect of various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactants on the growth was studied. Crystals having different morphologies and habits were obtained. The grown ...

  1. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Science.gov (United States)

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  2. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  3. GaIn As Quantum Dots (QD) grown by Liquid Phase Epitaxy (LPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Vazquez, F E; Mishurnyi, V A; Gorbatchev, A Yu; De Anda, F [Universidad Autonoma de San Luis Potosi, Instituto de Investigation en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico); Elyukhin, V A, E-mail: fcoe_ov@prodigy.net.m, E-mail: andre@cactus.iico.uaslp.m [CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico D.F., CP 07360 (Mexico)

    2009-05-01

    The majority of the semiconductor structures with QD today are grown by MBE and MOCVD. It is known that the best material quality can be achieved by LPE because, in contrast to MBE and MOCVD, this method is realized at near-equilibrium conditions. To develop QD LPE technology first of all it is necessary to find out a growth technique allowing the crystallization of epitaxial materials with very small volume. This can be done by means of different techniques. In this work we apply a low temperature short-time growth method, which allows the production not only of single, but also of multilayer heterostructures. We have grown Ga{sub x}In{sub 1-z}As QD on GaAs (100) substrates at 450 C. The details of the QD formation, depending on composition of the Ga{sub x}In{sub -x} As solid solutions, have been studied by atom-force microscopy. The photoluminescence spectra of investigated samples show, in addition to a short-wave GaAs related peak, a longer wavelength line, which disappears after removal of the grown GaInAs material using an etching solution. This fact, together with atom-force microscopy results can be interpreted as a proof that QD heterostructures were grown successfully by LPE.

  4. Passivation of MBE grown InGaSb/InAs superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.

    2005-01-01

    We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.

  5. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  6. Crop growth rate differs in warm season C4-grasses grown in pure ...

    African Journals Online (AJOL)

    German Strain R) grown in pure and mixed stands under low and high water levels was investigated at one month interval namely: 30, 60 and 90 days after emergence (DAE), in pot experiment at Dryland Agriculture Institute, West Texas A&M University, Canyon, Texas, USA during spring 2010. The corn CGR in the mixed ...

  7. RAPD-PCR analysis of some species of Euphorbia grown in ...

    African Journals Online (AJOL)

    family ^____^

    2013-12-04

    Dec 4, 2013 ... This study attempts to identify species of Euphorbia (Euphorbia peplus, Euphorbia helioscopia,. Euphorbia granulata and Euphorbia hirta) grown in University of Baghdad Campus in Jadiriyah and determine the genetic polymorphism among them by using DNA markers generated by polymerase.

  8. ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols

    NARCIS (Netherlands)

    Protasova, L.N.; Rebrov, E.; Choy, K.L.; Pung, S.Y.; Engels, V.; Cabaj, M.; Wheatley, A.E.H.; Schouten, J.C.

    2011-01-01

    Vertically aligned ZnO nanowires (NWs) with a length of 1.5–10 µm and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution

  9. Performance of cowpea grown as an intercrop with maize of different ...

    African Journals Online (AJOL)

    The negative effects of shade were more pronounced in the semi-determinate cowpea than in the indeterminate. Therefore, in high maize populations, indeterminate spreading cowpeas should be grown; while semi-determinate cowpeas should be planted in low to moderate maize populations because of their intolerance ...

  10. The wood quality of Pinus chiapensis (Mart.) Andresen grown in the ...

    African Journals Online (AJOL)

    The wood quality of Pinus chiapensis (Mart.) Andresen grown in the Mpumalanga forest region: scientific paper. ... When present, the amounts of included resin, pieces of bark and other debris at the occluded pruning cuts, were small and of little practical significance. The wood machined without any difficulty in the wet and ...

  11. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  12. Comparison of antimicrobial resistant genes in chicken gut microbiome grown on organic and conventional diet

    Directory of Open Access Journals (Sweden)

    Narasimha V. Hegde

    2016-12-01

    Full Text Available Antibiotics are widely used in chicken production for therapeutic purposes, disease prevention and growth promotion, and this may select for drug resistant microorganisms known to spread to humans through consumption of contaminated food. Raising chickens on an organic feed regimen, without the use of antibiotics, is increasingly popular with the consumers. In order to determine the effects of diet regimen on antibiotic resistant genes in the gut microbiome, we analyzed the phylotypes and identified the antimicrobial resistant genes in chicken, grown under conventional and organic dietary regimens. Phylotypes were analyzed from DNA extracted from fecal samples from chickens grown under these dietary conditions. While gut microbiota of chicken raised in both conventional and organic diet exhibited the presence of DNA from members of Proteobacteria and Bacteroidetes, organic diet favored the growth of members of Fusobacteria. Antimicrobial resistance genes were identified from metagenomic libraries following cloning and sequencing of DNA fragments from fecal samples and selecting for the resistant clones (n=340 on media containing different concentrations of eight antibiotics. The antimicrobial resistant genes exhibited diversity in their host distribution among the microbial population and expressed more in samples from chicken grown on a conventional diet at higher concentrations of certain antimicrobials than samples from chicken grown on organic diet. Further studies will elucidate if this phenomena is widespread and whether the antimicrobial resistance is indeed modulated by diet. This may potentially assist in defining strategies for intervention to reduce the prevalence and dissemination of antibiotic resistance genes in the production environment.

  13. Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate

    Science.gov (United States)

    Silicon (Si) is a plant beneficial element associated with mitigation of abiotic and biotic stresses. Most greenhouse-grown ornamentals are considered low Si accumulators based on foliar Si concentration. However, Si accumulates in all tissues, and there is little published data on the distributio...

  14. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  15. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-01-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results

  16. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  17. 77 FR 21841 - Pistachios Grown in California, Arizona, and New Mexico; Decreased Assessment Rate

    Science.gov (United States)

    2012-04-12

    ... FIR] Pistachios Grown in California, Arizona, and New Mexico; Decreased Assessment Rate AGENCY... the assessment rate established for the Administrative Committee for Pistachios (Committee) for the 2011-12 and subsequent production years from $0.0007 to $0.0005 per pound of assessed weight pistachios...

  18. 76 FR 60361 - Pistachios Grown in California, Arizona, and New Mexico; Decreased Assessment Rate

    Science.gov (United States)

    2011-09-29

    ...; FV-983-2 IR] Pistachios Grown in California, Arizona, and New Mexico; Decreased Assessment Rate...: This rule decreases the assessment rate established for the Administrative Committee for Pistachios... weight pistachios. The Committee locally administers the marketing order which regulates the handling of...

  19. 75 FR 68681 - Pistachios Grown in California, Arizona, and New Mexico; Modification of the Aflatoxin Regulations

    Science.gov (United States)

    2010-11-09

    ... FIR] Pistachios Grown in California, Arizona, and New Mexico; Modification of the Aflatoxin..., Arizona, and New Mexico pistachio marketing order (order). The interim rule streamlined the aflatoxin sampling and testing procedures under the order's rules and regulations for pistachios to be shipped for...

  20. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  1. Growth and study of some gel grown group II single crystals of iodate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Single crystals of calcium iodate and barium iodate were grown by simple gel technique by single diffusion method. The optimum conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of the reactants etc. Crystals having different.

  2. Characterization of GaN/AlGaN epitaxial layers grown by ...

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical ... reported by introducing annealing of the GaN layer in nitrogen [5], Fe doping [6], .... [2] Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan,.

  3. The effects of Fe-chelate type and PH on substrate grown roses

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2009-01-01

    Substrate grown roses appear to be susceptible to chlorosis, which indicates problems with Fe or Mn uptake and hence yield reduction. In common practice this problem is often treated by the addition of extra Fe-chelate, or the use of Fe-EDDHA instead of Fe-DTPA. In previous tests, it was shown that

  4. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  5. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Science.gov (United States)

    Chen, Ke; Roy, Anupam; Rai, Amritesh; Movva, Hema C. P.; Meng, Xianghai; He, Feng; Banerjee, Sanjay K.; Wang, Yaguo

    2018-05-01

    Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  6. EXAFS investigations on PbMoO4 single crystals grown under ...

    Indian Academy of Sciences (India)

    Abstract. Extended X-ray absorption fine structure (EXAFS) measurements on PbMoO4 (LMO) crystals have been performed at the recently-commissioned dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The LMO samples were prepared under three different conditions viz. (i) grown from ...

  7. 77 FR 72683 - Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2012-12-06

    ...; FV12-923-1 IR] Sweet Cherries Grown in Designated Counties in Washington; Decreased Assessment Rate... (Committee) for the 2012-2013 and subsequent fiscal periods from $0.40 to $0.18 per ton of sweet cherries handled. The Committee locally administers the marketing order which regulates the handling of sweet...

  8. 75 FR 31663 - Sweet Cherries Grown in Designated Counties in Washington; Change in the Handling Regulation

    Science.gov (United States)

    2010-06-04

    ... producer returns by providing pack differentiation; and benefit producers, handlers, and consumers. DATES... producer returns by providing pack differentiation, and is expected to benefit producers, handlers, and..., and container regulations for any variety or varieties of cherries grown in the production area...

  9. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Photoluminescence (PL) properties of undoped ZnO thin films grown by rf magnetron sputtering on silicon .... voluted O1 s and (c) typical Zr 3d spectra of ZrO2/ZnO/Si film. .... strate doping concentration (NB) of ≈ 2⋅5 × 1015 cm–3 is.

  10. Interactions between nitrate and chloride in nutrient solutions for substrate grown tomato

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2004-01-01

    In two successive experiments tomato was grown at different Cl and NO3 concentrations in the root environment with rockwool as a sub-strate. The EC value in the nutrient solution was fairly constant, varying between 3.5 and 4.0 dS m-1 in all treatments. The NO3 concentrations in the treatments

  11. 76 FR 65360 - Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions

    Science.gov (United States)

    2011-10-21

    ... operate without marketing order requirements in order to review the effectiveness of the order. During the... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 953 [Doc. No. AMS-FV-11-0027; FV11-953-1 FR] Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions...

  12. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments

    NARCIS (Netherlands)

    Jurak, Edita; Patyshakuliyeva, Aleksandrina; de Vries, Ronald P; Gruppen, Harry; Kabel, Mirjam A

    2015-01-01

    The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from

  13. 76 FR 4201 - Kiwifruit Grown in California; Order Amending Marketing Order No. 920; Correction

    Science.gov (United States)

    2011-01-25

    ... Avenue, SW., Stop 0237, Washington, DC 20250-0237; Telephone: (202) 720-2491, Fax: (202) 720-8938, E-mail... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 920 [Doc. No. AO-FV-08-0174; AMS-FV-08-0085; FV08-920-3 C] Kiwifruit Grown in California; Order Amending Marketing Order No. 920...

  14. A study of 1/f noise in InP grown by CBE

    NARCIS (Netherlands)

    Chen, X.Y.; Leijs, M.R.

    1996-01-01

    The origin of low-frequency noise in InP was studied experimentally by measuring the noise of InP layers grown by chemical beam epitaxy (CBE). Such InP layers are unintentionally doped, but of varying purity and always of n-type conductivity. We performed noise measurements at temperatures from 77

  15. 76 FR 18001 - Irish Potatoes Grown in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2011-04-01

    ... IR] Irish Potatoes Grown in Washington; Decreased Assessment Rate AGENCY: Agricultural Marketing... rate established for the State of Washington Potato Committee (Committee) for the 2011-2012 and subsequent fiscal periods from $0.0035 to $0.003 per hundredweight of potatoes handled. The Committee locally...

  16. 78 FR 48285 - Irish Potatoes Grown in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2013-08-08

    ...; FV13-946-1 FIR] Irish Potatoes Grown in Washington; Decreased Assessment Rate AGENCY: Agricultural... established for the State of Washington Potato Committee (Committee) for the 2013-2014 fiscal year and all subsequent fiscal periods from $0.003 to $0.0025 per hundredweight of potatoes handled. The Committee locally...

  17. 76 FR 41589 - Irish Potatoes Grown in Washington; Decreased Assessment Rate

    Science.gov (United States)

    2011-07-15

    ... FIR] Irish Potatoes Grown in Washington; Decreased Assessment Rate AGENCY: Agricultural Marketing... established for the State of Washington Potato Committee (Committee) for the 2011-2012 and subsequent fiscal periods from $0.0035 to $0.003 per hundredweight of potatoes handled. The Committee locally administers...

  18. Extraction and characterization of seed oil from naturally-grown Chinese tallow trees

    Science.gov (United States)

    Xiao-Qin Yang; Hui Pan; Tao Zeng; Todd F. Shupe; Chung-Yun Hse

    2013-01-01

    Seeds were collected from locally and naturally grown Chinese tallow trees (CTT) and characterized for general physical and chemical properties and fatty acid composition of the lipids. The effects of four different solvents (petroleum ether, hexane, diethyl ether, and 95 % ethanol) and two extraction methods (supercritical carbon dioxide (SC-CO2) and conventional...

  19. 78 FR 23671 - Onions Grown in South Texas; Increased Assessment Rate

    Science.gov (United States)

    2013-04-22

    ... behalf. There are approximately 85 producers of onions in the production area and approximately 30... FR] Onions Grown in South Texas; Increased Assessment Rate AGENCY: Agricultural Marketing Service... Texas Onion Committee (Committee) for the 2012-13 and subsequent fiscal periods from $0.025 to $0.03 per...

  20. 78 FR 56816 - Vidalia Onions Grown in Georgia; Change in Reporting and Assessment Requirements

    Science.gov (United States)

    2013-09-16

    ... to regulation under the order and approximately 80 onion producers in the designated production area...; FV13-955-1 FIR] Vidalia Onions Grown in Georgia; Change in Reporting and Assessment Requirements AGENCY... the reporting and assessment requirements prescribed under the marketing order for Vidalia onions...